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With the rapid growth of e-commerce and online auction markets, malicious
bidding activities have severely disrupted market order. Traditional detection
methods face limitations due to their inability to effectively address the covert
nature, dynamic characteristics, and massive data volumes associated with such
behaviors. To address this challenge, this paper proposes a detection method
for users engaging in malicious bidding based on Multi-Agent Reinforcement
Learning (MARL). This approach first models target users as specialized agents,
then integrates their historical bidding data, and finally learns optimal strategies
through competitive games with adversarial agents. Additionally, this paper
designs a dynamic adjustment mechanism for the maliciousness coefficient to
simulate user behavior changes, enabling precise assessment of malicious intent.
Compared to existing fraud detection approaches based on reinforcement
learning, the fundamental innovation lies not merely in applying MARL
technology, but in introducing the novel “dynamic maliciousness coefficient”
mechanism. This mechanism achieves dynamic and precise maliciousness
assessment through mathematical modeling and real-time iteration, addressing
the shortcomings of traditional MARL models in capturing user behavioral
heterogeneity. Experimental results demonstrate that this method exhibits higher
detection accuracy and adaptability in complex dynamic market environments. It
effectively captures bidder interaction relationships, significantly enhancing the
detection of malicious behavior.

KEYWORDS

bidding detection, dynamic maliciousness coefficient, malicious bidding, market order,
multi-agent reinforcement learning

1 Introduction

With the rapid development of global e-commerce and online auction markets,
malicious bidding activities have become a significant threat to market integrity and fair
competition (Guo et al., 2021). The widespread adoption of online auction platforms and
advertising bidding systems, especially the evolution of real-time bidding (RTB) systems
which have notably enhanced bidding efficiency, has unfortunately also provided an ideal
breeding ground for malicious activities (Cao, 2022). Such malicious behaviors directly
lead to bidding outcomes diverging from actual supply-demand dynamics, resulting
in price distortions (Gupta and Gupta, 2023). Currently, the traditional methods for
detecting malicious bidding in the market mainly consist of rule-based statistical models
and supervised learning-based classification models. Conventional rule-based detection
methods identify abnormal data that deviates from normal bidding behavior through
predefined thresholds or rules. However, in the face of complex and dynamic market
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environments, the limitations of this approach are becoming
increasingly evident (Mo et al., 2024). In contrast, multi-agent
systems can capture the complex interactions among bidders
through agent-to-agent game learning and dynamically adjust
detection strategies (Kanmaz and Surer, 2020). Each agents
behavior in the market environment is influenced not only by its
own strategy but also by the strategies of other bidders. Therefore,
by simulating agent interactions, the system can more effectively
replicate the competitive dynamics of real markets, thus enhancing
detection accuracy (Chen et al., 2024).

To better understand why traditional methods struggle and
multi-agent systems hold advantages, it is essential to first clarify
what constitutes malicious bidding—including its core definition,
key characteristics, and specific forms—since a precise grasp of the
target behavior lays the groundwork for evaluating and optimizing
detection approaches. Malicious bidding refers to actions taken by
certain market participants who use improper means to influence
competitive outcomes. It is characterized by high concealment
and complexity, making it difficult to effectively detect through
traditional monitoring methods. Its common manifestations can
be classified into four types: 1. Fake Bidding: Market bids without
genuine purchase intent artificially inflate prices, distorting market
pricing and forcing other bidders to bear inflated costs; 2. Bid-
rigging (collusive bidding): Involving multiple participants who
collude in advance or through secret agreements to take turns
bidding, ensuring that a specific party wins at the lowest price. This
violates the principles of fair competition and disrupts the rational
allocation of resources; 3. Fake demand: Mass-generating false bids
to create an illusion of high demand, inducing other bidders to pay
inflated prices. This is particularly common in advertising bidding
systems and commodity auction platforms (Chen et al., 2024);
4. Malicious disruption: Interfering with other bidders’ normal
transactions through tactics such as malicious bidding or negative
reviews, undermining the foundation of fair market competition.

A key prerequisite for ensuring the effectiveness of the
aforementioned detection framework-especially in accurately
identifying malicious behaviors and avoiding misclassifying
legitimate activities—is clarifying the boundary between malicious
bidding and normal strategic bidding, as the two may exhibit
overlapping behavioral traits that could lead to detection ambiguity
without clear differentiation criteria. It is crucial to distinguish
malicious bidding from normal strategic bidding in bidding and
online auction markets. The fundamental difference between the
two lies in “behavioral legitimacy” and “purpose legitimacy”, which
requires precise differentiation based on two core dimensions:
behavioral purpose and behavioral characteristics. 1. Behavioral
Purpose: Malicious bidding aims to manipulate the market
through improper means and obtain illegal gains, ignoring the
principles of fair competition and value matching. In contrast,
normal strategic bidding involves enterprises adhering to market
rules and commercial logic to achieve supply-demand matching
through compliant competition. For example, manufacturers
participate in raw material bidding to control costs, or government
departments organize auctions for efficient public resource
allocation; 2. Behavioral Characteristics: Malicious bidding shows
multi-dimensional anomalies, such as bids significantly deviating
from the market value or an abnormally high bidding frequency
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within specific time periods. Normal strategic bidding, on the other
hand, conforms to commercial logic, with bids fluctuating around
“cost plus reasonable profit” and having clear cost justifications.

Even with a clear understanding of the differences
between malicious and normal strategic bidding, the practical
implementation of detection remains constrained by inherent
flaws in existing technologies—flaws that hinder their ability
to fully leverage such differentiation criteria and address real-
world detection challenges. Although existing technologies
can identify abnormal behavior to some extent, there are four
key limitations restricting their practical application: 1. Data
Annotation Challenges: Supervised learning depends on large
amounts of labeled data. However, malicious bidding shows
diverse forms, making comprehensive annotation difficult and
limiting the generalization ability of the model; 2. Model Training
Complexity: As market data expands, especially in RTB systems,
the complexity of data processing and analysis grows exponentially.
Traditional machine learning methods struggle to meet the real-
time application requirements; 3. Poor Adaptability to Dynamic
Environments: Traditional models based on rules and statistics
have difficulty coping with evolving market conditions. Malicious
bidders adjust their strategies to avoid detection, and static
models cannot quickly adapt to dynamic changes; 4. Challenges in
Addressing Cross: Platform Malicious Behavior: Malicious bidding
may occur across platforms. Differences in data formats between
platforms, as well as technical and legal barriers to data sharing,
increase the difficulty of detection.

However, the high concealment and diverse manifestations of
malicious bidding, as outlined above, pose significant challenges
to existing detection practices. Especially traditional methods that
already face inherent drawbacks in addressing such complex
behaviors. In the field of malicious bidder detection, traditional
methods like manual review are costly and inefficient. Rule-
based approaches lack flexibility, have difficulty adapting to
complex and dynamic market environments, and have poor
real-time performance, failing to respond promptly to malicious
bidding activities. To overcome these limitations, this paper
conducts in-depth research, with contributions in two main
aspects: methodological innovations and experimental outcomes.
1. Method Contribution: We propose a detection framework
for malicious bidding users based on MARL. This framework
models the historical behavior of the users under investigation,
treating them as a distinct agent within a multi-agent system.
By constructing a game-theoretic interaction process between this
agent and other agents in the system, we enable the learning
and optimization of user bidding strategies, thus providing
a core technical approach for identifying malicious behavior.
Additionally, we design a dynamic adjustment mechanism for
the maliciousness coefficient. To address the accuracy issue in
evaluating malicious bidder behavior, this mechanism dynamically
updates the corresponding maliciousness coefficient by analyzing
behavioral trends across multiple bidding rounds. At the same
time, it simulates the potential “repentance” behaviors of
malicious bidders, making the logical design of the detection
model more in line with the complexity of user behavior in
real-world scenarios. The "repentance” behavior of malicious
bidders fundamentally reflects strategic adaptability. This research
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indicates that bidders dynamically adjust their bidding strategies
based on market feedback and historical outcomes, including
shifting from aggressive bidding (similar to malicious price
inflation) to conservative bidding (resembling “repentance”)
patterns; 2. Experimental Findings: The proposed approach based
on MARL shows remarkable detection performance in complex
and dynamically evolving market environments. When facing
various malicious bidding strategies, this method effectively
improves the accuracy and robustness of malicious bidder
detection. Compared with traditional detection methods based on
rules or supervised learning, it has better adaptability in large-
scale data processing scenarios and can more effectively capture
malicious bidder behaviors in the market.

Subsequent sections of this study will focus on core
methodology, experimental validation, and research prospects:
Chapter 2 systematically reviews relevant technologies in malicious
bidding detection, covering the current applications and limitations
of machine learning, reinforcement learning, blockchain, and
game theory, while highlighting the technical advantages of
MARL. Chapter 3 proposes a MARL-based detection method. By
constructing a multi-agent interaction framework and designing a
dynamic adjustment mechanism for the maliciousness coefficient,
it achieves precise modeling of bidding behavior and assessment
of malicious intent; Chapter 4 validates the effectiveness of
this method through simulation experiments, demonstrating
superiority over traditional methods in detection accuracy, low
false alarm rate, and scenario adaptability; Chapter 5 summarizes
the research findings and identifies future directions for deepening
the study, including optimizing learning algorithms, expanding
multi-scenario validation, and addressing reward non-stationarity
issues, thereby providing a feasible pathway for detecting malicious
bidding in dynamic market environments.

2 Related work

With the rapid development of e-commerce and online
auction markets, malicious bidding activities have increasingly
disrupted market order. Traditional detection methods have
gradually revealed limitations in addressing issues such as
the covert nature, dynamic traits, and massive data volume
of such behaviors. This section systematically reviews the
current state of technology in malicious bidding detection, its
core characteristics, and the shortcomings of existing methods,
integrating relevant technical research and research background
to lay the theoretical and practical foundation for proposing
subsequent research methodologies.

Research on malicious bidding detection technology has
spanned multiple fields, including machine learning, reinforcement
learning, game theory, blockchain, and data mining (Ressi et al.,
2024). As market environments grow more complex and malicious
behaviors diversify, various technologies have been successively
introduced to the field of malicious bidding detection, optimized
through different methodologies. Existing approaches not only
focus on enhancing detection accuracy but also continuously
explore improvements to system adaptability and real-time
responsiveness, as detailed in the following classifications. 1.
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Supervised Learning Algorithm Applications: Supervised learning
algorithms train classification models using labeled data to
effectively identify malicious bidding activities. However, this
approach relies heavily on labeled data and faces challenges such
as high data acquisition costs and inconsistent annotation quality—
both of which limit its performance in practical applications;
2. Unsupervised Learning and Anomaly Detection Applications:
In scenarios with scarce labeled data, unsupervised learning
automatically identifies potential malicious bidding behaviors
through techniques like clustering and anomaly detection (Zhang
et al, 2020a). Nevertheless, unsupervised learning is sensitive
to noisy data and lacks interpretability due to the absence of
prior knowledge support. 3. Ensemble Learning and Optimization
Approaches: To overcome the limitations of single algorithms,
Zhou et al. employed ensemble learning, integrating multiple
models including Support Vector Machines (SVM), Extreme
Gradient Boosting (XGBoost), and k-Nearest Neighbors (k-NN)
to construct a hybrid detection system, thereby enhancing overall
detection performance. Concurrently, Mestiri (2024) proposed a
“data quality—technical capability—business scenario adaptation”
logic in credit scoring research, which offers insights for
optimizing malicious bidding detection models by emphasizing
the importance of data cleansing, dynamic feature extraction, and
market-type adaptation (Majadi and Trevathan, 2024).

Notably, studies in related domains such as credit scoring
(Mestiri, 2024) and financial fraud detection (Ma et al., 2019)
have further demonstrated the effectiveness of machine learning in
identifying anomalous patterns, providing cross-domain references
for malicious bidding detection. Beyond basic machine learning,
reinforcement learning has emerged as a significant research
direction in this field in recent years. Unlike traditional machine
learning, reinforcement learning enables agents to learn optimal
strategies through continuous interaction with their environment,
eliminating reliance on labeled data and allowing dynamic
adaptation to market changes. For instance, Li et al. (2025)
proposed a malicious bidding detection framework based on deep
reinforcement learning: this approach processes market input
information through deep neural networks and adjusts behavioral
strategies based on reward mechanisms, achieving high detection
accuracy in dynamic market environments. Similarly, Zhang et al.
(2020b) applied multi-DQN reinforcement learning to EV charging
bidding in electricity auction markets, verifying the effectiveness
of reinforcement learning in dynamic bidding strategy adaptation.
The versatility of MARL has been further verified in diverse
domains beyond bidding systems. In electricity markets, Yin
et al. (2025) leveraged MARL to optimize auction mechanisms,
demonstrating its effectiveness in handling dynamic pricing and
participant interactions. For strategic bidding scenarios, Wu et al.
(2024) developed an intelligent bidding framework based on
MARL, which adapts to real-time market changes to maximize
participant benefits while maintaining fairness. In dynamic pricing,
Qiao et al. (2024) proposed a distributed dynamic pricing model
using MARL, enabling platforms to balance supply-demand
relationships and user satisfaction. Beyond these, Yuan and
Wang (2025) applied deep Q-networks (DQN) within a MARL
framework to develop green computing solutions for sustainable
supply chain management, expanding the practical scope of MARL
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and confirming its adaptability to complex, multi-stakeholder
environments-this strengthens our confidence in applying MARL
to malicious bidding detection. Within the MARL framework,
the dynamic maliciousness coefficient is not an independently
evaluated parameter; Instead, it is deeply embedded within
the “action selection—reward feedback—policy update” closed-
loop system. Through mathematical modeling, this coefficient
directly influences agent decision logic and learning processes
(Dong and Finlay, 2025). Notably, the parameter adaptation
logic of our dynamic maliciousness coeflicient aligns with
advanced optimization algorithms in related fields. The Improved
Adaptive Differential Evolution (IADE) algorithm proposed by
Zhou et al. (2021a) dynamically adjusts the scaling factor and
crossover probability in differential evolution, effectively resolving
parameter dependency and slow convergence in 6G network
optimization—this provides a key reference for our control of
maliciousness coefficient adjustment magnitude. Another multi-
objective optimization algorithm, AFED-EF also proposed by
Zhou et al. (2021b), achieves energy-efficient virtual machine
(VM) allocation in cloud data centers through fine-grained
parameter tuning, further validating the effectiveness of “small-step
adjustment” in maintaining system stability, which is consistent
with our 0.001 fine-tuning increment design. Additionally, Zhou
etal. (2018)’s earlier work on adaptive energy-aware algorithms for
cloud data centers optimizes both SLA violation rates and power
consumption, supporting the multi-objective coordination logic in
our parameter adjustment-where we balance detection accuracy
and reward stability.

Another critical technical integration in malicious bidding
detection lies in the convergence of blockchain and machine
learning. The decentralized and immutable nature of blockchain
technology provides data security and transparency guarantees for
detecting malicious bidding. Recording bidding activities on the
blockchain enables traceability and verifiability of bidding history,
reducing opportunities for malicious manipulation. Combined
with smart contracts, blockchain technology can also automatically
enforce bidding rules to prevent rule abuse (Ressi et al,
2024). For example, Hameed et al. integrated blockchain with
machine learning models such as gradient-boosting decision trees
(GBDT) and random forests to construct a fraud detection
mechanism; Chaudhari and Malik proposed an advertising bidding
system based on blockchain that integrates machine learning
models-this system detects malicious behavior while ensuring
transparent and traceable bidding processes through blockchain
(Cao et al, 2017). Secure auction protocols also contribute to
transparent bidding, for example, Zhou et al. (2024)s efficient
first-price sealed-bid electronic auction protocol under malicious
models, which can complement our detection framework in
ensuring bidding integrity. While MARL shows strong adaptability,
reinforcement learning (RL) as a core technology still faces
inherent challenges. Liao et al. (2025) pointed out that RL suffers
from high computational complexity and lengthy training times,
especially when processing large-scale datasets—this is also a
key constraint for our MARL-based detection model, as massive
historical bidding data may prolong training cycles. Addressing
this issue, recent research has focused on optimizing RLs practical
deployment: for example, Zhou and Abawajy (2025) proposed
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a reinforcement learning-based edge server placement strategy
for intelligent Internet of Vehicles (IoV) environments, which
enhances real-time responsiveness by reducing data transmission
latency—this provides insights for our future optimization of real-
time detection in high-frequency bidding scenarios. Currently,
blockchain applications in this field face performance and
scalability challenges: enhancing processing speed and ensuring
efficient operation within high-frequency bidding systems remain
unresolved issues. Beyond bidding systems, the integration of
blockchain and AI has shown promise in enhancing data
valuation frameworks (Theodorou and Theodorou, 2024), which
may provide technical inspiration for optimizing malicious
bidding detection systems. The intersection of game theory
and cloud security also offers cross-domain references, such as
Gill et al. (2024)s systematic review of game-theoretic models
for cloud security requirements, highlighting the potential of
interdisciplinary integration in detection system optimization.

Complementing these technical approaches, game theory offers
a crucial theoretical foundation for malicious bidding detection
by treating bidding activities as a multi-party game process. By
analyzing bidders’ strategic choices, it infers potential malicious
behavior (Sim, 2024). For instance, Li et al. (2025) proposed a
malicious bidding detection model based on Nash equilibrium: this
model constructs a game framework to analyze bidder strategy
interactions and predict malicious behavior patterns. To further
enhance detection effectiveness, integrating game theory with
reinforcement learning has become a valuable direction. Gupta
and Gupta (2023) combined both approaches to propose a novel
malicious bidding detection framework-by simulating multi-agent
strategy interactions and analyzing bidder behavior patterns, this
framework demonstrates greater robustness and adaptability in
complex markets, addressing some of the limitations of single-
theory-based detection methods (Shi et al., 2025).

3 Research methodology

This paper proposes a malicious bidding detection method
based on MARL. It models users under investigation as
special agents. These agents learn optimal bidding strategies

through  game-theoretic  interactions  with  adversarial
agents, utilizing historical data. Additionally, this paper
designs a dynamic maliciousness coeflicient adjustment

mechanism to accurately assess user maliciousness levels.

Compared to traditional detection methods based on

rules, or supervised learning, this approach demonstrates
higher adaptability in

dynamically environments.

detection accuracy and complex,

changing market Experimental
results demonstrate that the multi-agent system effectively
captures interactive relationships

among bidders through

game-based  learning,  dynamically adjusting  detection
strategies to significantly enhance the detection of malicious
bidding behavior.

This design centers entirely on the maliciousness coefficient,
a parameter used to preliminarily assess an individual’s level of
malicious bidding. The probability of a user becoming a genuine

malicious bidder is positively correlated with their maliciousness
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coeflicient. The model described herein primarily involves two core
steps: First, obtaining the initial maliciousness coefficient for the
target user based on their historical data. Second, incorporating
this initial coefficient into a multi-agent system. Notably, during
subsequent detection processes, the maliciousness coefficients of
user agents undergo dynamic adjustment to simulate a "repentance”
process. The system architecture is illustrated in Figure 1.

The architecture diagram clearly illustrates the interaction
process of a multi-agent system, which is divided into four steps:

Step 1: The system initializes the environment state and
configures agent parameters.

Step 2: Agents perceive the environment, select actions, and
receive rewards.

Step 3: The proxy updates its policies through learning and
dynamically adjusts the maliciousness coefficient.

Step 4: The system obtains detection results and malicious user
probabilities, then outputs data.

3.1 Calculation of the initial malicious
coefficient

Let the historical auction dataset of the user to be detected be
D, and one piece of historical data be data, that is, data € D. The
expression is data = (bids, values, index), where bids are the bids of
all participants in a certain bidding activity, values are the values of
the bidding item in the minds of all participants, and index is the
index subscript of the user to be detected. The calculation of the
initial malicious coeflicient is divided into four steps:

Step 1: Calculate the median bid (med) for each historical data
point. Sort the historical bids and take the middle value as the
median. Then, calculate the bid deviation 6 for the target user using
the following Equation 1.

0= bids;pgex — med’ (1)

med

Step 2: Introduce a function f;, representing the probability that

the target user becomes a malicious user based on historical data i.
Specifically, as shown in Equation 2.

1, 6; > 0y;
fi= ’ )

,
0, otherwise.

Among these, 6 represents the deviation threshold determined
by the market, reflecting the market’s tolerance for malicious
overbidding, with a positive correlation between the two. 6; denotes
the bid deviation under historical data i. f; is a binary function
indicating the probability that the user under investigation becomes
a malicious user based on historical data i. When the bid deviation
for historical data i exceeds the market-determined deviation
threshold-that is, when f; = 1-itindicates the user has a probability
of becoming a malicious user.

Step 3: Calculate the total sum of f for all data using Equation 3.

fam =Y_fi (3)
i=1
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Step 4: Let & denote the maliciousness coefficient, which is used
to preliminarily evaluate the degree of a user’s malicious bidding
(the probability of a user being a malicious bidder is positively
correlated with &). Calculate the malicious coefficient &.

s

um
m

&= “)

3.2 Multi-agent systems

A multi-agent system is a system composed of multiple agents,
each possessing its own objectives and behavioral strategies. Agents
interact with one another to achieve their respective goals. In this
paper, the multi-agent system consists of a target user and multiple
adversarial agents. The user is a special type of agent. This system is
summarized by Equation 5.

system = (uesr, agent,, agent,). (5)

Here, user represents the target user under investigation, and
agent; denotes the i — 1th adversarial agent. # is the total number of
agents. When locating agents via indexing, it is specified that index
1 corresponds to the target user, meaning indexing starts from 1.

The general process of multi-agent system operation is as
follows: First, the target user and adversarial agents select their bids
in each round of bidding according to their respective strategies.
Next, the payoff for each agent is calculated based on the bid
outcomes. Finally, agents adjust their strategies according to their
payoffs. This process iterates continuously until the system reaches
a Nash equilibrium state. The adaptability of multi-agent systems in
complex optimization scenarios has been validated in other fields.

3.3 Action-value function in single-agent
systems

Since the system discussed in this paper is a multi-agent
system, and the action-value function for agents in a multi-agent
system is based on the action-value function for a single agent,
the action-value function for a single agent becomes particularly
important. Therefore, we first introduce the action-value function
for a single agent.

The action-value function Q is defined as the expected reward
an agent receives when taking a specific action in a given state. The
agent’s objective is to learn the action-value function and discover
the optimal policy that maximizes the expected reward for each
action taken in every state. Based on this definition, the expression
for the action-value function is provided in Equation 6.

Q(sprap,m) =E(U; | S =51, A = ag, 7). (6)

In Equation 6, E denotes the expected value, where uppercase
letters such as S and A represent random variables, while the
lowercase expressions following the equals sign denote specific
observed values. Here, s; represents the state at time ¢, a; represents
the action of the agent at time ¢, 7 represents the agent’s strategy
network, and its return value is the probability density of the action
that the agent is going to take, that is @ ~ . Q represents the
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FIGURE 1
System architecture diagram.

action-value function, which has three independent variables s;, a;
and 7.

U; denotes the agent’s reward at time ¢, with its specific
expression shown in Equation 7.

[e¢]

Ut = Z )/jf’H.]'.

j=0

7)

In Equation 7, r¢ denotes the reward received by the agent at
time step t, while y represents the discount factor. The discount
factor serves to discount future rewards, thereby enabling these
future rewards to influence the current action-value function.
Incorporating the discount factor also stabilizes the action-value
function, preventing the emergence of infinite returns. On the other
hand, it encourages the agent to focus more on immediate rewards
rather than future ones.

The optimal action value function Q* guides the agent to take
the most desirable actions. Its relationship with the action value
function is shown in Equation 8.

®)

Q" (spar) = max Q(st, ar, 7).

Frontiersin Computer Science 06

From Equation 8, it follows that the optimal action value
function Q* is the maximum value of the action value function Q
across all policy networks 7.

3.4 Agent’s decision-making process

The agent’s action can be obtained from Equation 9.

randomchoice(normal_action_space), rand < €,rand > &;

randomchoice(spite_action_space), rand < €,rand < §;

arg MaXgenormal_action_space Q*(s,a), rand > €,rand > §;

arg MaXgespecial_action_space Q*(s, a), rand > €,rand < §.
)
Where randomchoice means randomly selecting an element
from a set passed as its argument, rand returns a randomly-
generated decimal within the range of [0, 1], € is a hyper-parameter
set to allow the agent the opportunity for free exploration, & is
the agents malicious coeflicient, normalactionspace is the normal
action space of the agent, and spiteactionspace is the malicious
action space of the agent.
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When “rand > €7, the action a obtained from the above
formula may be a null value. At this point, action a is obtained
through Equation 10.

randomchoice(normalactionspace), rand > &; (10)
a =
randomchoice(spiteactionspace), rand < &.

3.5 Optimal action-value function of the
agent

We use Q-Learning to learn the agent’s strategy and obtain Q*
through this algorithm.

Step 1: Obtain the current state s; and action a;. Use Equation
11 to calculate the current action value function ¢.

¢1c = Q(St) at)) (11)

Step 2: Approximately obtain the optimal action-value function
qr through the Temporal Difference (TD) and Monte Carlo
algorithms; the algorithmic expression is shown in Equation 12.

qr = 1t + max Q(s¢4+1, ar41)» (12)

Step 3: Update the action-value function using the gradient
ascent method.

Q(stsar) = Qs ar) +a(qr — qo)- (13)

Here, o is the learning rate.

Updating the action-value function using the gradient ascent
method means updating the Q-table with this algorithm. Here, g,
is the action value generated by the current action-value function
and can be obtained from the Q-table. g, is the action value under
the optimal action-value function and is approximately obtained
through the TD and Monte Carlo algorithms.

It should be noted that the dynamic adjustment of the
maliciousness coeflicient leads to non-stationarity in the reward
function. Since reward calculations are directly linked to the
real-time maliciousness coeflicient, the agents reward feedback
fluctuates over time as our method dynamically adjusts this
coefficient based on user behavior. This disrupts the convergence
assumption of “fixed reward function” in traditional MARL. This
non-stationarity may have two implications: First, the agent’s action
value function (Q-function) updates may exhibit oscillations. For
instance, a reduction in the maliciousness coefficient in one round
may weaken reward penalties, only for the coefficient to rebound
in the next round and intensify penalties, potentially causing
Q-values to fluctuate repeatedly near optimal values. Second, it
increases the difficulty of strategy coordination among multiple
agents. The policy updates of ordinary adversarial agents depend on
the maliciousness coefficient of the “agent” agent. If the coefficient
is adjusted too frequently, ordinary agents struggle to adapt quickly
to reward changes, potentially slowing the system’s convergence to
Nash equilibrium.
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TABLE 1 Core experimental parameters.

Param. cat. Param. name Val. Desc.
EPISODE_NUM 5,000 MARL— Nash
a 0.01 Q-update step
Training
y 0.9 Reward weight
€ 0.1 Exploration prob.
NUM_AGENTS 3(1+2) 1 target+2 adv.
MIN_AUC_PR 5 Min bid (S5.1)
Env.
MAX_NOR_BID 10 Non-malicious limit
AUC_T 10 Max steps/auction
TEST_NUM 100 Samples/&
Test TEST_RUN_NUM 50 Reduce error
& 0.2 Abnormal judge (S4.1)

4 Experiments

4.1 Environment

The environment is set as a first-price sealed-bid auction.
In this environment, the action of an agent is to place a bid.
Here, bids. represents the current bids of multiple agents, 6 is
the market deviation coeficient, bid, is the minimum successful
auction price, also known as the reserve price. That is, only when
the max(bids.) > bid, does it represent a successful auction. The
basic experimental parameters are set as shown in Table 1.

4.1.1 Environment initialization
Set the current bid vector as a row vector of all zeros, and set
the status of whether the auction is over to “No”.

bids, = 01, done = False, (14)

The number of agents in the multi-agent system is #n. Therefore,
the current bid vector bids, is initialized as a 1 x n zero vector.

4.1.2 Environment state transition

The function corresponding to the environment state transition
is step. This function can be regarded as a process of transforming
from one state to another. Its return values are the next state, the
agent’s reward, and whether the episode is over.

The implementation of this function is divided into two steps:
1. State transition and judging whether the auction is over; 2.
Reward setting.

Step 1: Specific operations of state transition and judging
whether the auction is over. In this environment, if the highest bid
is positive, the auction can end.

True, max(bid.) > 0
done = , (15)
False, otherwise

frontiersin.org


https://doi.org/10.3389/fcomp.2025.1670238
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Wang et al.

It should be noted that the state of the environment at the next
moment is the bids of all agents at the current moment. That is:

St+1 = (a},a?,..., af), (16)

Here, a represents the action of the i-th agent at time t. It is
worth noting that the initial state is the initial bid vector.

Step 2: Specific operations for rewards setting:

1. Initialize the reward vector rewards:

rewards = 01xn, (17)

2. Select the agents whose bids are greater than the median bid
to form the first agent index vector vector!:

VectorilClX = {i | bids; > bidseq}> (18)

3. Calculate the bid deviation 6; of the corresponding agents in
vectory:
9 — bidS,‘ — bidsmed X (19)
bidsped
Here, bids, .y is the median bid, and 6; is the bid deviation of the
agent with index i.
4. Select the indices of the agents that satisfy 6; > 6y, where

2

i € vector] x> to form the second agent index vector vector;, :

2 . 1
vectorjy, = {0; > 0y | i € vector;y,}, (20)

5. Give negative rewards, also known as excessive-deviation
rewards, to the agents corresponding to vector?, :
idx

reward[i] < reward[i] — M’

. 2
i € vector:,_, 21
Osum X Oo idx (1)

Where, Osum = Zievectorfdx 0;
6. Determine whether the auction is over. If the auction is over,
issue the winner’s reward:

rewards|winner|

values[winner] — bids"™™",  bids"i"™" > bid,; (22)
0, otherwise.

That is to say, only when the winner’s bid is not less than the
reserve price can the winner win the auction and obtain the auction
item. Here, winner = arg max(bids.).
The returns

Return Value Description: step  function

(St+1, rewards, done).

4.2 Training

To make the multi-agent system reach the Nash equilibrium
state, the multi-agent system is trained. The specific training steps
are as follows:

Step 1: Obtain the malicious coefficient & through historical
data and initialize the malicious coefficients of all agents.

Step 2: Start the training loop, and each loop is called an
episode. The specific operations within an episode are as follows:
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1. Initialize the environment and obtain the initial state s.

2. Initialize the episode-end flag done.

3. When the episode is not over, perform the following
operations.

4. Obtain the actions a of all agents.

5. Use the step function to obtain the next state s,ex¢, the rewards
rewards of all agents, and the episode-end flag done.

6. Update the strategies of the agents through the agents’ action-
value function Q.

7. Update the state s to Syex;-

8. When the episode ends, move on to the next episode.

Step 3: After the training is completed, return the trained
multi-agent system.

4.3 Detecting malicious behaviors

The function corresponding to detecting malicious behaviors is
the check function, and its target is the user to be detected, that is,
Agent No. 1.

The specific function expression is as follows:

1, bids;[1] € specialactionspace;

check = (23)
0, otherwise.
1: Input: &, agents, env
2. Output: agentSirained
3: for each agent € agents do
4: agent.& < ¢
5: end for
6: for each episode e [1, episodes] do
7: state <« env.reset()
8: done <« False
9: while done = False do
10: actions <« NULL
11: for each agent € agents do
12: action < agent.getaction(state)
13: actions <« actions + action
14: end for
15: statenext, rewards, done <«
env.step(actions)
16: index <« 1
17: for each agent € agents do
18: agent.learn(state, actions[index],
rewards[index], statepext)
19: index <« index + 1
20: end for
21: state <« statepext
22: end while
23: end for
24: return agents

Algorithm 1. Training multi-agent systems.
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4.4 Dynamic adjustment of the malicious
coefficient

To simulate the "repentance” of the user agent to be detected,
the malicious coefficient of this agent can be dynamically
adjusted. If the user agent does not bid excessively high and
the malicious coefficient remains positive after adjustment, the
malicious coefficient can be fine-tuned. The adjustment conditions
and methods are as follows:

1: agents[1].& < agents[1].£—-0.001
2: agents[1].£>0.001, 01 <6y

4.5 Obtaining the probability of a malicious
user

Use the trained multi-agent system to test the user to be
detected and obtain the probability that the user is a malicious
one. During the testing process, the malicious coefficient of
the user agent will be dynamically adjusted to simulate the
“repentance” process.

The specific operations of the testing process are as follows:

Step 1: Obtain the multi-agent system agents,;,.q based on the
trained multi-agent system and the environment env.

Step 2: Initialize the counter cnt.

Step 3: Start multiple simulated auction processes, and each
simulation is called an episode. The specific operations within an
episode are as follows:

1. Initialize the environment and obtain the initial state s.

2. Initialize the episode-end flag done.

3. When the episode is not over, perform the following
operations:

4. Obtain the actions a of all agents.

5. Use the step function to obtain the next state s, the rewards
rewards of all agents, and the episode-end flag done.

6. Update the state s to syext-

7. When the episode ends, check if the malicious coefficient of
the user agent to be detected is greater than 0.001. If it is greater
than 0.001 and the bid deviation 6; is less than or equal to 6y ,
fine-tune its malicious coefficient.

8. Add the return value of the check function to the counter cnt.

Step 4: Calculate the probability of a malicious user: P =

cnt
episodes
Step 5: Return the probability P that the user is a malicious one.

The pseudocode of the testing process is as follows:

4.6 Experimental results

By deriving corresponding maliciousness coefficients
from extensive historical data, we train a multi-agent system.
Subsequently, through multiple simulated auction processes,
we obtain the probability of malicious behavior for the users
under detection. During the experiment, we set the following
parameters: learning rate: 0.01; discount factor: 0.9; exploration
rate: 0.1; training rounds: 5000; number of bidders: 3; minimum

selling price: 5; maximum normal bid: 10; auction cycle: 10; test
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1: Input: &, agentSirgzined, €NV

2: Output: Malicious user probability P
3: Initialize counter cnt <« @

4: for each episode € [1, test_episodes] do
5: state <« env.reset()

6 done <« False

7: while done = False do

8: actions <« NULL

9: for each agent € agentsi;sineq do

10: action <« agent.getaction(state)

11: actions <« actions + action

12: end for

13: statenext, rewards, done <«

env.step(actions)
14: state <« statepext
15: end while
16:  if agentSiraineql1].6 >90.001 AND 61 <6y then

17: agentSirained[11.6 <« agentsirainegl1].6 —
0.001

18: end if

19:  cnt < cnt +check(agentsy ained[1])

20: end for

21: P« cnt

test_episodes
22: return P

Algorithm 2. Testing malicious user probability.

TABLE 2 £ vs. malicious probability.

3 P(%) &+ CI Behavior

0.1 12.3 + 1.5/[9.4,15.2] Extreme low

0.2 23.7 £+ 2.1/[19.6,27.8] Low (10%-30%)

0.3 35.2 £ 2.4/[30.5,39.9] Moderate (tentative)
0.4 46.8 +2.7/[41.5,52.1] Moderate (50%)

0.5 58.5 £ 2.9/[52.8,64.2] High (>50%)

0.6 69.3 £ 3.1/[63.2,75.4] High (70%)

0.7 78.6 £ 3.3/[72.1,85.1] Extreme high (frequent)
0.8 86.4 + 3.5/[79.5,93.3] Extreme high (almost all)
0.9 92.1 £ 3.2/[85.8,98.4] Stable (near 100%)

1.0 96.7 £ 2.8/[91.2,100.0] Fully malicious

Fitting equation: P = 98.26 — 2.5 (coefficient of determination R? = 0.987), all standard
deviations < 3.5%.

runs: 100; initial malicious bid probability: 0.95; test runs per
batch: 50; and malicious bid threshold: 1.0. Table 2 shows the
quantitative relationship between the maliciousness coefficient and
the probability of malicious behavior.

Figure 2 shows the maliciousness coefficient on the horizontal
axis and the maliciousness probability on the vertical axis.
The graph reveals a positive correlation between the two.
When the maliciousness coefficient is low, the latter is also
low; Conversely, when the former is high, the maliciousness
probability increases. This indicates that the maliciousness
coefficient effectively reflects the malicious level of the users under
detection, and thus provides a valuable reference for identifying the
malicious users.
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Relationship between Malicious Coefficient and Malicious Probability
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FIGURE 2
Relationship between malicious coefficient and malicious
probability.

5 Conclusions and future work

In the field of malicious bidder detection, this paper
explores a novel technical approach by introducing Multi-Agent
Reinforcement Learning (MARL) to construct detection methods.
By establishing a multi-agent system, the study simulates
bidding interactions within market environments and dynamically
optimizes the setting of maliciousness coefficients. This ultimately
achieves effective identification of malicious users. Experimental
validation demonstrates that this approach exhibits superior
accuracy and robustness compared to traditional detection schemes
relying on rule-based judgments or supervised learning when
confronting complex, dynamically evolving market scenarios.
Simultaneously, this research addresses two critical challenges
in practical applications: first, it provides a viable solution for
scenarios with scarce data samples and inaccurate labeling; Second,
it explores potential “repentance” behaviors exhibited by malicious
users, thereby enhancing the integrity of detection logic. Overall,
this MARL-based technology offers a novel direction for detecting
malicious bidding by overcoming limitations of existing methods
and achieving innovation through two core capabilities: First,
its built-in reward-punishment mechanism enables autonomous
adjustment of detection strategies, allowing flexible adaptation to
dynamic market environments; Second, it precisely captures the
interactive relationships among different bidders, enabling more
realistic predictions of their subsequent behavioral patterns and
laying the foundation for enhanced detection effectiveness.

In the specific design of this multi-agent framework, modeling
target users as “Agent” entities requires achieving dual objectives:
“behavioral simulation” and “malicious attribution”. The former
involves replicating normal bidding habits, while the latter
focuses on dynamically adjusting malicious coefficients to reflect
evolving intent. This design overcomes the “Homogeneous Agent”
limitation of traditional multi-agent systems, serving as a critical
bridge between historical data features and RTB behavior.
Simultaneously, the multi-agent system’s “dynamic perception-
feature transfer” capability overcomes limitations imposed by

Frontiersin Computer Science

10.3389/fcomp.2025.1670238

known malicious patterns—even when encountering previously
unseen collusive or adversarial manipulations, it can progressively
identify them through feature matching. This addresses the

>«

traditional model’s “effective against known strategies, ineffective
against unknown strategies” problem.

Building on the current framework, future research in
related fields may expand in several key directions. First, further
optimization of agent learning algorithms could improve detection
efficiency and model convergence speed, while simulation and
strategy combinations can be employed to further enhance the
model’s adaptability to diverse scenarios. Second, given the
complexity and diversity of real-world market environments and
bidding strategies, consideration should be given to incorporating
more diverse settings. A key technical challenge for future research
lies in addressing reward non-stationarity caused by dynamic
adjustment of adversarial coefficients. To mitigate this issue,
optimization approaches can focus on two aspects: exploring
adaptive adjustment frequencies and introducing specialized
optimization algorithms tailored for non-stationary MARL
problems. These optimization methods not only alleviate the
impact of non-stationarity on convergence but also enhance policy
stability during long-term operation. While the model tested in
this paper primarily targets a single market environment, future
validation across markets or in more complex multi-market
settings could assess its universality. Furthermore, integrating
the framework with real-time monitoring systems to achieve
live malicious detection represents another promising avenue
for exploration.
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