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Classification of smartphone
users as adult or child in both
constrained and non-constrained
environments using mRMR-based
feature selection and an
ensemble classifier

Nikhat H. Faheem®* and Saad Yunus Sait*

Department of Computational Intelligence, School of Computing, SRM Institute of Science and
Technology, Kattankulathur, Tamil Nadu, India

A Smartphone is an important electronic device used by people of all ages. Excessive
usage of smartphones among children can lead to various mental and physical
problems. Hence, we believe that a control mechanism, if introduced, can help
provide suitable content to users based on their age group. Our work focuses
on detecting the age of the user based on their smartphone usage habits. To
accomplish this, most of the previous work has collected datasets from users
either in constrained or non-constrained environments. But in our work, we
have collected data from both environments, and we were able to identify a
generalized model to handle both environments’ data. To fill this research gap,
we have collected our dataset while performing tasks such as typing, swiping,
tapping, zooming, and measuring finger size. In a constrained environment, users
must hold the phone either in their hands or on a table to finish the tasks. Whereas
in a non-constrained environment, users are permitted to move freely while
performing tasks. To achieve superior performance on both constrained and
non-constrained data, we extracted some new statistical features, followed by
Minimum Redundancy Maximum Relevance (mMRMR) feature selection to select
an appropriate set of features; the optimal feature count was identified using the
cross-validation methods. We have used an ensemble classifier for classification,
which takes a vote on the predictions of XGBoost, Random Forest (RF), and
support vector machine (SVM). In our work, we have achieved 98.66% accuracy
in constrained environments and 91.93% in non-constrained environments.

KEYWORDS

constrained and non-constrained environments, ensemble classifier, mRMR, sensor
data, touch data, user age detection

1 Introduction

Smartphones have become an essential device in today’s world, embraced by people of all
ages, from children to adults (Anshari et al., 2016; Deshpande et al., 2025). Although
smartphones are widely used, excessive usage causes sleep disorders, attention deficit disorder,
anxiety, depression, and various cognitive challenges, especially among children and students
(Thomée et al., 2011; Wacks and Weinstein, 2021). After the COVID-19 pandemic, the
utilization of mobile phones in the educational environment has become more essential than
before (Werling et al., 2021). As a result, children are using smartphones more than usual.
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Therefore, it becomes very necessary to control excessive mobile
phone usage among them. Some restrictions can be achieved by
managing access to specific apps and websites. The most commonly
used phone restriction methods are shown in Figure 1. Password
protection, app control, direct control, remote management, and time-
based restrictions are not suitable for all times because users can
bypass them, and these methods are not suitable for all age groups.
Therefore, implementing age-based restrictions is a very viable
solution to address these challenges (Abbaspur-Behbahani et
al,, 2022).

The effectiveness of access controls can be increased by
implementing an automatic age detection mechanism that offers
wanted sites and app restrictions based on a user’s age. Although many
methods are used, especially methods like face recognition, the age
detection method using the user’s mobile touch data is the most
popular (Hernandez-Ortega et al., 2017; Nguyen et al., 2019; Hossain
and Haberfeld, 2020). Generally, when a user interacts with a mobile
device, it generates touch data (representing user interactions on the
screen) and sensor data (data collected from sensors, such as
accelerometers and gyroscopes). To accomplish this, many existing
works collect users’ touch and sensor data by performing tapping,
swiping, zooming, and typing tasks either in constrained (Chen, 2023)
or non-constrained (Zanlorensi et al., 2022) environments. In the
constrained environment, users were required to complete the tasks
while holding the phone in their hands or placing it on a table.
Whereas in a non-constrained environment, users are allowed to
move freely while performing tasks. Many studies have utilized touch
(Vatavu et al., 2015; Li et al., 2021), sensor data (Hernandez-Ortega et
al., 2017; Davarci et al., 2017; Yu et al., 2019), and a combination of
touch-sensor (Nguyen et al., 2019; Cheng et al., 2020) data for age
detection. Most of the works use individual tactile datasets for age
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classification, although some literature uses one or two tactile datasets
combined with sensor datasets.

Most of the previous works collected datasets either in constrained
or non-constrained environments; among these works, the majority
focused on constrained environments only. In our proposed work, we
have collected data across both constrained as well as non-constrained
environments to create the dataset. Many previous works used raw
datasets or statistical features to classify age using machine learning
(Al-Zuabi et al.,, 2019; Tolosana et al., 2021). A machine learning
model built with data in one environment only tries to achieve
excellent performance on the same environment data, but its
performance drops significantly on other environment data. Therefore,
the model to be developed should achieve significant performance in
both environments. To achieve optimal performance even in a
non-constrained environment, we have utilized an effective feature
extraction and feature selection method.

Existing works utilized individual type, tap, swipe, and a
combination of these individual tasks for analysis. These analysis data
may be touch, sensor, or both touch and sensor data. Here we have
examined the performance of all individual tasks, and a combination
of tap-swipe tasks on touch-only, sensor-only, and touch-sensor data.
In this work, constrained environment data is considered for training
and testing, while non-constrained data is used for validation. To
achieve the best performance on non-constrained data, we have
utilized effective feature extraction methods for all individual tasks.
The details of feature extraction methods are discussed in Section 3.3.
In the feature extraction method, we have used different methods for
touch-based feature extraction and windowing methods for sensor-
based feature extraction. Additionally, to improve the system’s
performance, mRMR feature selection was utilized; however, mnRMR
needs a fixed feature count specification.
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FIGURE 1
Most commonly used phone restriction methods.
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This fixed feature count specification may limit overall system
performance. Because these specific counts apply to all tasks, there is
a chance of eliminating or including unwanted features, which would
degrade system performance. To prevent this in our proposed work,
we used an mRMR (Ramirez-Gallego et al., 2017) feature selection
algorithm with cross-validation (Peng et al., 2005) to determine the
optimal feature count for each task. Following feature selection,
classification was performed using an ensemble classifier. The
ensemble classifier combines XGBoost, SVM, and Random Forest
models. Apart from the feature extraction and feature selection
methods, to improve validation performance, we have used an
ensemble classifier.

In this study, we investigated the constrained and non-constrained
environment performance of each task, and the combination of
tap-swipe in touch, sensor, and touch-sensor category feature sets.
Furthermore, we have linked our performance investigation to energy
consumption on smartphones. Generally, energy consumption
analysis of smartphones is essential because they are battery-powered
devices. In this study, we use the smartphone’s mobile data to
determine the age of the user. Smartphones typically process and
capture data using both touch- and sensor-based technologies. Touch-
based technologies are mostly activated only during user interaction,
whereas sensor-based technologies typically remain in active mode
continuously. As a result, touch-based tasks consume less energy than
sensor-based tasks.

The study’s main contributions are summarized as follows:

1. Previous studies have focused on collecting and evaluating
mobile data in a constrained or non-constrained environment.
Users can use mobile devices in both environments, so it is
clear that there is a significant limitation in previous research
focusing on either environment. Considering this limitation,
we collected our dataset from approximately 624 users across
two environments, and no previous work has collected this
much data. In the majority of work-collected datasets, two to
three tasks are performed, but in this work, five distinct tasks
are performed to attain optimal performance in both
environments, especially non-constrained environments.

2. Instead of using raw datasets or a limited number of statistical
features in touch category analyses, we extracted effective
features to improve performance in non-constrained
environment data. In addition to improving performance in
sensor-category datasets, we used an overlap windowing
method on sensor records.

3. The majority of the feature selection work utilized a fixed count
of features for each task. It may reduce both individual and
overall task performance. To address these issues, we utilized
the mRMR feature selection algorithm with cross-validation to
determine the optimal feature count.

4. We have analyzed features extracted from swipe, zoom, and
finger task features that work well in constrained environments
but suffer in non-constrained environments because they are
difficult to perform. However, tap-type task features work well
in both environments.

The remainder of the paper is structured as follows: Section 2 goes

over related work. Section 3 discussed details of the proposed
methodology and dataset collection. Section 4 discussed the results
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and discussion, and Section 5 discussed the conclusion and
future work.

2 Related works

The smartphone is utilized in various applications such as user age
detection, user authentication, human activity recognition (Sunny et
al,, 2015), gender detection, Health monitoring activity, etc. It was
accomplished by smartphone special features and mobile touch data.
In conventional smartphone user identification/authentication
mechanisms are based on PINS, passwords, and biometric
authentication are used to protect the smartphone user’s privacy
(Algarni et al.,, 2020). In human activity recognition methods,
smartphone sensor data, such as accelerometers, compasses, and
gyroscopes, were utilized (Sunny et al., 2015). In health monitoring
activity, sensors can be utilized to measure several health parameters,
such as HR variability (HRV), Respiratory Rate (RR), Heart Rate
(HR), and health conditions such as eye diseases and skin diseases
(Majumder and Deen, 2019).

2.1 User's age detection using smartphone
usage

In this study, we focus on user age detection, one of the
smartphone applications that uses touch and sensor-based data to
detect the user’s age (Chen and Shen, 2017). Touch data refers to the
data gathered during a user’s interaction with a mobile screen, while
sensor data refers to the data collected from the mobile device’s
sensors, such as accelerometers and gyroscopes (motion or
orientation) during user interaction with the mobile device. To detect
user age based on mobile touch data, a lot of work has been proposed
recently (Roy et al., 2022; Algarni et al., 2020). Most of the existing
works collected datasets in constrained or non-constrained
environments, some works did not specify environmental details, and
they collected a below than 300 users’ records. So, we collected our
dataset, which has approximately 624 user records from both
environments, to analyze the performance of both environments. The
details of our dataset are discussed in Section 3.1. The majority of the
works focused solely on touch-based data user detection, others used
sensor-based data, and a few works used both touch and sensor data.

2.1.1 Touch-based age detection

A study (Hossain and Haberfeld, 2020) created an Android app to
collect tapping task data for age classification from 262 users aged 6 to
51 using tablets and phones. Phones and tablets have the highest
classification accuracy at 73.63 and 82.28%, respectively. Vatavu et al.
(2015) collected touch-based data from 89 children aged 3 to 6 using
smartphones and tablets achieved user age classification results of
86.5%. To classify user age groups, 50 users were asked to provide
gesture-based features on their (AL-Showarah et al, 2016). It
demonstrates that accuracy increased when combining more features.
Swipe behavior-based authentication was used, and the dataset was
collected from 54 users (Ali et al., 2021). The optimal features were
selected, and 5 machine learning algorithms were used. The random
forest achieved the optimal performance in terms of F1 score. Aside
from age classification, Guarino et al. (2022) collected data from 147
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users for user gender classification; it has more than 9,500 samples
for users.

2.1.2 Sensor-based age detection

In sensor-based analysis, Davarci et al. (2017) collected a dataset
from 200 users by performing tap tasks and achieved 92.5% accuracy.
It utilized Discrete Fourier Transform (DFT) and Discrete Cosine
Transform (DCT) for feature extraction. Yu et al. (2019) collected
sensor data from 84 users to detect user age, gender, and personality
traits. According to Nguyen et al. (2019), Cheng et al. (2020) used
accelerometer sensor data to determine the child’s age. One limitation
of these studies is that they only used sensor data from young children
and did not include touch data. In Nguyen et al. (2019), a motion
sensor dataset from 100 users was used to differentiate adults and
children, and achieved 96% accuracy on Random Forest. Aside from
age detection, many studies used sensor (Jain and Kanhangad, 2016;
Meena and Sarawadekar, 2020; Singh et al., 2019) data to detect gender.

2.1.3 Touch-sensor-based age detection

According to Cheng et al. (2020) recommended iCare, a system
that can automatically and effectively recognize child users while they
use smartphones. iCare captures age information by recording touch
data and finger information, extracting hand geometry, and hand
They
experimented on 100 people, 62 of whom were children and 38 of

stability features (via gyroscope and accelerometer).
whom were adults. According to the results, iCare can accomplish
96.6% accuracy for child detection with a single swipe on the screen,
and 98.3% accuracy with three consecutive swipes.

Most research works use raw datasets for classification, and some
studies use statistical features to improve the classification
performance. In sensor-based analysis, some studies have converted
time-domain signals into frequency-domain signals using Discrete
Wavelet Transform (DWT), DCT, and Fast Fourier Transform (FFT;
Davarci et al., 2017). Then statistical features were extracted for the
frequency domain signal. Those works only considered two or three
tasks for age detection, whereas our work considered five different
tasks. To achieve optimal performance, we extracted some additional
features. Some of the features we extracted are inspired by previous
work (Cheng et al., 2020), while others are new to this work,
particularly the swipe and finger size-related features tasks.

10.3389/fcomp.2025.1663987

Furthermore, we introduce a strategy to improve sensor-based data
performance by splitting the sensor record into windows, and for each
window, we extract average statistical features.

In addition, some works used feature selection for age detection.
The study Nguyen et al. (2019) utilized random forest to select the top
50 and top 20 features from tape and stroke sensor data. Some work
utilized K-best and filter-based feature selection. However, existing
feature selection work has limitations. Fixed feature count selection is
the primary disadvantage of these feature selection methods. To avoid
these study Ruiz-Garcia et al. (2024) and Acien et al. (2019) employed
sequential forward selection to select the best subset of features.
Although sequential forward selection is a simple and user-friendly
method for feature selection, it does have some drawbacks. The
computationally intensive nature and risk of missing globally optimal
feature subsets limit its usefulness in complex scenarios. However,
mRMR (Gao et al., 2020) offers a more sophisticated approach that
may result in enhanced performance. The ability of mRMR to account
for both feature redundancy and relevance makes it a more effective
feature selection method for complex scenarios. However, mRMR
requires additional support to select the optimal feature set; therefore,
in this work, we use the cross-validation method to select the optimal
feature set for each task. The majority of the existing work focused on
either a constrained or non-constrained environment, but in this
study, we focus on both environments. To achieve optimal
performance in both environments, we have employed the proposed
feature extraction method and mRMR, along with a cross-validation
feature selection method.

3 Proposed methodology

Our proposed methodological framework consists of four major
parts, as follows: (1) Dataset collection, (2) data cleaning process, (3)
effective feature extraction, (4) mRMR with cross-validation feature
selection, and (5) ensemble classifier. The general block diagram of
our proposed methodology is shown in Figure 2. In the dataset
collection phase, we have collected both constrained and
non-constrained environment data by performing different tasks,
including tapping, typing, zooming, swiping, and measuring the finger
size of all five fingers. Additionally, we collected the respective sensor

R
Tapping task l -
(<]
Zooming task @"l —)
Data Proposed Touch
Typing & =) |cleaning [~ a"deZ:Z?;:ata
task Process ¢
extraction
Swiping task |/ |~ )
L
Finger size ®
of all 5 finger i —)
e/
FIGURE 2
General block diagram of the proposed framework.
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data of these tasks. We manually reviewed missing value records and
removed these unnecessary data records in the data cleaning process.
After the data cleaning process, touch and sensor-based features were
extracted by using the proposed feature extraction mechanisms. To
select the optimal feature set, mRMR feature selection was used, and
an ensemble classifier was employed for classification.

3.1 Dataset collection

In our work, we collected our dataset on both constrained and
non-constrained environments by performing five different types of
tasks, such as tapping, typing, zooming, swiping, and measuring the
finger size of all five fingers. By collecting datasets from both
environments, our work slightly differs from other traditional works.
In a constrained environment, users must hold the phone either in
their hands or on a table to finish the tasks. Whereas in a
non-constrained environment, users are allowed to move freely while
performing tasks.

For dataset collection purposes, we used the Samsung Galaxy
M31, Samsung Galaxy M30 devices for dataset collection. We
developed an app called “In_House,” with the help of C# language
(Sung et al., 2014), which includes different tasks that the user must
finish, such as Tap, Swipe, Type, and Zoom Tasks. Figure 3 shows the
app layout of the different task dataset collection. The participants in
this research are citizens of Chennai and its surrounding areas, a
metropolitan area in the state of Tamil Nadu, India. We stated in the
very first step of the app that we do not collect any personal data
except age, and the dataset collected is only for research purposes.

10.3389/fcomp.2025.1663987

While completing each task, this app records touch data as well as
corresponding sensor data. Lastly, it records each user’s finger size. In
this work, we detected user age by three different categories: touch-
category, sensor-category, and touch-sensor category. In the touch-
category, age detection was performed solely using touch recordings
of those tasks, whereas in the sensor-category, it was performed solely
using sensor recordings of those tasks.

In the touch-sensor category, age detection was performed using
both touch and sensor records. Figure 4 represents user distribution
based on age group. We recorded a dataset from children aged 3 to
14 years old and adults aged 15 to 70 years old with their permission.
Each user performed the tasks of tapping, typing, zooming, and
swiping five times. The full details of our novel dataset were
discussed in Sait et al. (2023). Table 1 indicates the dataset’s count
details. Figure 5 shows the distribution of two classes, such as child
and adult. Class adult contains 199 samples, whereas class child
contains 249 samples. This represents a relatively balanced dataset,
with class adult taking up approximately 44.4% of the total data and
class child taking up 55.6%. Most of the previous work (Sait, 2023;
Hossain and Haberfeld, 2020) collects a maximum of 300 user
records for analysis; however, we collected approximately 624 users,
with 448 entries from constrained environments and 176 from
non-constrained environments.

Table 2 indicates the total number of average samples for each
task in the constrained and non-constrained environments. For the
tap and finger tasks, each user has 20 and 5 samples, respectively.
However, for the swipe, type, and zoom tasks, a user’s sample may
vary depending on user interaction, so we calculated the average
sample per user for these tasks. For the swipe, type, and zoom tasks,

Type Buta

® P
® @

FIGURE 3
Dataset collection of different tasks (tap, type, swipe, zoom, and finger size).
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User distribution based on age groups.

TABLE 1 Dataset user count details.

Number of users in
Non-constrained

Number of users in

the Constrained

Environment

Environment

Adult 199 96

Child 249 80

Total 448 176
624

we get 329, 19, and 311 average samples per user, respectively. We
get the number of samples per task by multiplying the average
number of samples per user by the total number of users. (ie.,
number of constrained environment users: 448 * number of samples
per task (for type task-19) = 8,512). For all tasks, we achieve
426,816 samples.

3.2 Data cleaning process

After data collection, the raw dataset may contain some
missing values. Especially in the swipe task, most of the value
records are missing from the child user records. We manually
reviewed all task records and removed the particular user record
from all tasks if we determined any one of them had an empty
record. The cleaned data records were used for the following
feature extraction process.

3.3 Proposed effective features extraction
methods (PEFE)

Extracting effective features from these cleaned data records is
necessary to obtain improved performance in both environments, as
we have considered non-constrained environment data for validation
purposes. Most of the prior works utilized a raw dataset or a traditional
statistical feature extraction method. To improve performance in both
environments, we extracted some new features here. Touch-category
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and sensor-category feature extraction methods are discussed
as follows.

3.3.1 Touch-category features extraction

In touch-category feature extraction, some features are inspired
by other work, and some features are extracted as new in this paper,
especially finger size-related features.

3.3.1.1 Tapping

The features obtained from the tapping task are as follows: the
time taken for each of the five attempts, mean time of all five attempts,
variance time of all five attempts, sum of the time taken for all
attempts, an average of the finger size, variance of finger size,
Euclidean distance (Alsuhibany and Almugbil, 2021), Manhattan
distance (Zhang et al., 2020), and Mean Square Error (MSE) between
balloon and touch positions for each of the five attempts, standard
deviations for the X and Y positions of the 1st tap touch and balloon
across all 5 attempts (Cheng et al., 2020), relative start position for
touch X, relative stop position for touch Y, relative start position for
balloon X, and relative stop position for balloon Y across all attempts
(Cheng et al., 2020). A total of 49 features were extracted from tapping
records. Table 3 provides an overview of the tap-related
extracted features.

3.3.1.2 Swiping

The features attained from the swiping task are as follows: the
mean time for each of the five attempts, mean time of all five
attempts, variance time of all five attempts, an average of fingers size,
variance of fingers size, relative start positions for touch X and touch
Y, as well as the relative stop positions for touch X and touch Y
across all attempts; extracting statistical features (mean, standard
deviation, variance, minimum, maximum, data range, quartiles, and
interquartile range) for finger distance and image position; compute
direct end-to-end distance for finger distance and image position
(Cheng et al., 2020). Additionally, the user’s touch X and Y position
values are converted to the frequency domain using the DCT, and
respective statistical features are extracted. A total of 75 features
were extracted from the records. DCT or DFT was only used for
sensor-based analyses in earlier work (Davarci et al., 2017). In this
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FIGURE 5
Class distribution for both environments.

TABLE 2 Number of average samples for all tasks.

Average sample per Number of average Number of average samples in
user samples in a constrained a non-constrained
environment environment
Tap 20 8,960 3,520 12,480
Swipe 329 147,392 57,904 205,296
Type 19 8,512 3,344 11,856
Zoom 311 139,328 54,736 194,064
Finger 5 2,240 880 3,120

TABLE 3 A tap extracted features.

Features Description

F1-F5 Time taken for 1*,2™, 3", 4" and 5" tap
F6 Mean time of all 5 attempts
F7 Variance time of all 5 attempts
F8 Sum of the time taken for all 5 attempts
F9 Average of finger size for all 5 attempts
F10 Variance of finger size for all 5 attempts
F11-F15 Euclidean distance between balloon and touch position—1*,2"¢, 3, 4" and 5" tap
F16-F20 Manhattan distance between balloon and touch position—1*,2%¢, 3¢, 4 and 5" tap
F21-F25 MSE between balloon and touch position—1¢,2", 3, 4" and 5" tap
F26 Standard deviations touch start position for all tap
F27 Standard deviations touch stop position for all tap
F28 Standard deviations balloon start position for all tap
F29 Standard deviations balloon stop position for all tap
F30-F34 Relative start touch position for all 5 taps
F35-F39 Relative stop touch position for all 5 taps
F40-F44 Relative start balloon position for all 5 taps
F45-F49 Relative stop balloon position for all 5 taps
Frontiers in Computer Science 07 frontiersin.org
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TABLE 4 A swipe extracted features.

10.3389/fcomp.2025.1663987

TABLE 5 A zoom extracted features.

Features Description Features  Description

work, we have employed DCT to enhance the swipe touch-based
performance. Details of the extracted swipe features are listed in
Table 4.

3.3.1.3 Zooming

Similar to the tapping task, time and finger features were extracted,
but in this task, we extracted two fingers. In zooming tasks, statistical
features such as mean, standard deviation, variance, minimum,
maximum, data range, quartiles, and interquartile range were
computed for the following records: initial distance, change in
distance, finger 1’s X and Y position, and finger 2’s X and Y position.
A total of 78 features were extracted. The extracted zoom features are
summarized in Table 5.

3.3.1.4 Typing

The typing features are: time taken for each word to complete the
typing, mean and variance time of all attempts, overall mean typing
time, between each target word and user input: the Levenshtein
(Palin et al., 2019) distance, MSE, accuracy, and Root Mean Square
Error (RMSE) are calculated. A total of 40 features were extracted.
Table 6 shows the details of the type extracted features.

Frontiers in Computer Science

F1-F5 Time taken for 1*,2™, 3", 4" and 5" swipe F1-F5 Time taken for 1*,2", 3", 4" and 5" zoom
F6 Mean time of all 5 attempts F6 Mean time of all 5 attempts
F7 Variance time of all 5 attempts F7 Variance time of all 5 attempts
F8 Sum of the time taken for all 5 attempts F8 Sum of the time taken for all 5 attempts
Fo Average of finger size for all 5 attempts F9 Average of finger size 1 across all 5 attempts
F10 Variance of finger size for all 5 attempts F10 Variance of finger size 1 across all 5 attempts
F11-F15 Relative start touch position of X for all 5 swipes F11 Average of finger size 2 across all 5 attempts
F16-F20 Relative stop touch position of X for all 5 swipes F12 Variance of finger size 2 across all 5 attempts
F21-F25 Relative start touch position of Y for all 5 swipes F13-F23 Statistical features (Mean, standard deviation, variance,
F26-F30 Relative stop touch position of Y for all 5 swipes minimum, maximum, data range, quantities (3), interquartile
. . . . range, and skewness) for the initial distance
F31 Direct end-to-end distance for finger distance and image
position F24-F34 Statistical features (Mean, standard deviation, variance,
o . . minimum, maximum, data range, quantities (3), interquartile
F32-F42 Statistical features (Mean, standard deviation, variance,
o . . . . range, and skewness) for the change distance
minimum, maximum, data range, quantities (3), interquartile
range, and skewness) of the user’s touch X position values, which F35-F45 Statistical features (Mean, standard deviation, variance,
are converted to the frequency domain using the Discrete Cosine minimum, maximum, data range, quantities (3), interquartile
Transform range, and skewness) for finger 1’s X position
F43-F53 Statistical features (Mean, standard deviation, variance, F46-F56 Statistical features (Mean, standard deviation, variance,
minimum, maximum, data range, quantities (3), interquartile minimum, maximum, data range, quantities (3), interquartile
range, and skewness) of the user’s touch Y position values, which range, and skewness) for finger 1's Y position
are converted to the frequency domain using the Discrete Cosine F57-F67 Statistical features (Mean, standard deviation, variance,
Transform minimum, maximum, data range, quantities (3), interquartile
F54-F64 Statistical features (Mean, standard deviation, variance, range, and skewness) for finger 2’ X position
minimum, maximum, data range, quantities (3), interquartile F68-F78 Statistical features (Mean, standard deviation, variance,
range, and skewness) for finger distance minimum, maximum, data range, quantities (3), interquartile
F65-F75 Statistical features (Mean, standard deviation, variance, range, and skewness) for finger 2% Y position
minimum, maximum, data range, quantities (3), interquartile
range, and skewness) for image position 3.3.1.5 Finger size

It has only 5 records; from these 5 records, we have extracted
37 features. In prior work, finger-related feature extraction got less
attention (Chen et al., 2019). In this work, we extracted new finger
described in Table 7. As
finger-sized data attains some significant performance in a

size-related features a result,

constrained environment.

3.3.2 Sensor-category feature extraction

Generally, in sensor-based feature extraction, statistical features
are extracted from all sensor records. However, in this work, we split
the records (roll, pitch, and yaw) into certain overlapping windows
to improve sensor-based data performance. Each task has a different
number of entries because some tasks take a long time, such as
typing, swiping, and zooming, while others, such as finger and tap,
take less time. So, we have assigned a number of windows as 20 and
an overlapping window size of 50% of the window size. The window
size is computed by dividing the total length of the record by the
number of windows. The average of each window’s statistical features
was extracted and utilized for the next feature selection process. Here,
both time and frequency domain features were extracted. The feature
details are given below:

Time domain statistical features: After splitting the records into a
window, the statistical features such as Average, RMS, standard
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TABLE 6 A type extracted features.

Features Description

F1-F5 Time taken to type all letters in the 1, 2*,3* 4" and 5" words

F6-F10 Mean time per letter to complete 1%, 27,3 4" and 5% words

F11-F15 Variance of typing time (1*, 2*4,3",4" and 5" words)

F16 Overall mean typing time

F17-F21 Levenshtein distance between the target string and the typed
string (all 5 words)

F22-F26 MSE between the target string and the typed string (all 5 words)

F27-F31 RMSE between the target string and the typed string (all 5 words)

F32-F36 Accuracy between the target string and the typed string (all 5
words)

F37 Average Levenshtein distance between the target string and the
typed string of all 5 words

F38 Average MSE between the target string and the typed string of all
5 words

F39 Average RMSE between the target string and the typed string of
all 5 words

F40 Average accuracy between the target string and the typed string
ofall 5 words

TABLE 7 A new finger size extracted features.

Features Description

F1 Mean of all fingers.

F2 Mean of thumb and index finger.

F3 Mean of the ring index middle finger.

F4 Sum of all fingers.

F5 Sum of thumb and index finger.

F6 Sum of the ring index middle finger.

F7-F17 Standard deviation, variance, minimum, maximum, data

range, quantities (3), interquartile range, skewness, and

kurtosis of all finger raw data.

F18-F21 Ratios for the thumb finger to the rest of the fingers.
F22-F25 Ratios for the index finger to the rest of the fingers.
F26-F29 Ratios for the middle finger to the rest of the fingers.
F30-F33 Ratios for the ring finger to the rest of the fingers.
F34-F37 Ratios for the little finger to the rest of the fingers.

deviation, variance, minimum, maximum, and average deviation were
extracted for roll, pitch, and yaw (Cheng et al., 2020).

Frequency domain statistical features: In the frequency domain,
the roll, Pitch, and raw were converted as magnitude (Davarci et al.,
2017) by using Equation 1. Following that, the magnitude signal was
converted to a frequency domain signal using DCT. Finally, statistical
features such as mean, standard deviation, variance, minimum,
maximum, data range, quartiles, and interquartile range were
extracted from this frequency domain signal.

Magnitude = \/ roll? + pitch? + yaw? (1)
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We have four sensor readings, including attitude, gravity, unbiased
rotation rate, and user acceleration. Each reading generates 32
features. Overall, we have 128 (32 x 4) sensor features per task.

3.4 Feature selection

To improve the classifier’s performance, an mRMR (Gao et al,,
2020) feature selection algorithm was implemented, because it
effectively balances relevance and redundancy, which are key aspects
of feature selection. Unlike simple filter techniques that merely assess
the relationship between each feature and the target, mRMR chooses
relevant features that are highly correlated with the target/class label
and eliminates redundant features, which degrade the performance of
the model. Compared to wrapper approaches such as Recursive Feature
Elimination (RFE), mRMR is computationally more economical and
prevents overfitting because it does not train models repeatedly during
the selection procedure. Additionally, unlike embedded approaches
such as Lasso, which are model-dependent and may disregard
nonlinear dependencies, mRMR is model-independent and captures
complex nonlinear relationships through mutual information. Table 8
represents the extracted feature count details for all tasks. Due to the
high dimensionality of the extracted features, the machine learning
algorithm may perform poorly when combining touch and sensor data.
Some existing work also used a feature selection algorithm; however,
they selected the top 10 or 20 fixed features. Setting specific feature
counts for feature selection may reduce individual task performance.
This limitation is avoided by selecting the appropriate feature count for
each task. To achieve this, we utilized mRMR with a cross-validation
(Peng et al., 2005) feature selection algorithm to select the optimal
feature count for all individual tasks. The steps for mRMR with CV
feature selection are as follows:

1. Determine successive subsets of features such S}, S,,.....S, that
S; subset of |S;l=i. The next important features based on
@(D,R) is added to S; to obtain S;,;. Where @(D,R) is the
function of mRMR. It relies on mutual information and
measures the dependency between two variables, such as
maximum relevance and minimum redundancy.
Relevance(D): It computes mutual information between each
feature and the corresponding target class. It measures how
closely each feature is related to the target.

Redundancy(R): Redundancy assesses the amount of
information overlap between a candidate feature and the
previously selected feature subset.

Finally, calculate the highest mRMR score by computing the
mRMR score using

@(D,R)=D-R

2. For each {S,-}[l],i =1ton, Repeat step 3

3. Perform mRMR feature selection, perform 10-fold cross-
validation on selected data using RF, and save the scores and
selected features.

4. Determine the highest score, the corresponding feature set, and
the feature count considered as the optimal feature set and
feature count.
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TABLE 8 Details of the number of features extracted and selected for each feature type for each task.

Feature type

Touch-category

Sensor-category

Touch-sensor-category

Feature Feature Feature Feature Feature Feature

extracted selected extracted selected extracted selected
Finger 37 30 128 110 165 140
Type 40 28 128 54 168 82
Swipe 70 58 128 117 198 175
Zoom 78 73 128 94 206 167
Tap 49 35 128 67 177 102
Tap and Swipe 119 93 256 184 455 277

Figure 6 represents the flow chart of mRMR with cross-validation
feature selection. It begins with determining successive subsets of
features such $;,5,,.....S, that S; subset of |S;|=i using mRMR
(@(D,R)) feature selection algorithm. The next important feature
based on & (D,R) is added to S; to obtain ;. Perform mRMR feature
selection on the selected feature set. Then perform tenfold cross-
validation on selected features using RF and save the score. The entire
process iterated from minimum (1) to the length of n (maximum
count —— number of extracted features in each task). Finally,
determine the highest score, the corresponding feature set, and the
feature count considered as the optimal feature set and feature count.

3.5 Ensemble classifier

Following the feature selection process, an ensemble classifier was
employed to perform binary classification, where the data samples were
categorized into adult and child based on their features. The ensemble
learning model employed a soft voting approach, which combines the
predicted probabilities of Support Vector Machine (SVM; Hossain and
Haberfeld, 2020), Random Forest (RF; Shafique and Hato, 2017), and
XGBoost (XGB; Mane et al., 2023) to determine the final class. SVM is
excellent at handling high-dimensional feature spaces and offers
significant generalization capabilities, making it suitable for difficult
decision boundaries. XGB, a gradient boosting approach, excels at
learning complex patterns and improving prediction accuracy through
continuous learning with optimized loss functions. RF is noise-
resistant, avoids overfitting by bootstrap aggregation, and effectively
captures non-linear correlations. The ensemble balances accuracy,
robustness, and generalization by combining margin-based, bagging-
based, and boosting-based classifiers. Hyperparameter tuning was
utilized to enhance the machine learning performance.

4 Results and discussion

In this work, classification accuracy has been used as a measure of
the performance, as the data is balanced. We analysed the performance
of individual tasks such as tap, type, swipe, zoom, finger size, and the
combination of tap and swipe. To attain optimal performance, we
extracted touch and sensor-category statistical features. Then, we used
mRMR with a Cross-validation feature selection algorithm to select
the optimal feature set.
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Figures 7-11 present the rankings of selected features for tap, swipe,
type, zoom, and finger size data. This figure illustrates the ranking of
feature subsets according to their influence on the performance of the
classifier. Higher-ranked features contribute more to the models
predictions. Table 8 represents the extracted feature count and selected
feature count details for all kinds of tasks and feature categories. We
utilized ensemble classifiers for classification with the Optuna
hyperparameter optimization framework. To achieve stable performance,
we repeated the experiments 10 times and calculated the mean of the
accuracies. The constrained environment’s features are divided into 80%
training and 20% testing; all non-constrained environment features were
used as test data to obtain the performance in a non-constrained
environment. Hyperparameter tuning was performed using Optuna
with a maximum of 50 trials per classifier. Table 9 indicates the
hyperparameters and search space of each classifier. The optimal
configuration was chosen based on the highest validation accuracy.

4.1 Constrained and non-constrained
environments’ analysis

In both constrained and non-constrained environments, we
have analyzed the performance of all individual tasks, such as tap,
type, swipe, zoom, and finger size, and the combination of tap-swipe
tasks. Table 10 compares the classification mean accuracy, precision,
recall, F1 score, AUC, and standard deviation for different feature
categories (i.e., touch, sensor, and both) and tasks under
constrained environments.

In a constrained environment, the tap-swipe task achieved 98.66%
accuracy, outperforming other tasks such as tap (97.66%), swipe
(95.22%), type (95.88%), zoom (96.69%), and finger size (95.66%) on
touch-category features. However, in sensor-category, tap task
(95.77%) attained higher accuracy than the other tasks (swipe-88.01%,
type-94.66%, zoom-94.66%, finger size-95.44%, tap-swipe-95.55%).
Whereas in touch-sensor category, tap-swipe achieved 98% higher
accuracy than other tasks (tap-96.22%, swipe-95%, type-97.55%,
zoom-95.11%, finger size-95.77%). For a constrained environment, it
is observed that touch category features are marginally better than
individual sensor and touch-sensor category features on the whole.

Table 11 compares the classification mean accuracy, precision,
recall, F1 score, AUC, and standard deviation for different feature
categories (i.e, touch, sensor, and both) and tasks under
non-constrained environments. For a non-constrained environment,
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FIGURE 6
Flow chart of mMRMR with cross-validation feature selection.

the tap-swipe task yielded improved accuracy of 91.93% over the other
task (tap-88.86%, type-90.9%, swipe-66.98%, zoom-79.54%, finger
size-74.43%). Whereas in sensor-category, type task accomplished a
higher accuracy of 90.9% when compared to other tasks (tap-61.02%,
swipe-65.28%, zoom-49.20%, finger size-59.48%, tap-swipe-64.37).
Similarly, in touch-sensor category, the type task attained a higher
accuracy of 90.11% when compared to other tasks (tap-80.9%, swipe-
80.34%, zoom-82.89%, finger size-65.39%, tap-swipe-82.67). For
non-constrained environments, touch and touch-sensor category
features perform better than sensor category features.

In the case of a non-constrained environment, the model performs
less well than in a constrained environment. Possibly because
participants, both adults and children, find it difficult to perform these
tasks, leading to an overlap in the characteristics of both adult and
child data. An exception to this is the type of features for which good
performance is obtained in the non-constrained environment. This
may be attributed to the fact that the participants sit down and remain
standing while performing a typing task, even in a non-constrained
both
environments, the standard deviation of performance is low,

environment. For constrained and non-constrained
indicating stability of the results. From the results, it may be noted that
touch features give only marginally better performance, while having
a lower energy requirement. Figure 12 shows the confusion matrix for
the tap-swipe task (Touch Category) on constrained and
non-constrained environments, illustrating the classification
performance across two different classes, such as adult and child. In
the tap-swipe task (Touch Category), the classifier effectively prevents
misclassification of children as adults, with only a small number of
exceptions. We used the Google Colab platform for developing and
training our models, using Python 3.10 and an NVIDIA Tesla T4
GPU. The average training time of the ensemble model was

approximately 150s, while the inference time per sample is
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substantially smaller, usually on the order of milliseconds, indicating
the model’s potential for real-time applications.

4.2 Performance analysis of base classifiers
and state-of-the-art methods

This section provides a performance analysis of the ensemble
classifier model by comparing it to individual base classifiers and
state-of-the-art techniques from the existing literature. Table 10
shows the comparative analysis of the ensemble classifier with its
base classifier in terms of mean accuracy in a constrained
environment (Touch category). As shown in Table 12, when
compared to the baseline classifiers (XGB, SVM, and RF), the
ensemble classifier consistently achieves better results on all
individual tasks and combinations of tap-swipe task. XGBoost
succeeds at discovering complicated patterns due to its boosting
method, which iteratively improves weak learners. Random Forest
is more resilient to noise and is capable of capturing non-linear
correlations in the data. SVM works effectively for high-dimensional
data; however, it may suffer when working with noisy data, as its
decision boundaries may become less efficient in these situations.
This result shows that integrating the predictive strengths of
individual models improves classification accuracy. Additionally,
we utilized paired t-tests to compare the performance of each
classifier on the swipe task (Touch category). The results show that
EC vs. XGB (p =0.010), EC vs. SVM (p = 0.022), and EC vs. RF
(p=0.018) exhibit
classifier performance.

statistically significant differences in
As shown in Table 13, our proposed strategy outperforms
various state-of-the-art strategies on both touch and sensor

categories. Previous strategies had some drawbacks. Study
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Feature Importance of Tapping
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FIGURE 7
Ranking of selected features (tapping).
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Feature Importance of Swipe
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FIGURE 8
Ranking of selected features (swipe).
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(Hossain and Haberfeld, 2020) utilized only three features (finger
size, hold time, pressure of finger) for classification, while another
study (Guarino et al., 2022) extracted many features but did not
robust classifier like an

use feature selection and a

ensemble classifier.

4.3 Ablation study on touch category
feature extraction

In this task, we focused on extracting touch-based features rather
than sensor-based features. In particular, we extracted some new

Frontiers in Computer Science

useful features in the swipe and finger size task. So, we have taken an
ablation study on both the swipe and finger size tasks. Table 14
represents the ablation study performance of Swipe and Finger size
task touch category features. In the finger size task, we extracted 37
features, and the details of all features are displayed in Table 7. We
extracted potential features in our work because finger size feature
extraction got less attention in previous work. From the results, our
method (with feature selection) achieved the highest accuracy of
95.66%. When considering all features (without feature selection), we
achieved 93.79% accuracy, while the finger size features F1-F17, F7-
F17, and F18-F37 achieved 94.12, 84.11, and 90.78% accuracy,
respectively.
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Feature Importance of Zoom
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Ranking of selected features (zoom).
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Feature Importance of Finger Size
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Ranking of selected features (finger size).
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On the other hand, in the swipe task, we extracted 75 features,
and it was discussed in section 3.3.1. We added new statistical
features of the user’s touch X and Y position values, which are
converted to the frequency domain (user’s touch X and Y position
values) using the Discrete Cosine Transform (DCT). An accuracy
of 93.67% was achieved without using these features, whereas
incorporating only these features resulted in an improved accuracy
of 94.35%. Considering all features provided an accuracy of 95.20%,
whereas our proposed strategy achieved a higher accuracy
of 95.22%.
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5 Conclusion

In this study, we proposed and analyzed a framework for providing
age-appropriate content with the help of a smartphone’s touch and
sensor dataset, which was collected by performing 5 different tasks in
constrained and non-constrained environments to detect the user’s age.
Instead of focusing on a single environment, we have focused on both
environments, as users may use a mobile in both environments; this
makes our work different from other traditional methods that use
specifically constrained or non-constrained data only for age detection.
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TABLE 9 The hyperparameters and search space of various classifiers.

10.3389/fcomp.2025.1663987

Classifiers Hyperparameter Form Searching ranges
n_estimators Integers [100 ~ 1,000]

RF max_depth Integers [3~15]
min_samples_split Integers [2~10]
C Real numbers [0.001 ~ 100]

SVM Gamma Real numbers [0.0001 ~ 1]
Kernel Categorical [linear, rbf]
n_estimators Integers [100 ~ 1,000]

XGB max_depth Integers [3~15]
learning_rate Real numbers [0.001-0.3]

TABLE 10 Performance analysis of constrained environment touch, sensor, and touch-sensor category evaluation in terms of mean accuracy, precision,

recall, F1 score, AUC, and standard deviation (Std).

Method Task Accuracy Precision Recall F1 score AUC score Std
Touch Tap 97.66 97.11 98.63 97.83 98.57 0.014
Swipe 95.22 94.39 97.27 95.76 93.98 0.017
Type 95.88 97.27 95.42 96.29 96.69 0.017
Zoom 96.69 94.53 98.05 96.24 93.58 0.018
Finger 95.66 93.83 98.77 96.22 94.3 0.014
Tap-Swipe 98.66 97.65 99.12 98.79 99.15 0.014
Sensor Tap 95.77 95.62 97.1 96.32 96.57 0.019
Swipe 88.01 84.08 96.1 89.59 86.23 0.033
Type 94.66 98.07 92.06 94.92 96.73 0.0247
Zoom 94.66 94.59 95.95 9521 98.78 0.0309
Finger 95.44 94.62 97.49 96 93.58 0.0175
Tap-Swipe 95.55 94.61 97.86 96.19 94.19 0.0172
Touch-Sensor Tap 96.22 95.45 98 96.69 93 0.0193
Swipe 95 93.57 97.56 95.47 94.68 0.0142
Type 97.55 96.17 99.61 97.84 95.94 0.0129
Zoom 95.11 94.11 97.45 95.74 96.23 0.0166
Finger 95.77 94.48 97.89 96.13 96.15 0.0221
Tap-Swipe 98 96.75 99.82 98.25 95.71 0.0129
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Constrained - Tap-Swipe (Touch) - Test

Adult

Child -
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-20

-10

Non-Constrained - Tap-Swipe (Touch)

Adult

True Label

Child -
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FIGURE 12
Confusion matrix of constrained and non-constrained environment (tap-swipe task-touch category).
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TABLE 11 Performance analysis of non-constrained environment touch, sensor, and touch-sensor category evaluation in terms of mean accuracy,
precision, recall, F1 score, AUC, and standard deviation (Std).

Method Task Accuracy Precision Recall F1 score AUC score Std
Touch Tap 88.86 95.33 80.25 86.85 85.31 0.033
Swipe 66.98 66.45 52.89 57.7 79.58 0.075
Type 90.9 99.20 80.58 88.88 90.85 0.023
Zoom 79.54 69.27 99.12 81.76 84.37 0.045
Finger 74.43 69.3 80.68 74.13 74.89 0.044
Tap-Swipe 91.93 87.62 96.12 91.41 95.31 0.037
Sensor Tap 61.02 62.11 26.75 37.07 54.79 0.055
Swipe 65.28 64.71 55.5 59.29 63.64 0.055
Type 90.9 99.95 80.92 88.88 90.12 0.045
Zoom 49.2 3222 13.25 18.13 44.79 0.0702
Finger 59.48 56.33 44.75 48.92 68.85 0.0601
Tap-Swipe 64.37 67.05 50 55.07 69.47 0.0753
Touch-Sensor Tap 80.9 99.95 58 73.41 78.75 0.0045
Swipe 80.34 77.72 80.92 77.79 75.41 0.0142
Type 90.11 100 7825 87.79 90.12 0.0052
Zoom 82.89 89.2 72.25 78.77 76.04 0.0681
Finger 65.39 66.49 48.75 55.59 73.54 0.0666
Tap-Swipe 82.67 95.44 655 77.33 70.1 0.0594

TABLE 12 Comparative analysis of ensemble classifier and base classifiers in terms of mean accuracy (constrained-environment-touch only).

classifier's Finger size Tap-Swipe
XGB 96.00 95.11 94.66 96.22 93.22 98.11
SVM 91.06 94.78 90.44 92.62 95.43 86.08
RE 96.44 94.88 94.77 95 87.11 97.44
Ensemble classifier (EC) 97.66 95.22 95.88 96.69 95.66 98.66

TABLE 13 Comparative performance of our method with state-of-the-art
approaches (accuracy).

Touch Only Accuracy

Hossain and Haberfeld (2020) 82.28% (Tap)

Guarino et al. (2022) 72% (Tap)

PEFE+ mRMR+EC (Proposed method) 97.66% (Tap)

Sensor Only

Davarci et al. (2017) 92.5% (Tap)

PEFE+ mRMR+EC (Proposed method) 95.77 (Tap)

We have utilized effective feature extraction methods to enhance both
environments’ performances. Notably, rather than extracting statistical
features from specific full sensor records, we divided the particular
sensor record into overlapping windows and extracted average statistical
features. Following feature extraction, the mRMR feature selection
method was used with a cross-validation method to automatically select
the optimal feature set for each different task for classification purposes.
Finally, an ensemble classifier was trained for classification; it consists
of XGBoost, SVM, and RF classifiers. In this study, we analyzed the
individual task and the combination of tap-swipe task performance in
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both environments via touch-category, sensor-category, and touch-
sensor-category features analysis.

According to the findings, in a constrained environment, a
combination of the tap-swipe task outperforms other individual task
features. In contrast, the tap-swipe task on the touch category (91.93%),
the type task on the sensor (90.9%), and the touch-sensor category
(90.11%) only achieved the highest accuracy in non-constrained
environments. We found the typing task outperformed other individual
tasks due to the ability to easily differentiate users by speed and
accuracy of typing words in both environments. In a real-time scenario,
mobile touch-based tasks use less energy than sensor-based tasks.
When comparing their performance in terms of energy consumption,
any touch-based task was sufficient to achieve optimal performance
while using less energy in a constrained environment. However, in a
non-constrained environment, the touch-category tap-swipe and task
only perform well in achieving 91.93 and 90.9% accuracy.

We comprehend that our user age detection framework may raise
concerns regarding potential privacy and fairness issues. Hence, when
collecting the datasets, we carefully followed ethical guidelines by
obtaining informed consent from each participant. Only anonymized
touch interaction information (tapping, swiping, and typing patterns)
was collected, without any personally identifiable information. On the
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TABLE 14 Ablation study on swipe and finger size task touch category features.

Task Features Mean accuracy
Finger Size Touch Finger Feature (F1-F17) (see Table 7) 92.12%
Category Features Finger Feature (F7-F17) 84.11%
Finger Feature (F18-F37) 90.78%
All Finger features (F1-F37) 93.79%
PEFE+ mRMR+EC (Proposed method) 95.66%
Swipe Touch Category = All Swipe features, except statistical features of the user’s touch X and Y position values, which are converted to the 93.67%
Features frequency domain using the Discrete Cosine Transform (DCT) (53 Features)
Only statistical features of the user’s touch X and Y position values, which are converted to the frequency domain 94.35%
using the Discrete Cosine Transform (DCT) (22 features)
All Swipe features (75 features) 95.20%
PEFE+ mRMR+EC (Proposed method) 95.22%

other hand, in the future, implementing responsible Al practices for
detecting user age will include key factors such as obtaining consent for
data access while installing or accessing the applications, and encrypting
data before storing it to maintain confidentiality. Performance-wise,
responsible Al should reduce the misclassification rate. While there may
not be much impact if an adult is misidentified as a child, it can lead to
unwanted access. But if a child is misclassified as an adult, it can lead to
unintended access to age-inappropriate content for the child.
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