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Explicating the trust process for
effective human interaction with
artificial intelligence and machine
learning systems

Gene Michael Alarcon* and August Capiola

Air Force Research Laboratory, Dayton, OH, United States

Artificial intelligence (Al) and machine learning (ML) are rapidly changing the
landscape of almost every environment. Despite the burgeoning attention on this
subject matter, limited human-centered research has focused on understanding
how users interact with Al and ML to facilitate greater trust toward these systems,
leveraging classic human-machine interaction principles to investigate human
interaction with these emerging complex systems. The current paper incorporates
literature from Social Psychology, Computer Science, Information Sciences,
and Human Factors Psychology to create a single comprehensive model for
understanding user interactions with Al/ML-enabled systems. This paper expands
previous theoretical models by explicating transparency, incorporating individual
differences in the information processing model of cognition, and summarizing
the different attitudes and personality variables that can facilitate use and disuse
of Al and ML. The theoretical model proposed explicitly demarcates the referent
algorithm from the human user, detailing the processes that eventuate a user’s
reliance on and compliance with an Al/ML-enabled system. Actual and potential
applications of the literature review and theorized model are discussed.

KEYWORDS

trust, human-machine interaction, artificial intelligence, machine learning, explainable
artificial intelligence

Introduction

Artificial intelligence (AI) and machine learning (ML) are rapidly changing the
technological landscape of work. AI/ML have been utilized in a variety of tasks such as image
classification (e.g., Hendrycks et al., 2019), route planning (e.g., Hu et al., 2020), and parole
recommendations (e.g., Hiibner, 2021), to name a few (see Kaplan et al., 2020). These
applications of AI/ML have brought increased productivity and alleviated aspects of work that
were previously reserved for human oversight and assumed to be outside the realm of machine
capability. However, the applications of AI/ML have also brought questions as to how to
facilitate proper trust in and use of these algorithms.

The current paper seeks to build a theoretical model of human-AI/ML interaction,
incorporating the underlying information that both AI/ML algorithms and explainable AI
(XAI)! tools use as input and provide as output, and explicate the psychological processes
that lead to trust in AI/ML/XAI from an information processing theory perspective. In this

1 We note we use the term Al/ML/XAl when referring to all models and their respective acronyms for

other models.
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paper we leverage research from many fields including Computer
Science, Psychology, and Information Sciences. The current paper
seeks to add clarity to the field to help guide research on interface
design(s) relevant to human-AI/ML/XAI interaction, with the goal
of increasing appropriate use of AI/ML/XAI-enabled systems.
Importantly, our proposed model can be applied to all human-Al/
ML/XALI interactions. Our model expands information processing
theory (Wickens and Hollands, 2000; Wickens, 2002) by situating
individual differences from the Organizational, Personality, and
Social Psychology literatures as meaningful constructs that may
shape users’ processing of information from AI/ML/XAI referents.
We also expand on the different attitudes that can result from this
information processing. Lastly, our theoretical model also expands
the theory on machine transparency, explaining how individual
differences influence the cognitive processing of the outputs of the
AI/ML/XAI information. The goal of the paper is to incorporate all
previous knowledge into one workable framework that can
be utilized across disciplines.

Al, ML, and XAl

Al/ML

AI/ML are advanced algorithms that enable software systems
with human-like cognitive capacity for decision-making (Dwivedi
et al,, 2021; Herm et al., 2021; Hradecky et al., 2022). AI/ML are
powerful generalizers and predictors (Burrell, 2016) that have
demonstrated their use in a variety of settings (Barreto Arrieta
et al., 2020). The application of AI/ML to prediction cases is not
new. It is both the rapid increase of AI/ML into a variety of fields
and the opaqueness of many of the emerging algorithms that are
relatively new (Ali et al., 2023). Newer algorithms utilize complex
networks of nodes and hidden layers that predict outcomes. These
nodes and hidden layers are much more complex than traditional
algorithms like regression. The increased complexity leads to a lack
of comprehension as to how the model came to a decision, either
locally (e.g., a given instance) or globally (e.g., how the model works
overall; see Zhou et al., 2021).

At its simplest form, the Computer Science literature has largely
demarcated algorithms into white- and black-box models (Herm
et al., 2023).> White-box models are relatively less complex Al/
ML-enabled algorithms, where the underlying decision processes
are understandable to the user (e.g., regression, decision trees, and
generalized additive models). Their processes for reaching a given
classification, and the variables that are or are not important to
reach a given prediction, are comparatively interpretable by human
users (Barreto Arrieta et al., 2020). White-box models typically
require feature selection of pertinent characteristics for the
development of an algorithm. In contrast, black-box models utilize

2 We note that several taxonomies in the computer science literature exist
for demarcating the different types of algorithms, e.g., Barreto Arrieta et al
(2020), Speith (2022), and Zhou et al. (2021). However, the focus of the current
work is facilitating proper cognitive evaluations of the systems. As Alarcon and
Willis (2023) note, many of the taxonomies in the literature do not result in

differences users can detect.
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all relevant data and interactions in non-linear models to predict
and generalize. Black-box models are often so complex they provide
little to no information about the underlying decision process to the
user (Lundberg, 2017; Rudin, 2019; Samek et al., 2021).

We turn to deep neural networks (DNNs; Samek et al., 2021) to
illustrate an example of the opacity of black-box models. DNN are a
family of algorithms that make decisions typically through a complex
series of nodes. Nodes are combinations of input data with a set of
weights or coefficients that either increase or decrease that input.
There are often so many nodes in the algorithm that a human cannot
understand all the information, even if it was provided, making them
theoretically explainable but not necessarily interpretable or
understandable (Angelov and Soares, 2020). Given their complexity,
they do not provide meaningful information about the algorithm’s
underlying decision processes to the user (see also Samek et al., 2021).
This resulting lack of human understanding as to the underlying
decision-making complexities has led researchers (Barreto Arrieta
et al., 2020; Sanneman and Shah, 2022; Vilone and Longo, 2021) and
governments (European Union Act, 2024/1689; Air Force Doctrine
Note, 2024) to call for transparency in these algorithms as they are
leveraged to make key decisions.

There is a tradeoff between white- and black-box models.
Black-box models are often the most predictive / accurate, yet they are
the opaquest, whereas white-box models provide all or most of the
information used in reaching a given classification but are less accurate
(Herm et al., 2023). Differences between black- and white-box models
are non-linear with numerous parameters that are not easily
interpreted (Li et al., 2022; Mahmud et al., 2021). However, the
tradeofs for black- and white-box models are not as straightforward
as previously thought, such that there is nuance between models
(Herm et al., 2023). Traditionally, researchers and practitioners have
needed to balance the tradeoff between the performance and
explainability of these algorithms (Rudin, 2019). The advent of XAl in
the last 20 years has attempted to alleviate some of the explainability
issues in black-box models, applying these algorithms to highlight the
important features of a black-box model’s decision-making process to
afford human understanding (Adadi and Berrada, 2018; Herm
etal., 2023).

XAl

XAI are algorithms that make it possible for humans to keep
intellectual oversight of AI/ML (Adadi and Berrada, 2018; Gunning
and Aha, 2019; Longo et al.,, 2024). The focus of the literature
surrounding XAl is to create algorithms that provide explanations for
AI/ML decision processes in a manner that is interpretable for human
users (Ali et al., 2023; Sanneman and Shah, 2022; Visser et al., 2023;
Hassija et al, 2024). XAI explanations are meant to facilitate
appropriate reliance and proper use of AI/ML systems, ensure fairness
in the resulting decisions informed by those systems’ outcomes, and
provide an understanding of where these systems are lacking in
performance (Barreto Arrieta et al., 2020; Visser et al., 2023). However,
even the concepts of explainability versus interpretability within the
XALI literature are nuanced, and the unique challenges for affording
both are not necessarily one and the same (Guidotti et al., 2018;
Tocchetti and Brambilla, 2022).

A key aspect to XAT is the theory that if users can interpret the
behavior of the algorithm, whether correct or incorrect, they will
be more willing to act on the suggestions of the algorithm
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appropriately, especially in instances where predictions are not
consistent with the user’s expectations (Berger et al., 2021; Ribeiro
etal, 2016b). In other words, explanations can bridge the information
gap between the AI/ML model and the user (Baird and Maruping,
2021; Barreto Arrieta et al., 2020). However, research has found less
than 1% of XAl studies in the literature contain user interactions with
these models (Keane and Kenny, 2019; Suh et al., 2025).

Current paper

The research on human interpretations of AI/ML/XAI has been
largely atheoretical in previous research. Black-box models were
created largely without the user in mind as much of the early research
was focused on model accuracy. The advent of XAI has sought to
remedy these limitations but has not focused on human-machine
interactions (Keane and Kenny, 2019; Suh et al., 2025). Although
research has been conducted on increasing interpretability of AI/ML/
XAI models, there remains a relative dearth of theoretical frameworks
for creating these models. A comprehensive theory of how users
comprehend AI/ML/XALI is necessary to help understand how and
why users trust a system so that systems can be designed with the user
in mind. The current paper bridges the gap between the human-
computer interaction literature in social sciences and the AI/ML/XAI
literature in the computer sciences. We sought to create a framework
based on information processing theory in the social sciences and of
AI/ML/XAI and experimentation to determine if the advances of new
models meet the creator’s criteria of facilitating trust. The theoretical
model provided below provides key testable hypotheses for researchers
when developing AI/ML/XALI for users and developers.

User-centered trust towards Al model

Deciding to trust or rely on a machine is inherently an information
processing model (Alarcon et al., 2023; Chiou and Lee, 2023), where
system transparency leads to more information about the system that
should inform the user and thereby facilitate calibrated trust, assuming
the appropriate amount of information—both its perceptibility and
veridicality—is displayed.

Although we do view much of the trust process as previous
researchers do, we expand on the previous research explicating the
mechanisms for many variables in the model. Figure 1 illustrates our
theoretical model of trust in human-AI/ML/XAI interaction.
Information is perceived from the environment, processed by the user,
and mental models of the system are formed. Information below the
black line illustrates aspects of the machine, which have been drawn
with squares. Aspects of the model above the black line illustrate
aspects of the user, which are drawn with circles. Information
processing occurs on the black line, with the user interpreting
information about the system as illustrated with grey rounded boxes.
The mental models about the referent lead to attitudes about the
system which result in behaviors.

In our theoretical model, we demarcate between antecedents to
trust, trust, and behaviors based on previous models (Hoff and Bashir,
2015; Lee and See, 2004; Mayer et al., 1995; Schlicker et al., 2025; see
also Kohn et al., 2021). Antecedents to trust in our model comprise
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individual differences and trustworthiness perceptions, much like
previous literature (Kohn et al., 2021).

Moving beyond previous research, we expand on the various
individual differences and their theoretical effects on the trust process.
We also expand on the process of transparency, describing how
transparency of the referent machine model influences cognitive
processing of information in the environment and links to relevant
literature in the computer science research, as illustrated in Figure 2.
Information from the environment is processed and comprises
trustworthiness perceptions, which influence attitudes toward the
system. Importantly, we do not theorize trust is the only antecedent to
behaviors. We expand on the different attitudes that can influence
behavioral outcomes with a system.

Figure 1 incorporates all the previous research that we have
described into one cohesive model. First, we note that unlike other
models (but see Schlicker et al., 2025), there is a clear demarcation
between the user and the machine. The bottom of the figure illustrates
the AI/ML/XAI algorithm and the information it provides, which we call
trustworthiness cues. The upper half of the image illustrates the
information perceived by the user, which we call trustworthiness
perceptions. This was done to emphasize the difference between objective
aspects of the machine referent and the user’s perceptions of the machine.
Although previous theoretical models implied the demarcation of
trustworthiness cues from trustworthiness perceptions (e.g., Alarcon and
Willis, 2023; Hoft and Bashir, 2015; Lee and See, 2004), we explicitly state
and illustrate these differences in our model. We have used squares to
represent objective information, circles to represent subjective
perceptions, and squares with rounded edges to illustrate the utilization/
processing of information in the figure (see Figure 1). Table 1 defines all
constructs and provides citations for each construct.

Individual differences and information
processing

The information processing approach to human perception and
cognition has been utilized to much acclaim in the Human Factors
literature (Wickens and Hollands, 2000; Wickens, 2002; Wickens and
Carswell, 2012). However, the role of individual differences in the
information processing theory has largely been ignored (Endsley,
2023; Wickens and Carswell, 2012). In this section we outline the
types of individual differences, and the three proposed influences
individual differences can have on information processing: (1)
individual differences as information, (2) individual differences in the
processing of information, and (3) individual differences as direct
effects on behaviors.

There are individual differences between users, which can
theoretically explain different perceptions of and interactions with
machine systems in general (Hoff and Bashir, 2015; Lee and See, 2004)
and AI/ML-enabled systems specifically (Kaplan et al., 2023).
We demarcate these into general beliefs, personality variables, and
demographics. We theorize individual differences play a role across all
aspects of the decision-making process when humans interact with
AI/ML/XAI We expand on this throughout the theoretical model. In
this section, we discuss the three types of individual differences; then,
we discuss the three mechanisms through which they operate on the
trust process.
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cues were left blank as they depend on the models used.

User-centered trust towards Al model. Objective aspects of the model are illustrated as squares. Subjective aspects of the model are illustrated as
circles. Subjective user interpretation of objective information is illustrated as rounded boxes. The figure illustrates the information from Al/ML models
in the form of trustworthiness cues. Trustworthiness cues are then interpreted by the human, and the demarcation line through the rounded boxes
denotes the emphasis on the Al/ML referent (below) or user (above). The subjective interpretation of the referent system leads to subjective
trustworthiness perceptions. These perceptions facilitate attitudes toward the Al/ML-enabled system. The attitudes facilitate behaviors. Trustworthiness

Global beliefs

Global beliefs can influence perceptions through a variety of
variables. We define global beliefs as any general belief or cognitive
schema about AI/ML/XAI that are preconceived prior to working
with a specific AI/ML/XAI referent. Perhaps the two most
researched global beliefs variables in relation to the human-
machine trust process are propensity to trust machines (Jessup
etal., 2019; Li et al., 2017; Merritt, 2011) and perfect automation
schema (Dzindolet et al., 2002; Gibson et al., 2023; Merritt et al.,
2015). Propensity to trust machines is defined as a general tendency
to utilize machines or view them favorably (Jessup et al., 2019). The
propensity to trust machines is a global heuristic about machines
in general that influences initial perceptions of a new system
particularly when there is little information about the system
available to the user (Hoff and Bashir, 2015; Siau and Wang, 2018).
Perfect automation schema is like propensity to trust machines in

Frontiers in Computer Science

that it pertains to global perceptions of machines; however, this
construct comprises high expectations and all-or-none thinking
(Merritt et al., 2015). High expectations are the initial beliefs that
machine systems should perform well and thus has strong overlap
with propensity to trust machines (Gibson et al., 2023; Merritt,
2011). All-or-none thinking is the bias that machine systems should
be abandoned if they commit an error.

Importantly, these are all global beliefs about systems which are
informed by experience with the world, rather than personality
constructs. We note these two global beliefs are not theorized to be an
exhaustive list of beliefs but rather just two examples of beliefs in
the literature.

Personality

Personality is defined as any cognitive, emotional, or behavioral
patterns that comprise an individual’s unique perspective in life.
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https://doi.org/10.3389/fcomp.2025.1662185
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alarcon and Capiola

TABLE 1 Construct definitions and example reference sources.

10.3389/fcomp.2025.1662185

Construct Definition

Individual differences

Global beliefs Beliefs, attitudes, or schemas about machine systems in general (e.g., Hoff and Bashir, 2015)

Personality Cognitive, emotional, or behavioral patterns that compose a user’s unique perspective (e.g., Matthews, 2008)

Demographics Population information (e.g., age, occupation) about the user (e.g., Hoff and Bashir, 2015)

Transparency

Trustworthiness cues Objective output from the referent machine system (e.g., Zhou et al., 2021)

Trustworthiness A user’s subjective perceptions of the referent machine system (e.g., Schlicker et al., 2025)

perceptions

Performance Perception of a machine system’s capabilities (e.g., Lee and See, 2004)

Process Perception of the algorithmic steps in which a machine system operates (e.g., Lee and See, 2004)

Purpose Perception of whether a machine system is being used as its designer intended (e.g., Lee and See, 2004)

Explainability Objective information provided by a machine system (e.g., model weights, estimates) represented through visual, textual, or numerical data (e.g.,
Zhou et al., 2021)

Interpretability Human making sense of the visual, textual, or numerical information provided by the machine system (e.g., Sanneman and Shah, 2022)

Understanding Human cognitively processing the information from their interpretation to form schemas or perceptions of the machine referent (e.g.,
Sanneman and Shah, 2022)

Attitudes

Trust A willingness to be vulnerable (e.g., Lee and See, 2004; Mayer et al., 1995); a positive affective state coupled with appropriate effort

Distrust An unwillingness to be vulnerable (e.g., Lee and See, 2004; Mayer et al., 1995); a negative affective state coupled with appropriate effort

Suspicion A state characterized by uncertainty, high cognitive activity, and perceived mal-intent (e.g., Bobko et al., 2014); a negative affective state coupled
with high cognitive effort

Curiosity A temporary state to seek more information (e.g., Kashdan and Roberts, 2004); a positive affective state coupled with high cognitive effort

Complacency Decreased attentiveness resulting in relying on a machine system beyond its objective capabilities (e.g., Parasuraman and Manzey, 2010); a

positive affective state coupled with low cognitive effort

Under-reliance

cognitive effort

Relying on a machine system less than its objective capabilities can support (Lee and See, 2004); a negative affective state coupled with low

Risk Perceived contextual uncertainty surrounding an outcome, and the relative vulnerability assumed surrounding trusting a system (e.g., Kohn
etal., 2021).

Reliance/compliance Observed behaviors; abstaining behavior absent a machine system’s suggestion and behaving when cued, respectively (e.g., Meyer et al., 2014)

behavior

Errors Incorrect system processes or outputs

Unintended consequences

Results, either positive or negative, from a machine system not originally expected

Personality psychology is focused on individual differences in mental
processes and how they develop (Roberts and Yoon, 2022). There are
several personality structures in the literature that can influence
human perceptions and behaviors, such as the Five-Factor Model
(Costa Jrand McCrae, 1992). We note that relatively little research has
been conducted on the effects of personality on human-AI/ML/XAI
interaction (Kaplan et al., 2023). However, personality has been related
to aspects of the information processing model. For example, the Five-
Factor Model has been related to aspects of information processing
theory such as working memory (Waris et al., 2018) and short-term
memory (Matthews, 2008). Indeed, research has noted that task and
person characteristics should not be explored in isolation but instead
explored concurrently to determine their effects (Matthews, 2008;
Szalma, 2008, 2009; Szalma and Taylor, 2011). As such, personality
variables may help explain individual differences in how users process
information from the system.

Frontiers in Computer Science

Demographics

Recent meta-analytic work shows the importance of demographic
variables on human trust toward AI/ML (Ehsan et al., 2024; Kaplan et al.,
2023).* Knowledge, skills, and abilities (KSAs) of the human user play a
key role in understanding how they perceive AI/ML-enabled systems
(Hoff and Bashir, 2015; Schaefer et al., 2016). For example, Ehsan et al.
(2024) found novices had different heuristics for XAI than computer
science majors, leading to different interpretation of the stimuli provided
by the XAIL The age of the user may also be important in cognitive
processing. Research has noted that younger users are more likely to have
a positive view of technology and are more likely to use technology than

3 We note the authors of the meta-analysis did not explore XAl, which is why
we did not use the term Al/ML/XAL
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facilitates attitudes in the system.

Transparency process as a function of explainability, interpretability, and understanding. We match the terms explainability, interpretability and
understanding from the computer science literature to relevant constructs from the social sciences. Explainability is the machine output of relevant
criteria (i.e., weights, estimates, etc.) in terms of textual, visual or numerical representation from the model. Interpretability is the cognitive processing
of information by the user of the machine output. Understanding is the schema/mental model that is formed about the referent machine that

older individuals. This effect has been noted in a variety of research. For
example, Casey and Vogel (2019) found millennials were more likely to
use technology than any other generation. Males have also demonstrated
a stronger propensity to use technology than females across a variety of
situations. Thus, we see the import of simple demographic variables
normally gathered in research as playing a role in baseline interactions
with machine human systems (see Kaplan et al., 2023).

Mechanism for individual differences on
perceptions

Individual differences have demonstrated the ability to act as
information when little to no information about the referent or
situation is present. Specifically, global beliefs such as propensity to
trust have been theorized to act as information when little is known
about the referent partner in interpersonal research (Alarcon et al.,
2016, 2018; Alarcon and Jessup, 2023; Jones and Shah, 2016). A person
that has a global belief that people are trustworthy will be more trusting
of others when information is lacking. As information becomes salient
about the referent, the loci of information transitions from the trustor
to the trustee (Alarcon et al., 2016; Jones and Shah, 2016). We theorize
similar relationships in human-AI/ML/XAI interactions.

Specifically, global beliefs can act as information about the
environment or referent AI/ML/XATI algorithm when there is little to
no information available. Demographic variables can also play a role
in this initial perception. For example, Alarcon et al. (2017) found
computer programmers were reticent to trust code from an unknown
source, specifically if the use case was high in vulnerability. The
training, experience, and personality variables the user has can act as
information about the situation when information about the referent
is lacking. The differences they found may be due to different cognitive
heuristics developed through training and expertise (Ehsan et al.,
2024). This information that is inherent in the user facilitates initial
perceptions about the referent AI/ML/XAL

Proposition 1: Global beliefs about AI/ML/XAI, demographic

variables, and personality influence initial perceptions of the
referent system.

Frontiers in Computer Science

Proposition 2: As information about the referent AI/ML/
XAlI-enabled system is made salient over time, the influence of
global beliefs will have less of an impact in the human-AI/ML/
XAl interaction.

Second, individual differences can influence the processing of
information as the user receives information from the AI/ML/XAI
output. As information becomes salient in the interaction with the Al/
ML/XAI, the user will process this information which can be influenced
by individual differences. First, global beliefs and personality differences
can influence the processing of information. These constructs may
influence the cognitive processing of information, and include
personality variables that influence oné’s perceptions such as need for
cognition (i.e., the extent to which individuals enjoy and engage in
effortful cognitive activity; Cacioppo et al., 1996; Cacioppo and Petty,
1982), curiosity (i.e., the general desire for knowledge, to resolve
knowledge gaps, to solve problems, and a motivation to learn new ideas
and engage in effortful cognitive activity; Berlyne, 1960, 1978;
Loewenstein, 1994), and complacency potential (i.e., a general propensity
to not engage in effortful thinking; Merritt et al., 2019; Singh et al., 1993),
along with global beliefs like all-or-none thinking. Other personality
characteristics such as neuroticism, extraversion, and risk aversion can
also play a role. For example, people high in neuroticism tend to view the
world negatively (Bunghez et al., 2024), which can influence their
perceptions about the AI/ML/XALI, especially if stimuli are ambiguous.
Conversely, people high in extraversion tend to experience high positive
affect (Costa Jr and McCrae, 1992), which may influence their
perceptions of AI/ML/XAI Alarcon and Jessup (2023) found risk
aversion, a general disinclination towards risk, influences the processing
of information in a modified version of the trust game. Participants high
in risk aversion were less apt to view their referent partner as more
trustworthy and took fewer risks with their partner.

Importantly, demographic variables such as knowledge, skills
and abilities can also influence the processing of this information
(Hoft and Bashir, 2015). For example, expertise can influence how
information from the model is perceived through previously
formed heuristics (Ehsan et al., 2024). Take the extant work
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investigating algorithm aversion which is a reluctance toward
relying on algorithms for decision-making compared to humans,
even if the algorithm is more accurate than a human assistant
(Capogrosso et al., 2025; Dietvorst et al., 2015). The research
paradigm by Dietvorst et al. (2015) on algorithm aversion has
noted that people are reticent to use algorithms in a GPA prediction
task. Jessup et al. (2024) have noted algorithm aversion was strong
for individuals who engaged in tasks with the GPA prediction as
the focus, but if the focus of the task was classifying Github
repositories, participants over-trusted the algorithm. Jessup et al.
(2024) also note that participants may not have had the requisite
knowledge, skills, or abilities in the Github repository task. Ribeiro
et al. (2016b) note that interpretability of algorithm is dependent
on the target user. Thus, the reason for algorithm aversion’s effect
in human-machine interaction may be due to the individual’s
knowledge of, skills pertaining to, and abilities using AI/
ML-enabled algorithm systems.

Proposition 3: Users’ global beliefs, personality, and demographics
will influence their processing of information, thereby impacting
their perceptions of and attitudes toward AI/ML/XAI referents.

Lastly, we theorize that some individual differences can have a
direct impact on behaviors. Personality variables such as complacency
potential, curiosity, and need for cognition may all have direct
influences on behaviors because of the nature of the constructs. As
noted in the Psychology literature, behaviors are the outcome of many
different psychological processes. In this instance, whether a user does
or does not perform monitoring behaviors may be indicative of
personality rather than aspects of the system (Gibson et al., 2023).
Notably, need for cognition is typically associated with positive
emotions under the broaden and build theory of emotions
(Fredrickson, 2001), which can further lead to greater exploration. This
exploration can lead to increasing or decreasing trust behaviors in
human-AI/ML/XAI interactions, depending on the results of the
exploration. There may be contexts in which combinations of these
variables amplify, suppress, or have no effect on trust-relevant criteria
of interest, which we discuss later in the Attitudes section. For example,
someone with a high complacency potential may be more likely to rely
on an AI/ML system at baseline and more so given contextual factors
(e.g., time pressure, system opacity; Singh et al., 2021). However, if one
has a high need for cognition and enjoys thinking deeply, they may
be more apt to spend time trying to figure out the underlying processes
by which an AI/ML system serves their needs in said context, regardless
of how the system operates. This is just one example of these variables
interacting to shape human-AI/ML interaction, and their effects likely
have different impacts given the context.

Proposition 4: Individual difference variables associated with high
or low cognitive engagement will directly influence a user’s
engagement with AI/ML/XAI referents.

Transparency
There remains confusion in the XAI literature between

explainability, interpretability, and understanding often with the terms
being used interchangeably (Guidotti et al., 2018; Tocchetti and
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Brambilla, 2022). We view all of these as the process of establishing
transparency. Transparency as typically referred to in the literature is
related to the user’s ability to detect how a referent system operates
based on cues of the system (Lyons, 2013). However, transparency is
also treated as a subjective construct in the literature (Alarcon and
Willis, 2023; Chiou and Lee, 2023). Transparency pertains to the
degree to which human-users are able to perceive system performance
(what is the system doing), purpose (is the system being used as it was
designed to be used), and process cues (how is the system doing what
it is doing) as information (Chiou and Lee, 2023). A system that is
transparent to one user may be opaque to another user because they
lack specific knowledge, skills, or abilities (Ehsan et al., 2024; Jessup
et al.,, 2024). Below we demarcate explainability, interpretability, and
understanding within the context of transparency, with explainability
being the most objective form of transparency, interpretability being
a mix of objective information and subjective cognitive processing,
and understanding being mainly a subjective perception or schema,
as illustrated in Figure 2. In other words, transparency is the process
of establishing ascriptions of an AI/ML-XAI-enabled system through
information provided by cues in the environment.

Explainability—machine transparency and
trustworthiness cues

An explanation is something that is provided by a referent, for
instance, the details of an AI/ML-enabled system by an XAI tool or
beta weights provided by a regression. Explainability is a representation
of aspects of the algorithm, such as weights or noting important
aspects of the stimuli, through visual, textual, or numerical
representation. Explanations are a set of details or elements that
illustrate or elucidate the causes, contexts, or outcomes of those details
or elements (Drake, 2018). In our model, the trustworthiness cues
provide different types of explanations. Importantly, the information
provided by the trustworthiness cues may provide more than one type
of explanation.

As Alarcon and Willis (2023) note, most of the taxonomies in the
Computer Science literature refer to the underlying mathematical
processes for computation. The different AI/ML/XAI taxonomies all
attempt to classify the different algorithms utilized to create the
various AI/ML/XAI methods. We acknowledge these differences are
important as they help to describe how the various AI/ML (e.g.,
decision trees, DNNs) and XAI (e.g., local interpretable model-
agnostic explanation, or LIME) algorithms are computing different
their
classifications, or descriptions of a given data set. However, the

weights and calculations for respective  predictions,
individual model taxonomies are all classifications of how the
algorithms function rather than the information provided to the user.
The algorithms that are being created are objective, in that they
provide some information about their inner workings (or no
information in the case of black-box models) and then display this
information to the user. The method used for analyzing what was
important in the algorithm may vary, but often they result in similar
output such as numerical, visual, or text output (Zhou et al., 2021).
The differences of the model methods are not necessary for most
users. It is the meaning of the numerical, visual, or text output within
the context that is important for interpretations (Broniatowski and
Broniatowski, 2021). As such, we placed the different AI/ML/XAI
taxonomies for model methods in the squares at the bottom of the
model in Figure 1, as they are the most objective.
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The taxonomy provided by Zhou et al. (2021) differentiates
algorithms by their explanation types as described in the previous
section. Although they intended their taxonomy to only apply to
XAI methods, we theorize it can be extended to all AI/ML/XAI
methods and algorithms. The explanation types provide information
to the user which is displayed in various manner. Black- and
white-box models both adhere to these classifications, as the former
provides little information besides performance information and
the latter are fully or almost fully transparent as to their processes.
These explanation types are similar to previous demarcations of
objective referent trust from subjective trust perceptions (Schlicker
et al., 2025).

Zhou et al. (2021) demarcated six explanation types: rationale,
data, responsibility, impact, fairness, and safety-performance. Their
study focused on the type of explanation the algorithm was providing
to the user. The rationale explanation focuses on explaining why the
algorithm made a specific decision to the user. For example, a LIME
algorithm output can provide rationale for a certain classification by
highlighting the relevant information. Data explanations illustrate
what contextual data the algorithm used to make its decision. Figure 3
illustrates an image that has been classified as a civilian airplane, and
the LIME data explanation highlights the relevant information for the
classification in green.

10.3389/fcomp.2025.1662185

Responsibility explanations focus on the development of the
algorithm, how the algorithm was managed, and how the algorithm
was implemented. This type of explanation is focused on the
accountability of the algorithm and who has ultimate responsibility
for the implementation of the algorithm. Responsibility explanations
have largely driven laws regarding AI/ML in Europe (Hoofnagle
et al., 2019). Impact explanations illustrate the societal impact of
utilizing algorithms and possible consequences of using them in
certain arenas. For example, researchers and governments have
discussed the possible implications of self-driving cars (which utilize
AI/ML for their autonomous function; Holstein et al., 2018). Self-
driving cars will have various impacts on the legal system, ethical
decision-making, and loci of responsibility (human or machine), to
name a few.

Fairness explanations can be viewed as a subset of impact
explanations as they are specifically focused on possible bias
pertaining to their use. As mentioned, AI/ML has been utilized in
parole decisions in recent years. However, these algorithms have been
shown to be biased against minorities based on various variables such
as zip codes (Hiibner, 2021). The impacts of these biases and the
broader implications of using AI/ML in sensitive areas have been
discussed at length by both researchers and governments (Goodman
and Flaxman, 2017; Hoofnagle et al,, 2019). Lastly, safety and

FIGURE 3

positive and negative information highlighted.

Locally interpretable model-agnostic explanation of civilian airplane. (A) Obfuscated image with positive information highlighted; (B) non-obfuscated
image with positive information highlighted; (C) obfuscated image with positive and negative information highlighted; (D) non-obfuscated image with
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performance explanations illustrate the process of increasing the
accuracy, security, reliability, and robustness of the decisions of and
output from AI/ML algorithms. An example of this is when a
researcher finds there are data in the data set that the algorithm has
not been trained on or that the use of said data has unintended
consequences. For example, Target utilized AI/ML for targeting
coupons toward their customers. In one instance, the algorithm
noticed a 16-year-old girl was pregnant and sent her various coupons
for baby supplies, angering her father who was unaware of her
pregnancy. As such, Target recalibrated the AI/ML to only offer
coupons to those over 18 years of age (Oprescu et al., 2020).

The explanation types described by Zhou et al. (2021) are the
outputs of the AI/ML/XAI algorithms, which we illustrate in Figure 2.
We note that even a black-box model will have trustworthiness cues
related to it, but in comparison to an XAI or white-box model, there
will be relatively fewer as the traditional black-box models do not
typically illustrate much information other than performance in their
output (Adadi and Bouhoute, 2023; Vilone and Longo, 2021). In other
words, black-box models are simply low in process cues as they do not
illustrate their decision processes for humans. Alarcon et al. (2024)
note that all algorithms lie somewhere on the information spectrum
and that a lack of information, such as with black-box DNNs, does not
negate the theory.

The explanation types are closest to the objective reality of the
algorithm in our theoretical model. AI/ML/XAI often comprise
weights and errors for the algorithm but can be illustrated differently
through natural language, color, or text (Zhou et al., 2021). It is how
the information is displayed that facilitates effective human processing
of the information. To illustrate this point, we use another example of
LIME algorithms for image classification. There are several different
ways to view the output of a LIME algorithm. Utilizing graphical
images, we can increase the interpretability of the XAI output. Figure 3
illustrates several LIME outputs from the same algorithmic output.
First, Figures 3A,C present LIME output that illustrates the important
aspects of the image in making its classification of the stimuli on a
black background. In this instance, LIME XAI displays the relevant
information, but the context is not clear. In Figures 3B,D, the LIME
XAl is transposed on top of the image, with translucent color so the
relevant aspects of the image and the total image are clear. In this
example, the user may be able to better understand the aspects of the
image that helped the AI/ML classify the image. Third, Figures 3C,D
offer two types of relevance to the image classification, green which is
associated with information that influences the classification as
civilian, and red which illustrates information that is not relevant to
the classification. All these outputs were based on the same algorithmic
output but are displayed differently.

Zhou et al. (2021) do not explicitly state whether the explanation
types are orthogonal or not. We, however, contend these are not
orthogonal. The example of the Target shopper above illustrates this
point: the AI/ML sending the coupons to an underage person
contributes to both impact and performance explanations. The
performance explanation was correct, in that the daughter was
pregnant. However, the impact explanation of sending the coupons to
anyone under the age of 18 was also clear from the output of the
algorithm. Thus, the same output can have different impacts based on
different explanation types. We note that there is no influence of
individual differences on the trustworthiness cues as they are inherent
in machines. The output is the objective information but how that
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information is displayed is important from the human perspective, as
noted in the LIME XAI examples above. We do acknowledge that user
inputs at the algorithm level can occur, but these are more important
when creating and training the algorithm.

Proposition 5: AI/ML/XAI-enabled systems that provide more
information on their underlying processes pertaining to their
respective explanation types will be viewed as more informative.

Interpretability—cognitive processing of
information

We define interpretability as a human making sense of the
information provided by the AI/ML-enabled algorithm or XAl as
illustrated in Figure 2. In the human-AI/ML/XAI interaction context,
it is the human that ascribes meaning to the information provided by
the algorithm. Just because information is explained does not mean it
is interpreted or understood by the user. How the information is
displayed helps the user interpret the data. As such, per Audi (1999)
we define interpretation as the mental processing of information
provided from the system (i.e., explained information) by the user to
establish an (in)accurate understanding of the system referent (e.g.,
Ribeiro et al., 2016b). Indeed, Ehsan et al. (2024) found differences in
interpretation of XAI between novices and computer science students
with the same X AT stimuli.

To illustrate our point, Figure 3 illustrates a LIME algorithm
representation of the information that led to the classification of a
civilian airplane with the relevant weights being highlighted in green
and red. Green illustrates the top five most relevant aspects of the
image to classify it as a civilian plane. Red illustrates the five least
relevant aspects of the image to the classification as a civilian plane.
Although these are illustrated as colors over the image, it is the
numerical value that the algorithm weights for each pixel that is
important. The LIME algorithm describes the visual information that
is used to generate a classification of each aspect of the image. The data
being explained by the machine are pixels. The color is a quick visual
cue for easy information processing for humans to interpret (Xing,
2006). As such, if the algorithm simply listed the pixels used in making
the determination, the information would be uninterpretable but
explainable because there is too much information for users to process
(e.g., Young et al,, 2015).

In Figure 1, the line across the middle of the figure illustrates the
demarcation of subjective user perceptions and objective machine
output. In the lower portion of the figure, performance, purpose, and
process cues from the machine are illustrated with square boxes. There
is a direct path from the trustworthiness cues to the user’s
trustworthiness perceptions, which are noted in the model with
performance, purpose, and process perceptions, instantiated with
circles to indicate subjective perceptions. Although the current figure
only illustrates direct lines from each trustworthiness cue to its
respective trustworthiness perception, this is only done for clarity of
the theoretical model.

The grey boxes on the lines between the trustworthiness cues and
perceptions are the information the user is employing to interpret the
trustworthiness cues (Schlicker et al., 2025). Individual differences are an
integral part of how the user perceives and interprets the information. For
example, Ehsan et al. (2024) found participants in a computer science
program perceived information provided from an AI/ML algorithm
differently than novices. In the first line from performance cues to
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performance perceptions, the grey box is mostly on the upper portion of
the figure indicating the user is relying on information within oneself (e.g.,
personal beliefs, experience with AI/ML) to make the assessment rather
than the cues from the machine. This illustrates an instance when
individual differences such as propensity to trust technology or previous
experience with AI/ML will be driving the decisions, as the loci of
information for the assessment resides primarily in the user and not the
system. This is what Hoff and Bashir (2015) refer to as dispositional trust.
The grey box representing the performance cue information the user is
perceiving is smaller than the boxes for purpose and process, representing
less trustworthiness information when making the decision because they
are relying on individual beliefs.

Proposition 6: Users deferring solely to their global beliefs / cognitive
schemas to inform their trustworthiness perceptions of AI/ML/XAI
will understand less about these systems.

On the line from the purpose cues to purpose perceptions, the
grey box indicating information for perceiving the system is split
hallway between the user’s perceptions and the information from the
algorithm. In this instance, we also see the box is much larger as more
information is being utilized, with equal information from the user
and the machine. The grey box on the purpose line might indicate an
expert user with adequate domain knowledge is properly utilizing
balanced information from both subjective perceptions and objective
cues in the environment. This example would be representative of a
statistician that understands and is utilizing regression weights in
making an informed decision in a domain for which these models
were designed to be applied.

Proposition 7: Users who leverage their domain knowledge coupled
with relevant information from AI/ML/XAI systems will more
appropriately calibrate their trust toward the system.

Lastly, process perceptions are illustrated with a grey box with
most of the variance for information being held on the objective side
of the figure. In this instance, the algorithm may be providing
information that requires little to no interpretation by the user. We can
think of image classification for easy images which are often used to
develop new models, such as classifying animals, as they require little
cognitive processing from the developer. Across Figures 3A-D, we can
see that the algorithm primarily utilizes information about the
airplane in its classification. However, there are aspects of the image
background that also are included in making the determination.
Figures 3A-D would be representative of the box on the process line
because it requires little cognitive processing by the user, as most users
would be familiar with and comfortable classifying the image as a
plane. These three examples illustrate the differences in interpretability
across individual differences.

Proposition 8: Users leveraging objective information solely from the
AI/ML/XAI will benefit in their interaction with the AI/ML/XAI
system so long as that information provided is veridical.

Some important aspects of the performance, purpose, and process
perceptions should be discussed. First, XAI may not reduce
overreliance on AI/ML (Miiller et al., 2024). Instead, it may increase
overreliance as research has demonstrated users are more likely to
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agree with an AI/ML algorithm if it provides an explanation,
regardless of accuracy (Poursabzi-Sangdeh et al., 2021). Indeed, Ehsan
etal. (2024) found novices trusted the numeric output of an algorithm
simply because it was numeric, inferring that the numbers were based
on algorithmic thinking. However, this may be moderated by
personality variables such that those with greater attention to detail
may not over-trust. Situational variables such as workload can also
influence trust as users that have too many demands placed on them
may over-trust because of lack of monitoring resources (Biros et al.,
2004). The information provided by the algorithm can facilitate many
aspects of understanding. Colin et al. (2022) found attention maps
helped facilitate user understanding of biases in the AI/ML algorithm,
but it did not facilitate understanding of the failure cases. As such,
information provided by the algorithms may not facilitate a full
understanding but rather understanding of different outcomes.

Understanding

The user exploits the textual, numeric, image, or natural language
output to facilitate their understanding of the decision process of the
algorithm (Roscher et al,, 2020). It is the ability of the human to
cognitively process the output of the algorithm that leads to
understanding (i.e., cognitive perceptions). Thus, understanding is the
perception of the system as a result of the interpretation of the
explained information. If the algorithm does not display the
information in a format that is interpretable to the user, or if the user
does not have the requisite knowledge, skills, and abilities to interpret,
it may have high explainability, low interpretability (i.e., the user is not
able to make sense of the explained output), and lead to
misunderstanding (i.e., a misperception of what the model is
explaining, how it functions etc.). However, if the user does have the
requisite knowledge, skills, and ability, this can facilitate appropriate
sense-making of the data and ultimately properly calibrated
understanding of the system (Ehsan et al., 2024; Klein et al., 2006).
This expression of the information facilitates interpretation which
enables an understanding about what will happen in the future, as
illustrated in Figure 2 (Koehler, 1991; Lombrozo and Carey, 20065
Mitchell et al., 1989). These perceptions result in an understanding of
the stimuli, which is highly subjective. Thus, understanding is the
schema or mental model that is created by the user from interpreting
information in the environment, which can be used as a lens of
analysis in future interactions with AI/ML and XAI systems. Typically,
these schemas and mental models are assessed by measures of users’
performance, purpose and process perceptions of machine systems
(Lee and See, 2004; Stevens and Stetson, 2023), in this case
AI/ML/XAL

Proposition 9: Knowledge, skills, and abilities (KSAs) will
be important for facilitating understanding, such that information
from the AI/ML/XAI should be displayed in relation to the
users’ KSAs.

As noted above, the construct of understanding from the
computer science literature is synonymous with trustworthiness
perceptions (comprised of performance, process and purpose) from
the social sciences literature. Performance perceptions concern the
degree to which the user perceives the system can perform a specific
task within a given context (Lee and See, 2004), what Hoff and Bashir
(2015) would term situational trust. Some machine systems may
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be perceived to have good performance for certain tasks but not
others. It may also be the context of the system’s use that moderates
situational trust. For instance, an AI/ML-enabled system may
perform well at classifying images from classes it was trained but not
out of distribution classes to perceive algorithm performance
differently depending on how the algorithms are applied*. The risk of
misclassification may be tolerable in scenarios such as recycling
management but not in high risk instances such as computer vision
for autonomous vehicles. Process perceptions describe the user’s
understanding of a machine system’s underlying algorithmic function
(Lee and See, 2004). In human-AI/ML contexts, process perceptions
may vary depending on what information a user perceives on how
the AI/ML reached a decision, and these perceptions may be shaped
by XAI which unpacks how the AI/ML functions (Alarcon and
Willis, 2023). Purpose perceptions pertain to a user’s perceptions of
why the system was designed (Lee and See, 2004). Lee and See note
systems are often used outside of contexts they were built or used in
contexts that have more diverse information than that which the
model was trained on, which can influence users’ purpose
perceptions. With regards to the above example, systems designed to
classify specific classes such as cats and dogs, but not other classes
(e.g., squirrels), may shape users’ perceptions of system purpose,
which may or may not relate to other trustworthiness perceptions
and intentions to rely on (i.e., trust) the system as shown in human-
autonomy interaction work (Capiola et al, 2023; Lyons et al,
2021, 2023).

Providing information is not a catch-all that once provided will
increase trust and reliance on the system. The explanations provided
can reveal problems in the system which can help the user calibrate
when to use the algorithm (Késtner et al., 2021). For example, Alarcon
et al. (See footnote 4) found participants were able to more quickly
detect out-of-distribution data and noted the open set recognition

4 Alarcon, G. M., Jessup, S. A, Meyers, S. K., Willis, S., Johnson, D., Noblick,
J, etal. (under review). The trust process applied to machine learning algorithms:

the influence of calibrated confidence estimates. Manuscript under review.

10.3389/fcomp.2025.1662185

models were better able to classify appropriate images for within-
distribution data; in comparison, the convolutional neural networks
(CNNs) had issues because they were confident in their classifications
regardless of the stimuli. Additionally, the user can misinterpret the
information provided by the model, falsely attributing actionability
(i.e., what can be done with the information) even when the
explanation is unclear (Ehsan et al., 2024).

The explanation of the algorithm’s decision processes when the
algorithm fails can also provide information as to improvements that
need to be made to the algorithm. For example, adversarial attacks are
used to determine ways to deceive the algorithm. Researchers noted
that adding black and white bars to the stop sign, as illustrated in
Figure 4, can make a convolutional neural network classify the image
as a 35-mph sign instead of a stop sign. This helps the developer find
issues in the algorithm that can be alleviated or fixed with updates and
understand the flaws in the algorithm and improve it in
future iterations.

Attitudes

There are numerous definitions of trust in the AI/ML/XAI
literature. Many of these definitions have come from the interpersonal
trust literature and have also conflated trust and reliance. Blanco
(2025) recently theorized trust comprises (a) positive expectations, (b)
some risk of the trustee not behaving as the trustor wants them to (c)
a potential or need / wish of delegation, and (d) a basis in motives (i.e.,
motives based). She distinguishes this from reliance, which is the
dependence of the trustor toward the trustee when the trustor needs
to delegate. In her definition, the first two postulates of trust are the
same as most definitions in the literature. Her third postulate of trust
distinguishes that needing to delegate is not a necessary condition of
trust, but rather the potential wish for delegation can necessitate trust.
Additionally, she explicitly notes that trust is motives based, i.e.,
trustors have a goal in mind when ascribing trust. In her theoretical
paper, she notes these motives are based on both cognitive (normative)
and affective antecedents. Indeed, in the interpersonal trust literature,

FIGURE 4
Example of adversarial attack on road sign classification task.
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there has also been a demarcation of affect- and cognition-based trust
(McAllister, 1995). However, the interpersonal trust literature has
focused on differentiating antecedents to trust as affect- and cognition-
based aspects of trustworthiness perceptions (Colquitt et al., 2007; Lee
etal., 2022).

We theorize two underlying factors that influence attitudes toward
AI/ML-enabled systems: valence and cognitive effort. Valence
describes the attractiveness or aversiveness the user ascribes to the
situation or referent (Russell, 1980). Valence comprises a spectrum of
emotions ranging from positive to negative, with neutrality or
indifference in the middle (Jessup et al., 2025; Li et al., 2017). Research
on emotions has demonstrated that when users experience positive
emotions, they tend to process information more holistically
(Fredrickson, 2001; Kazén et al, 2015). In the human-machine
interaction literature, this can facilitate adoption and acceptance of the
system (Hoong et al., 2017; Jessup et al., 2023). Positive emotions also
lead the user to explore the machine’s capabilities, experiment with
features, and engage more with the system (Isen and Geva, 1987).
Additionally, positive emotions can buffer against system failures or
errors (Maroto-Gomez et al., 2023). In contrast, negative emotions can
facilitate narrow or segmented cognitive processing (Kazén et al.,
2015). Initial negative interactions are difficult to overcome as they
lead to a negative mental model of that referent system (Jessup et al.,
2020), which takes time and effort to change (Kim et al., 2023).

Cognitive effort characterizes the mental exertion necessary to
evaluate a referent. Though there is no consensus on a definition (Li
et al.,, 2017; Shepherd, 2022; Westbrook and Braver, 2015), cognitive
effort is often described as the amount of controlled processing needed
to understand, reason, and make decisions. This overlaps with dual-
processing models of cognition (Kahneman, 2011) and persuasion
(Chaiken, 1980; Petty and Cacioppo, 1986), which have also been
applied to trust research (Alarcon and Ryan, 2018; Stoltz and Lizardo,

10.3389/fcomp.2025.1662185

2018). System 1 processing, or heuristic processing, is quick,
automatic, and relies on cognitive shortcuts. System 2 processing is
more effortful, intentional, and accurate. Importantly people bring
heuristics about referents into the decision-making process based on
knowledge domain, experience, and pattern recognition (Ehsan et al.,
2024). Aspects of the environment such as task complexity, familiarity,
and contextual distractions can also influence the amount of cognitive
processing an individual utilizes (Wickens and Carswell, 2012). For
example, research has demonstrated that people choose to exert
cognitive effort when machine systems are coupled with explanations
for their decisions by weighing the cost of the cognitive effort
compared to simply deferring to the overall system (Vasconcelos et al.,
2023). This is what Hoff and Bashir (2015) term situational trust. In
addition, a user’s motivation and cognitive ability (e.g., working
memory capacity, processing speed) can influence the amount of
cognitive effort a user is willing to exert on the task (Cacioppo et al.,
1996). That is, cognitive effort facilitates or inhibits information
processing, leading to resulting attitudes.

We theorize multiple attitudes toward AI/ML/XAI fall on a
two-dimensional plane of valence and cognitive effort as they are a
function of both dimensions, as illustrated in Figure 5. Lee and See
(2004) are most famous for defining and explicating what it means to
have calibrated trust, which is the correspondence between objective
system capability and the user’s subjective trust toward that system
informed by their perceptions of that system. Trust calibration was
originally introduced in the Human Factors literature concerning
trust in automation and has since been adopted and expanded in the
human-machine interaction literatures, including human-robot
interaction (e.g., Alarcon et al., 2023), human-autonomy interaction
(e.g., Capiola et al., 2023), and human-AI/ML interaction (e.g., Harris
et al., 2024; Schlicker et al., 2025; for a review, see Kohn et al., 2021).
In the present model, calibrated attitudes fall on the x-axis, as they

Higher Cognitive Effort

Curiosity @

Trust

® Suspicion

Distrust

Positive Valence @—@

Algorithm Appreciation @

Complacency @

Lower Cognitive Effort

FIGURE 5

Trust and trust related attitudes along valence and cognitive effort factors. Contextual risk negatively affects attitudes; high and low workload contexts

can affect processing resources and effort.
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entail appropriate cognitive effort, and depending on the situation,
comprise positive or negative valence resulting in trust and distrust,
respectively. Calibrated trust is the goal, but other psychological
attitude states may occur that fall on these two axes. When high or low
cognitive effort is inappropriately employed, other states such as
suspicion, curiosity, complacency, and under reliance can occur.
We talk about each of these constructs in relation to the model in
Figure 5.

The trust process outlined above is an iterative rather than static
process (Chiou and Lee, 2023; Lee and See, 2004). Many different cues
from the AI/ML/XALI influence perceptions over time. As the user
obtains more information about the AI/ML via use and observation,
the trustworthiness perceptions are updated. These trustworthiness
perceptions are then updated based on how the system responds. This
is what Hoff and Bashir (2015) refer to as learned trust.

Importantly, learned trust is contextually specific in relation to
trust. Trust in the system for one context may not be transferred to
other contexts. Instead, different attitudes may arise depending on the
time spent with the system, the risk involved with the task and the
affective valence associated with the algorithm. This may be for a
variety of reasons such as differential risk between scenarios. For
example, Lyons et al. (2024) found failure of one autonomous system
lowered the trust in that specific system but not to other systems with
the same operating constraints. The learned trust is the information
processing and updating of the mental models/schemas of the human
in the human-AI/ML/XALI interaction over time. This creates a
feedback loop where trustworthiness perceptions are updated over
time and information becomes salient. However, other findings can
emerge as well. System-wide trust literature notes that trust decay can
bleed over into other independent systems (Keller and Rice, 2010).
Across many studies in contexts ranging from in-flight aircraft
services (e.g., Rice et al., 2016) to robotic swarm interactions (e.g.,
Capiola et al., 2024b), perceived perturbations of one system aspect
can bring down trust toward another orthogonal system.

Trust and distrust

Workers attempt to make sense of the technology they utilize at
the same time they are doing a given task (Muir, 1987). This links trust
theoretically to trust toward AI/ML-enabled systems, and researchers
have meta-analyzed data on trust-relevant constructs in human-Al/
ML interactions (see Kaplan et al., 2023). As noted, XAI was developed
because of the lack of transparency of black-box models like DNNs to
help facilitate (dis)trust formation toward opaque systems (Sanneman
and Shah, 2022). The construct of trust has been defined as an attitude
(Lee and See, 2004) or willingness to be vulnerable to a referent
(Mayer et al., 1995), and we adopt that definition for our model (see
also Kohn et al., 2021). If the user has adequate transparency provided
about the system’s performance, purpose, and process, sufficient to
outweigh the uncertainty and risk of the situation, they will trust the
system appropriately. Individual differences, such as domain
knowledge or task knowledge, may also play a role in this process as
they provide information for perceiving the referent (Hoff and Bashir,
2015). The reason “appropriate” is used denotes the importance of
veridical perceptions of the system (Lee and See, 2004), and this
perhaps more important as referent machine systems leveraging Al/
ML/XAI capabilities increase in ubiquity and opacity (Chiou and Lee,
2023; Schlicker et al., 2025). Indeed, if a user perceives the system to
have low performance, purpose, and process, to the extent that their
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perceptions do not outweigh the perceived risk, then it is beneficial for
them to not trust, i.e., distrust, the system (assuming their perceptions
of the referent system are accurate). Trust should not be assumed to
be beneficial in and of itself: what is important is that the user
perceives the system accurately to form an intention to and ultimately
rely on that system, again, what Lee and See (2004) note as calibrated
trust, i.e., a correspondence between objective system capability and
the user’s subjective trust toward that system informed by
their perceptions.

Appropriate trust calibration is not a function of one type of
processing; instead, cognitive processing can occur at different stages
such as during initial interactions or when new information is made
salient (Stoltz and Lizardo, 2018; Tuti¢ et al., 2024). Trust calibration
and recalibration implies making appropriate use of the relevant
information in the environment to make the assessment. For this
reason, we place appropriate trust and distrust in the middle of the
cognitive effort y-axis but on their respective sides of the valence
x-axis. If new information is made salient, effortful processing
increases to incorporate the information in the user’s schema/attitude.
However, the attitude of trust or distrust has been formed based on
previous interactions which have resulted from cognitive effort and
affective responses. Again, this is similar to what Hoff and Bashir
(2015) term learned trust. This trust learned trust is a function of both
system 1 and system 2 processing as the trust or distrust has been
formed, aiding the user in processing information more efficiently, but
new information that is not part of the schema will active system 2
processing. We note that recalibration is not illustrated in Figure 5
because it would depend on the previous perception. For example, if
the user trusted the AI/ML/XAI and new information was provided,
the user may be in the upper left quadrant.

Proposition 10: Calibrated trust and distrust are a function of
moderate cognitive effort and their respective valence.

Suspicion

Suspicion is defined as a state of increased cognitive activity,
uncertainty, and perceiving machine system mal-intent (Bobko
et al., 2014). Whereas trust and distrust are a willingness to rely
or not rely on the system respectively, suspicion is the withholding
of the evaluation due to uncertainty as to how the referent will
behave. As such, the uncertainty leads to increased cognitive
effort to determine whether to utilize the system. A system can
also be perceived as suspicious because of an individual’s
tendency to be suspicious of machine systems (Calhoun et al.,
2017), and contextual factors which facilitate suspicion may lead
to distrust of a system with regards to its objective reliability
(Bobko et al., 2014).

Little research has been conducted on suspicion toward AI/ML,
despite recent calls for research on the construct in relation to AI/ML
(Peters and Visser, 2023). Gay et al. (2017) found alerts from the Al/
ML/XALI alone do not create suspicion. Instead, alerts facilitate
information search through the users’ increasing cognitive effort. Gay
et al. note situational differences facilitate suspicion, such that negative
information can lead to increased suspicion. This suspicion led to
decreased user performance in their scenario. Similarly, Strang (2020)
found suspicion is high in cyberspace operations. These results
indicate it is the context, relative risk, and information gathered from
the environment that facilitates suspicion. As such, suspicion is placed
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in the upper right quadrant characterized by high cognitive effort and
negative valence.

Proposition 11: High cognitive effort and negative valence will result
in suspicion.

Curiosity

State curiosity is a temporary, situational state of intrinsic
motivation or desire to learn or explore (Kashdan and Roberts,
2004; Spielberger, 1979). State curiosity is externally triggered by
aspects of the environment such as novelty, ambiguity, or gaps in
knowledge. State curiosity involves both feelings (i.e., interest,
excitement) and mental engagement with the referent (i.e.,
cognitive effort). Oudeyer et al. (2016) note that curiosity is formed
when the agent’s predictions are improving. Information gap
theory (Loewenstein, 1994) theorizes state curiosity arises from an
inconsistency or disparity between what is known and what is
unknown. Curiosity is the drive for information through active
intrinsic desire to obtain more information (de Abril and Kanai,
2018). Importantly, curiosity is driven by positive emotions in
contrast to suspicion which is driven by negative emotions.

Research on curiosity in human-computer interaction research is
relatively sparse. However, some researchers have developed models that
personalize a user’s curiosity appetite. Abbas and Niu (2019) found
personalization of the system to users openness to experience influenced
more information gathering. Hoffman et al. (2023) also noted curiosity as
an important factor in human-XAI interaction, noting that seeking
information is driven by curiosity. Hoffman et al. note XAl should promote
curiosity for increasing the accuracy of mental models, but no research to
date has explored and demarcated the psychological “triggers” for curiosity.
Still, it stands to reason that AI/ML/XALI can facilitate curiosity in the task.
Researchers have found students interacting with ChatGPT led to more
curiosity and creativity in the classroom (Essel et al., 2024). General
curiosity can be triggered by a violation of expectations (Maheswaran and
Chaiken, 1991), but it is the type of violation that distinguishes curiosity
from suspicion. Curiosity may occur in less risky environments, when
information obtained is not negative in the task, or when the context is
relatively benign. Importantly, curiosity entails both positive valence (or at
least a lack of mal-intent) and high cognitive effort for information seeking.
However, some individuals may have a tendency to offer less cognitive
effort (Petty and Cacioppo, 1986), and some situations may be so benign
or so high in workload that exerting cognitive effort is not possible.

Proposition 12: High cognitive effort and positive valence will result
in curiosity.

Complacency

Complacency is defined as decreased vigilance, attentiveness, and
situation awareness resulting in a user relying too heavily on a system
(Parasuraman and Manzey, 2010). Complacency with the system can
be due to many different aspects, but in the instance of over-trust, the
user becomes overly confident that machine systems will handle task
responsibilities (Lee and See, 2004). The lack of cognitive effort
associated with complacency leads to less task vigilance. That is,
complacency can lead to missed errors, reduced situation awareness,
slower reaction times, increased risk of accidents, and skill degradation
(Parasuraman and Manzey, 2010). Instances of this are easily
accessible in the news with Tesla owners not paying attention to the
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car while it is in its autonomous mode (Shepardson and Sriram, 2024).
Lack of system oversight has led to accidents, including deaths.
However, the lack of oversight results in over use as the individual
expects a positive outcome, which is why complacency is in the lower
left quadrant of Figure 5.

One related construct to complacency that we depict in Figure 5 is
algorithm appreciation (Logg et al., 2019), which describes users’ tendency
to rely on advice from algorithm referents compared to humans. Across
several experiments, Logg et al. document cases of algorithm appreciation
in tasks ranging from visual stimuli estimates and forecasting the popularity
of content. Similar results are shown in foundational work in human-
automation interaction (Dzindolet et al, 2002), where individuals
demonstrate more positive attitudes toward machine decision support
systems  compared to  humans  before  human-machine
interaction commences.

Still, Logg et al. (2019) found appreciation for algorithms over humans
when the latter forecast came from the participant themselves, or the
participant was an expert in the forecasting context. Similarly, Dzindolet
etal. (2002) found appreciation decreased after task interaction progressed,
resulting in user under reliance on machine systems compared to humans

when either was perceived to be imperfect.

Proposition 13: Low cognitive effort and positive valence will result
in complacency.

Under reliance

Under reliance on a system refers to insufficient or inadequate use of
the machine despite its objective capabilities (Lee and See, 2004).
Importantly, this disinclination to use a system is a function of a lack of
cognitive effort as there is evidence that the system is reliable and beneficial
(Parasuraman and Manzey, 2010). Still, a user may forego the potential
benefits of relying on the system such as increased performance and
decreased decision time due to the user’s increased workload and potential
fatigue. Thus, under reliance is comprised of lower cognitive effort exerted
towards the system and an expectation of negative outcome, which is why
under reliance is in the lower right corner of Figure 5. A good example of
this can be found in the literature on algorithm aversion, which is the
reluctance to use algorithms even when they demonstrate better accuracy
and reliability than a human (Dietvorst et al., 2015). Negative experiences
with other algorithms lead to the development of a negative bias toward
algorithms when they are not perfect (Liu et al., 2023; Slovic et al.,, 2013).
Additionally, negative emotions have been associated with less use of
algorithms (Gogoll and Uhl, 2018; Prahl and Van Swol, 2017), leading to
under reliance (i.e., algorithm aversion). This is driven by not only a bias or
heuristic but also a function of one’s emotional state or valence.

Gaube et al. (2024) found under reliance toward AI/ML was more
harmful to performance than over-reliance. Moreover, they found that
XAI reduced under reliance on AI/ML referents, especially when
users were expected to classify difficult images, but under reliance on
the system still led to lower task performance. Under reliance on
machine systems can be the result of many different variables such as
user lack of error tolerance (Dietvorst et al., 2015; Dzindolet et al.,
2002), perceived low controllability of the AI/ML/XAI (Cheng and
Chouldechova, 2023), low transparency (Schemmer et al., 2023), or
poor mental models of the AI/ML by the user (Kaplan et al., 2023).

Proposition 14: Low cognitive effort and negative valence will result
in under reliance.
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Personality can influence these attitudes through the mechanisms
we described above as well as how users perceive the environment
(Lazarus and Folkman, 1984). Personality is the lens through which
humans view the world and process the information (McGuire, 1968).
Different personality variables can influence the final attitude
formation toward a given referent. However, the underlying processes
of all the mechanisms through which personality can influence
attitudes is beyond the scope of the current review. Interested readers
are encouraged to review Albarracin and Shavitt (2018), Ajzen (2005),
and Howe and Krosnick (2017).

Risk

The relevant uncertainty in utilizing an AI/ML/XAI algorithm
represents an inherent risk in the task (Gulati, 1995). Risk is the uncertainty
of the outcome and the relative vulnerability of relying on the system in the
given context. Often times, this risk in an experimental task is instantiated
as monetary payouts in the psychological trust literature (see Johnson and
Mislin, 2011). However, this also has relevance to the use of AI/ML/
XAI The advent of XAl literature is in response to using black-box models
in areas with high risk. The call for more transparent AI/ML is in direct
response to the risk of utilizing these algorithms in parole decisions,
autonomous vehicles, and other risky scenarios (Rudin, 2019). The role of
situational risk is closely related to trust, suspicion, and over reliance. Risk
augments how users trust and utilize the AI/ML by affecting how they
perceive the fairness of the process/decision. Trust has also been viewed as
a cognitive mechanism through which people process, interpret, and
respond to informational risk. This risk perception varies by situation. A
programmer developing an AI/ML algorithm to create a spam filter for
email may have considerably less risk than a programmer utilizing AI/ML
for customer payment processing systems. The risk inherent with each
scenario will moderate how the user perceives the system (McComas, 2006;
Thielmann and Hilbig, 2015), influencing their likelihood trusting that
system given the tradeoff of accepting vulnerability toward that system in
contexts of increased risk (Chiou and Lee, 2023; see also Kohn et al., 2021).
Following the interpersonal trust literature (Mayer et al., 1995), contextual
or perceived risk can also influence the processing resources users allocate
toward making their decision to (dis)trust a machine referent (Kohn et al,,
2021) including AI/ML/XAI (Chiou and Lee, 2023). Additionally, the risk
inherent with each scenario can also establish which personality variables
are activated in interactions with each algorithm. In the latter payment
algorithm, there is considerably more risk; as such, personality variables
such as risk aversion may play a larger role in the cognitive processing of
information from the system. The former low risk scenario of the spam
filter may not activate risk aversion because the risk is so low. Instead,
personality variables such as complacency potential may be active in the
cognitive processing because of the low inherent risk (Zhou et al., 2020).

Reliance behaviors

The cognitive processes (or lack thereof) described prior all lead
to eventual decision-making which is referred to as reliance /
compliance behaviors (Meyer, 2001; Meyer et al., 2014) or trust
behaviors (Alarcon et al., 2021, 2023) in the Human Factors literature.
As noted earlier, reliance is the actual dependence of the trustor on the
trustee (i.e., delegation of a task). Much of the research has focused on
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attributing trust to reliance behaviors, such that appropriately trusting
AI/ML means utilizing the system when it is accurate and disregarding
the system when it is inaccurate. However, in real world applications
pertinent in our theoretical model, the user will not know the actual
state of the AI/ML/XAI decision. It is important that algorithms are
designed so that users can most accurately trust them when it is
applicable and appropriate.

An important issue in Psychology is that behaviors are not due to
a single cognitive state. The Human Factors literature has noted
several issues that may lead to a user’s decision to utilize a system. Our
discussion of attitudes in the previous section illustrates some of the
different attitudes that can influence behaviors. Importantly, one
additional reason for reliance behaviors may simply be user errors. A
user may accidentally perform the correct behavior, either without
knowing they were going to or because they “hit the wrong button,”
which happened to be correct. These human errors are often not
accounted for in the literature, as it is assumed a user is performing
the behavior on purpose. Instead, it may be that some of the behaviors
are accounted for by simple mistakes.

Providing information about the system does not always lead to
increased trust, nor are those increases always substantial. Atf and
Lewis (2025) found XAI was only modestly correlated with trust
assessments in their meta-analytic findings. Instead, performance
aspects had the most robust relationship with trust. However, more
information about the performance of a model, such as calibrated
confidence intervals (Guo et al., 2017), may have implications for
research such that models with more performance information are
trusted more (Meyers et al., 2024; Harris et al., 2024). Explainability
of the underlying processes can also lead to distrust in certain
situations. The explainability can illustrate that the algorithm is using
incorrect information in its decision-making. For example, there is the
classic case of a CNN that has been trained to classify dogs and wolves
might develop a bias due to the background of the images (Ribeiro
etal, 2016a). Ribeiro et al. found this type of algorithm would classify
an image as a wolf if the image had snow in the background. If a wolf
without snow in the background is presented it is classified as a Husky,
as the algorithm has not been trained on wolves that have no snow in
the imagery. A model with XAI may illustrate the accuracy of the
model is misplaced as it is not making a decision based on the relevant
criteria, i.e., the animal of interest, but instead on other information
such as the background. Additionally, too much information can lead
to distrust, complacency, or under reliance. Mackay et al. (2019) found
too much information led to over-trust in the system and decreased
performance on a visual search task. The problem for display design
in AI/ML/XALI is balancing the information provided with the
information necessary to perform the task without overloading the
human operator (see footnote 4; Young et al., 2015).

It is not just one construct that facilitates the use or disuse of a
system. It is a combination of many variables that can influence
reliance behaviors and the contextual moderators which increase
or decrease the influence of each variable on reliance (or a lack
thereof). Individual differences play a role in this aspect, too. For
example, complacency potential can activate both overuse and
underuse of the system. If the user is high in complacency potential
and the system displays high performance, the user may overuse
the system because they believe the system is not fallible
(Shepardson and Sriram, 2024). Conversely, if the user is low in
complacency and the system does not perform well, the user may
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utilize another system or do the task themselves depending on the
task. This is because the lack of need for cognition or complacency
will lead the user to underestimate the system and abandon the AI/
ML-enabled system.

Lastly, reliance behaviors have often been dichotomized in
the literature (e.g., rely or not rely on the system). However, the
relationship between the aforementioned attitudes and reliance
is often not binary (Blanco, 2025). Research has demonstrated
there is a richness of reliance behaviors. For example, Alarcon
et al. (2023) found participants were willing to wager a little on
a robot partner early in their interaction, but participants
increased their wagers as time progressed because they trusted
robot more over time. Researchers often classify reliance as
“monitoring behaviors,” but metrics such as eye-tracking
(Sharafi et al., 2015) or time monitoring the algorithm are also
not dichotomous. Indeed, the aforementioned attitudes can help
to explain why a user may be spending more time monitoring
an AI/ML/XAI For example, a new algorithm that classifies
images with more accurate confidence intervals (Guo et al,,
2017) may lead to more time exploring how the algorithm made
its decision. Here, time would be a continuous variable, not a
binary variable. Additionally, this behavior could be caused by
high cognitive effort and positive emotions such as curiosity
pertaining to how the new algorithm outputs information.

Machine errors/mistakes and unintended
consequences

Errors/mistakes and unintended consequences may have
differential effects on trust. We differentiate between errors and
unexpected outcomes. Errors are analogous to misses and false
alarms in signal detection theory (Kay, 2013). In instances of
errors, it can be something such as an incorrectly classifying an
image, an incorrect forecasting decision, or misinformation
provided by large language model (LLM). In contrast,
unintended consequences are when something unforeseen
occurs in the dataset or response. The example of the pregnant
teenager example from Target also illustrates an unintended
consequence. In that instance, the algorithm did perform its
task well, but most would be reticent to send pregnancy related
coupons to a minor. Lastly, LLMs can hallucinate or infringe on
intellectual property. This can lead to unintended consequences
such as plagiarism by LLMs. All of these can degrade user trust
toward the system, but it remains to be seen if there is a
difference between trust degradations due to errors and trust
degradations due to unintended consequences.

Differences in performance, purpose and
process

We note that performance perceptions are a necessary aspect of
trust, at least after the first interaction. Much of the literature on DNNs
has focused on the performance of the system, without discussing the
underlying processes or purposes that drive DNNs (Minh et al., 2022).

The advent of XAl is a response to the lack of transparency
in black-box models as they are used in more applications; as
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noted, governments and companies required more information
on how the decision processes of the algorithms worked
(European Union Act, 2024/1689; Air Force Doctrine Note,
2024). However, DNNs have been used in multiple contexts
without transparency in process or purpose cues before, but the
algorithms always displayed some performance information.
Researchers note that no machine or system would be used
without some kind of performance feedback; as such,
performance is a necessary aspect across all temporal aspects of
the trust process (Alarcon and Willis, 2023; Hoff and Bashir,
2015). As such, we theorize performance perceptions are a
necessary condition for trust in the system. In scenarios where
information about the system is either sparse or unknown, the
user will leverage prior information either about machines in
general (if the user has never interacted with AI/ML before) such
as global beliefs and / or possible knowledge, skills, or abilities
that the user holds (if the user is a domain expert) to make their
initial trust assessment, which is really a strong belief without
adequate, contextually constrained information.

Purpose perceptions are most relevant early in the trust
process (Hoff and Bashir, 2015; Lee and See, 2004; Muir and
Moray, 1996). Early interactions may be focused on performance
and purpose perceptions and cues as the user lacks information
about the system, such as reliability, dependability, or capabilities
(Hoff and Bashir, 2015). The contextual nature of the system will
be leveraged in the initial trust estimate as the user is unsure of
how it will perform. As such, purpose perceptions along with
global individual differences will have the strongest effect early on
in interactions as there is not yet salient information about the
system’s performance.

Importantly, performance and purpose perceptions will have a
strong relationship with each other, and quantitative data support this
postulate (Alarcon et al., 2023; Capiola et al., in press). The reason a
model was built will be highly correlated with performance in the
context of the task.

Third, process perceptions may only be necessary after the Al/
ML/XAT has made a mistake or its decision resulted in an unexpected
consequence. As illustrated with the literature on AI/ML, many
governments and companies were not concerned with the underlying
processes of the DNNs until they started being utilized in high-risk
scenarios and started to have errors or unexpected consequences
(European Union Act, 2024/1689; Air Force Doctrine Note, 2024).
We propose it is mainly when an algorithm makes a mistake or
unintended consequence that users will be interested in the XAI or
underlying processes (we note that developers will be interested in
processes while training the model). This applies when training an
algorithm, but this links back to the notion that training entails an
inspection of results. In these situations, users need information to
understand what went wrong. Recent experimental data on
human-AI/ML interaction (Harris et al., 2024, 2025) shows this to
be the case, providing fodder for future investigations with other Al/
ML/XAI algorithms in different contexts. Moreover, a user’s baseline
expectations of a given AI/ML or XAI referent and their threshold for
abandoning said systems should they err ought to shape their process
perceptions differently, per the literature on perfect automation
schema (Dzindolet et al., 2002). Thus, individual schemas for a
system’s function may shape user perceptions of how the system works
given something unpredictable occurs.
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Measurement

It is important to note the measurement of each of the variables
in the proposed model. We note that Kohn et al. (2021) have covered
the measurement of variables in the trust process extensively, but
we highlight a few aspects here. Measurement of variables such as
individual differences, trustworthiness perceptions, and attitudes
about the system often leverage Likert-type scales. These scales are
useful for collecting large amounts of data about the constructs of
interest as they do not require much from the researcher. However, the
specificity of the scales may impact their utility. As we have mentioned
prior, cognitions and behaviors are based on several constructs. Solely
using self-report scales may not facilitate the rich understanding that
can come from the inclusion of many different methods (see
Krausman et al., 2022). One such method is qualitative analyses.

Qualitative analyses provide a focus of meaning and context for
the decisions of the user. These types of analyses can provide a rich
and meaningful description of the thoughts and perceptions of the
user (e.g., Meyers et al., 2025). However, a large drawback is the time
and manpower needed to analyze and interpret the data.

Behavior is often the best indicator of behavioral trust. However,
we note that much of the literature has focused on trust as a binary
construct, with users or participants either trusting or not trusting in
the scenario. Instead, trust may be more complex. Alarcon et al. (2023)
utilized monetary risk to instantiate trust, with participants making a
wager on how their robot or human partner would perform.
Interestingly, when participants were allowed to choose their specific
wager, they initially trusted a little with gradually increasing wagers as
the partner demonstrated trustworthiness. This illustrates the idea
that trust behaviors are not all-or-nothing, but rather iterative and
build as trust develops. Similarly, as proxies of psychological trust can
be assessed through a (lack of) monitoring behavior, physiological
metrics such as eye-tracking can be used to determine how
participants trust (i.e., do not monitor the AI/ML/XAI; see Krausman
et al.,, 2022) the system over time. We propose that as trust develops
there will be less oversight of the AI/ML/XAL

Implications for research and practice

As noted earlier, the interpretation of the trustworthiness cues by
the user is represented by the lines connecting the trustworthiness
cues and trustworthiness perceptions. The gray boxes illustrate the
degree to which features of the system are interpreted by the user, and
the degree to which these cues facilitate trustworthiness perceptions
(performance, purpose, and process) are moderated by individual
differences in the human processor. For example, most AI/ML/XAI
have focused on developer perceptions of the model rather than end
user perceptions, but there are differences in between user’s and
developer’s cognitive models and how they are formed (Ehsan et al.,
2024). In depth discussions and experiments with both end users and
developers can clarify what individuals need from the AI/ML/XAI
within a given context. The various trustworthiness cues provide
information about the state of the system (e.g., dependability,
helpfulness, and comprehensibility) which are interpreted as
subjective perceptions of the explanation data that is provided
(Broniatowski and Broniatowski, 2021). The explanation types
facilitate mental models comprising psychological perceptions of the
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algorithm’s trustworthiness (Visser et al., 2023). However, these
interpretations and cognitive schemas are not a one size fit all scenario,
needing more attention paid to the specific user that is in mind. The
output (e.g., XAl beta weights, etc.) should provide a description of
the stimulus, such as a data point or algorithm output, that can
facilitate understanding within the context. In other words, the Al/
ML/XAI should be able to communicate intentions and explain
decision-making processes to the user (Boies et al., 2015; Paleja et al.,
2021). These trustworthiness perceptions are cognitive evaluations by
the user based on the relevant trustworthiness cues that are perceived,
interpreted, and ultimately understood, assuming the system is
appropriately transparent.

It is both the explanation type and proper display of the
explanation type that makes the explainable data interpretable to the
user according to information processing theory (Wickens and
Carswell, 2012). This ease of interpretation of the explainable data
leads to appropriate information processing by the user. Conversely,
a poorly designed display of information can lead to a lack of or
inappropriate information processing by the user. We note that
humans prefer simpler explanations, and explanations should only
grow in complexity when all the components of the explanation are
highly accurate (Lombrozo and Carey, 2006; Lombrozo, 2007). Poor
display design can influence information processing, resulting in an
information overload hampering information processing
(Bainbridge, 1983; Tocchetti and Brambilla, 2022). For example,
feature importance metrics such as saliency measures have improved
user’s understanding of an AI/ML algorithm’s decisions within an
image classification task (Hase and Bansal, 2020). Research has
noted that multiple signals simultaneously can confuse and disorient
the user, especially if they represent different information (Hase and
Bansal, 2020). If an XAI display were to provide multiple
explanations simultaneously that are not highly correlated with each
other (i.e., not redundant information), the user may be overloaded
and not able to perceive relevant information (e.g., Capiola et al.,
2024a). Indeed, Ngo (2025) found transparency had a curvilinear
relationship with performance such that too much transparency
inhibited performance. That is, if the sensory cues are all correlated
and represent the same information, they may provide a failsafe with
multiple cues about that information in some contexts but
competition for finite resources in others (Wickens and
Carswell, 2012).

Proper placement and display of the information is also necessary.
Simply placing the information outside of the area of attention may
influence the results of cognition and behavior, such that the user may
not perceive the information or effectively process the information.
For example, Ling et al. (2024) found confidence intervals were not
important in decision-making with AI/ML; however, the authors
displayed the confidence intervals as a graph at the top of the screen
away from the target information. Eye tracking indicated participants
did not utilize the data possibly because it was far from the focal point
of the task and difficult to process. In contrast, research has
demonstrated confidence intervals are utilized by participants in an
image classification task when the confidence intervals are salient and
near the target image (Alarcon et al., 2024; Harris et al., 2024). This
illustrates our point further that poor display design can lead to a
decreased focus on relevant information.

The interpretation of the display design information of the
algorithm is a highly subjective interpretation. As we noted earlier
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with the algorithm aversion studies, if the information is provided but
the user lacks the ability to interpret the data, the explainability may
be high (i.e., data is provided about the algorithm’s decision-making),
but the user’s interpretability of the system is low (i.e., the user cannot
make sense of the data). For example, the Dietvorst et al. (2015)
research in which novice participants were required to interpret beta
weights may have led to high explanation but low interpretation and
thus misunderstanding.

Although we focused on the interpretability of white-box models
with regressions for this example, this principle can also be described
in terms of display design (e.g., an XAI displays what information an
underlying AI/ML algorithm used to classify an image into a given
category to a human user). Ehsan et al. (2024) found differences in
between computer science students and the general public not only in
their cognitive schemas that were formed, but also in the interpretation
of the information that was provided by the AI/ML, indicating
individual differences are key aspect of processing information.

Practical takeaways and remaining gaps

We offer several practical takeaways for researchers and designers
alike to consider in their own work. First, individual differences matter
in human-AI/ML/XAI interaction and are a cornerstone to human-
centered design for effective human-machine interaction. Although
AI/ML-enabled tools will be deployed to the general population or
large organization (whether that be public or private), companies
ought to consider at minimum what factors their intended users bring
to bear when interacting with these technologies. Considering not just
a target audience’s knowledge, skills, and abilities with AI/ML-enabled
systems, but also their general expectations of and thresholds for
abandoning machines should be considered. Considering users’
general tendency to engage, be curious, and think deeply about
interactions with novel AI/ML-enabled systems will help shape design
for effective use. Customized information display sensitive to users’
individual differences may help them use a system appropriately (e.g.,
Vazquez-Ingelmo et al., 2019), and we encourage researchers to test
this speculation by instantiating these strategies in emerging Al/
ML-enabled systems coupled with different XAI applications.

Second, designers should consider what features of an AI/ML-enabled
tool should be most perceptible to users. Our stance is an overabundance
of information as to what the system did, how it did it, and why may
be technically explainable but uninterpretable to some audiences (per
individual differences above) and ultimately lead to misunderstanding.
Simply: more information is not always better. Researchers should
investigate specific features that are most effective at facilitating human
understanding and what contextual factors and technological constraints
of emerging AI/ML-enabled systems are necessary for the task. This
approach has implications for appropriately explainable AI, which could
be further leveraged by designers for product testing iteration. Though
we suggested display customization to individuals immediately above,
assuming an interface cannot be customized for every user, cataloging
what information ought to be made most salient for users in general (e.g.,
performance information; Hoff and Bashir, 2015) is another prong of
research we hope is explored in human-AI/ML/XAI research.

Finally, the behaviors that users engage in when leveraging Al/
ML-enabled systems are determined by many factors. We contend that
users’ individual differences as well as their perceptions of a system’s
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trustworthiness shape their willingness to use said systems. However,
the appropriateness of system use can be guided by contextual risk,
time constraints, and (sometimes) simple mistakes. As mentioned, the
process by which behavior emerges is complex, comprising trust-
relevant factors denoted and individual differences, but variability can
be attributed to contextual aspects and emerging capabilities yet to
be realized in AI/ML-enabled systems. We see our model’s utility as a
lens of analysis for researchers generating new questions about and
designers imagining new interfaces for AI/ML-enabled systems and
the XAI coupled to guide user engagement. We anticipate our model
will be extended (and perhaps updated) as researchers investigate the
edge-cases of human-AI/ML-XAI interaction and designers deploy
novel AI/ML/XAI systems in the coming years.

Limitations

The current paper is not without limitations. First, the theoretical
model we have established is based on research from literature across
several different domains. Researchers have noted that trust is
conceptualized differently across the computer, information
technology, and social sciences. Indeed, this was the main drive for
the current theoretical model, to elucidate the different constructs
across fields. However, as the research cited in the current paper is
based on research with different measures and conceptual ideas, it
remains to be seen if the theoretical model withstands scrutiny across
domains. Second, the theoretical model in the current paper was
developed based upon previous research and as such is ad hoc. Future
research should test the theoretical postulates with the explicit
research hypotheses. This would allow for empirical testing of
the postulates.

Finally, the present manuscript certainly did not cover each and
every moderator of the trust process in human-machine interaction.
Indeed, an anonymous reviewer noted details on the role of culture,
norms, and group dynamics were missing from our model. These
constructs were beyond the scope of the current work, but high-level
cultural differences (e.g., Hoff and Bashir, 2015), norms for human-
machine interaction (e.g., see footnote 4 and Cheng
etal, 2016), and group dynamics in human-machine interaction (e.g.,
Demir et al.,, 2021) are discussed elsewhere. Future work can build
upon our model, integrating these constructs and others in meaningful

ways promoting further experimentation.

Conclusion

Trust toward complex machine systems like AI/ML and XAI is
multiply determined. This paper outlines a litany of machine referents
that may be differently trusted based on users’ individual differences,
contextual factors, and the interplay of these variables which shape
trust and reliance. We do not propose that every variable relevant for
trust toward AI/ML and XAI are mentioned here. Indeed, we assume
with iterative research there will be others that arise and affect criteria,
namely (in)appropriate trust and reliance / compliance. It is our hope
that researchers leverage this theoretical approach for designing their
experiments to test and expand findings on human-AI/ML/XAI
interaction, as these interactions will only increase in frequency and
stakes over the next decade and beyond.
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