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Explicating the trust process for 
effective human interaction with 
artificial intelligence and machine 
learning systems
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Artificial intelligence (AI) and machine learning (ML) are rapidly changing the 
landscape of almost every environment. Despite the burgeoning attention on this 
subject matter, limited human-centered research has focused on understanding 
how users interact with AI and ML to facilitate greater trust toward these systems, 
leveraging classic human-machine interaction principles to investigate human 
interaction with these emerging complex systems. The current paper incorporates 
literature from Social Psychology, Computer Science, Information Sciences, 
and Human Factors Psychology to create a single comprehensive model for 
understanding user interactions with AI/ML-enabled systems. This paper expands 
previous theoretical models by explicating transparency, incorporating individual 
differences in the information processing model of cognition, and summarizing 
the different attitudes and personality variables that can facilitate use and disuse 
of AI and ML. The theoretical model proposed explicitly demarcates the referent 
algorithm from the human user, detailing the processes that eventuate a user’s 
reliance on and compliance with an AI/ML-enabled system. Actual and potential 
applications of the literature review and theorized model are discussed.
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Introduction

Artificial intelligence (AI) and machine learning (ML) are rapidly changing the 
technological landscape of work. AI/ML have been utilized in a variety of tasks such as image 
classification (e.g., Hendrycks et al., 2019), route planning (e.g., Hu et al., 2020), and parole 
recommendations (e.g., Hübner, 2021), to name a few (see Kaplan et  al., 2020). These 
applications of AI/ML have brought increased productivity and alleviated aspects of work that 
were previously reserved for human oversight and assumed to be outside the realm of machine 
capability. However, the applications of AI/ML have also brought questions as to how to 
facilitate proper trust in and use of these algorithms.

The current paper seeks to build a theoretical model of human-AI/ML interaction, 
incorporating the underlying information that both AI/ML algorithms and explainable AI 
(XAI)1 tools use as input and provide as output, and explicate the psychological processes 
that lead to trust in AI/ML/XAI from an information processing theory perspective. In this 

1  We note we use the term AI/ML/XAI when referring to all models and their respective acronyms for 

other models.
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paper we leverage research from many fields including Computer 
Science, Psychology, and Information Sciences. The current paper 
seeks to add clarity to the field to help guide research on interface 
design(s) relevant to human-AI/ML/XAI interaction, with the goal 
of increasing appropriate use of AI/ML/XAI-enabled systems. 
Importantly, our proposed model can be applied to all human-AI/
ML/XAI interactions. Our model expands information processing 
theory (Wickens and Hollands, 2000; Wickens, 2002) by situating 
individual differences from the Organizational, Personality, and 
Social Psychology literatures as meaningful constructs that may 
shape users’ processing of information from AI/ML/XAI referents. 
We also expand on the different attitudes that can result from this 
information processing. Lastly, our theoretical model also expands 
the theory on machine transparency, explaining how individual 
differences influence the cognitive processing of the outputs of the 
AI/ML/XAI information. The goal of the paper is to incorporate all 
previous knowledge into one workable framework that can 
be utilized across disciplines.

AI, ML, and XAI

AI/ML
AI/ML are advanced algorithms that enable software systems 

with human-like cognitive capacity for decision-making (Dwivedi 
et al., 2021; Herm et al., 2021; Hradecky et al., 2022). AI/ML are 
powerful generalizers and predictors (Burrell, 2016) that have 
demonstrated their use in a variety of settings (Barreto Arrieta 
et al., 2020). The application of AI/ML to prediction cases is not 
new. It is both the rapid increase of AI/ML into a variety of fields 
and the opaqueness of many of the emerging algorithms that are 
relatively new (Ali et al., 2023). Newer algorithms utilize complex 
networks of nodes and hidden layers that predict outcomes. These 
nodes and hidden layers are much more complex than traditional 
algorithms like regression. The increased complexity leads to a lack 
of comprehension as to how the model came to a decision, either 
locally (e.g., a given instance) or globally (e.g., how the model works 
overall; see Zhou et al., 2021).

At its simplest form, the Computer Science literature has largely 
demarcated algorithms into white- and black-box models (Herm 
et  al., 2023).2 White-box models are relatively less complex AI/
ML-enabled algorithms, where the underlying decision processes 
are understandable to the user (e.g., regression, decision trees, and 
generalized additive models). Their processes for reaching a given 
classification, and the variables that are or are not important to 
reach a given prediction, are comparatively interpretable by human 
users (Barreto Arrieta et  al., 2020). White-box models typically 
require feature selection of pertinent characteristics for the 
development of an algorithm. In contrast, black-box models utilize 

2  We note that several taxonomies in the computer science literature exist 

for demarcating the different types of algorithms, e.g., Barreto Arrieta et al. 

(2020), Speith (2022), and Zhou et al. (2021). However, the focus of the current 

work is facilitating proper cognitive evaluations of the systems. As Alarcon and 

Willis (2023) note, many of the taxonomies in the literature do not result in 

differences users can detect.

all relevant data and interactions in non-linear models to predict 
and generalize. Black-box models are often so complex they provide 
little to no information about the underlying decision process to the 
user (Lundberg, 2017; Rudin, 2019; Samek et al., 2021).

We turn to deep neural networks (DNNs; Samek et al., 2021) to 
illustrate an example of the opacity of black-box models. DNNs are a 
family of algorithms that make decisions typically through a complex 
series of nodes. Nodes are combinations of input data with a set of 
weights or coefficients that either increase or decrease that input. 
There are often so many nodes in the algorithm that a human cannot 
understand all the information, even if it was provided, making them 
theoretically explainable but not necessarily interpretable or 
understandable (Angelov and Soares, 2020). Given their complexity, 
they do not provide meaningful information about the algorithm’s 
underlying decision processes to the user (see also Samek et al., 2021). 
This resulting lack of human understanding as to the underlying 
decision-making complexities has led researchers (Barreto Arrieta 
et al., 2020; Sanneman and Shah, 2022; Vilone and Longo, 2021) and 
governments (European Union Act, 2024/1689; Air Force Doctrine 
Note, 2024) to call for transparency in these algorithms as they are 
leveraged to make key decisions.

There is a tradeoff between white- and black-box models. 
Black-box models are often the most predictive / accurate, yet they are 
the opaquest, whereas white-box models provide all or most of the 
information used in reaching a given classification but are less accurate 
(Herm et al., 2023). Differences between black- and white-box models 
are non-linear with numerous parameters that are not easily 
interpreted (Li et  al., 2022; Mahmud et  al., 2021). However, the 
tradeoffs for black- and white-box models are not as straightforward 
as previously thought, such that there is nuance between models 
(Herm et al., 2023). Traditionally, researchers and practitioners have 
needed to balance the tradeoff between the performance and 
explainability of these algorithms (Rudin, 2019). The advent of XAI in 
the last 20 years has attempted to alleviate some of the explainability 
issues in black-box models, applying these algorithms to highlight the 
important features of a black-box model’s decision-making process to 
afford human understanding (Adadi and Berrada, 2018; Herm 
et al., 2023).

XAI
XAI are algorithms that make it possible for humans to keep 

intellectual oversight of AI/ML (Adadi and Berrada, 2018; Gunning 
and Aha, 2019; Longo et  al., 2024). The focus of the literature 
surrounding XAI is to create algorithms that provide explanations for 
AI/ML decision processes in a manner that is interpretable for human 
users (Ali et al., 2023; Sanneman and Shah, 2022; Visser et al., 2023; 
Hassija et al., 2024). XAI explanations are meant to facilitate 
appropriate reliance and proper use of AI/ML systems, ensure fairness 
in the resulting decisions informed by those systems’ outcomes, and 
provide an understanding of where these systems are lacking in 
performance (Barreto Arrieta et al., 2020; Visser et al., 2023). However, 
even the concepts of explainability versus interpretability within the 
XAI literature are nuanced, and the unique challenges for affording 
both are not necessarily one and the same (Guidotti et  al., 2018; 
Tocchetti and Brambilla, 2022).

A key aspect to XAI is the theory that if users can interpret the 
behavior of the algorithm, whether correct or incorrect, they will 
be  more willing to act on the suggestions of the algorithm 
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appropriately, especially in instances where predictions are not 
consistent with the user’s expectations (Berger et al., 2021; Ribeiro 
et al., 2016b). In other words, explanations can bridge the information 
gap between the AI/ML model and the user (Baird and Maruping, 
2021; Barreto Arrieta et al., 2020). However, research has found less 
than 1% of XAI studies in the literature contain user interactions with 
these models (Keane and Kenny, 2019; Suh et al., 2025).

Current paper

The research on human interpretations of AI/ML/XAI has been 
largely atheoretical in previous research. Black-box models were 
created largely without the user in mind as much of the early research 
was focused on model accuracy. The advent of XAI has sought to 
remedy these limitations but has not focused on human-machine 
interactions (Keane and Kenny, 2019; Suh et  al., 2025). Although 
research has been conducted on increasing interpretability of AI/ML/
XAI models, there remains a relative dearth of theoretical frameworks 
for creating these models. A comprehensive theory of how users 
comprehend AI/ML/XAI is necessary to help understand how and 
why users trust a system so that systems can be designed with the user 
in mind. The current paper bridges the gap between the human-
computer interaction literature in social sciences and the AI/ML/XAI 
literature in the computer sciences. We sought to create a framework 
based on information processing theory in the social sciences and of 
AI/ML/XAI and experimentation to determine if the advances of new 
models meet the creator’s criteria of facilitating trust. The theoretical 
model provided below provides key testable hypotheses for researchers 
when developing AI/ML/XAI for users and developers.

User-centered trust towards AI model

Deciding to trust or rely on a machine is inherently an information 
processing model (Alarcon et al., 2023; Chiou and Lee, 2023), where 
system transparency leads to more information about the system that 
should inform the user and thereby facilitate calibrated trust, assuming 
the appropriate amount of information—both its perceptibility and 
veridicality—is displayed.

Although we  do view much of the trust process as previous 
researchers do, we expand on the previous research explicating the 
mechanisms for many variables in the model. Figure 1 illustrates our 
theoretical model of trust in human-AI/ML/XAI interaction. 
Information is perceived from the environment, processed by the user, 
and mental models of the system are formed. Information below the 
black line illustrates aspects of the machine, which have been drawn 
with squares. Aspects of the model above the black line illustrate 
aspects of the user, which are drawn with circles. Information 
processing occurs on the black line, with the user interpreting 
information about the system as illustrated with grey rounded boxes. 
The mental models about the referent lead to attitudes about the 
system which result in behaviors.

In our theoretical model, we demarcate between antecedents to 
trust, trust, and behaviors based on previous models (Hoff and Bashir, 
2015; Lee and See, 2004; Mayer et al., 1995; Schlicker et al., 2025; see 
also Kohn et al., 2021). Antecedents to trust in our model comprise 

individual differences and trustworthiness perceptions, much like 
previous literature (Kohn et al., 2021).

Moving beyond previous research, we  expand on the various 
individual differences and their theoretical effects on the trust process. 
We  also expand on the process of transparency, describing how 
transparency of the referent machine model influences cognitive 
processing of information in the environment and links to relevant 
literature in the computer science research, as illustrated in Figure 2. 
Information from the environment is processed and comprises 
trustworthiness perceptions, which influence attitudes toward the 
system. Importantly, we do not theorize trust is the only antecedent to 
behaviors. We expand on the different attitudes that can influence 
behavioral outcomes with a system.

Figure  1 incorporates all the previous research that we  have 
described into one cohesive model. First, we note that unlike other 
models (but see Schlicker et  al., 2025), there is a clear demarcation 
between the user and the machine. The bottom of the figure illustrates 
the AI/ML/XAI algorithm and the information it provides, which we call 
trustworthiness cues. The upper half of the image illustrates the 
information perceived by the user, which we  call trustworthiness 
perceptions. This was done to emphasize the difference between objective 
aspects of the machine referent and the user’s perceptions of the machine. 
Although previous theoretical models implied the demarcation of 
trustworthiness cues from trustworthiness perceptions (e.g., Alarcon and 
Willis, 2023; Hoff and Bashir, 2015; Lee and See, 2004), we explicitly state 
and illustrate these differences in our model. We have used squares to 
represent objective information, circles to represent subjective 
perceptions, and squares with rounded edges to illustrate the utilization/
processing of information in the figure (see Figure 1). Table 1 defines all 
constructs and provides citations for each construct.

Individual differences and information 
processing

The information processing approach to human perception and 
cognition has been utilized to much acclaim in the Human Factors 
literature (Wickens and Hollands, 2000; Wickens, 2002; Wickens and 
Carswell, 2012). However, the role of individual differences in the 
information processing theory has largely been ignored (Endsley, 
2023; Wickens and Carswell, 2012). In this section we outline the 
types of individual differences, and the three proposed influences 
individual differences can have on information processing: (1) 
individual differences as information, (2) individual differences in the 
processing of information, and (3) individual differences as direct 
effects on behaviors.

There are individual differences between users, which can 
theoretically explain different perceptions of and interactions with 
machine systems in general (Hoff and Bashir, 2015; Lee and See, 2004) 
and AI/ML-enabled systems specifically (Kaplan et  al., 2023). 
We demarcate these into general beliefs, personality variables, and 
demographics. We theorize individual differences play a role across all 
aspects of the decision-making process when humans interact with 
AI/ML/XAI. We expand on this throughout the theoretical model. In 
this section, we discuss the three types of individual differences; then, 
we discuss the three mechanisms through which they operate on the 
trust process.

https://doi.org/10.3389/fcomp.2025.1662185
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Global beliefs
Global beliefs can influence perceptions through a variety of 

variables. We define global beliefs as any general belief or cognitive 
schema about AI/ML/XAI that are preconceived prior to working 
with a specific AI/ML/XAI referent. Perhaps the two most 
researched global beliefs variables in relation to the human-
machine trust process are propensity to trust machines (Jessup 
et al., 2019; Li et al., 2017; Merritt, 2011) and perfect automation 
schema (Dzindolet et al., 2002; Gibson et al., 2023; Merritt et al., 
2015). Propensity to trust machines is defined as a general tendency 
to utilize machines or view them favorably (Jessup et al., 2019). The 
propensity to trust machines is a global heuristic about machines 
in general that influences initial perceptions of a new system 
particularly when there is little information about the system 
available to the user (Hoff and Bashir, 2015; Siau and Wang, 2018). 
Perfect automation schema is like propensity to trust machines in 

that it pertains to global perceptions of machines; however, this 
construct comprises high expectations and all-or-none thinking 
(Merritt et al., 2015). High expectations are the initial beliefs that 
machine systems should perform well and thus has strong overlap 
with propensity to trust machines (Gibson et  al., 2023; Merritt, 
2011). All-or-none thinking is the bias that machine systems should 
be abandoned if they commit an error.

Importantly, these are all global beliefs about systems which are 
informed by experience with the world, rather than personality 
constructs. We note these two global beliefs are not theorized to be an 
exhaustive list of beliefs but rather just two examples of beliefs in 
the literature.

Personality
Personality is defined as any cognitive, emotional, or behavioral 

patterns that comprise an individual’s unique perspective in life. 

FIGURE 1

User-centered trust towards AI model. Objective aspects of the model are illustrated as squares. Subjective aspects of the model are illustrated as 
circles. Subjective user interpretation of objective information is illustrated as rounded boxes. The figure illustrates the information from AI/ML models 
in the form of trustworthiness cues. Trustworthiness cues are then interpreted by the human, and the demarcation line through the rounded boxes 
denotes the emphasis on the AI/ML referent (below) or user (above). The subjective interpretation of the referent system leads to subjective 
trustworthiness perceptions. These perceptions facilitate attitudes toward the AI/ML-enabled system. The attitudes facilitate behaviors. Trustworthiness 
cues were left blank as they depend on the models used.

https://doi.org/10.3389/fcomp.2025.1662185
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Personality psychology is focused on individual differences in mental 
processes and how they develop (Roberts and Yoon, 2022). There are 
several personality structures in the literature that can influence 
human perceptions and behaviors, such as the Five-Factor Model 
(Costa Jr and McCrae, 1992). We note that relatively little research has 
been conducted on the effects of personality on human-AI/ML/XAI 
interaction (Kaplan et al., 2023). However, personality has been related 
to aspects of the information processing model. For example, the Five-
Factor Model has been related to aspects of information processing 
theory such as working memory (Waris et al., 2018) and short-term 
memory (Matthews, 2008). Indeed, research has noted that task and 
person characteristics should not be explored in isolation but instead 
explored concurrently to determine their effects (Matthews, 2008; 
Szalma, 2008, 2009; Szalma and Taylor, 2011). As such, personality 
variables may help explain individual differences in how users process 
information from the system.

Demographics
Recent meta-analytic work shows the importance of demographic 

variables on human trust toward AI/ML (Ehsan et al., 2024; Kaplan et al., 
2023).3 Knowledge, skills, and abilities (KSAs) of the human user play a 
key role in understanding how they perceive AI/ML-enabled systems 
(Hoff and Bashir, 2015; Schaefer et al., 2016). For example, Ehsan et al. 
(2024) found novices had different heuristics for XAI than computer 
science majors, leading to different interpretation of the stimuli provided 
by the XAI. The age of the user may also be  important in cognitive 
processing. Research has noted that younger users are more likely to have 
a positive view of technology and are more likely to use technology than 

3  We note the authors of the meta-analysis did not explore XAI, which is why 

we did not use the term AI/ML/XAI.

TABLE 1  Construct definitions and example reference sources.

Construct Definition

Individual differences

Global beliefs Beliefs, attitudes, or schemas about machine systems in general (e.g., Hoff and Bashir, 2015)

Personality Cognitive, emotional, or behavioral patterns that compose a user’s unique perspective (e.g., Matthews, 2008)

Demographics Population information (e.g., age, occupation) about the user (e.g., Hoff and Bashir, 2015)

Transparency

Trustworthiness cues Objective output from the referent machine system (e.g., Zhou et al., 2021)

Trustworthiness 

perceptions

A user’s subjective perceptions of the referent machine system (e.g., Schlicker et al., 2025)

Performance Perception of a machine system’s capabilities (e.g., Lee and See, 2004)

Process Perception of the algorithmic steps in which a machine system operates (e.g., Lee and See, 2004)

Purpose Perception of whether a machine system is being used as its designer intended (e.g., Lee and See, 2004)

Explainability Objective information provided by a machine system (e.g., model weights, estimates) represented through visual, textual, or numerical data (e.g., 

Zhou et al., 2021)

Interpretability Human making sense of the visual, textual, or numerical information provided by the machine system (e.g., Sanneman and Shah, 2022)

Understanding Human cognitively processing the information from their interpretation to form schemas or perceptions of the machine referent (e.g., 

Sanneman and Shah, 2022)

Attitudes

Trust A willingness to be vulnerable (e.g., Lee and See, 2004; Mayer et al., 1995); a positive affective state coupled with appropriate effort

Distrust An unwillingness to be vulnerable (e.g., Lee and See, 2004; Mayer et al., 1995); a negative affective state coupled with appropriate effort

Suspicion A state characterized by uncertainty, high cognitive activity, and perceived mal-intent (e.g., Bobko et al., 2014); a negative affective state coupled 

with high cognitive effort

Curiosity A temporary state to seek more information (e.g., Kashdan and Roberts, 2004); a positive affective state coupled with high cognitive effort

Complacency Decreased attentiveness resulting in relying on a machine system beyond its objective capabilities (e.g., Parasuraman and Manzey, 2010); a 

positive affective state coupled with low cognitive effort

Under-reliance Relying on a machine system less than its objective capabilities can support (Lee and See, 2004); a negative affective state coupled with low 

cognitive effort

Risk Perceived contextual uncertainty surrounding an outcome, and the relative vulnerability assumed surrounding trusting a system (e.g., Kohn 

et al., 2021).

Reliance/compliance 

behavior

Observed behaviors; abstaining behavior absent a machine system’s suggestion and behaving when cued, respectively (e.g., Meyer et al., 2014)

Errors Incorrect system processes or outputs

Unintended consequences Results, either positive or negative, from a machine system not originally expected

https://doi.org/10.3389/fcomp.2025.1662185
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older individuals. This effect has been noted in a variety of research. For 
example, Casey and Vogel (2019) found millennials were more likely to 
use technology than any other generation. Males have also demonstrated 
a stronger propensity to use technology than females across a variety of 
situations. Thus, we  see the import of simple demographic variables 
normally gathered in research as playing a role in baseline interactions 
with machine human systems (see Kaplan et al., 2023).

Mechanism for individual differences on 
perceptions

Individual differences have demonstrated the ability to act as 
information when little to no information about the referent or 
situation is present. Specifically, global beliefs such as propensity to 
trust have been theorized to act as information when little is known 
about the referent partner in interpersonal research (Alarcon et al., 
2016, 2018; Alarcon and Jessup, 2023; Jones and Shah, 2016). A person 
that has a global belief that people are trustworthy will be more trusting 
of others when information is lacking. As information becomes salient 
about the referent, the loci of information transitions from the trustor 
to the trustee (Alarcon et al., 2016; Jones and Shah, 2016). We theorize 
similar relationships in human-AI/ML/XAI interactions.

Specifically, global beliefs can act as information about the 
environment or referent AI/ML/XAI algorithm when there is little to 
no information available. Demographic variables can also play a role 
in this initial perception. For example, Alarcon et al. (2017) found 
computer programmers were reticent to trust code from an unknown 
source, specifically if the use case was high in vulnerability. The 
training, experience, and personality variables the user has can act as 
information about the situation when information about the referent 
is lacking. The differences they found may be due to different cognitive 
heuristics developed through training and expertise (Ehsan et al., 
2024). This information that is inherent in the user facilitates initial 
perceptions about the referent AI/ML/XAI.

Proposition 1: Global beliefs about AI/ML/XAI, demographic 
variables, and personality influence initial perceptions of the 
referent system.

Proposition 2: As information about the referent AI/ML/
XAI-enabled system is made salient over time, the influence of 
global beliefs will have less of an impact in the human-AI/ML/
XAI interaction.

Second, individual differences can influence the processing of 
information as the user receives information from the AI/ML/XAI 
output. As information becomes salient in the interaction with the AI/
ML/XAI, the user will process this information which can be influenced 
by individual differences. First, global beliefs and personality differences 
can influence the processing of information. These constructs may 
influence the cognitive processing of information, and include 
personality variables that influence one’s perceptions such as need for 
cognition (i.e., the extent to which individuals enjoy and engage in 
effortful cognitive activity; Cacioppo et al., 1996; Cacioppo and Petty, 
1982), curiosity (i.e., the general desire for knowledge, to resolve 
knowledge gaps, to solve problems, and a motivation to learn new ideas 
and engage in effortful cognitive activity; Berlyne, 1960, 1978; 
Loewenstein, 1994), and complacency potential (i.e., a general propensity 
to not engage in effortful thinking; Merritt et al., 2019; Singh et al., 1993), 
along with global beliefs like all-or-none thinking. Other personality 
characteristics such as neuroticism, extraversion, and risk aversion can 
also play a role. For example, people high in neuroticism tend to view the 
world negatively (Bunghez et  al., 2024), which can influence their 
perceptions about the AI/ML/XAI, especially if stimuli are ambiguous. 
Conversely, people high in extraversion tend to experience high positive 
affect (Costa Jr and McCrae, 1992), which may influence their 
perceptions of AI/ML/XAI. Alarcon and Jessup (2023) found risk 
aversion, a general disinclination towards risk, influences the processing 
of information in a modified version of the trust game. Participants high 
in risk aversion were less apt to view their referent partner as more 
trustworthy and took fewer risks with their partner.

Importantly, demographic variables such as knowledge, skills 
and abilities can also influence the processing of this information 
(Hoff and Bashir, 2015). For example, expertise can influence how 
information from the model is perceived through previously 
formed heuristics (Ehsan et  al., 2024). Take the extant work 

FIGURE 2

Transparency process as a function of explainability, interpretability, and understanding. We match the terms explainability, interpretability and 
understanding from the computer science literature to relevant constructs from the social sciences. Explainability is the machine output of relevant 
criteria (i.e., weights, estimates, etc.) in terms of textual, visual or numerical representation from the model. Interpretability is the cognitive processing 
of information by the user of the machine output. Understanding is the schema/mental model that is formed about the referent machine that 
facilitates attitudes in the system.
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investigating algorithm aversion which is a reluctance toward 
relying on algorithms for decision-making compared to humans, 
even if the algorithm is more accurate than a human assistant 
(Capogrosso et  al., 2025; Dietvorst et  al., 2015). The research 
paradigm by Dietvorst et  al. (2015) on algorithm aversion has 
noted that people are reticent to use algorithms in a GPA prediction 
task. Jessup et al. (2024) have noted algorithm aversion was strong 
for individuals who engaged in tasks with the GPA prediction as 
the focus, but if the focus of the task was classifying Github 
repositories, participants over-trusted the algorithm. Jessup et al. 
(2024) also note that participants may not have had the requisite 
knowledge, skills, or abilities in the Github repository task. Ribeiro 
et al. (2016b) note that interpretability of algorithm is dependent 
on the target user. Thus, the reason for algorithm aversion’s effect 
in human-machine interaction may be  due to the individual’s 
knowledge of, skills pertaining to, and abilities using AI/
ML-enabled algorithm systems.

Proposition 3: Users’ global beliefs, personality, and demographics 
will influence their processing of information, thereby impacting 
their perceptions of and attitudes toward AI/ML/XAI referents.

Lastly, we theorize that some individual differences can have a 
direct impact on behaviors. Personality variables such as complacency 
potential, curiosity, and need for cognition may all have direct 
influences on behaviors because of the nature of the constructs. As 
noted in the Psychology literature, behaviors are the outcome of many 
different psychological processes. In this instance, whether a user does 
or does not perform monitoring behaviors may be  indicative of 
personality rather than aspects of the system (Gibson et al., 2023). 
Notably, need for cognition is typically associated with positive 
emotions under the broaden and build theory of emotions 
(Fredrickson, 2001), which can further lead to greater exploration. This 
exploration can lead to increasing or decreasing trust behaviors in 
human-AI/ML/XAI interactions, depending on the results of the 
exploration. There may be contexts in which combinations of these 
variables amplify, suppress, or have no effect on trust-relevant criteria 
of interest, which we discuss later in the Attitudes section. For example, 
someone with a high complacency potential may be more likely to rely 
on an AI/ML system at baseline and more so given contextual factors 
(e.g., time pressure, system opacity; Singh et al., 2021). However, if one 
has a high need for cognition and enjoys thinking deeply, they may 
be more apt to spend time trying to figure out the underlying processes 
by which an AI/ML system serves their needs in said context, regardless 
of how the system operates. This is just one example of these variables 
interacting to shape human-AI/ML interaction, and their effects likely 
have different impacts given the context.

Proposition 4: Individual difference variables associated with high 
or low cognitive engagement will directly influence a user’s 
engagement with AI/ML/XAI referents.

Transparency

There remains confusion in the XAI literature between 
explainability, interpretability, and understanding often with the terms 
being used interchangeably (Guidotti et  al., 2018; Tocchetti and 

Brambilla, 2022). We view all of these as the process of establishing 
transparency. Transparency as typically referred to in the literature is 
related to the user’s ability to detect how a referent system operates 
based on cues of the system (Lyons, 2013). However, transparency is 
also treated as a subjective construct in the literature (Alarcon and 
Willis, 2023; Chiou and Lee, 2023). Transparency pertains to the 
degree to which human-users are able to perceive system performance 
(what is the system doing), purpose (is the system being used as it was 
designed to be used), and process cues (how is the system doing what 
it is doing) as information (Chiou and Lee, 2023). A system that is 
transparent to one user may be opaque to another user because they 
lack specific knowledge, skills, or abilities (Ehsan et al., 2024; Jessup 
et al., 2024). Below we demarcate explainability, interpretability, and 
understanding within the context of transparency, with explainability 
being the most objective form of transparency, interpretability being 
a mix of objective information and subjective cognitive processing, 
and understanding being mainly a subjective perception or schema, 
as illustrated in Figure 2. In other words, transparency is the process 
of establishing ascriptions of an AI/ML-XAI-enabled system through 
information provided by cues in the environment.

Explainability—machine transparency and 
trustworthiness cues

An explanation is something that is provided by a referent, for 
instance, the details of an AI/ML-enabled system by an XAI tool or 
beta weights provided by a regression. Explainability is a representation 
of aspects of the algorithm, such as weights or noting important 
aspects of the stimuli, through visual, textual, or numerical 
representation. Explanations are a set of details or elements that 
illustrate or elucidate the causes, contexts, or outcomes of those details 
or elements (Drake, 2018). In our model, the trustworthiness cues 
provide different types of explanations. Importantly, the information 
provided by the trustworthiness cues may provide more than one type 
of explanation.

As Alarcon and Willis (2023) note, most of the taxonomies in the 
Computer Science literature refer to the underlying mathematical 
processes for computation. The different AI/ML/XAI taxonomies all 
attempt to classify the different algorithms utilized to create the 
various AI/ML/XAI methods. We acknowledge these differences are 
important as they help to describe how the various AI/ML (e.g., 
decision trees, DNNs) and XAI (e.g., local interpretable model-
agnostic explanation, or LIME) algorithms are computing different 
weights and calculations for their respective predictions, 
classifications, or descriptions of a given data set. However, the 
individual model taxonomies are all classifications of how the 
algorithms function rather than the information provided to the user. 
The algorithms that are being created are objective, in that they 
provide some information about their inner workings (or no 
information in the case of black-box models) and then display this 
information to the user. The method used for analyzing what was 
important in the algorithm may vary, but often they result in similar 
output such as numerical, visual, or text output (Zhou et al., 2021). 
The differences of the model methods are not necessary for most 
users. It is the meaning of the numerical, visual, or text output within 
the context that is important for interpretations (Broniatowski and 
Broniatowski, 2021). As such, we placed the different AI/ML/XAI 
taxonomies for model methods in the squares at the bottom of the 
model in Figure 1, as they are the most objective.
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The taxonomy provided by Zhou et  al. (2021) differentiates 
algorithms by their explanation types as described in the previous 
section. Although they intended their taxonomy to only apply to 
XAI methods, we theorize it can be extended to all AI/ML/XAI 
methods and algorithms. The explanation types provide information 
to the user which is displayed in various manner. Black- and 
white-box models both adhere to these classifications, as the former 
provides little information besides performance information and 
the latter are fully or almost fully transparent as to their processes. 
These explanation types are similar to previous demarcations of 
objective referent trust from subjective trust perceptions (Schlicker 
et al., 2025).

Zhou et al. (2021) demarcated six explanation types: rationale, 
data, responsibility, impact, fairness, and safety-performance. Their 
study focused on the type of explanation the algorithm was providing 
to the user. The rationale explanation focuses on explaining why the 
algorithm made a specific decision to the user. For example, a LIME 
algorithm output can provide rationale for a certain classification by 
highlighting the relevant information. Data explanations illustrate 
what contextual data the algorithm used to make its decision. Figure 3 
illustrates an image that has been classified as a civilian airplane, and 
the LIME data explanation highlights the relevant information for the 
classification in green.

Responsibility explanations focus on the development of the 
algorithm, how the algorithm was managed, and how the algorithm 
was implemented. This type of explanation is focused on the 
accountability of the algorithm and who has ultimate responsibility 
for the implementation of the algorithm. Responsibility explanations 
have largely driven laws regarding AI/ML in Europe (Hoofnagle 
et al., 2019). Impact explanations illustrate the societal impact of 
utilizing algorithms and possible consequences of using them in 
certain arenas. For example, researchers and governments have 
discussed the possible implications of self-driving cars (which utilize 
AI/ML for their autonomous function; Holstein et al., 2018). Self-
driving cars will have various impacts on the legal system, ethical 
decision-making, and loci of responsibility (human or machine), to 
name a few.

Fairness explanations can be  viewed as a subset of impact 
explanations as they are specifically focused on possible bias 
pertaining to their use. As mentioned, AI/ML has been utilized in 
parole decisions in recent years. However, these algorithms have been 
shown to be biased against minorities based on various variables such 
as zip codes (Hübner, 2021). The impacts of these biases and the 
broader implications of using AI/ML in sensitive areas have been 
discussed at length by both researchers and governments (Goodman 
and Flaxman, 2017; Hoofnagle et  al., 2019). Lastly, safety and 

FIGURE 3

Locally interpretable model-agnostic explanation of civilian airplane. (A) Obfuscated image with positive information highlighted; (B) non-obfuscated 
image with positive information highlighted; (C) obfuscated image with positive and negative information highlighted; (D) non-obfuscated image with 
positive and negative information highlighted.
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performance explanations illustrate the process of increasing the 
accuracy, security, reliability, and robustness of the decisions of and 
output from AI/ML algorithms. An example of this is when a 
researcher finds there are data in the data set that the algorithm has 
not been trained on or that the use of said data has unintended 
consequences. For example, Target utilized AI/ML for targeting 
coupons toward their customers. In one instance, the algorithm 
noticed a 16-year-old girl was pregnant and sent her various coupons 
for baby supplies, angering her father who was unaware of her 
pregnancy. As such, Target recalibrated the AI/ML to only offer 
coupons to those over 18 years of age (Oprescu et al., 2020).

The explanation types described by Zhou et al. (2021) are the 
outputs of the AI/ML/XAI algorithms, which we illustrate in Figure 2. 
We note that even a black-box model will have trustworthiness cues 
related to it, but in comparison to an XAI or white-box model, there 
will be relatively fewer as the traditional black-box models do not 
typically illustrate much information other than performance in their 
output (Adadi and Bouhoute, 2023; Vilone and Longo, 2021). In other 
words, black-box models are simply low in process cues as they do not 
illustrate their decision processes for humans. Alarcon et al. (2024) 
note that all algorithms lie somewhere on the information spectrum 
and that a lack of information, such as with black-box DNNs, does not 
negate the theory.

The explanation types are closest to the objective reality of the 
algorithm in our theoretical model. AI/ML/XAI often comprise 
weights and errors for the algorithm but can be illustrated differently 
through natural language, color, or text (Zhou et al., 2021). It is how 
the information is displayed that facilitates effective human processing 
of the information. To illustrate this point, we use another example of 
LIME algorithms for image classification. There are several different 
ways to view the output of a LIME algorithm. Utilizing graphical 
images, we can increase the interpretability of the XAI output. Figure 3 
illustrates several LIME outputs from the same algorithmic output. 
First, Figures 3A,C present LIME output that illustrates the important 
aspects of the image in making its classification of the stimuli on a 
black background. In this instance, LIME XAI displays the relevant 
information, but the context is not clear. In Figures 3B,D, the LIME 
XAI is transposed on top of the image, with translucent color so the 
relevant aspects of the image and the total image are clear. In this 
example, the user may be able to better understand the aspects of the 
image that helped the AI/ML classify the image. Third, Figures 3C,D 
offer two types of relevance to the image classification, green which is 
associated with information that influences the classification as 
civilian, and red which illustrates information that is not relevant to 
the classification. All these outputs were based on the same algorithmic 
output but are displayed differently.

Zhou et al. (2021) do not explicitly state whether the explanation 
types are orthogonal or not. We, however, contend these are not 
orthogonal. The example of the Target shopper above illustrates this 
point: the AI/ML sending the coupons to an underage person 
contributes to both impact and performance explanations. The 
performance explanation was correct, in that the daughter was 
pregnant. However, the impact explanation of sending the coupons to 
anyone under the age of 18 was also clear from the output of the 
algorithm. Thus, the same output can have different impacts based on 
different explanation types. We  note that there is no influence of 
individual differences on the trustworthiness cues as they are inherent 
in machines. The output is the objective information but how that 

information is displayed is important from the human perspective, as 
noted in the LIME XAI examples above. We do acknowledge that user 
inputs at the algorithm level can occur, but these are more important 
when creating and training the algorithm.

Proposition 5: AI/ML/XAI-enabled systems that provide more 
information on their underlying processes pertaining to their 
respective explanation types will be viewed as more informative.

Interpretability—cognitive processing of 
information

We define interpretability as a human making sense of the 
information provided by the AI/ML-enabled algorithm or XAI, as 
illustrated in Figure 2. In the human-AI/ML/XAI interaction context, 
it is the human that ascribes meaning to the information provided by 
the algorithm. Just because information is explained does not mean it 
is interpreted or understood by the user. How the information is 
displayed helps the user interpret the data. As such, per Audi (1999) 
we  define interpretation as the mental processing of information 
provided from the system (i.e., explained information) by the user to 
establish an (in)accurate understanding of the system referent (e.g., 
Ribeiro et al., 2016b). Indeed, Ehsan et al. (2024) found differences in 
interpretation of XAI between novices and computer science students 
with the same XAI stimuli.

To illustrate our point, Figure  3 illustrates a LIME algorithm 
representation of the information that led to the classification of a 
civilian airplane with the relevant weights being highlighted in green 
and red. Green illustrates the top five most relevant aspects of the 
image to classify it as a civilian plane. Red illustrates the five least 
relevant aspects of the image to the classification as a civilian plane. 
Although these are illustrated as colors over the image, it is the 
numerical value that the algorithm weights for each pixel that is 
important. The LIME algorithm describes the visual information that 
is used to generate a classification of each aspect of the image. The data 
being explained by the machine are pixels. The color is a quick visual 
cue for easy information processing for humans to interpret (Xing, 
2006). As such, if the algorithm simply listed the pixels used in making 
the determination, the information would be  uninterpretable but 
explainable because there is too much information for users to process 
(e.g., Young et al., 2015).

In Figure 1, the line across the middle of the figure illustrates the 
demarcation of subjective user perceptions and objective machine 
output. In the lower portion of the figure, performance, purpose, and 
process cues from the machine are illustrated with square boxes. There 
is a direct path from the trustworthiness cues to the user’s 
trustworthiness perceptions, which are noted in the model with 
performance, purpose, and process perceptions, instantiated with 
circles to indicate subjective perceptions. Although the current figure 
only illustrates direct lines from each trustworthiness cue to its 
respective trustworthiness perception, this is only done for clarity of 
the theoretical model.

The grey boxes on the lines between the trustworthiness cues and 
perceptions are the information the user is employing to interpret the 
trustworthiness cues (Schlicker et al., 2025). Individual differences are an 
integral part of how the user perceives and interprets the information. For 
example, Ehsan et al. (2024) found participants in a computer science 
program perceived information provided from an AI/ML algorithm 
differently than novices. In the first line from performance cues to 
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performance perceptions, the grey box is mostly on the upper portion of 
the figure indicating the user is relying on information within oneself (e.g., 
personal beliefs, experience with AI/ML) to make the assessment rather 
than the cues from the machine. This illustrates an instance when 
individual differences such as propensity to trust technology or previous 
experience with AI/ML will be  driving the decisions, as the loci of 
information for the assessment resides primarily in the user and not the 
system. This is what Hoff and Bashir (2015) refer to as dispositional trust. 
The grey box representing the performance cue information the user is 
perceiving is smaller than the boxes for purpose and process, representing 
less trustworthiness information when making the decision because they 
are relying on individual beliefs.

Proposition 6: Users deferring solely to their global beliefs / cognitive 
schemas to inform their trustworthiness perceptions of AI/ML/XAI 
will understand less about these systems.

On the line from the purpose cues to purpose perceptions, the 
grey box indicating information for perceiving the system is split 
hallway between the user’s perceptions and the information from the 
algorithm. In this instance, we also see the box is much larger as more 
information is being utilized, with equal information from the user 
and the machine. The grey box on the purpose line might indicate an 
expert user with adequate domain knowledge is properly utilizing 
balanced information from both subjective perceptions and objective 
cues in the environment. This example would be representative of a 
statistician that understands and is utilizing regression weights in 
making an informed decision in a domain for which these models 
were designed to be applied.

Proposition 7: Users who leverage their domain knowledge coupled 
with relevant information from AI/ML/XAI systems will more 
appropriately calibrate their trust toward the system.

Lastly, process perceptions are illustrated with a grey box with 
most of the variance for information being held on the objective side 
of the figure. In this instance, the algorithm may be  providing 
information that requires little to no interpretation by the user. We can 
think of image classification for easy images which are often used to 
develop new models, such as classifying animals, as they require little 
cognitive processing from the developer. Across Figures 3A–D, we can 
see that the algorithm primarily utilizes information about the 
airplane in its classification. However, there are aspects of the image 
background that also are included in making the determination. 
Figures 3A–D would be representative of the box on the process line 
because it requires little cognitive processing by the user, as most users 
would be familiar with and comfortable classifying the image as a 
plane. These three examples illustrate the differences in interpretability 
across individual differences.

Proposition 8: Users leveraging objective information solely from the 
AI/ML/XAI will benefit in their interaction with the AI/ML/XAI 
system so long as that information provided is veridical.

Some important aspects of the performance, purpose, and process 
perceptions should be  discussed. First, XAI may not reduce 
overreliance on AI/ML (Müller et al., 2024). Instead, it may increase 
overreliance as research has demonstrated users are more likely to 

agree with an AI/ML algorithm if it provides an explanation, 
regardless of accuracy (Poursabzi-Sangdeh et al., 2021). Indeed, Ehsan 
et al. (2024) found novices trusted the numeric output of an algorithm 
simply because it was numeric, inferring that the numbers were based 
on algorithmic thinking. However, this may be  moderated by 
personality variables such that those with greater attention to detail 
may not over-trust. Situational variables such as workload can also 
influence trust as users that have too many demands placed on them 
may over-trust because of lack of monitoring resources (Biros et al., 
2004). The information provided by the algorithm can facilitate many 
aspects of understanding. Colin et al. (2022) found attention maps 
helped facilitate user understanding of biases in the AI/ML algorithm, 
but it did not facilitate understanding of the failure cases. As such, 
information provided by the algorithms may not facilitate a full 
understanding but rather understanding of different outcomes.

Understanding
The user exploits the textual, numeric, image, or natural language 

output to facilitate their understanding of the decision process of the 
algorithm (Roscher et  al., 2020). It is the ability of the human to 
cognitively process the output of the algorithm that leads to 
understanding (i.e., cognitive perceptions). Thus, understanding is the 
perception of the system as a result of the interpretation of the 
explained information. If the algorithm does not display the 
information in a format that is interpretable to the user, or if the user 
does not have the requisite knowledge, skills, and abilities to interpret, 
it may have high explainability, low interpretability (i.e., the user is not 
able to make sense of the explained output), and lead to 
misunderstanding (i.e., a misperception of what the model is 
explaining, how it functions etc.). However, if the user does have the 
requisite knowledge, skills, and ability, this can facilitate appropriate 
sense-making of the data and ultimately properly calibrated 
understanding of the system (Ehsan et al., 2024; Klein et al., 2006). 
This expression of the information facilitates interpretation which 
enables an understanding about what will happen in the future, as 
illustrated in Figure 2 (Koehler, 1991; Lombrozo and Carey, 2006; 
Mitchell et al., 1989). These perceptions result in an understanding of 
the stimuli, which is highly subjective. Thus, understanding is the 
schema or mental model that is created by the user from interpreting 
information in the environment, which can be  used as a lens of 
analysis in future interactions with AI/ML and XAI systems. Typically, 
these schemas and mental models are assessed by measures of users’ 
performance, purpose and process perceptions of machine systems 
(Lee and See, 2004; Stevens and Stetson, 2023), in this case 
AI/ML/XAI.

Proposition 9: Knowledge, skills, and abilities (KSAs) will 
be important for facilitating understanding, such that information 
from the AI/ML/XAI should be  displayed in relation to the 
users’ KSAs.

As noted above, the construct of understanding from the 
computer science literature is synonymous with trustworthiness 
perceptions (comprised of performance, process and purpose) from 
the social sciences literature. Performance perceptions concern the 
degree to which the user perceives the system can perform a specific 
task within a given context (Lee and See, 2004), what Hoff and Bashir 
(2015) would term situational trust. Some machine systems may 
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be perceived to have good performance for certain tasks but not 
others. It may also be the context of the system’s use that moderates 
situational trust. For instance, an AI/ML-enabled system may 
perform well at classifying images from classes it was trained but not 
out of distribution classes to perceive algorithm performance 
differently depending on how the algorithms are applied4. The risk of 
misclassification may be  tolerable in scenarios such as recycling 
management but not in high risk instances such as computer vision 
for autonomous vehicles. Process perceptions describe the user’s 
understanding of a machine system’s underlying algorithmic function 
(Lee and See, 2004). In human-AI/ML contexts, process perceptions 
may vary depending on what information a user perceives on how 
the AI/ML reached a decision, and these perceptions may be shaped 
by XAI which unpacks how the AI/ML functions (Alarcon and 
Willis, 2023). Purpose perceptions pertain to a user’s perceptions of 
why the system was designed (Lee and See, 2004). Lee and See note 
systems are often used outside of contexts they were built or used in 
contexts that have more diverse information than that which the 
model was trained on, which can influence users’ purpose 
perceptions. With regards to the above example, systems designed to 
classify specific classes such as cats and dogs, but not other classes 
(e.g., squirrels), may shape users’ perceptions of system purpose, 
which may or may not relate to other trustworthiness perceptions 
and intentions to rely on (i.e., trust) the system as shown in human-
autonomy interaction work (Capiola et  al., 2023; Lyons et  al., 
2021, 2023).

Providing information is not a catch-all that once provided will 
increase trust and reliance on the system. The explanations provided 
can reveal problems in the system which can help the user calibrate 
when to use the algorithm (Kästner et al., 2021). For example, Alarcon 
et al. (See footnote 4) found participants were able to more quickly 
detect out-of-distribution data and noted the open set recognition 

4  Alarcon, G. M., Jessup, S. A., Meyers, S. K., Willis, S., Johnson, D., Noblick, 

J, et al. (under review). The trust process applied to machine learning algorithms: 

the influence of calibrated confidence estimates. Manuscript under review.

models were better able to classify appropriate images for within-
distribution data; in comparison, the convolutional neural networks 
(CNNs) had issues because they were confident in their classifications 
regardless of the stimuli. Additionally, the user can misinterpret the 
information provided by the model, falsely attributing actionability 
(i.e., what can be  done with the information) even when the 
explanation is unclear (Ehsan et al., 2024).

The explanation of the algorithm’s decision processes when the 
algorithm fails can also provide information as to improvements that 
need to be made to the algorithm. For example, adversarial attacks are 
used to determine ways to deceive the algorithm. Researchers noted 
that adding black and white bars to the stop sign, as illustrated in 
Figure 4, can make a convolutional neural network classify the image 
as a 35-mph sign instead of a stop sign. This helps the developer find 
issues in the algorithm that can be alleviated or fixed with updates and 
understand the flaws in the algorithm and improve it in 
future iterations.

Attitudes

There are numerous definitions of trust in the AI/ML/XAI 
literature. Many of these definitions have come from the interpersonal 
trust literature and have also conflated trust and reliance. Blanco 
(2025) recently theorized trust comprises (a) positive expectations, (b) 
some risk of the trustee not behaving as the trustor wants them to (c) 
a potential or need / wish of delegation, and (d) a basis in motives (i.e., 
motives based). She distinguishes this from reliance, which is the 
dependence of the trustor toward the trustee when the trustor needs 
to delegate. In her definition, the first two postulates of trust are the 
same as most definitions in the literature. Her third postulate of trust 
distinguishes that needing to delegate is not a necessary condition of 
trust, but rather the potential wish for delegation can necessitate trust. 
Additionally, she explicitly notes that trust is motives based, i.e., 
trustors have a goal in mind when ascribing trust. In her theoretical 
paper, she notes these motives are based on both cognitive (normative) 
and affective antecedents. Indeed, in the interpersonal trust literature, 

FIGURE 4

Example of adversarial attack on road sign classification task.
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there has also been a demarcation of affect- and cognition-based trust 
(McAllister, 1995). However, the interpersonal trust literature has 
focused on differentiating antecedents to trust as affect- and cognition-
based aspects of trustworthiness perceptions (Colquitt et al., 2007; Lee 
et al., 2022).

We theorize two underlying factors that influence attitudes toward 
AI/ML-enabled systems: valence and cognitive effort. Valence 
describes the attractiveness or aversiveness the user ascribes to the 
situation or referent (Russell, 1980). Valence comprises a spectrum of 
emotions ranging from positive to negative, with neutrality or 
indifference in the middle (Jessup et al., 2025; Li et al., 2017). Research 
on emotions has demonstrated that when users experience positive 
emotions, they tend to process information more holistically 
(Fredrickson, 2001; Kazén et  al., 2015). In the human-machine 
interaction literature, this can facilitate adoption and acceptance of the 
system (Hoong et al., 2017; Jessup et al., 2023). Positive emotions also 
lead the user to explore the machine’s capabilities, experiment with 
features, and engage more with the system (Isen and Geva, 1987). 
Additionally, positive emotions can buffer against system failures or 
errors (Maroto-Gómez et al., 2023). In contrast, negative emotions can 
facilitate narrow or segmented cognitive processing (Kazén et  al., 
2015). Initial negative interactions are difficult to overcome as they 
lead to a negative mental model of that referent system (Jessup et al., 
2020), which takes time and effort to change (Kim et al., 2023).

Cognitive effort characterizes the mental exertion necessary to 
evaluate a referent. Though there is no consensus on a definition (Li 
et al., 2017; Shepherd, 2022; Westbrook and Braver, 2015), cognitive 
effort is often described as the amount of controlled processing needed 
to understand, reason, and make decisions. This overlaps with dual-
processing models of cognition (Kahneman, 2011) and persuasion 
(Chaiken, 1980; Petty and Cacioppo, 1986), which have also been 
applied to trust research (Alarcon and Ryan, 2018; Stoltz and Lizardo, 

2018). System 1 processing, or heuristic processing, is quick, 
automatic, and relies on cognitive shortcuts. System 2 processing is 
more effortful, intentional, and accurate. Importantly people bring 
heuristics about referents into the decision-making process based on 
knowledge domain, experience, and pattern recognition (Ehsan et al., 
2024). Aspects of the environment such as task complexity, familiarity, 
and contextual distractions can also influence the amount of cognitive 
processing an individual utilizes (Wickens and Carswell, 2012). For 
example, research has demonstrated that people choose to exert 
cognitive effort when machine systems are coupled with explanations 
for their decisions by weighing the cost of the cognitive effort 
compared to simply deferring to the overall system (Vasconcelos et al., 
2023). This is what Hoff and Bashir (2015) term situational trust. In 
addition, a user’s motivation and cognitive ability (e.g., working 
memory capacity, processing speed) can influence the amount of 
cognitive effort a user is willing to exert on the task (Cacioppo et al., 
1996). That is, cognitive effort facilitates or inhibits information 
processing, leading to resulting attitudes.

We theorize multiple attitudes toward AI/ML/XAI fall on a 
two-dimensional plane of valence and cognitive effort as they are a 
function of both dimensions, as illustrated in Figure 5. Lee and See 
(2004) are most famous for defining and explicating what it means to 
have calibrated trust, which is the correspondence between objective 
system capability and the user’s subjective trust toward that system 
informed by their perceptions of that system. Trust calibration was 
originally introduced in the Human Factors literature concerning 
trust in automation and has since been adopted and expanded in the 
human-machine interaction literatures, including human-robot 
interaction (e.g., Alarcon et al., 2023), human-autonomy interaction 
(e.g., Capiola et al., 2023), and human-AI/ML interaction (e.g., Harris 
et al., 2024; Schlicker et al., 2025; for a review, see Kohn et al., 2021). 
In the present model, calibrated attitudes fall on the x-axis, as they 

FIGURE 5

Trust and trust related attitudes along valence and cognitive effort factors. Contextual risk negatively affects attitudes; high and low workload contexts 
can affect processing resources and effort.
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entail appropriate cognitive effort, and depending on the situation, 
comprise positive or negative valence resulting in trust and distrust, 
respectively. Calibrated trust is the goal, but other psychological 
attitude states may occur that fall on these two axes. When high or low 
cognitive effort is inappropriately employed, other states such as 
suspicion, curiosity, complacency, and under reliance can occur. 
We talk about each of these constructs in relation to the model in 
Figure 5.

The trust process outlined above is an iterative rather than static 
process (Chiou and Lee, 2023; Lee and See, 2004). Many different cues 
from the AI/ML/XAI influence perceptions over time. As the user 
obtains more information about the AI/ML via use and observation, 
the trustworthiness perceptions are updated. These trustworthiness 
perceptions are then updated based on how the system responds. This 
is what Hoff and Bashir (2015) refer to as learned trust.

Importantly, learned trust is contextually specific in relation to 
trust. Trust in the system for one context may not be transferred to 
other contexts. Instead, different attitudes may arise depending on the 
time spent with the system, the risk involved with the task and the 
affective valence associated with the algorithm. This may be  for a 
variety of reasons such as differential risk between scenarios. For 
example, Lyons et al. (2024) found failure of one autonomous system 
lowered the trust in that specific system but not to other systems with 
the same operating constraints. The learned trust is the information 
processing and updating of the mental models/schemas of the human 
in the human-AI/ML/XAI interaction over time. This creates a 
feedback loop where trustworthiness perceptions are updated over 
time and information becomes salient. However, other findings can 
emerge as well. System-wide trust literature notes that trust decay can 
bleed over into other independent systems (Keller and Rice, 2010). 
Across many studies in contexts ranging from in-flight aircraft 
services (e.g., Rice et al., 2016) to robotic swarm interactions (e.g., 
Capiola et al., 2024b), perceived perturbations of one system aspect 
can bring down trust toward another orthogonal system.

Trust and distrust
Workers attempt to make sense of the technology they utilize at 

the same time they are doing a given task (Muir, 1987). This links trust 
theoretically to trust toward AI/ML-enabled systems, and researchers 
have meta-analyzed data on trust-relevant constructs in human-AI/
ML interactions (see Kaplan et al., 2023). As noted, XAI was developed 
because of the lack of transparency of black-box models like DNNs to 
help facilitate (dis)trust formation toward opaque systems (Sanneman 
and Shah, 2022). The construct of trust has been defined as an attitude 
(Lee and See, 2004) or willingness to be  vulnerable to a referent 
(Mayer et al., 1995), and we adopt that definition for our model (see 
also Kohn et al., 2021). If the user has adequate transparency provided 
about the system’s performance, purpose, and process, sufficient to 
outweigh the uncertainty and risk of the situation, they will trust the 
system appropriately. Individual differences, such as domain 
knowledge or task knowledge, may also play a role in this process as 
they provide information for perceiving the referent (Hoff and Bashir, 
2015). The reason “appropriate” is used denotes the importance of 
veridical perceptions of the system (Lee and See, 2004), and this 
perhaps more important as referent machine systems leveraging AI/
ML/XAI capabilities increase in ubiquity and opacity (Chiou and Lee, 
2023; Schlicker et al., 2025). Indeed, if a user perceives the system to 
have low performance, purpose, and process, to the extent that their 

perceptions do not outweigh the perceived risk, then it is beneficial for 
them to not trust, i.e., distrust, the system (assuming their perceptions 
of the referent system are accurate). Trust should not be assumed to 
be  beneficial in and of itself: what is important is that the user 
perceives the system accurately to form an intention to and ultimately 
rely on that system, again, what Lee and See (2004) note as calibrated 
trust, i.e., a correspondence between objective system capability and 
the user’s subjective trust toward that system informed by 
their perceptions.

Appropriate trust calibration is not a function of one type of 
processing; instead, cognitive processing can occur at different stages 
such as during initial interactions or when new information is made 
salient (Stoltz and Lizardo, 2018; Tutić et al., 2024). Trust calibration 
and recalibration implies making appropriate use of the relevant 
information in the environment to make the assessment. For this 
reason, we place appropriate trust and distrust in the middle of the 
cognitive effort y-axis but on their respective sides of the valence 
x-axis. If new information is made salient, effortful processing 
increases to incorporate the information in the user’s schema/attitude. 
However, the attitude of trust or distrust has been formed based on 
previous interactions which have resulted from cognitive effort and 
affective responses. Again, this is similar to what Hoff and Bashir 
(2015) term learned trust. This trust learned trust is a function of both 
system 1 and system 2 processing as the trust or distrust has been 
formed, aiding the user in processing information more efficiently, but 
new information that is not part of the schema will active system 2 
processing. We note that recalibration is not illustrated in Figure 5 
because it would depend on the previous perception. For example, if 
the user trusted the AI/ML/XAI and new information was provided, 
the user may be in the upper left quadrant.

Proposition 10: Calibrated trust and distrust are a function of 
moderate cognitive effort and their respective valence.

Suspicion
Suspicion is defined as a state of increased cognitive activity, 

uncertainty, and perceiving machine system mal-intent (Bobko 
et al., 2014). Whereas trust and distrust are a willingness to rely 
or not rely on the system respectively, suspicion is the withholding 
of the evaluation due to uncertainty as to how the referent will 
behave. As such, the uncertainty leads to increased cognitive 
effort to determine whether to utilize the system. A system can 
also be  perceived as suspicious because of an individual’s 
tendency to be suspicious of machine systems (Calhoun et al., 
2017), and contextual factors which facilitate suspicion may lead 
to distrust of a system with regards to its objective reliability 
(Bobko et al., 2014).

Little research has been conducted on suspicion toward AI/ML, 
despite recent calls for research on the construct in relation to AI/ML 
(Peters and Visser, 2023). Gay et al. (2017) found alerts from the AI/
ML/XAI alone do not create suspicion. Instead, alerts facilitate 
information search through the users’ increasing cognitive effort. Gay 
et al. note situational differences facilitate suspicion, such that negative 
information can lead to increased suspicion. This suspicion led to 
decreased user performance in their scenario. Similarly, Strang (2020) 
found suspicion is high in cyberspace operations. These results 
indicate it is the context, relative risk, and information gathered from 
the environment that facilitates suspicion. As such, suspicion is placed 
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in the upper right quadrant characterized by high cognitive effort and 
negative valence.

Proposition 11: High cognitive effort and negative valence will result 
in suspicion.

Curiosity
State curiosity is a temporary, situational state of intrinsic 

motivation or desire to learn or explore (Kashdan and Roberts, 
2004; Spielberger, 1979). State curiosity is externally triggered by 
aspects of the environment such as novelty, ambiguity, or gaps in 
knowledge. State curiosity involves both feelings (i.e., interest, 
excitement) and mental engagement with the referent (i.e., 
cognitive effort). Oudeyer et al. (2016) note that curiosity is formed 
when the agent’s predictions are improving. Information gap 
theory (Loewenstein, 1994) theorizes state curiosity arises from an 
inconsistency or disparity between what is known and what is 
unknown. Curiosity is the drive for information through active 
intrinsic desire to obtain more information (de Abril and Kanai, 
2018). Importantly, curiosity is driven by positive emotions in 
contrast to suspicion which is driven by negative emotions.

Research on curiosity in human-computer interaction research is 
relatively sparse. However, some researchers have developed models that 
personalize a user’s curiosity appetite. Abbas and Niu (2019) found 
personalization of the system to users’ openness to experience influenced 
more information gathering. Hoffman et al. (2023) also noted curiosity as 
an important factor in human-XAI interaction, noting that seeking 
information is driven by curiosity. Hoffman et al. note XAI should promote 
curiosity for increasing the accuracy of mental models, but no research to 
date has explored and demarcated the psychological “triggers” for curiosity. 
Still, it stands to reason that AI/ML/XAI can facilitate curiosity in the task. 
Researchers have found students interacting with ChatGPT led to more 
curiosity and creativity in the classroom (Essel et  al., 2024). General 
curiosity can be triggered by a violation of expectations (Maheswaran and 
Chaiken, 1991), but it is the type of violation that distinguishes curiosity 
from suspicion. Curiosity may occur in less risky environments, when 
information obtained is not negative in the task, or when the context is 
relatively benign. Importantly, curiosity entails both positive valence (or at 
least a lack of mal-intent) and high cognitive effort for information seeking. 
However, some individuals may have a tendency to offer less cognitive 
effort (Petty and Cacioppo, 1986), and some situations may be so benign 
or so high in workload that exerting cognitive effort is not possible.

Proposition 12: High cognitive effort and positive valence will result 
in curiosity.

Complacency
Complacency is defined as decreased vigilance, attentiveness, and 

situation awareness resulting in a user relying too heavily on a system 
(Parasuraman and Manzey, 2010). Complacency with the system can 
be due to many different aspects, but in the instance of over-trust, the 
user becomes overly confident that machine systems will handle task 
responsibilities (Lee and See, 2004). The lack of cognitive effort 
associated with complacency leads to less task vigilance. That is, 
complacency can lead to missed errors, reduced situation awareness, 
slower reaction times, increased risk of accidents, and skill degradation 
(Parasuraman and Manzey, 2010). Instances of this are easily 
accessible in the news with Tesla owners not paying attention to the 

car while it is in its autonomous mode (Shepardson and Sriram, 2024). 
Lack of system oversight has led to accidents, including deaths. 
However, the lack of oversight results in over use as the individual 
expects a positive outcome, which is why complacency is in the lower 
left quadrant of Figure 5.

One related construct to complacency that we depict in Figure 5 is 
algorithm appreciation (Logg et al., 2019), which describes users’ tendency 
to rely on advice from algorithm referents compared to humans. Across 
several experiments, Logg et al. document cases of algorithm appreciation 
in tasks ranging from visual stimuli estimates and forecasting the popularity 
of content. Similar results are shown in foundational work in human-
automation interaction (Dzindolet et  al., 2002), where individuals 
demonstrate more positive attitudes toward machine decision support 
systems compared to humans before human-machine 
interaction commences.

Still, Logg et al. (2019) found appreciation for algorithms over humans 
when the latter forecast came from the participant themselves, or the 
participant was an expert in the forecasting context. Similarly, Dzindolet 
et al. (2002) found appreciation decreased after task interaction progressed, 
resulting in user under reliance on machine systems compared to humans 
when either was perceived to be imperfect.

Proposition 13: Low cognitive effort and positive valence will result 
in complacency.

Under reliance
Under reliance on a system refers to insufficient or inadequate use of 

the machine despite its objective capabilities (Lee and See, 2004). 
Importantly, this disinclination to use a system is a function of a lack of 
cognitive effort as there is evidence that the system is reliable and beneficial 
(Parasuraman and Manzey, 2010). Still, a user may forego the potential 
benefits of relying on the system such as increased performance and 
decreased decision time due to the user’s increased workload and potential 
fatigue. Thus, under reliance is comprised of lower cognitive effort exerted 
towards the system and an expectation of negative outcome, which is why 
under reliance is in the lower right corner of Figure 5. A good example of 
this can be found in the literature on algorithm aversion, which is the 
reluctance to use algorithms even when they demonstrate better accuracy 
and reliability than a human (Dietvorst et al., 2015). Negative experiences 
with other algorithms lead to the development of a negative bias toward 
algorithms when they are not perfect (Liu et al., 2023; Slovic et al., 2013). 
Additionally, negative emotions have been associated with less use of 
algorithms (Gogoll and Uhl, 2018; Prahl and Van Swol, 2017), leading to 
under reliance (i.e., algorithm aversion). This is driven by not only a bias or 
heuristic but also a function of one’s emotional state or valence.

Gaube et al. (2024) found under reliance toward AI/ML was more 
harmful to performance than over-reliance. Moreover, they found that 
XAI reduced under reliance on AI/ML referents, especially when 
users were expected to classify difficult images, but under reliance on 
the system still led to lower task performance. Under reliance on 
machine systems can be the result of many different variables such as 
user lack of error tolerance (Dietvorst et al., 2015; Dzindolet et al., 
2002), perceived low controllability of the AI/ML/XAI (Cheng and 
Chouldechova, 2023), low transparency (Schemmer et al., 2023), or 
poor mental models of the AI/ML by the user (Kaplan et al., 2023).

Proposition 14: Low cognitive effort and negative valence will result 
in under reliance.
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Personality can influence these attitudes through the mechanisms 
we described above as well as how users perceive the environment 
(Lazarus and Folkman, 1984). Personality is the lens through which 
humans view the world and process the information (McGuire, 1968). 
Different personality variables can influence the final attitude 
formation toward a given referent. However, the underlying processes 
of all the mechanisms through which personality can influence 
attitudes is beyond the scope of the current review. Interested readers 
are encouraged to review Albarracin and Shavitt (2018), Ajzen (2005), 
and Howe and Krosnick (2017).

Risk

The relevant uncertainty in utilizing an AI/ML/XAI algorithm 
represents an inherent risk in the task (Gulati, 1995). Risk is the uncertainty 
of the outcome and the relative vulnerability of relying on the system in the 
given context. Often times, this risk in an experimental task is instantiated 
as monetary payouts in the psychological trust literature (see Johnson and 
Mislin, 2011). However, this also has relevance to the use of AI/ML/
XAI. The advent of XAI literature is in response to using black-box models 
in areas with high risk. The call for more transparent AI/ML is in direct 
response to the risk of utilizing these algorithms in parole decisions, 
autonomous vehicles, and other risky scenarios (Rudin, 2019). The role of 
situational risk is closely related to trust, suspicion, and over reliance. Risk 
augments how users trust and utilize the AI/ML by affecting how they 
perceive the fairness of the process/decision. Trust has also been viewed as 
a cognitive mechanism through which people process, interpret, and 
respond to informational risk. This risk perception varies by situation. A 
programmer developing an AI/ML algorithm to create a spam filter for 
email may have considerably less risk than a programmer utilizing AI/ML 
for customer payment processing systems. The risk inherent with each 
scenario will moderate how the user perceives the system (McComas, 2006; 
Thielmann and Hilbig, 2015), influencing their likelihood trusting that 
system given the tradeoff of accepting vulnerability toward that system in 
contexts of increased risk (Chiou and Lee, 2023; see also Kohn et al., 2021). 
Following the interpersonal trust literature (Mayer et al., 1995), contextual 
or perceived risk can also influence the processing resources users allocate 
toward making their decision to (dis)trust a machine referent (Kohn et al., 
2021) including AI/ML/XAI (Chiou and Lee, 2023). Additionally, the risk 
inherent with each scenario can also establish which personality variables 
are activated in interactions with each algorithm. In the latter payment 
algorithm, there is considerably more risk; as such, personality variables 
such as risk aversion may play a larger role in the cognitive processing of 
information from the system. The former low risk scenario of the spam 
filter may not activate risk aversion because the risk is so low. Instead, 
personality variables such as complacency potential may be active in the 
cognitive processing because of the low inherent risk (Zhou et al., 2020).

Reliance behaviors

The cognitive processes (or lack thereof) described prior all lead 
to eventual decision-making which is referred to as reliance / 
compliance behaviors (Meyer, 2001; Meyer et  al., 2014) or trust 
behaviors (Alarcon et al., 2021, 2023) in the Human Factors literature. 
As noted earlier, reliance is the actual dependence of the trustor on the 
trustee (i.e., delegation of a task). Much of the research has focused on 

attributing trust to reliance behaviors, such that appropriately trusting 
AI/ML means utilizing the system when it is accurate and disregarding 
the system when it is inaccurate. However, in real world applications 
pertinent in our theoretical model, the user will not know the actual 
state of the AI/ML/XAI decision. It is important that algorithms are 
designed so that users can most accurately trust them when it is 
applicable and appropriate.

An important issue in Psychology is that behaviors are not due to 
a single cognitive state. The Human Factors literature has noted 
several issues that may lead to a user’s decision to utilize a system. Our 
discussion of attitudes in the previous section illustrates some of the 
different attitudes that can influence behaviors. Importantly, one 
additional reason for reliance behaviors may simply be user errors. A 
user may accidentally perform the correct behavior, either without 
knowing they were going to or because they “hit the wrong button,” 
which happened to be  correct. These human errors are often not 
accounted for in the literature, as it is assumed a user is performing 
the behavior on purpose. Instead, it may be that some of the behaviors 
are accounted for by simple mistakes.

Providing information about the system does not always lead to 
increased trust, nor are those increases always substantial. Atf and 
Lewis (2025) found XAI was only modestly correlated with trust 
assessments in their meta-analytic findings. Instead, performance 
aspects had the most robust relationship with trust. However, more 
information about the performance of a model, such as calibrated 
confidence intervals (Guo et al., 2017), may have implications for 
research such that models with more performance information are 
trusted more (Meyers et al., 2024; Harris et al., 2024). Explainability 
of the underlying processes can also lead to distrust in certain 
situations. The explainability can illustrate that the algorithm is using 
incorrect information in its decision-making. For example, there is the 
classic case of a CNN that has been trained to classify dogs and wolves 
might develop a bias due to the background of the images (Ribeiro 
et al., 2016a). Ribeiro et al. found this type of algorithm would classify 
an image as a wolf if the image had snow in the background. If a wolf 
without snow in the background is presented it is classified as a Husky, 
as the algorithm has not been trained on wolves that have no snow in 
the imagery. A model with XAI may illustrate the accuracy of the 
model is misplaced as it is not making a decision based on the relevant 
criteria, i.e., the animal of interest, but instead on other information 
such as the background. Additionally, too much information can lead 
to distrust, complacency, or under reliance. Mackay et al. (2019) found 
too much information led to over-trust in the system and decreased 
performance on a visual search task. The problem for display design 
in AI/ML/XAI is balancing the information provided with the 
information necessary to perform the task without overloading the 
human operator (see footnote 4; Young et al., 2015).

It is not just one construct that facilitates the use or disuse of a 
system. It is a combination of many variables that can influence 
reliance behaviors and the contextual moderators which increase 
or decrease the influence of each variable on reliance (or a lack 
thereof). Individual differences play a role in this aspect, too. For 
example, complacency potential can activate both overuse and 
underuse of the system. If the user is high in complacency potential 
and the system displays high performance, the user may overuse 
the system because they believe the system is not fallible 
(Shepardson and Sriram, 2024). Conversely, if the user is low in 
complacency and the system does not perform well, the user may 
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utilize another system or do the task themselves depending on the 
task. This is because the lack of need for cognition or complacency 
will lead the user to underestimate the system and abandon the AI/
ML-enabled system.

Lastly, reliance behaviors have often been dichotomized in 
the literature (e.g., rely or not rely on the system). However, the 
relationship between the aforementioned attitudes and reliance 
is often not binary (Blanco, 2025). Research has demonstrated 
there is a richness of reliance behaviors. For example, Alarcon 
et al. (2023) found participants were willing to wager a little on 
a robot partner early in their interaction, but participants 
increased their wagers as time progressed because they trusted 
robot more over time. Researchers often classify reliance as 
“monitoring behaviors,” but metrics such as eye-tracking 
(Sharafi et al., 2015) or time monitoring the algorithm are also 
not dichotomous. Indeed, the aforementioned attitudes can help 
to explain why a user may be spending more time monitoring 
an AI/ML/XAI. For example, a new algorithm that classifies 
images with more accurate confidence intervals (Guo et  al., 
2017) may lead to more time exploring how the algorithm made 
its decision. Here, time would be a continuous variable, not a 
binary variable. Additionally, this behavior could be caused by 
high cognitive effort and positive emotions such as curiosity 
pertaining to how the new algorithm outputs information.

Machine errors/mistakes and unintended 
consequences

Errors/mistakes and unintended consequences may have 
differential effects on trust. We differentiate between errors and 
unexpected outcomes. Errors are analogous to misses and false 
alarms in signal detection theory (Kay, 2013). In instances of 
errors, it can be something such as an incorrectly classifying an 
image, an incorrect forecasting decision, or misinformation 
provided by large language model (LLM). In contrast, 
unintended consequences are when something unforeseen 
occurs in the dataset or response. The example of the pregnant 
teenager example from Target  also illustrates an unintended 
consequence. In that instance, the algorithm did perform its 
task well, but most would be reticent to send pregnancy related 
coupons to a minor. Lastly, LLMs can hallucinate or infringe on 
intellectual property. This can lead to unintended consequences 
such as plagiarism by LLMs. All of these can degrade user trust 
toward the system, but it remains to be  seen if there is a 
difference between trust degradations due to errors and trust 
degradations due to unintended consequences.

Differences in performance, purpose and 
process

We note that performance perceptions are a necessary aspect of 
trust, at least after the first interaction. Much of the literature on DNNs 
has focused on the performance of the system, without discussing the 
underlying processes or purposes that drive DNNs (Minh et al., 2022).

The advent of XAI is a response to the lack of transparency 
in black-box models as they are used in more applications; as 

noted, governments and companies required more information 
on how the decision processes of the algorithms worked 
(European Union Act, 2024/1689; Air Force Doctrine Note, 
2024). However, DNNs have been used in multiple contexts 
without transparency in process or purpose cues before, but the 
algorithms always displayed some performance information. 
Researchers note that no machine or system would be  used 
without some kind of performance feedback; as such, 
performance is a necessary aspect across all temporal aspects of 
the trust process (Alarcon and Willis, 2023; Hoff and Bashir, 
2015). As such, we  theorize performance perceptions are a 
necessary condition for trust in the system. In scenarios where 
information about the system is either sparse or unknown, the 
user will leverage prior information either about machines in 
general (if the user has never interacted with AI/ML before) such 
as global beliefs and / or possible knowledge, skills, or abilities 
that the user holds (if the user is a domain expert) to make their 
initial trust assessment, which is really a strong belief without 
adequate, contextually constrained information.

Purpose perceptions are most relevant early in the trust 
process (Hoff and Bashir, 2015; Lee and See, 2004; Muir and 
Moray, 1996). Early interactions may be focused on performance 
and purpose perceptions and cues as the user lacks information 
about the system, such as reliability, dependability, or capabilities 
(Hoff and Bashir, 2015). The contextual nature of the system will 
be leveraged in the initial trust estimate as the user is unsure of 
how it will perform. As such, purpose perceptions along with 
global individual differences will have the strongest effect early on 
in interactions as there is not yet salient information about the 
system’s performance.

Importantly, performance and purpose perceptions will have a 
strong relationship with each other, and quantitative data support this 
postulate (Alarcon et al., 2023; Capiola et al., in press). The reason a 
model was built will be highly correlated with performance in the 
context of the task.

Third, process perceptions may only be necessary after the AI/
ML/XAI has made a mistake or its decision resulted in an unexpected 
consequence. As illustrated with the literature on AI/ML, many 
governments and companies were not concerned with the underlying 
processes of the DNNs until they started being utilized in high-risk 
scenarios and started to have errors or unexpected consequences 
(European Union Act, 2024/1689; Air Force Doctrine Note, 2024). 
We  propose it is mainly when an algorithm makes a mistake or 
unintended consequence that users will be interested in the XAI or 
underlying processes (we note that developers will be interested in 
processes while training the model). This applies when training an 
algorithm, but this links back to the notion that training entails an 
inspection of results. In these situations, users need information to 
understand what went wrong. Recent experimental data on 
human-AI/ML interaction (Harris et al., 2024, 2025) shows this to 
be the case, providing fodder for future investigations with other AI/
ML/XAI algorithms in different contexts. Moreover, a user’s baseline 
expectations of a given AI/ML or XAI referent and their threshold for 
abandoning said systems should they err ought to shape their process 
perceptions differently, per the literature on perfect automation 
schema (Dzindolet et  al., 2002). Thus, individual schemas for a 
system’s function may shape user perceptions of how the system works 
given something unpredictable occurs.
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Measurement

It is important to note the measurement of each of the variables 
in the proposed model. We note that Kohn et al. (2021) have covered 
the measurement of variables in the trust process extensively, but 
we highlight a few aspects here. Measurement of variables such as 
individual differences, trustworthiness perceptions, and attitudes 
about the system often leverage Likert-type scales. These scales are 
useful for collecting large amounts of data about the constructs of 
interest as they do not require much from the researcher. However, the 
specificity of the scales may impact their utility. As we have mentioned 
prior, cognitions and behaviors are based on several constructs. Solely 
using self-report scales may not facilitate the rich understanding that 
can come from the inclusion of many different methods (see 
Krausman et al., 2022). One such method is qualitative analyses.

Qualitative analyses provide a focus of meaning and context for 
the decisions of the user. These types of analyses can provide a rich 
and meaningful description of the thoughts and perceptions of the 
user (e.g., Meyers et al., 2025). However, a large drawback is the time 
and manpower needed to analyze and interpret the data.

Behavior is often the best indicator of behavioral trust. However, 
we note that much of the literature has focused on trust as a binary 
construct, with users or participants either trusting or not trusting in 
the scenario. Instead, trust may be more complex. Alarcon et al. (2023) 
utilized monetary risk to instantiate trust, with participants making a 
wager on how their robot or human partner would perform. 
Interestingly, when participants were allowed to choose their specific 
wager, they initially trusted a little with gradually increasing wagers as 
the partner demonstrated trustworthiness. This illustrates the idea 
that trust behaviors are not all-or-nothing, but rather iterative and 
build as trust develops. Similarly, as proxies of psychological trust can 
be assessed through a (lack of) monitoring behavior, physiological 
metrics such as eye-tracking can be  used to determine how 
participants trust (i.e., do not monitor the AI/ML/XAI; see Krausman 
et al., 2022) the system over time. We propose that as trust develops 
there will be less oversight of the AI/ML/XAI.

Implications for research and practice

As noted earlier, the interpretation of the trustworthiness cues by 
the user is represented by the lines connecting the trustworthiness 
cues and trustworthiness perceptions. The gray boxes illustrate the 
degree to which features of the system are interpreted by the user, and 
the degree to which these cues facilitate trustworthiness perceptions 
(performance, purpose, and process) are moderated by individual 
differences in the human processor. For example, most AI/ML/XAI 
have focused on developer perceptions of the model rather than end 
user perceptions, but there are differences in between user’s and 
developer’s cognitive models and how they are formed (Ehsan et al., 
2024). In depth discussions and experiments with both end users and 
developers can clarify what individuals need from the AI/ML/XAI 
within a given context. The various trustworthiness cues provide 
information about the state of the system (e.g., dependability, 
helpfulness, and comprehensibility) which are interpreted as 
subjective perceptions of the explanation data that is provided 
(Broniatowski and Broniatowski, 2021). The explanation types 
facilitate mental models comprising psychological perceptions of the 

algorithm’s trustworthiness (Visser et  al., 2023). However, these 
interpretations and cognitive schemas are not a one size fit all scenario, 
needing more attention paid to the specific user that is in mind. The 
output (e.g., XAI, beta weights, etc.) should provide a description of 
the stimulus, such as a data point or algorithm output, that can 
facilitate understanding within the context. In other words, the AI/
ML/XAI should be  able to communicate intentions and explain 
decision-making processes to the user (Boies et al., 2015; Paleja et al., 
2021). These trustworthiness perceptions are cognitive evaluations by 
the user based on the relevant trustworthiness cues that are perceived, 
interpreted, and ultimately understood, assuming the system is 
appropriately transparent.

It is both the explanation type and proper display of the 
explanation type that makes the explainable data interpretable to the 
user according to information processing theory (Wickens and 
Carswell, 2012). This ease of interpretation of the explainable data 
leads to appropriate information processing by the user. Conversely, 
a poorly designed display of information can lead to a lack of or 
inappropriate information processing by the user. We  note that 
humans prefer simpler explanations, and explanations should only 
grow in complexity when all the components of the explanation are 
highly accurate (Lombrozo and Carey, 2006; Lombrozo, 2007). Poor 
display design can influence information processing, resulting in an 
information overload hampering information processing 
(Bainbridge, 1983; Tocchetti and Brambilla, 2022). For example, 
feature importance metrics such as saliency measures have improved 
user’s understanding of an AI/ML algorithm’s decisions within an 
image classification task (Hase and Bansal, 2020). Research has 
noted that multiple signals simultaneously can confuse and disorient 
the user, especially if they represent different information (Hase and 
Bansal, 2020). If an XAI display were to provide multiple 
explanations simultaneously that are not highly correlated with each 
other (i.e., not redundant information), the user may be overloaded 
and not able to perceive relevant information (e.g., Capiola et al., 
2024a). Indeed, Ngo (2025) found transparency had a curvilinear 
relationship with performance such that too much transparency 
inhibited performance. That is, if the sensory cues are all correlated 
and represent the same information, they may provide a failsafe with 
multiple cues about that information in some contexts but 
competition for finite resources in others (Wickens and 
Carswell, 2012).

Proper placement and display of the information is also necessary. 
Simply placing the information outside of the area of attention may 
influence the results of cognition and behavior, such that the user may 
not perceive the information or effectively process the information. 
For example, Ling et al. (2024) found confidence intervals were not 
important in decision-making with AI/ML; however, the authors 
displayed the confidence intervals as a graph at the top of the screen 
away from the target information. Eye tracking indicated participants 
did not utilize the data possibly because it was far from the focal point 
of the task and difficult to process. In contrast, research has 
demonstrated confidence intervals are utilized by participants in an 
image classification task when the confidence intervals are salient and 
near the target image (Alarcon et al., 2024; Harris et al., 2024). This 
illustrates our point further that poor display design can lead to a 
decreased focus on relevant information.

The interpretation of the display design information of the 
algorithm is a highly subjective interpretation. As we noted earlier 
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with the algorithm aversion studies, if the information is provided but 
the user lacks the ability to interpret the data, the explainability may 
be high (i.e., data is provided about the algorithm’s decision-making), 
but the user’s interpretability of the system is low (i.e., the user cannot 
make sense of the data). For example, the Dietvorst et  al. (2015) 
research in which novice participants were required to interpret beta 
weights may have led to high explanation but low interpretation and 
thus misunderstanding.

Although we focused on the interpretability of white-box models 
with regressions for this example, this principle can also be described 
in terms of display design (e.g., an XAI displays what information an 
underlying AI/ML algorithm used to classify an image into a given 
category to a human user). Ehsan et al. (2024) found differences in 
between computer science students and the general public not only in 
their cognitive schemas that were formed, but also in the interpretation 
of the information that was provided by the AI/ML, indicating 
individual differences are key aspect of processing information.

Practical takeaways and remaining gaps

We offer several practical takeaways for researchers and designers 
alike to consider in their own work. First, individual differences matter 
in human-AI/ML/XAI interaction and are a cornerstone to human-
centered design for effective human-machine interaction. Although 
AI/ML-enabled tools will be deployed to the general population or 
large organization (whether that be public or private), companies 
ought to consider at minimum what factors their intended users bring 
to bear when interacting with these technologies. Considering not just 
a target audience’s knowledge, skills, and abilities with AI/ML-enabled 
systems, but also their general expectations of and thresholds for 
abandoning machines should be  considered. Considering users’ 
general tendency to engage, be  curious, and think deeply about 
interactions with novel AI/ML-enabled systems will help shape design 
for effective use. Customized information display sensitive to users’ 
individual differences may help them use a system appropriately (e.g., 
Vázquez-Ingelmo et al., 2019), and we encourage researchers to test 
this speculation by instantiating these strategies in emerging AI/
ML-enabled systems coupled with different XAI applications.

Second, designers should consider what features of an AI/ML-enabled 
tool should be most perceptible to users. Our stance is an overabundance 
of information as to what the system did, how it did it, and why may 
be technically explainable but uninterpretable to some audiences (per 
individual differences above) and ultimately lead to misunderstanding. 
Simply: more information is not always better. Researchers should 
investigate specific features that are most effective at facilitating human 
understanding and what contextual factors and technological constraints 
of emerging AI/ML-enabled systems are necessary for the task. This 
approach has implications for appropriately explainable AI, which could 
be further leveraged by designers for product testing iteration. Though 
we suggested display customization to individuals immediately above, 
assuming an interface cannot be customized for every user, cataloging 
what information ought to be made most salient for users in general (e.g., 
performance information; Hoff and Bashir, 2015) is another prong of 
research we hope is explored in human-AI/ML/XAI research.

Finally, the behaviors that users engage in when leveraging AI/
ML-enabled systems are determined by many factors. We contend that 
users’ individual differences as well as their perceptions of a system’s 

trustworthiness shape their willingness to use said systems. However, 
the appropriateness of system use can be guided by contextual risk, 
time constraints, and (sometimes) simple mistakes. As mentioned, the 
process by which behavior emerges is complex, comprising trust-
relevant factors denoted and individual differences, but variability can 
be attributed to contextual aspects and emerging capabilities yet to 
be realized in AI/ML-enabled systems. We see our model’s utility as a 
lens of analysis for researchers generating new questions about and 
designers imagining new interfaces for AI/ML-enabled systems and 
the XAI coupled to guide user engagement. We anticipate our model 
will be extended (and perhaps updated) as researchers investigate the 
edge-cases of human-AI/ML-XAI interaction and designers deploy 
novel AI/ML/XAI systems in the coming years.

Limitations

The current paper is not without limitations. First, the theoretical 
model we have established is based on research from literature across 
several different domains. Researchers have noted that trust is 
conceptualized differently across the computer, information 
technology, and social sciences. Indeed, this was the main drive for 
the current theoretical model, to elucidate the different constructs 
across fields. However, as the research cited in the current paper is 
based on research with different measures and conceptual ideas, it 
remains to be seen if the theoretical model withstands scrutiny across 
domains. Second, the theoretical model in the current paper was 
developed based upon previous research and as such is ad hoc. Future 
research should test the theoretical postulates with the explicit 
research hypotheses. This would allow for empirical testing of 
the postulates.

Finally, the present manuscript certainly did not cover each and 
every moderator of the trust process in human-machine interaction. 
Indeed, an anonymous reviewer noted details on the role of culture, 
norms, and group dynamics were missing from our model. These 
constructs were beyond the scope of the current work, but high-level 
cultural differences (e.g., Hoff and Bashir, 2015), norms for human-
machine interaction (e.g., see footnote 4 and Cheng  
et al., 2016), and group dynamics in human-machine interaction (e.g., 
Demir et al., 2021) are discussed elsewhere. Future work can build 
upon our model, integrating these constructs and others in meaningful 
ways promoting further experimentation.

Conclusion

Trust toward complex machine systems like AI/ML and XAI is 
multiply determined. This paper outlines a litany of machine referents 
that may be differently trusted based on users’ individual differences, 
contextual factors, and the interplay of these variables which shape 
trust and reliance. We do not propose that every variable relevant for 
trust toward AI/ML and XAI are mentioned here. Indeed, we assume 
with iterative research there will be others that arise and affect criteria, 
namely (in)appropriate trust and reliance / compliance. It is our hope 
that researchers leverage this theoretical approach for designing their 
experiments to test and expand findings on human-AI/ML/XAI 
interaction, as these interactions will only increase in frequency and 
stakes over the next decade and beyond.
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