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A Smartphone is an important electronic device used by people of all ages. Excessive 
usage of smartphones among children can lead to various mental and physical 
problems. Hence, we believe that a control mechanism, if introduced, can help 
provide suitable content to users based on their age group. Our work focuses 
on detecting the age of the user based on their smartphone usage habits. To 
accomplish this, most of the previous work has collected datasets from users 
either in constrained or non-constrained environments. But in our work, we 
have collected data from both environments, and we were able to identify a 
generalized model to handle both environments’ data. To fill this research gap, 
we have collected our dataset while performing tasks such as typing, swiping, 
tapping, zooming, and measuring finger size. In a constrained environment, users 
must hold the phone either in their hands or on a table to finish the tasks. Whereas 
in a non-constrained environment, users are permitted to move freely while 
performing tasks. To achieve superior performance on both constrained and 
non-constrained data, we extracted some new statistical features, followed by 
Minimum Redundancy Maximum Relevance (mRMR) feature selection to select 
an appropriate set of features; the optimal feature count was identified using the 
cross-validation methods. We have used an ensemble classifier for classification, 
which takes a vote on the predictions of XGBoost, Random Forest (RF), and 
support vector machine (SVM). In our work, we have achieved 98.66% accuracy 
in constrained environments and 91.93% in non-constrained environments.
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1 Introduction

Smartphones have become an essential device in today’s world, embraced by people of all 
ages, from children to adults (Anshari et al., 2016; Deshpande et al., 2025). Although 
smartphones are widely used, excessive usage causes sleep disorders, attention deficit disorder, 
anxiety, depression, and various cognitive challenges, especially among children and students 
(Thomée et al., 2011; Wacks and Weinstein, 2021). After the COVID-19 pandemic, the 
utilization of mobile phones in the educational environment has become more essential than 
before (Werling et al., 2021). As a result, children are using smartphones more than usual. 

OPEN ACCESS

EDITED BY

Laura Belli,  
University of Parma, Italy

REVIEWED BY

Armin Mazinani,  
University of Parma, Italy
Daniele Antonucci,  
University Hospital of Parma, Italy
Sujni Paul,  
Higher Colleges of Technology, United Arab 
Emirates

*CORRESPONDENCE

Saad Yunus Sait  
 saady@srmist.edu.in  

Nikhat H. Faheem  
 faheemnikhat2612@gmail.com

RECEIVED 11 July 2025
REVISED 26 October 2025
ACCEPTED 03 December 2025
PUBLISHED 06 January 2026

CITATION

Faheem NH and Sait SY (2026) Classification 
of smartphone users as adult or child in both 
constrained and non-constrained 
environments using mRMR-based feature 
selection and an ensemble classifier.
Front. Comput. Sci. 7:1663987.
doi: 10.3389/fcomp.2025.1663987

COPYRIGHT

© 2026 Faheem and Sait. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Original Research
PUBLISHED  06 January 2026
DOI  10.3389/fcomp.2025.1663987

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1663987&domain=pdf&date_stamp=2026-01-06
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1663987/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1663987/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1663987/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1663987/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1663987/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1663987/full
mailto:saady@srmist.edu.in
mailto:faheemnikhat2612@gmail.com
https://doi.org/10.3389/fcomp.2025.1663987
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1663987


Faheem and Sait� 10.3389/fcomp.2025.1663987

Frontiers in Computer Science 02 frontiersin.org

Therefore, it becomes very necessary to control excessive mobile 
phone usage among them. Some restrictions can be achieved by 
managing access to specific apps and websites. The most commonly 
used phone restriction methods are shown in Figure 1. Password 
protection, app control, direct control, remote management, and time-
based restrictions are not suitable for all times because users can 
bypass them, and these methods are not suitable for all age groups. 
Therefore, implementing age-based restrictions is a very viable 
solution to address these challenges (Abbaspur-Behbahani et 
al., 2022).

The effectiveness of access controls can be increased by 
implementing an automatic age detection mechanism that offers 
wanted sites and app restrictions based on a user’s age. Although many 
methods are used, especially methods like face recognition, the age 
detection method using the user’s mobile touch data is the most 
popular (Hernandez-Ortega et al., 2017; Nguyen et al., 2019; Hossain 
and Haberfeld, 2020). Generally, when a user interacts with a mobile 
device, it generates touch data (representing user interactions on the 
screen) and sensor data (data collected from sensors, such as 
accelerometers and gyroscopes). To accomplish this, many existing 
works collect users’ touch and sensor data by performing tapping, 
swiping, zooming, and typing tasks either in constrained (Chen, 2023) 
or non-constrained (Zanlorensi et al., 2022) environments. In the 
constrained environment, users were required to complete the tasks 
while holding the phone in their hands or placing it on a table. 
Whereas in a non-constrained environment, users are allowed to 
move freely while performing tasks. Many studies have utilized touch 
(Vatavu et al., 2015; Li et al., 2021), sensor data (Hernandez-Ortega et 
al., 2017; Davarci et al., 2017; Yu et al., 2019), and a combination of 
touch-sensor (Nguyen et al., 2019; Cheng et al., 2020) data for age 
detection. Most of the works use individual tactile datasets for age 

classification, although some literature uses one or two tactile datasets 
combined with sensor datasets.

Most of the previous works collected datasets either in constrained 
or non-constrained environments; among these works, the majority 
focused on constrained environments only. In our proposed work, we 
have collected data across both constrained as well as non-constrained 
environments to create the dataset. Many previous works used raw 
datasets or statistical features to classify age using machine learning 
(Al-Zuabi et al., 2019; Tolosana et al., 2021). A machine learning 
model built with data in one environment only tries to achieve 
excellent performance on the same environment data, but its 
performance drops significantly on other environment data. Therefore, 
the model to be developed should achieve significant performance in 
both environments. To achieve optimal performance even in a 
non-constrained environment, we have utilized an effective feature 
extraction and feature selection method.

Existing works utilized individual type, tap, swipe, and a 
combination of these individual tasks for analysis. These analysis data 
may be touch, sensor, or both touch and sensor data. Here we have 
examined the performance of all individual tasks, and a combination 
of tap-swipe tasks on touch-only, sensor-only, and touch-sensor data. 
In this work, constrained environment data is considered for training 
and testing, while non-constrained data is used for validation. To 
achieve the best performance on non-constrained data, we have 
utilized effective feature extraction methods for all individual tasks. 
The details of feature extraction methods are discussed in Section 3.3. 
In the feature extraction method, we have used different methods for 
touch-based feature extraction and windowing methods for sensor-
based feature extraction. Additionally, to improve the system’s 
performance, mRMR feature selection was utilized; however, mRMR 
needs a fixed feature count specification.

FIGURE 1

Most commonly used phone restriction methods.
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This fixed feature count specification may limit overall system 
performance. Because these specific counts apply to all tasks, there is 
a chance of eliminating or including unwanted features, which would 
degrade system performance. To prevent this in our proposed work, 
we used an mRMR (Ramírez-Gallego et al., 2017) feature selection 
algorithm with cross-validation (Peng et al., 2005) to determine the 
optimal feature count for each task. Following feature selection, 
classification was performed using an ensemble classifier. The 
ensemble classifier combines XGBoost, SVM, and Random Forest 
models. Apart from the feature extraction and feature selection 
methods, to improve validation performance, we have used an 
ensemble classifier.

In this study, we investigated the constrained and non-constrained 
environment performance of each task, and the combination of 
tap-swipe in touch, sensor, and touch-sensor category feature sets. 
Furthermore, we have linked our performance investigation to energy 
consumption on smartphones. Generally, energy consumption 
analysis of smartphones is essential because they are battery-powered 
devices. In this study, we use the smartphone’s mobile data to 
determine the age of the user. Smartphones typically process and 
capture data using both touch- and sensor-based technologies. Touch-
based technologies are mostly activated only during user interaction, 
whereas sensor-based technologies typically remain in active mode 
continuously. As a result, touch-based tasks consume less energy than 
sensor-based tasks.

The study’s main contributions are summarized as follows:

	 1.	 Previous studies have focused on collecting and evaluating 
mobile data in a constrained or non-constrained environment. 
Users can use mobile devices in both environments, so it is 
clear that there is a significant limitation in previous research 
focusing on either environment. Considering this limitation, 
we collected our dataset from approximately 624 users across 
two environments, and no previous work has collected this 
much data. In the majority of work-collected datasets, two to 
three tasks are performed, but in this work, five distinct tasks 
are performed to attain optimal performance in both 
environments, especially non-constrained environments.

	 2.	 Instead of using raw datasets or a limited number of statistical 
features in touch category analyses, we extracted effective 
features to improve performance in non-constrained 
environment data. In addition to improving performance in 
sensor-category datasets, we used an overlap windowing 
method on sensor records.

	 3.	 The majority of the feature selection work utilized a fixed count 
of features for each task. It may reduce both individual and 
overall task performance. To address these issues, we utilized 
the mRMR feature selection algorithm with cross-validation to 
determine the optimal feature count.

	 4.	 We have analyzed features extracted from swipe, zoom, and 
finger task features that work well in constrained environments 
but suffer in non-constrained environments because they are 
difficult to perform. However, tap-type task features work well 
in both environments.

The remainder of the paper is structured as follows: Section 2 goes 
over related work. Section 3 discussed details of the proposed 
methodology and dataset collection. Section 4 discussed the results 

and discussion, and Section 5 discussed the conclusion and 
future work.

2 Related works

The smartphone is utilized in various applications such as user age 
detection, user authentication, human activity recognition (Sunny et 
al., 2015), gender detection, Health monitoring activity, etc. It was 
accomplished by smartphone special features and mobile touch data. 
In conventional smartphone user identification/authentication 
mechanisms are based on PINS, passwords, and biometric 
authentication are used to protect the smartphone user’s privacy 
(Alqarni et al., 2020). In human activity recognition methods, 
smartphone sensor data, such as accelerometers, compasses, and 
gyroscopes, were utilized (Sunny et al., 2015). In health monitoring 
activity, sensors can be utilized to measure several health parameters, 
such as HR variability (HRV), Respiratory Rate (RR), Heart Rate 
(HR), and health conditions such as eye diseases and skin diseases 
(Majumder and Deen, 2019).

2.1 User’s age detection using smartphone 
usage

In this study, we focus on user age detection, one of the 
smartphone applications that uses touch and sensor-based data to 
detect the user’s age (Chen and Shen, 2017). Touch data refers to the 
data gathered during a user’s interaction with a mobile screen, while 
sensor data refers to the data collected from the mobile device’s 
sensors, such as accelerometers and gyroscopes (motion or 
orientation) during user interaction with the mobile device. To detect 
user age based on mobile touch data, a lot of work has been proposed 
recently (Roy et al., 2022; Alqarni et al., 2020). Most of the existing 
works collected datasets in constrained or non-constrained 
environments, some works did not specify environmental details, and 
they collected a below than 300 users’ records. So, we collected our 
dataset, which has approximately 624 user records from both 
environments, to analyze the performance of both environments. The 
details of our dataset are discussed in Section 3.1. The majority of the 
works focused solely on touch-based data user detection, others used 
sensor-based data, and a few works used both touch and sensor data.

2.1.1 Touch-based age detection
A study (Hossain and Haberfeld, 2020) created an Android app to 

collect tapping task data for age classification from 262 users aged 6 to 
51 using tablets and phones. Phones and tablets have the highest 
classification accuracy at 73.63 and 82.28%, respectively. Vatavu et al. 
(2015) collected touch-based data from 89 children aged 3 to 6 using 
smartphones and tablets achieved user age classification results of 
86.5%. To classify user age groups, 50 users were asked to provide 
gesture-based features on their (AL-Showarah et al., 2016). It 
demonstrates that accuracy increased when combining more features. 
Swipe behavior-based authentication was used, and the dataset was 
collected from 54 users (Ali et al., 2021). The optimal features were 
selected, and 5 machine learning algorithms were used. The random 
forest achieved the optimal performance in terms of F1 score. Aside 
from age classification, Guarino et al. (2022) collected data from 147 
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users for user gender classification; it has more than 9,500 samples 
for users.

2.1.2 Sensor-based age detection
In sensor-based analysis, Davarci et al. (2017) collected a dataset 

from 200 users by performing tap tasks and achieved 92.5% accuracy. 
It utilized Discrete Fourier Transform (DFT) and Discrete Cosine 
Transform (DCT) for feature extraction. Yu et al. (2019) collected 
sensor data from 84 users to detect user age, gender, and personality 
traits. According to Nguyen et al. (2019), Cheng et al. (2020) used 
accelerometer sensor data to determine the child’s age. One limitation 
of these studies is that they only used sensor data from young children 
and did not include touch data. In Nguyen et al. (2019), a motion 
sensor dataset from 100 users was used to differentiate adults and 
children, and achieved 96% accuracy on Random Forest. Aside from 
age detection, many studies used sensor (Jain and Kanhangad, 2016; 
Meena and Sarawadekar, 2020; Singh et al., 2019) data to detect gender.

2.1.3 Touch-sensor-based age detection
According to Cheng et al. (2020) recommended iCare, a system 

that can automatically and effectively recognize child users while they 
use smartphones. iCare captures age information by recording touch 
data and finger information, extracting hand geometry, and hand 
stability features (via gyroscope and accelerometer). They 
experimented on 100 people, 62 of whom were children and 38 of 
whom were adults. According to the results, iCare can accomplish 
96.6% accuracy for child detection with a single swipe on the screen, 
and 98.3% accuracy with three consecutive swipes.

Most research works use raw datasets for classification, and some 
studies use statistical features to improve the classification 
performance. In sensor-based analysis, some studies have converted 
time-domain signals into frequency-domain signals using Discrete 
Wavelet Transform (DWT), DCT, and Fast Fourier Transform (FFT; 
Davarci et al., 2017). Then statistical features were extracted for the 
frequency domain signal. Those works only considered two or three 
tasks for age detection, whereas our work considered five different 
tasks. To achieve optimal performance, we extracted some additional 
features. Some of the features we extracted are inspired by previous 
work (Cheng et al., 2020), while others are new to this work, 
particularly the swipe and finger size-related features tasks. 

Furthermore, we introduce a strategy to improve sensor-based data 
performance by splitting the sensor record into windows, and for each 
window, we extract average statistical features.

In addition, some works used feature selection for age detection. 
The study Nguyen et al. (2019) utilized random forest to select the top 
50 and top 20 features from tape and stroke sensor data. Some work 
utilized K-best and filter-based feature selection. However, existing 
feature selection work has limitations. Fixed feature count selection is 
the primary disadvantage of these feature selection methods. To avoid 
these study Ruiz-Garcia et al. (2024) and Acien et al. (2019) employed 
sequential forward selection to select the best subset of features. 
Although sequential forward selection is a simple and user-friendly 
method for feature selection, it does have some drawbacks. The 
computationally intensive nature and risk of missing globally optimal 
feature subsets limit its usefulness in complex scenarios. However, 
mRMR (Gao et al., 2020) offers a more sophisticated approach that 
may result in enhanced performance. The ability of mRMR to account 
for both feature redundancy and relevance makes it a more effective 
feature selection method for complex scenarios. However, mRMR 
requires additional support to select the optimal feature set; therefore, 
in this work, we use the cross-validation method to select the optimal 
feature set for each task. The majority of the existing work focused on 
either a constrained or non-constrained environment, but in this 
study, we focus on both environments. To achieve optimal 
performance in both environments, we have employed the proposed 
feature extraction method and mRMR, along with a cross-validation 
feature selection method.

3 Proposed methodology

Our proposed methodological framework consists of four major 
parts, as follows: (1) Dataset collection, (2) data cleaning process, (3) 
effective feature extraction, (4) mRMR with cross-validation feature 
selection, and (5) ensemble classifier. The general block diagram of 
our proposed methodology is shown in Figure 2. In the dataset 
collection phase, we have collected both constrained and 
non-constrained environment data by performing different tasks, 
including tapping, typing, zooming, swiping, and measuring the finger 
size of all five fingers. Additionally, we collected the respective sensor 

FIGURE 2

General block diagram of the proposed framework.
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data of these tasks. We manually reviewed missing value records and 
removed these unnecessary data records in the data cleaning process. 
After the data cleaning process, touch and sensor-based features were 
extracted by using the proposed feature extraction mechanisms. To 
select the optimal feature set, mRMR feature selection was used, and 
an ensemble classifier was employed for classification.

3.1 Dataset collection

In our work, we collected our dataset on both constrained and 
non-constrained environments by performing five different types of 
tasks, such as tapping, typing, zooming, swiping, and measuring the 
finger size of all five fingers. By collecting datasets from both 
environments, our work slightly differs from other traditional works. 
In a constrained environment, users must hold the phone either in 
their hands or on a table to finish the tasks. Whereas in a 
non-constrained environment, users are allowed to move freely while 
performing tasks.

For dataset collection purposes, we used the Samsung Galaxy 
M31, Samsung Galaxy M30 devices for dataset collection. We 
developed an app called “In_House,” with the help of C# language 
(Sung et al., 2014), which includes different tasks that the user must 
finish, such as Tap, Swipe, Type, and Zoom Tasks. Figure 3 shows the 
app layout of the different task dataset collection. The participants in 
this research are citizens of Chennai and its surrounding areas, a 
metropolitan area in the state of Tamil Nadu, India. We stated in the 
very first step of the app that we do not collect any personal data 
except age, and the dataset collected is only for research purposes. 

While completing each task, this app records touch data as well as 
corresponding sensor data. Lastly, it records each user’s finger size. In 
this work, we detected user age by three different categories: touch-
category, sensor-category, and touch-sensor category. In the touch-
category, age detection was performed solely using touch recordings 
of those tasks, whereas in the sensor-category, it was performed solely 
using sensor recordings of those tasks.

In the touch-sensor category, age detection was performed using 
both touch and sensor records. Figure 4 represents user distribution 
based on age group. We recorded a dataset from children aged 3 to 
14 years old and adults aged 15 to 70 years old with their permission. 
Each user performed the tasks of tapping, typing, zooming, and 
swiping five times. The full details of our novel dataset were 
discussed in Sait et al. (2023). Table 1 indicates the dataset’s count 
details. Figure 5 shows the distribution of two classes, such as child 
and adult. Class adult contains 199 samples, whereas class child 
contains 249 samples. This represents a relatively balanced dataset, 
with class adult taking up approximately 44.4% of the total data and 
class child taking up 55.6%. Most of the previous work (Sait, 2023; 
Hossain and Haberfeld, 2020) collects a maximum of 300 user 
records for analysis; however, we collected approximately 624 users, 
with 448 entries from constrained environments and 176 from 
non-constrained environments.

Table 2 indicates the total number of average samples for each 
task in the constrained and non-constrained environments. For the 
tap and finger tasks, each user has 20 and 5 samples, respectively. 
However, for the swipe, type, and zoom tasks, a user’s sample may 
vary depending on user interaction, so we calculated the average 
sample per user for these tasks. For the swipe, type, and zoom tasks, 

FIGURE 3

Dataset collection of different tasks (tap, type, swipe, zoom, and finger size).
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we get 329, 19, and 311 average samples per user, respectively. We 
get the number of samples per task by multiplying the average 
number of samples per user by the total number of users. (i.e., 
number of constrained environment users: 448 * number of samples 
per task (for type task-19) = 8,512). For all tasks, we achieve 
426,816 samples.

3.2 Data cleaning process

After data collection, the raw dataset may contain some 
missing values. Especially in the swipe task, most of the value 
records are missing from the child user records. We manually 
reviewed all task records and removed the particular user record 
from all tasks if we determined any one of them had an empty 
record. The cleaned data records were used for the following 
feature extraction process.

3.3 Proposed effective features extraction 
methods (PEFE)

Extracting effective features from these cleaned data records is 
necessary to obtain improved performance in both environments, as 
we have considered non-constrained environment data for validation 
purposes. Most of the prior works utilized a raw dataset or a traditional 
statistical feature extraction method. To improve performance in both 
environments, we extracted some new features here. Touch-category 

and sensor-category feature extraction methods are discussed 
as follows.

3.3.1 Touch-category features extraction
In touch-category feature extraction, some features are inspired 

by other work, and some features are extracted as new in this paper, 
especially finger size-related features.

3.3.1.1 Tapping
The features obtained from the tapping task are as follows: the 

time taken for each of the five attempts, mean time of all five attempts, 
variance time of all five attempts, sum of the time taken for all 
attempts, an average of the finger size, variance of finger size, 
Euclidean distance (Alsuhibany and Almuqbil, 2021), Manhattan 
distance (Zhang et al., 2020), and Mean Square Error (MSE) between 
balloon and touch positions for each of the five attempts, standard 
deviations for the X and Y positions of the 1st tap touch and balloon 
across all 5 attempts (Cheng et al., 2020), relative start position for 
touch X, relative stop position for touch Y, relative start position for 
balloon X, and relative stop position for balloon Y across all attempts 
(Cheng et al., 2020). A total of 49 features were extracted from tapping 
records. Table 3 provides an overview of the tap-related 
extracted features.

3.3.1.2 Swiping
The features attained from the swiping task are as follows: the 

mean time for each of the five attempts, mean time of all five 
attempts, variance time of all five attempts, an average of fingers size, 
variance of fingers size, relative start positions for touch X and touch 
Y, as well as the relative stop positions for touch X and touch Y 
across all attempts; extracting statistical features (mean, standard 
deviation, variance, minimum, maximum, data range, quartiles, and 
interquartile range) for finger distance and image position; compute 
direct end-to-end distance for finger distance and image position 
(Cheng et al., 2020). Additionally, the user’s touch X and Y position 
values are converted to the frequency domain using the DCT, and 
respective statistical features are extracted. A total of 75 features 
were extracted from the records. DCT or DFT was only used for 
sensor-based analyses in earlier work (Davarci et al., 2017). In this 

FIGURE 4

User distribution based on age groups.

TABLE 1  Dataset user count details.

S. No Number of users in 
the Constrained 

Environment

Number of users in 
Non-constrained 

Environment

Adult 199 96

Child 249 80

Total 448 176

624
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FIGURE 5

Class distribution for both environments.

TABLE 2  Number of average samples for all tasks.

Task Average sample per 
user

Number of average 
samples in a constrained 

environment

Number of average samples in 
a non-constrained 

environment

Total

Tap 20 8,960 3,520 12,480

Swipe 329 147,392 57,904 205,296

Type 19 8,512 3,344 11,856

Zoom 311 139,328 54,736 194,064

Finger 5 2,240 880 3,120

TABLE 3  A tap extracted features.

Features Description

F1–F5 Time taken for 1st,2nd, 3rd, 4th and 5th tap

F6 Mean time of all 5 attempts

F7 Variance time of all 5 attempts

F8 Sum of the time taken for all 5 attempts

F9 Average of finger size for all 5 attempts

F10 Variance of finger size for all 5 attempts

F11–F15 Euclidean distance between balloon and touch position—1st,2nd, 3rd, 4th and 5th tap

F16–F20 Manhattan distance between balloon and touch position—1st,2nd, 3rd, 4th and 5th tap

F21–F25 MSE between balloon and touch position—1st,2nd, 3rd, 4th and 5th tap

F26 Standard deviations touch start position for all tap

F27 Standard deviations touch stop position for all tap

F28 Standard deviations balloon start position for all tap

F29 Standard deviations balloon stop position for all tap

F30–F34 Relative start touch position for all 5 taps

F35–F39 Relative stop touch position for all 5 taps

F40–F44 Relative start balloon position for all 5 taps

F45–F49 Relative stop balloon position for all 5 taps
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work, we have employed DCT to enhance the swipe touch-based 
performance. Details of the extracted swipe features are listed in 
Table 4.

3.3.1.3 Zooming
Similar to the tapping task, time and finger features were extracted, 

but in this task, we extracted two fingers. In zooming tasks, statistical 
features such as mean, standard deviation, variance, minimum, 
maximum, data range, quartiles, and interquartile range were 
computed for the following records: initial distance, change in 
distance, finger 1’s X and Y position, and finger 2’s X and Y position. 
A total of 78 features were extracted. The extracted zoom features are 
summarized in Table 5.

3.3.1.4 Typing
The typing features are: time taken for each word to complete the 

typing, mean and variance time of all attempts, overall mean typing 
time, between each target word and user input: the Levenshtein 
(Palin et al., 2019) distance, MSE, accuracy, and Root Mean Square 
Error (RMSE) are calculated. A total of 40 features were extracted. 
Table 6 shows the details of the type extracted features.

3.3.1.5 Finger size
It has only 5 records; from these 5 records, we have extracted 

37 features. In prior work, finger-related feature extraction got less 
attention (Chen et al., 2019). In this work, we extracted new finger 
size-related features described in Table 7. As a result, 
finger-sized data attains some significant performance in a 
constrained environment.

3.3.2 Sensor-category feature extraction
Generally, in sensor-based feature extraction, statistical features 

are extracted from all sensor records. However, in this work, we split 
the records (roll, pitch, and yaw) into certain overlapping windows 
to improve sensor-based data performance. Each task has a different 
number of entries because some tasks take a long time, such as 
typing, swiping, and zooming, while others, such as finger and tap, 
take less time. So, we have assigned a number of windows as 20 and 
an overlapping window size of 50% of the window size. The window 
size is computed by dividing the total length of the record by the 
number of windows. The average of each window’s statistical features 
was extracted and utilized for the next feature selection process. Here, 
both time and frequency domain features were extracted. The feature 
details are given below:

Time domain statistical features: After splitting the records into a 
window, the statistical features such as Average, RMS, standard 

TABLE 4  A swipe extracted features.

Features Description

F1–F5 Time taken for 1st,2nd, 3rd, 4th and 5th swipe

F6 Mean time of all 5 attempts

F7 Variance time of all 5 attempts

F8 Sum of the time taken for all 5 attempts

F9 Average of finger size for all 5 attempts

F10 Variance of finger size for all 5 attempts

F11–F15 Relative start touch position of X for all 5 swipes

F16–F20 Relative stop touch position of X for all 5 swipes

F21–F25 Relative start touch position of Y for all 5 swipes

F26–F30 Relative stop touch position of Y for all 5 swipes

F31 Direct end-to-end distance for finger distance and image 

position

F32–F42 Statistical features (Mean, standard deviation, variance, 

minimum, maximum, data range, quantities (3), interquartile 

range, and skewness) of the user’s touch X position values, which 

are converted to the frequency domain using the Discrete Cosine 

Transform

F43–F53 Statistical features (Mean, standard deviation, variance, 

minimum, maximum, data range, quantities (3), interquartile 

range, and skewness) of the user’s touch Y position values, which 

are converted to the frequency domain using the Discrete Cosine 

Transform

F54–F64 Statistical features (Mean, standard deviation, variance, 

minimum, maximum, data range, quantities (3), interquartile 

range, and skewness) for finger distance

F65–F75 Statistical features (Mean, standard deviation, variance, 

minimum, maximum, data range, quantities (3), interquartile 

range, and skewness) for image position

TABLE 5  A zoom extracted features.

Features Description

F1–F5 Time taken for 1st,2nd, 3rd, 4th and 5th zoom

F6 Mean time of all 5 attempts

F7 Variance time of all 5 attempts

F8 Sum of the time taken for all 5 attempts

F9 Average of finger size 1 across all 5 attempts

F10 Variance of finger size 1 across all 5 attempts

F11 Average of finger size 2 across all 5 attempts

F12 Variance of finger size 2 across all 5 attempts

F13–F23 Statistical features (Mean, standard deviation, variance, 

minimum, maximum, data range, quantities (3), interquartile 

range, and skewness) for the initial distance

F24–F34 Statistical features (Mean, standard deviation, variance, 

minimum, maximum, data range, quantities (3), interquartile 

range, and skewness) for the change distance

F35–F45 Statistical features (Mean, standard deviation, variance, 

minimum, maximum, data range, quantities (3), interquartile 

range, and skewness) for finger 1’s X position

F46–F56 Statistical features (Mean, standard deviation, variance, 

minimum, maximum, data range, quantities (3), interquartile 

range, and skewness) for finger 1’s Y position

F57–F67 Statistical features (Mean, standard deviation, variance, 

minimum, maximum, data range, quantities (3), interquartile 

range, and skewness) for finger 2’s X position

F68–F78 Statistical features (Mean, standard deviation, variance, 

minimum, maximum, data range, quantities (3), interquartile 

range, and skewness) for finger 2’s Y position
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deviation, variance, minimum, maximum, and average deviation were 
extracted for roll, pitch, and yaw (Cheng et al., 2020).

Frequency domain statistical features: In the frequency domain, 
the roll, Pitch, and raw were converted as magnitude (Davarci et al., 
2017) by using Equation 1. Following that, the magnitude signal was 
converted to a frequency domain signal using DCT. Finally, statistical 
features such as mean, standard deviation, variance, minimum, 
maximum, data range, quartiles, and interquartile range were 
extracted from this frequency domain signal.

	 = + +2 2 2Magnitude roll pitch yaw 	 (1)

We have four sensor readings, including attitude, gravity, unbiased 
rotation rate, and user acceleration. Each reading generates 32 
features. Overall, we have 128 (32 × 4) sensor features per task.

3.4 Feature selection

To improve the classifier’s performance, an mRMR (Gao et al., 
2020) feature selection algorithm was implemented, because it 
effectively balances relevance and redundancy, which are key aspects 
of feature selection. Unlike simple filter techniques that merely assess 
the relationship between each feature and the target, mRMR chooses 
relevant features that are highly correlated with the target/class label 
and eliminates redundant features, which degrade the performance of 
the model. Compared to wrapper approaches such as Recursive Feature 
Elimination (RFE), mRMR is computationally more economical and 
prevents overfitting because it does not train models repeatedly during 
the selection procedure. Additionally, unlike embedded approaches 
such as Lasso, which are model-dependent and may disregard 
nonlinear dependencies, mRMR is model-independent and captures 
complex nonlinear relationships through mutual information. Table 8 
represents the extracted feature count details for all tasks. Due to the 
high dimensionality of the extracted features, the machine learning 
algorithm may perform poorly when combining touch and sensor data. 
Some existing work also used a feature selection algorithm; however, 
they selected the top 10 or 20 fixed features. Setting specific feature 
counts for feature selection may reduce individual task performance. 
This limitation is avoided by selecting the appropriate feature count for 
each task. To achieve this, we utilized mRMR with a cross-validation 
(Peng et al., 2005) feature selection algorithm to select the optimal 
feature count for all individual tasks. The steps for mRMR with CV 
feature selection are as follows:

	 1.	 Determine successive subsets of features such …1 2, , .. nS S S  that 
iS subset of =iS i∣∣ . The next important features based on 
( )∅ ,D R  is added to iS  to obtain +1.iS  Where ( )∅ ,D R  is the 

function of mRMR. It relies on mutual information and 
measures the dependency between two variables, such as 
maximum relevance and minimum redundancy.
Relevance(D): It computes mutual information between each 
feature and the corresponding target class. It measures how 
closely each feature is related to the target.
Redundancy(R): Redundancy assesses the amount of 
information overlap between a candidate feature and the 
previously selected feature subset.
Finally, calculate the highest mRMR score by computing the 
mRMR score using

	 ( )∅ = −,D R D R

	 2.	 For each { } =  1 , 1iS i to n, Repeat step 3
	 3.	 Perform mRMR feature selection, perform 10-fold cross-

validation on selected data using RF, and save the scores and 
selected features.

	 4.	 Determine the highest score, the corresponding feature set, and 
the feature count considered as the optimal feature set and 
feature count.

TABLE 6  A type extracted features.

Features Description

F1–F5 Time taken to type all letters in the 1st, 2nd,3rd,4th and 5th words

F6–F10 Mean time per letter to complete 1st, 2nd,3rd,4th and 5th words

F11–F15 Variance of typing time (1st, 2nd,3rd,4th and 5th words)

F16 Overall mean typing time

F17–F21 Levenshtein distance between the target string and the typed 

string (all 5 words)

F22–F26 MSE between the target string and the typed string (all 5 words)

F27–F31 RMSE between the target string and the typed string (all 5 words)

F32–F36 Accuracy between the target string and the typed string (all 5 

words)

F37 Average Levenshtein distance between the target string and the 

typed string of all 5 words

F38 Average MSE between the target string and the typed string of all 

5 words

F39 Average RMSE between the target string and the typed string of 

all 5 words

F40 Average accuracy between the target string and the typed string 

of all 5 words

TABLE 7  A new finger size extracted features.

Features Description

F1 Mean of all fingers.

F2 Mean of thumb and index finger.

F3 Mean of the ring index middle finger.

F4 Sum of all fingers.

F5 Sum of thumb and index finger.

F6 Sum of the ring index middle finger.

F7–F17 Standard deviation, variance, minimum, maximum, data 

range, quantities (3), interquartile range, skewness, and 

kurtosis of all finger raw data.

F18–F21 Ratios for the thumb finger to the rest of the fingers.

F22–F25 Ratios for the index finger to the rest of the fingers.

F26–F29 Ratios for the middle finger to the rest of the fingers.

F30–F33 Ratios for the ring finger to the rest of the fingers.

F34–F37 Ratios for the little finger to the rest of the fingers.
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Figure 6 represents the flow chart of mRMR with cross-validation 
feature selection. It begins with determining successive subsets of 
features such …1 2, , .. nS S S  that iS  subset of =iS i∣∣  using mRMR 
( ( )∅ , )D R  feature selection algorithm. The next important feature 
based on ( )∅ ,D R  is added to iS  to obtain +1iS . Perform mRMR feature 
selection on the selected feature set. Then perform tenfold cross-
validation on selected features using RF and save the score. The entire 
process iterated from minimum (1) to the length of n (maximum 
count −− number of extracted features in each task). Finally, 
determine the highest score, the corresponding feature set, and the 
feature count considered as the optimal feature set and feature count.

3.5 Ensemble classifier

Following the feature selection process, an ensemble classifier was 
employed to perform binary classification, where the data samples were 
categorized into adult and child based on their features. The ensemble 
learning model employed a soft voting approach, which combines the 
predicted probabilities of Support Vector Machine (SVM; Hossain and 
Haberfeld, 2020), Random Forest (RF; Shafique and Hato, 2017), and 
XGBoost (XGB; Mane et al., 2023) to determine the final class. SVM is 
excellent at handling high-dimensional feature spaces and offers 
significant generalization capabilities, making it suitable for difficult 
decision boundaries. XGB, a gradient boosting approach, excels at 
learning complex patterns and improving prediction accuracy through 
continuous learning with optimized loss functions. RF is noise-
resistant, avoids overfitting by bootstrap aggregation, and effectively 
captures non-linear correlations. The ensemble balances accuracy, 
robustness, and generalization by combining margin-based, bagging-
based, and boosting-based classifiers. Hyperparameter tuning was 
utilized to enhance the machine learning performance.

4 Results and discussion

In this work, classification accuracy has been used as a measure of 
the performance, as the data is balanced. We analysed the performance 
of individual tasks such as tap, type, swipe, zoom, finger size, and the 
combination of tap and swipe. To attain optimal performance, we 
extracted touch and sensor-category statistical features. Then, we used 
mRMR with a Cross-validation feature selection algorithm to select 
the optimal feature set.

Figures 7–11 present the rankings of selected features for tap, swipe, 
type, zoom, and finger size data. This figure illustrates the ranking of 
feature subsets according to their influence on the performance of the 
classifier. Higher-ranked features contribute more to the model’s 
predictions. Table 8 represents the extracted feature count and selected 
feature count details for all kinds of tasks and feature categories. We 
utilized ensemble classifiers for classification with the Optuna 
hyperparameter optimization framework. To achieve stable performance, 
we repeated the experiments 10 times and calculated the mean of the 
accuracies. The constrained environment’s features are divided into 80% 
training and 20% testing; all non-constrained environment features were 
used as test data to obtain the performance in a non-constrained 
environment. Hyperparameter tuning was performed using Optuna 
with a maximum of 50 trials per classifier. Table 9 indicates the 
hyperparameters and search space of each classifier. The optimal 
configuration was chosen based on the highest validation accuracy.

4.1 Constrained and non-constrained 
environments’ analysis

In both constrained and non-constrained environments, we 
have analyzed the performance of all individual tasks, such as tap, 
type, swipe, zoom, and finger size, and the combination of tap-swipe 
tasks. Table 10 compares the classification mean accuracy, precision, 
recall, F1 score, AUC, and standard deviation for different feature 
categories (i.e., touch, sensor, and both) and tasks under 
constrained environments.

In a constrained environment, the tap-swipe task achieved 98.66% 
accuracy, outperforming other tasks such as tap (97.66%), swipe 
(95.22%), type (95.88%), zoom (96.69%), and finger size (95.66%) on 
touch-category features. However, in sensor-category, tap task 
(95.77%) attained higher accuracy than the other tasks (swipe-88.01%, 
type-94.66%, zoom-94.66%, finger size-95.44%, tap-swipe-95.55%). 
Whereas in touch-sensor category, tap-swipe achieved 98% higher 
accuracy than other tasks (tap-96.22%, swipe-95%, type-97.55%, 
zoom-95.11%, finger size-95.77%). For a constrained environment, it 
is observed that touch category features are marginally better than 
individual sensor and touch-sensor category features on the whole.

Table 11 compares the classification mean accuracy, precision, 
recall, F1 score, AUC, and standard deviation for different feature 
categories (i.e., touch, sensor, and both) and tasks under 
non-constrained environments. For a non-constrained environment, 

TABLE 8  Details of the number of features extracted and selected for each feature type for each task.

Task Feature type

Touch-category Sensor-category Touch-sensor-category

Feature 
extracted

Feature 
selected

Feature 
extracted

Feature 
selected

Feature 
extracted

Feature 
selected

Finger 37 30 128 110 165 140

Type 40 28 128 54 168 82

Swipe 70 58 128 117 198 175

Zoom 78 73 128 94 206 167

Tap 49 35 128 67 177 102

Tap and Swipe 119 93 256 184 455 277
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the tap-swipe task yielded improved accuracy of 91.93% over the other 
task (tap-88.86%, type-90.9%, swipe-66.98%, zoom-79.54%, finger 
size-74.43%). Whereas in sensor-category, type task accomplished a 
higher accuracy of 90.9% when compared to other tasks (tap-61.02%, 
swipe-65.28%, zoom-49.20%, finger size-59.48%, tap-swipe-64.37). 
Similarly, in touch-sensor category, the type task attained a higher 
accuracy of 90.11% when compared to other tasks (tap-80.9%, swipe-
80.34%, zoom-82.89%, finger size-65.39%, tap-swipe-82.67). For 
non-constrained environments, touch and touch-sensor category 
features perform better than sensor category features.

In the case of a non-constrained environment, the model performs 
less well than in a constrained environment. Possibly because 
participants, both adults and children, find it difficult to perform these 
tasks, leading to an overlap in the characteristics of both adult and 
child data. An exception to this is the type of features for which good 
performance is obtained in the non-constrained environment. This 
may be attributed to the fact that the participants sit down and remain 
standing while performing a typing task, even in a non-constrained 
environment. For both constrained and non-constrained 
environments, the standard deviation of performance is low, 
indicating stability of the results. From the results, it may be noted that 
touch features give only marginally better performance, while having 
a lower energy requirement. Figure 12 shows the confusion matrix for 
the tap-swipe task (Touch Category) on constrained and 
non-constrained environments, illustrating the classification 
performance across two different classes, such as adult and child. In 
the tap-swipe task (Touch Category), the classifier effectively prevents 
misclassification of children as adults, with only a small number of 
exceptions. We used the Google Colab platform for developing and 
training our models, using Python 3.10 and an NVIDIA Tesla T4 
GPU. The average training time of the ensemble model was 
approximately 150 s, while the inference time per sample is 

substantially smaller, usually on the order of milliseconds, indicating 
the model’s potential for real-time applications.

4.2 Performance analysis of base classifiers 
and state-of-the-art methods

This section provides a performance analysis of the ensemble 
classifier model by comparing it to individual base classifiers and 
state-of-the-art techniques from the existing literature. Table 10 
shows the comparative analysis of the ensemble classifier with its 
base classifier in terms of mean accuracy in a constrained 
environment (Touch category). As shown in Table 12, when 
compared to the baseline classifiers (XGB, SVM, and RF), the 
ensemble classifier consistently achieves better results on all 
individual tasks and combinations of tap-swipe task. XGBoost 
succeeds at discovering complicated patterns due to its boosting 
method, which iteratively improves weak learners. Random Forest 
is more resilient to noise and is capable of capturing non-linear 
correlations in the data. SVM works effectively for high-dimensional 
data; however, it may suffer when working with noisy data, as its 
decision boundaries may become less efficient in these situations. 
This result shows that integrating the predictive strengths of 
individual models improves classification accuracy. Additionally, 
we utilized paired t-tests to compare the performance of each 
classifier on the swipe task (Touch category). The results show that 
EC vs. XGB (p = 0.010), EC vs. SVM (p = 0.022), and EC vs. RF 
(p = 0.018) exhibit statistically significant differences in 
classifier performance.

As shown in Table 13, our proposed strategy outperforms 
various state-of-the-art strategies on both touch and sensor 
categories. Previous strategies had some drawbacks. Study 

FIGURE 6

Flow chart of mRMR with cross-validation feature selection.
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FIGURE 7

Ranking of selected features (tapping).
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FIGURE 8

Ranking of selected features (swipe).
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(Hossain and Haberfeld, 2020) utilized only three features (finger 
size, hold time, pressure of finger) for classification, while another 
study (Guarino et al., 2022) extracted many features but did not 
use feature selection and a robust classifier like an 
ensemble classifier.

4.3 Ablation study on touch category 
feature extraction

In this task, we focused on extracting touch-based features rather 
than sensor-based features. In particular, we extracted some new 

useful features in the swipe and finger size task. So, we have taken an 
ablation study on both the swipe and finger size tasks. Table 14 
represents the ablation study performance of Swipe and Finger size 
task touch category features. In the finger size task, we extracted 37 
features, and the details of all features are displayed in Table 7. We 
extracted potential features in our work because finger size feature 
extraction got less attention in previous work. From the results, our 
method (with feature selection) achieved the highest accuracy of 
95.66%. When considering all features (without feature selection), we 
achieved 93.79% accuracy, while the finger size features F1–F17, F7–
F17, and F18–F37 achieved 94.12, 84.11, and 90.78% accuracy, 
respectively.

FIGURE 9

Ranking of selected features (type).
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FIGURE 10

Ranking of selected features (zoom).
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On the other hand, in the swipe task, we extracted 75 features, 
and it was discussed in section 3.3.1. We added new statistical 
features of the user’s touch X and Y position values, which are 
converted to the frequency domain (user’s touch X and Y position 
values) using the Discrete Cosine Transform (DCT). An accuracy 
of 93.67% was achieved without using these features, whereas 
incorporating only these features resulted in an improved accuracy 
of 94.35%. Considering all features provided an accuracy of 95.20%, 
whereas our proposed strategy achieved a higher accuracy 
of 95.22%.

5 Conclusion

In this study, we proposed and analyzed a framework for providing 
age-appropriate content with the help of a smartphone’s touch and 
sensor dataset, which was collected by performing 5 different tasks in 
constrained and non-constrained environments to detect the user’s age. 
Instead of focusing on a single environment, we have focused on both 
environments, as users may use a mobile in both environments; this 
makes our work different from other traditional methods that use 
specifically constrained or non-constrained data only for age detection. 

FIGURE 11

Ranking of selected features (finger size).
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TABLE 9  The hyperparameters and search space of various classifiers.

Classifiers Hyperparameter Form Searching ranges

RF

n_estimators Integers [100 ~ 1,000]

max_depth Integers [3 ~ 15]

min_samples_split Integers [2 ~ 10]

SVM

C Real numbers [0.001 ~ 100]

Gamma Real numbers [0.0001 ~ 1]

Kernel Categorical [linear, rbf]

XGB

n_estimators Integers [100 ~ 1,000]

max_depth Integers [3 ~ 15]

learning_rate Real numbers [0.001–0.3]

TABLE 10  Performance analysis of constrained environment touch, sensor, and touch-sensor category evaluation in terms of mean accuracy, precision, 
recall, F1 score, AUC, and standard deviation (Std).

Method Task Accuracy Precision Recall F1 score AUC score Std

Touch Tap 97.66 97.11 98.63 97.83 98.57 0.014

Swipe 95.22 94.39 97.27 95.76 93.98 0.017

Type 95.88 97.27 95.42 96.29 96.69 0.017

Zoom 96.69 94.53 98.05 96.24 93.58 0.018

Finger 95.66 93.83 98.77 96.22 94.3 0.014

Tap-Swipe 98.66 97.65 99.12 98.79 99.15 0.014

Sensor Tap 95.77 95.62 97.1 96.32 96.57 0.019

Swipe 88.01 84.08 96.1 89.59 86.23 0.033

Type 94.66 98.07 92.06 94.92 96.73 0.0247

Zoom 94.66 94.59 95.95 95.21 98.78 0.0309

Finger 95.44 94.62 97.49 96 93.58 0.0175

Tap-Swipe 95.55 94.61 97.86 96.19 94.19 0.0172

Touch-Sensor Tap 96.22 95.45 98 96.69 93 0.0193

Swipe 95 93.57 97.56 95.47 94.68 0.0142

Type 97.55 96.17 99.61 97.84 95.94 0.0129

Zoom 95.11 94.11 97.45 95.74 96.23 0.0166

Finger 95.77 94.48 97.89 96.13 96.15 0.0221

Tap-Swipe 98 96.75 99.82 98.25 95.71 0.0129

FIGURE 12

Confusion matrix of constrained and non-constrained environment (tap-swipe task-touch category).
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We have utilized effective feature extraction methods to enhance both 
environments’ performances. Notably, rather than extracting statistical 
features from specific full sensor records, we divided the particular 
sensor record into overlapping windows and extracted average statistical 
features. Following feature extraction, the mRMR feature selection 
method was used with a cross-validation method to automatically select 
the optimal feature set for each different task for classification purposes. 
Finally, an ensemble classifier was trained for classification; it consists 
of XGBoost, SVM, and RF classifiers. In this study, we analyzed the 
individual task and the combination of tap-swipe task performance in 

both environments via touch-category, sensor-category, and touch-
sensor-category features analysis.

According to the findings, in a constrained environment, a 
combination of the tap-swipe task outperforms other individual task 
features. In contrast, the tap-swipe task on the touch category (91.93%), 
the type task on the sensor (90.9%), and the touch-sensor category 
(90.11%) only achieved the highest accuracy in non-constrained 
environments. We found the typing task outperformed other individual 
tasks due to the ability to easily differentiate users by speed and 
accuracy of typing words in both environments. In a real-time scenario, 
mobile touch-based tasks use less energy than sensor-based tasks. 
When comparing their performance in terms of energy consumption, 
any touch-based task was sufficient to achieve optimal performance 
while using less energy in a constrained environment. However, in a 
non-constrained environment, the touch-category tap-swipe and task 
only perform well in achieving 91.93 and 90.9% accuracy.

We comprehend that our user age detection framework may raise 
concerns regarding potential privacy and fairness issues. Hence, when 
collecting the datasets, we carefully followed ethical guidelines by 
obtaining informed consent from each participant. Only anonymized 
touch interaction information (tapping, swiping, and typing patterns) 
was collected, without any personally identifiable information. On the 

TABLE 12  Comparative analysis of ensemble classifier and base classifiers in terms of mean accuracy (constrained-environment-touch only).

classifier’s Tap Swipe Type Zoom Finger size Tap-Swipe

XGB 96.00 95.11 94.66 96.22 93.22 98.11

SVM 91.06 94.78 90.44 92.62 95.43 86.08

RF 96.44 94.88 94.77 95 87.11 97.44

Ensemble classifier (EC) 97.66 95.22 95.88 96.69 95.66 98.66

TABLE 13  Comparative performance of our method with state-of-the-art 
approaches (accuracy).

Touch Only Accuracy

Hossain and Haberfeld (2020) 82.28% (Tap)

Guarino et al. (2022) 72% (Tap)

PEFE+ mRMR+EC (Proposed method) 97.66% (Tap)

Sensor Only

Davarci et al. (2017) 92.5% (Tap)

PEFE+ mRMR+EC (Proposed method) 95.77 (Tap)

TABLE 11  Performance analysis of non-constrained environment touch, sensor, and touch-sensor category evaluation in terms of mean accuracy, 
precision, recall, F1 score, AUC, and standard deviation (Std).

Method Task Accuracy Precision Recall F1 score AUC score Std

Touch Tap 88.86 95.33 80.25 86.85 85.31 0.033

Swipe 66.98 66.45 52.89 57.7 79.58 0.075

Type 90.9 99.20 80.58 88.88 90.85 0.023

Zoom 79.54 69.27 99.12 81.76 84.37 0.045

Finger 74.43 69.3 80.68 74.13 74.89 0.044

Tap-Swipe 91.93 87.62 96.12 91.41 95.31 0.037

Sensor Tap 61.02 62.11 26.75 37.07 54.79 0.055

Swipe 65.28 64.71 55.5 59.29 63.64 0.055

Type 90.9 99.95 80.92 88.88 90.12 0.045

Zoom 49.2 32.22 13.25 18.13 44.79 0.0702

Finger 59.48 56.33 44.75 48.92 68.85 0.0601

Tap-Swipe 64.37 67.05 50 55.07 69.47 0.0753

Touch-Sensor Tap 80.9 99.95 58 73.41 78.75 0.0045

Swipe 80.34 77.72 80.92 77.79 75.41 0.0142

Type 90.11 100 78.25 87.79 90.12 0.0052

Zoom 82.89 89.2 72.25 78.77 76.04 0.0681

Finger 65.39 66.49 48.75 55.59 73.54 0.0666

Tap-Swipe 82.67 95.44 65.5 77.33 70.1 0.0594
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other hand, in the future, implementing responsible AI practices for 
detecting user age will include key factors such as obtaining consent for 
data access while installing or accessing the applications, and encrypting 
data before storing it to maintain confidentiality. Performance-wise, 
responsible AI should reduce the misclassification rate. While there may 
not be much impact if an adult is misidentified as a child, it can lead to 
unwanted access. But if a child is misclassified as an adult, it can lead to 
unintended access to age-inappropriate content for the child.
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