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Coordinating agents that communicate through asynchronous message

exchanges to execute interaction protocols presents a complex and pressing

challenge. In this article, we address this issue by introducing Multiparty

Session Types (MPST) for the formal specification of agent interaction protocols,

from which we derive implementations of the corresponding agent systems.

Correctness is ensured on one side by the MPST methodology, which derives

the local protocols of participants from a global specification by projection, and

on the other by translating local types into agents, providing a proof that these

agents behave as prescribed by the local protocols of participants. Our agent

language is Jadescript, an agent programming language that targets the widely

used JADE agent platform. In addition to the theoretical framework, we describe

a prototype implementation of the related tools.
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1 Introduction

1.1 Agent programming languages

The interest in agent programming languages, as discussed in Bădică et al. (2011), dates

back to the early proposals of agent technologies, as witnessed by Shoham (1993), and since

then, it has grown significantly. Agent programming languages represent an important

research topic because they are recognized, e.g., by Bordini et al. (2006), as important tools

to support Agent-Oriented Software Engineering (AOSE), as witnessed by Bergenti et al.

(2004). Agent programming languages are based on specific agent models and provide

specific language constructs to work with these models at a high level of abstraction. The

diverse agent programming languages share some characteristics, such as simplicity and

ease of use, to simplify the work of programmers and increase the quality of produced

agents. Despite these similarities, the specific features that these languages provide differ

significantly, concerning, e.g., the selected agent mental attitudes (if any), the integration

with an agent platform (if any), and the reference programming paradigm (e.g., declarative

or imperative).

The literature already provides some classifications of relevant agent programming

languages in terms of structured surveys of the current state of the art. For example, Bădică

et al. (2011) classify agent programming languages according to their adoption of agent

mental attitudes. According to Bădică et al. (2011), agent programming languages can

be classified into: Agent-Oriented Programming (AOP) languages, as studied by Shoham

(1991), Belief-Desire-Intentions (BDI) languages, as studied by Bordini et al. (2007); hybrid
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languages, which combine the two previous approaches; and

other languages, which fall outside of the previous classes. Note

that this classification recognizes that BDI languages follow the

AOP paradigm, but it treats them specifically for their notable

relevance in the literature. Bordini et al. (2006) propose a different

classification, in which agent programming languages are grouped

into three classes: declarative, imperative, and hybrid. Most of the

agent programming languages discussed in Bordini et al. (2006)

are declarative because declarative languages natively focus on

automated reasoning, which is an important tool for developing

effective agents. However, Bordini et al. (2006) also discusses some

relevant imperative languages. Some of them have been defined

by adding language constructs to host languages. The presence (or

absence) of a host language is an important characteristic of most

imperative languages.

Following the mentioned classifications, the language discussed

in Bergenti et al. (2018, 2020), namely Jadescript, is an imperative

AOP language designed from scratch around the abstractions

that the Java Agent DEvelopment framework (JADE) promoted to

support the construction of effective agents, as discussed in Bergenti

et al. (2020). Jadescript shares relevant similarities to popular

scripting languages, e.g., Python and JavaScript, to provide a clear

and simple way to implement agents and related abstractions,

e.g., (communication) ontologies, as discussed in Tomaiuolo et al.

(2006), and behaviors, as discussed in Bergenti and Petrosino

(2018). The source codes of Jadescript agents bear relevant

similarities with the pseudocodes used to describe agents in

research articles, e.g., Shoham and Leyton-Brown (2008); Yokoo

(2001). Jadescript is meant to help programmers adopt the best

development practices to enhance the overall quality of produced

software. For example, agents should not busy wait for events,

and Jadescript natively provides cyclic behaviors, as described

in Petrosino and Bergenti (2018), and related data types, discussed

in Petrosino et al. (2022), to allow agents to suspend when no

events can be processed, as exemplified in Bergenti et al. (2018). The

Jadescript type system, which is briefly summarized in Petrosino

et al. (2022), provides very high-level abstractions for effective

agent programming and promotes the construction of robust

and maintainable code. Jadescript is designed to be integrated

with mainstream development tools, and therefore it comes

with a comprehensive set of programmer-friendly development

tools. In particular, the dedicated Jadescript plugin for Eclipse

discussed in Petrosino et al. (2021) is available (github.com/

aiagents/jadescript) as the official tool to use Jadescript.

1.2 Agent interaction protocols

The near-future development plans for Jadescript include

dedicated support for (agent) interaction protocols, as discussed

by Poslad (2007). In particular, the plans target a subset of

the interaction protocols standardized by the Foundation for

Intelligent Physical Agents (FIPA, https://www.fipa.org), which is an

IEEE Standards Committee established to promote interoperability

among agents. FIPA specifies some general-purpose interaction

protocols, and FIPA-compliant agents are requested to support at

least some of them. FIPA encourages designers and programmers

to adopt these interaction protocols, which motivates the need for

dedicated support for them in Jadescript.

An interaction protocol is a way to govern the message-based

communication among two or more agents. Interaction protocols

are described in terms of reference scenarios in which agents

can play, at least, two roles: initiator and participant. Interaction

protocols mandate the types of messages exchanged among the

agents playing the various roles, and they normally assume the

presence of one initiator and more than one participant. The

initiator sends the first message to start the enactment of the

interaction protocol. A subset of the participants receives this first

message, and each of them independently decides what to do,

which normally involves sending other messages to other agents.

The specification of an interaction protocol states the correctness

constraints for the messages involved in the reference scenario. In

FIPA specifications, messages are labeled via their performatives,

and these correctness constraints are expressed in terms of their

performatives, as discussed in Bergenti and Ricci (2002).

1.3 Multiparty session types

A multiparty session (MPS for short) is an interaction among

participants communicating by exchanging messages, (Honda

et al., 2008, 2016). The interaction is specified by a global type of the

session. Local or session types may be retrieved as projections from

the global type. Session types give a decoupled (i.e., distributed)

view of a protocol from the perspective of each participant. Typical

safety properties ensured by session types are communication safety

(absence of communication errors), session fidelity (agreement with

the protocol) and deadlock-freedom, as discussed in Honda et al.

(2016). When dealing with more than two participants, the type

system also guarantees the liveness property known as progress,

which entails livelock freedom and orphan message freedom, Hüttel

et al. (2016). Livelock freedom means that a participant waiting

for a message will eventually get it, while orphan message freedom

means that a message sent by a participant will eventually be read

by the one it was sent to. These properties are difficult to prove in a

distributed environment.

The global types of Honda et al. (2016) have several limitations

that make them suitable for specifying the ordinary interaction

protocols among agents. In particular, a session involves a fixed

set of participants, whose behavior is individually specified when

the session is first initiated: there is no notion of specifying the

behavior for a class of participants that share the same behavior,

and no participant can dynamically (i.e., during an ongoing session)

leave the interactions. These are, however, basic requests for the

FIPA interaction protocols.

A very expressive enhancement of global types was proposed

in Deniélou and Yoshida (2011); Deniélou et al. (2012). Roles are

defined as classes of local behaviors that an arbitrary number of

participants can dynamically join and leave. A locking mechanism

is introduced to enforce communication safety and progress.

This extension is very expressive; however, it is unrealistically

implementable with the communication pattern of agent languages,

since it requires some sort of centralized register handling the

association between participants and roles. Other extensions
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tailored to specific application domains were proposed. Most of

these extensions target specific programming languages (Castro-

Perez et al., 2019; Cledou et al., 2022; Lagaillardie et al., 2022;

Dagnino et al., 2023). Of the language-independent ones, we

mention the two that are closer to our proposal. The first is

Pabble (Ng and Yoshida, 2014, 2015), an extension of the language

Scribble (Honda et al., 2011), for describing the multiparty session

types in a Java-like syntax. In Pabble, multiple participants can be

grouped in the same role and indexed, and there is the possibility

of changing the participants in a role by parameterisation. The

examples reported in Ng and Yoshida (2014, 2015) show how

different interconnection typologies of parallel processes can be

modeled. The second extension was proposed to ensure good

properties of the interactions in MPSs in spite of failures. Viering

et al. (2021) introduces the notions of failure aware sub-sessions

and role set, which are similar to the roles of Deniélou and Yoshida

(2011); Deniélou et al. (2012). A global type is specified by a number

of sub-protocols that may be spawned in parallel. Sub-protocols

may have role sets with different participants, and starting a sub-

protocol requires that all the participants in its role sets are at the

same point of the execution of their protocol.

1.4 Types for agent interaction protocols

Our proposal, inspired by the two mentioned extensions, is

tailored to the goal of specifying FIPA interaction protocols, in

which groups of agents are often addressed by an agent mediating

their interactions with the rest of the world. In the following,

participant is a synonym for agent. We call these groups of

participants role sets, and their coordinator is the only participant

interacting with them. The coordinator can broadcast a message to

all the participants of the role set, and there is a construct to execute

a sub-protocol on all the participants in a role set. In addition

to projectability, we give some well-formedness restrictions on

the global types that are meant to enforce their realisability by

Jadescript agents. The aim of our work is to generate from local

types the skeleton of the communications of the Jadescript agents

implementing the interaction protocol, so that we can prove

that the system has the progress property by construction. The

translation is non-trivial due to the different models of execution

of multiparty sessions (channel-based) and agent systems (event-

based). Even though we are not there yet, in the article, we show

the road we intend to pursue through an example. The discussed

example is a hand-made translation from the local types projections

of a global type describing the FIPA brokering interaction protocol

to Jadescript agents.

1.5 Contributions

Wemake the following contributions:

• We generalize session types to capture protocols in which roles

may comprise any number of participants interacting with a

coordinator, while also permitting participants within a role to

leave the interaction. We define the projection of global types

onto local types and a reduction semantics for the latter.

• We provide a novel reduction semantics for the Jadescript

agent programming language.

• We define a translation from session types to Jadescript agents

and prove that this translation satisfies the session fidelity

property, that is, the system exchanges messages according to

the local protocols. This also implies that every message that

is sent can be eventually read and that any agent awaiting a

message will eventually receive it.

• We prototype a toolchain that automatically generates agent

implementations from session types.

1.6 Outline of the paper

In Section 2, we first introduce our global and local session

types in Sections 2.1 and 2.2. Then, the projection of global types

onto local types and well-formedness are defined in Section 2.3.

A semantics for session types, outlining the sequence of message

exchanges among participants, is presented in Section 2.4. In

Section 2.5, we analyse some of the limitations of the introduced

types and motivate their rationale. Section 3 introduces the

core of the Jadescriptagent language, Featherweight Jadescript

(FJS for short), with its operational semantics. The translation

from local types to FJS along with its correctness, i.e., the

statement of the session fidelity result, is given in Section 4. A

description of its implementation as an Xtext plugin for Eclipse

can be found in Section 5. Finally, Section 6 describes recent

applications of MPST in the area of actor and agent languages.

The Supplementary material contains: the formal definition of

projection (Section 1), the proof of Theorem 4.2 with the definitions

and lemmas it relies on (Section 2) and the English auction

interaction protocol with its sessions types (Section 3.1), the

behaviors generated by the translation (Section 3.2) and a trace of

an execution of the generated agent system (Section 3.3).

2 Global and local types with role sets

The typical FIPA specification of an interaction protocol is

shown in Figure 1, where sub-protocol refers to agents that

may execute the request of the initiator. The broker is the agent

receiving the request from the initiator and trying to get it done

by some agent. Of the m agents that the broker contacts, only

a subset may be willing to fulfill the request. The UML diagrams,

even though more rigorous than a textual description, are not

a formal specification that can be used to prove properties of a

given implementation.

2.1 Global types

We define an extension of the formalism of global types

of Yoshida and Gheri (2020) in which we can define role sets, which

are sets of participants executing the same sub-protocols. Role sets
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FIGURE 1

FIPA specification of the brokering interaction protocol.

specify their coordinator, which should be one of the participants

in the MPS. In the rest of the section, we use the following

meta-variables: p, q, r for single participants; x, y, z for participant

variables (in the scope of a map); p, q, r for either participants or

participant variables; R for role sets; Z for either single participants

or role sets; Q for either participants or participant variables or role

sets;m for labels of messages and S for basic types (int, bool,...).

Definition 2.1 (Global types). A global protocol declaration

specifies the participants and the role sets involved in the protocol

and the associated global type. Each role set is coupled with a

participant (from the declared ones) which is its coordinator.

global protocol name(p; 〈R, p〉) = G

where G is defined by:

G : : = p → Q {mi〈S
i
〉.Gi}i∈I Choice of communications

| µX.G | X Recursion and Variable

| End End of protocol

| map x :〈R, q〉 G1;G2 Sub-protocol for participants

in a role set

| 〈x, q,Quit 〉 Exit from role set

where I is a finite non-empty index set andmh 6= mk for h 6= k.

When |I| = 1, we drop the brackets and write p → Qm〈S〉.G
for short.

In the syntax, we highlighted the non-standard constructs. The

first construct specifies a choice of communications, i.e., one of

the messages with a label in {mi}i∈I is sent from a participant to

another. In addition to single participants, the receiver may specify

all the participants in a role. In this case, we enforce the restriction

that the sender be the coordinator of the role set. After one of the

communications, the protocol continues as prescribed by the global

type corresponding to the selected label. Recursion introduces a

recursion variable X that can be used in its body to return to the

beginning of G. As usual, we assume recursion to be guarded.

End stands for the end of the protocol, but also the end of a sub-

protocol, as we will see shortly. The map construct prescribes that

the same protocol G1 be executed by all the participants in the

role set R. In G1, the variable x denotes any participant in R.

The semicolon preceding G2 means that the coordinator q of R
must have completed the protocol G1 on all the participants in

R before continuing as specified by G2. So End occurring in G1

does not mean the end of the whole interaction, but just of the

sub-protocol G1. The semicolon ; can only occur after the body

of a map. In G1, there cannot occur free recursion variables. We

also impose the restriction that map cannot be nested. The FIPA
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interaction protocols analyzed so far can be formalized without

map nesting. However, eventually we would like to remove this

restriction. Finally, the last clause of the definition is used by a

participant in a role set, denoted by x, to exit from the protocol.

Here q is the coordinator of the role set. Thismeans that subsequent

messages sent from q to the participants of its role set will not be

sent to this participant.

In Listing 1 we formalize, using our global types, the FIPA

brokering interaction protocol. The participants of the protocol

1 global protocol myBrokering(role initiator,
role broker,roleset Subagents:broker)

2 {
3 proxy(string) from initiator to broker.
4 choice at broker{
5 refuse() from broker to initiator.stop()

from broker to Subagents. End
6 } or {
7 agree() from broker to initiator.

findAgent(string) from broker to
Subagents.

8 map role agent:<Subagents,broker>{
9 choice at agent {
10 notPossible() from agent to broker.

QUIT() from agent to~broker.End
11 } or {
12 canDo() from agent to broker.End
13 }

14 } ;

15 choice at broker {
16 failNoMatch() from broker to initiator.

stop() from broker to Subagents.End
17 } or {
18 foundMatches() from broker to initiator

.
19 continue() from broker to Subagents.
20 map role agent:<Subagents,broker>{
21 rec COLLDATI: {
22 sendMore() from broker to agent.
23 choice at agent {
24 addData(string) from agent to

broker.loop COLLDATI
25 } or {
26 noMoreData() from agent to

broker. End
27 } or {
28 someError() from agent to

broker.QUIT() from agent to
broker.End

29 }
30 }

31 } ;

32 choice at broker {
33 replyFromSubagents(string) from

broker to initiator.End
34 } or {
35 failBrokering() from broker to

initiator.End
36 }
37 }}}

Listing 1. Global type for the brokering interaction protocol.

are specified in line 1, and they are the initiator, the broker

and a number of agents in the role set, which are Subagents

with the broker as their coordinator. We use the Java-like syntax,

coming from Scribble, Honda et al. (2011), which differs from our

formal syntax mainly in the definition of the choice construct. The

choice construct, e.g., lines 4, 9, 11, and 31 of Listing 1, specifies

the leader of the choice, i.e., the sender of the communication.

Each branch should start with a message from the leader to

the same participant, and the labels of the messages in different

branches must be different. This is the same requirement we

had for the formal syntax. For the choice starting at line 4, the

leader is the broker. The first message of the branch at line 5

has the label refuse, and the one at line 7 has the label agree

, both sent to the initiator. The choice construct always has

more than one branch; choices with just one branch are just

communications, e.g., line 3 or the second message both in lines

5 and 7. For the syntax of the recursion construct, lines 21–30, the

occurrence of the recursion variable at line 24 is preceded by the key

word loop.

The interaction starts with the initiator sending a message

labeled proxy to the broker. We specified a simple string as

the payload, but more complex data structures may be exchanged.

After this, there is a choice made by the broker that may decide to

fulfill the request or to refuse it. In line 5, after sending the message

labeled refuse to the initiator, the broker sends a message

also to the participants in the role set Subagents, communicating

that there will not be any subsequent interaction. As we will see

when describing the projection of global to local types, this message

is important since the Subagents (which were not involved in the

initial communication of the choice) have to know whether they

will be engaged in the protocol or not. In the branch starting at line

7 and ending at line 35, after the message sent from the broker to

the initiator, the broker sends a message to all the participants

in the role set Subagents asking whether they are available to do

the task (second message in line 7). After this, we find the map

construct, whichmeans that every agent in the role set Subagents

has to complete the sub-protocol specified at lines 9–13. That is,

the broker waits for a message sent by the agent whose label can

either be notPossible, saying that it is not available, followed

by the message that communicates that it exits the protocol, or

canDo, saying that it is willing to continue the interaction. From

now on, the subsequent communications between the broker and

the role set Subagents will not involve the agents that quit the

protocol. After execution of the subprotocol, the choice starting

at line 15 begins by informing the initiator whether there are

agents willing to execute the task or not. In the former case, the

initiator is first informed that some agents are willing to do the

task, and then for each one of these agents, map at lines 19–30,

there is a recursive interaction: it starts with the broker sending

to each agent a message labeled sendMore and containing the

data that need to be processed; then the broker waits from each

agent either the processed data or a message that says that all

data have been sent (label noMoreData), or an error message

followed by a message informing that the agent leaves the role

set. After all the agents have communicated either that they have

transferred all data or that they quit, the protocol ends with the

broker either sending the results or communicating failure to

the initiator.
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2.2 Local/session types

The local/session types are the view of a protocol from the

perspective of each participant.

Definition 2.2 (Local/Session types). Local protocol declarations

specify the participants and the role sets involved in the protocol

from the point of view of a participant or role set and the associated

local/session type.

local protocol name at Z(p; 〈R, q〉) = T

where T is defined by:

T : : = Q !{mi〈S
i
〉.Ti}i∈I Choice of outputs

| p?{mi〈S
i
〉.Ti}i∈I Choice of inputs

| µX.T | X Recursion and Variable

| End End of protocol

| map x :〈R, q〉 T1;T2 Sub-protocol on role sets

| q!Quit .End | x ?Quit .End Request/Accept exit from

the role set

where I is a finite non-empty index set andmh 6= mk for h 6= k.

When |I| = 1 we drop the brackets and write Q!m〈S〉.T and

r?m〈S〉.T for short.

For local types, we have the standard constructs: choice of outputs

(sending a message with label within a finite set of labels) also called

internal choices, choice of inputs (receiving a message with a label as

before) also called external choices, and guarded recursion. As for

global types the receiver of a send can be either a single participant

or a role set. Then we have the map construct and the request for

and acceptance of the exit from the interaction. The map construct

can only occur in the local type of the coordinator of a role set and

similar restrictions apply for the request and acceptance of the Quit

message. The first can only occur in a participant in a role set and

the second in a coordinator. These restrictions are enforced by the

projection. Note that, as for global types, only the body of a map is

followed by ; .

Listings 2–4 contain the local types of the broker, the

initiator, and the role set participants, corresponding to the

global type of Listing 1. Again, we use the Java-like syntax with the

choice construct specifying, as for the global types, the leader of

the choice. Branches of internal choices will start with a message to

another participant (the labels of the messages should be different

in different branches), and external choices will start with amessage

from the leader. These types are obtained as projections from the

global type of Listing 1.

2.3 Projection of global types onto
session/local types

Projection is the main tool to ensure that the protocol described

by the global type can be implemented by a set of participants with

their associated processes.

Assuming Z to be either a participant or a role set, the projection

of a global type G on Z, dubbed G ↾ Z , is roughly obtained by

1 local protocol myBrokering at role broker(
role initiator, roleset Subagents:broker)

2 {
3 proxy(string) from initiator.
4 choice at broker{
5 refuse() to initiator.stop() to Subagents

.End
6 } or {
7 agree() to initiator.findAgent(string) to

Subagents.
8 map role agent:<Subagents,broker>{
9 choice at Subagents{
10 notPossible() from agent.QUIT() from

agent.End
11 } or {
12 canDo() from agent.End
13 }

14 } ;

15 choice at broker{
16 failNoMatch() to initiator.stop() to

Subagents.End
17 } or {
18 foundMatches() to initiator.continue()

to Subagents.
19 map role agent:<Subagents,broker>{
20 rec COLLDATI: {
21 sendMore() to agent.
22 choice at Subagents{
23 addData(string) from agent.loop

COLLDATI
24 } or {
25 noMoreData() from agent.End
26 } or {
27 someError() from agent.QUIT()

from agent.End
28 }
29 }

30 } ;

31 choice at broker{
32 replyFromSubagents(string) to

initiator.End
33 } or {
34 failBrokering() to initiator.End
35 }}}}

Listing 2. Local type for broker.

erasing Z from the communications of G. The formal definition

of projection is given in Formal Definition of Projection. Here we

show it on our example.

The projection of the communication p → Qm〈S〉.G on the

sender p is Q!m〈S〉.G↾ p and on the receiver Q is p?m〈S〉.G↾Q .

Moreover, the projection on a participant Z which is neither p nor

Q is just G ↾ Z . E.g., line 3 of Listing 1 is projected on the broker

and the initiator, producing line 3 of Listings 2, 3 respectively.

Looking instead at the Subagents in Listing 4, the local type starts

with the projection of line 4 of the global type.

The projection of a choice p → Q{mi〈S
i
〉.Gi}i∈I on a

participant is a combination of the projections of its branches

on the participant. So if we project on the sender, we combine

{Q!mi〈S
i
〉.Gi ↾ p }i∈I to form an internal choice; on the receiver,

we combine {p?mi〈S
i
〉.Gi ↾Q }i∈I to form an external choice. In
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1 local protocol myBrokering at role initiator(
role broker)

2 {
3 proxy(string) to broker.
4 choice at broker{
5 refuse() from broker.End
6 } or {
7 agree() from broker.
8 choice at broker{
9 failNoMatch() from broker.End
10 } or {
11 foundMatches() from broker.
12 choice at broker{
13 replyFromSubagents(string) from broker.

End
14 } or {
15 failBrokering() from broker.End
16 }}}}

Listing 3. Local type for initiator.

1 local protocol myBrokering at roleset
Subagents:broker(role broker) {

2 choice at broker{
3 stop() from broker.End
4 } or {
5 findAgent(string) from broker.
6 choice at Subagents{
7 notPossible() to broker.QUIT() to

broker.End
8 } or {
9 canDo() to broker.
10 choice at broker{
11 stop() from broker.End
12 } or {
13 continue() from broker.
14 rec COLLDATI: {
15 sendMore() from broker.
16 choice at Subagents{
17 addData(string) to broker.loop

COLLDATI
18 } or {
19 noMoreData() to broker.
20 } or {
21 someError() to broker.QUIT() to

broker.End
22 }
23 }}}}}

Listing 4. Local type for Subagents.

our Java-like syntax, the branches of a choice have to start with

a communication from the leader of the choice, say q, to a Z.

So projecting on the leader of the choice, we obtain a correct

internal choice (branches starting with a send to Z), and projecting

on the receiver, we obtain an external choice (branches starting

with a receive from q). For example, the initial choice, line 4, of

Listing 1, is projected on the broker, producing the choice starting

at line 4 of Listing 2, where the branches start at lines 5 and 7

with a message sent to the initiator. The projection on the

initiator starts at line 4 of Listing 3, with branches at lines 5

and 7, with an initial receive from broker. But what about the

participants in the role set of the Subagents, and in general,

on participants different from the sender and the receiver of the

communication? Assume the participant is Z; we should combine

the set {Gi ↾ Z }i∈I . What we do is we combine the projections

of the branches with a merge operation, which is successful if

either all the local types in the set are equal or they all start

with the receive of a message with different labels from the same

sender so that we can combine them and produce an external

choice. Intuitively, this means that either a participant which is

not involved in the first communication of a choice does the same

actions independently from the branch chosen, or it needs to be

informed first on which branch was selected. Looking again at lines

5 and 7 of Listing 1, we can see that the second communication

(in both lines) is a communication from broker to Subagents

. The merge produces the external choice starting at line 3 of

Listing 4.

Projection of recursion, µX.G, on a participant Z involved in

some communication in G is µX.(G ↾ Z ), where the projection of

the recursion variable is simply X, so that the local type is in turn a

recursive type. When Z is not involved in any communication in G,

the projection is End. Let us look at the recursion construct at lines

20–29 of Listing 1, which is iterating the request from the broker

to the Subagents for more data until the agent does not have any

more data to send or decides to quit. The projection on the broker

is at lines 20–29 of Listing 2, and the one on Subagents is at lines

15–22 of Listing 4, whereas there is no recursive construct in the

projection on the initiator. Projection of a map x :〈R, q〉 G1;G2

produces map x :〈R, q〉 (G1 ↾ q ); (G2 ↾ q ) when projecting on

the coordinator of the role set. That is, G2 ↾ q will be executed

when the execution of sub-protocol G1 ↾ q with all the members

of Subagents ends, with either Quit or End. Consider the map
constructs, lines 8–14 and 19–30, of Listing 1. The sub-protocols

end with either QUIT, the second communications of lines 10 and

27, or End at lines 12 and 25. The projection of these map on the

broker is at the same lines in Listing 2, where the projection of

QUIT is a receive of amessage labeled QUIT from a participant of the

role set Subagents, followed by End. The projection of map on all

the other participants Z produces the projection of G1 ↾Z in which

End is substituted with G2 ↾Z , and if Z = x, i.e. a member of r, the

projection of Quit is q!Quit .End. That is, it is the responsibility

of the coordinator to wait for the completion, denoted by the use

of semicolon “;”, of the sub-protocol on all the participants of the

role set R. The projection of the first map, lines 8–14, of Listing 1

on the Subagents starts at line 7 of Listing 4 with the projection

of the choice (body of the map). We can see that the branch

starting with sending to broker the message labeled notPossible

() after sending the message labeled QUIT ends the whole protocol.

Instead the branch starting with sending themessage labeled canDo

() follows with the projection of the global type after “;” on

Subagents. Similarly for the second map. Here the projection on

Subagents starts at line 15 with the rec construct. In this case, also

the branch starting with sending noMoreData() to the broker

(line 20 of Listing 4) ends the protocol, since the last choice of the

global protocol (lines 31–35) does not involve the Subagents.

Definition 2.3. A global type is well-formed if the projection is

defined for all the participants and role sets.
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Consider removing the communication stop()from broker

to Subagents from line 5 of Listing 1. The projection of this

branch of the choice on Subagents would be End. Indeed, the

protocol should end with the broker sending to the initiator

the message labeled failNoMatch(). On the contrary, in the other

branch, i.e., if the broker had sent the message labeled agree

to the initiator, the Subagents should do the interaction

prescribed by the protocol. But how could Subagents know

whether they have to leave the protocol or wait for the message

labeled findAgent(...)? The previously described merge in this

case would fail, since on one of the branches the projection is End

and on the other is a receiver of the message labeled findAgent

(...) from the broker. So the projection would not be defined.

Consider now the other choice at lines 22–29 of Listing 1. Here the

initiator is neither the leader of the choice nor does it receive the

first message. In this case, however, the initiator is not involved

in any interaction in the branches of the choice, so its projection

would be End in all branches. If we look at the projection on the

initiator, this choice, correctly, does not appear.

2.4 Session types semantics

The semantics of session types is given as a labeled reduction

on configurations consisting of the participants associated with the

session type that describes their protocol. Since communication

is asynchronous, there can be messages that were sent from a

participant to another that have not been read yet. To record these

messages, each participant, p, has a queue containing the messages

received but not yet read. A triple 〈q,m, S〉 denotes a message sent

by participant q, labeled m and carrying data of type S. Queues µ

are defined by:

µ : : = ∅ | 〈q,m, S〉 · µ

The order of messages in the queue is the order in which they

will be read. Order matters only between messages with the same

sender, so we consider message queues modulo the following

structural equivalence:

〈q,m, S〉 · 〈r,m′, S
′
〉 ·M′ ≡ 〈r,m′, S

′
〉 · 〈q,m, S〉 ·M′if p 6= r

The two equivalent queues 〈q,m, S〉 · 〈r,m′, S
′
〉 ≡ 〈r,m′, S

′
〉 ·

〈q,m, S〉 represent a situation in which both participants q
and r sent a message to p, and p has not yet read these

messages. This situation may arise in a multiparty session with

asynchronous communication.

The label of the reduction, α, records the interaction that

happens during the reduction:

α : : = p!q.m | q?p.m

We have the asynchronous send of a message with labelm from

participant p to participant q and the actual reading by participant

q of the message labeledm sent by participant p.
A configuration, N, is the parallel composition of participants,

which may be simple participants or role coordinators.

N : : = p[[µ,T ]] | p[[µ,R,T ]] | N ‖ N configuration

T : : = ... | map(T1 . . . Tn);T (extended) types

In case the participant is a coordinator, in addition to the

queue of messages, it also contains the list of the names of the

participants in the role set, R. Moreover, to trace the execution

of the sub-protocols in a map, we extend the syntax of types by

adding a map context that records the progress in the execution

of the sub-protocols of the participants of a role set. We assume

the standard laws for parallel composition, stating that ‖ is

associative, commutative, and has neutral elements p[[ ∅,End ]] or

p[[ ∅,R,End ]]. These laws give rise to the structural congruence on

configurations, which we assume when writing the reduction rules.

In Figure 2 we present the rules of the semantics of session

types. In the top part of the figure, we define a precongruence

introducing and removing the map context, while the reduction

rules describe the communications taking place. In writing the

rules, we use _ for elements of the configuration whose value

does not affect the reduction. For example, consider Rule (SND),

p[[ _, q!{mi〈S
i
〉.Ti}i∈I ]] means that the rule can be applied to a

participant p with any queue and also that p could be a coordinator

or any other participant. Similarly, q[[µ, _T ]] means that the

participant could be a coordinator or any other participant. Here,

the queue is referred to since on the right-hand side of the reduction

we add a message to it.

The precongruence Rule (MAP-INIT) transforms the map

construct in a map context by instantiating the type of the sub-

protocol for all the participants in the role set. Note that, since

participant variables may only occur in a map construct, this rule

ensures that there will be no variables as senders or receivers

of communications.

Rule (MAP-END), removes the map context when all the

participants in the role set have terminated the execution of

the sub-protocol.

Finally, we can unroll a recursive type, Rule (REC), by

substituting the occurrences of the recursion variable with the

type itself.

With Rule (SND), the participant p, after sending one of the

messages with a label in {mi}i∈I to q, continues with the type

corresponding to the selected label. Sending means inserting at the

end of the queue of q the message specifying that its sender is p and

the sort of the payload.

In Rule (SND-RS), a coordinator sends a message to all the

participants of the role set it coordinates. Note that here, the

sender must be a coordinator, i.e., must have the field with the

list of the participants in the role set, and the receivers are the

simple participants in its listR. A participant q removes a message

from its queue, provided that its associated process is an external

choice having a message with a label and sorts matching the one

in the queue. The message is then removed from the queue, and

the process continues with the selected type. The congruence on

the queue may be needed to bring to the front the first message

from p.
The Rules (SND-QUIT) and (RCV-QUIT) are similar to send and

receive except for the fact that send necessarily goes from a

participant to a coordinator and receive can only be found in a

coordinator. The existence of the projection of the global type

ensures these restrictions.

Rule (MAP) executes the reduction in one of the role

set participants, and Rule (PRE-CONG) closes the reduction by

the precongruence.
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(MAP-INIT) q[[ _,R,map x :〈R,q〉 T;T′ ]] ⊲ q[[ _,R,map(T1 . . . Tn);T′ ]]
R = p1 . . . pn n ≥ 1

Ti = T[pi/x]

(MAP-END) q[[ _,R,map(End . . . End);T′ ]] ⊲ q[[ _,R,T′ ]]

(REC) p[[ _,µX.T ]] ⊲ p[[ _,T[µX.T/X] ]]

(SND) p[[ _,q!{mi〈S
i
〉.Ti}i∈I ]] ‖ q[[µ, _T ]] ‖ N

p!q.mh
−−−−→ p[[ _,Th ]] ‖ q[[µ · 〈p,mh, S

h
〉, _T ]] ‖ N h ∈ I

(SND-RS) q[[ _,R,R!{mi〈S
i
〉.Ti}i∈I ]] ‖p∈R p[[µp,Tp ]] ‖ N

p!R.mh
−−−−→

q[[ _,R,Th ]] ‖p∈R p[[µp · 〈p,mh, S
h
〉,Tp ]] ‖ N h ∈ I

(RCV) q[[ 〈p,mh, S
h
〉 · µ, _ p?{mi〈S

i
〉.Ti}i∈I ]] ‖ N

q?p.mh
−−−−→ q[[µ, _Th ]] ‖ N h ∈ I

(SND-QUIT) p[[ _,q!Quit .End ]] ‖ q[[µ,m,T ]] ‖ N
p!q.Quit
−−−−−→ p[[ _,End ]] ‖ q[[µ · 〈p,Quit , ǫ〉,R,T ]] ‖ N

(RCV-QUIT) q[[ 〈p,Quit , ǫ〉 · µ,R,T ]] ‖ N
q?p.Quit
−−−−−→ q[[µ,R \ {p},T ]] ‖ N

(MAP)
q[[µ,R,Ti ]] ‖ N

α
−→ q[[µ′,R′,T′

i ]] ‖ N
′

q[[µ,R,map(T1 . . . Ti . . . Tn);T′ ]] ‖ N
α
−→ q[[µ′,R′,map(T1 . . . T′

i . . . Tn);T′ ]] ‖ N′
1 ≤ i ≤ n

(PRE-CONG)
q[[ _,T′ ]] ‖ N

α
−→ N

′

q[[ _,T ]] ‖ N
α
−→ N′

q[[ _,T ]] ⊲ q[[ _,T′ ]]

FIGURE 2

Precongruence and reduction rules for asynchronous sessions with role sets.

2.5 Limitations of our modeling

Ourmodeling provides a faithful representation of the principal

FIPA agent interaction protocols described at http://www.fipa.

org/repository, where the specifications are given in a semi-

formal manner through UML sequence diagrams complemented

by textual annotations. Nevertheless, when considered in the

broader setting of interaction protocols, our approach does not fully

account for their dynamic evolution. Specifically, we impose the

following restrictions:

• each coordinator is associated with exactly one role,

• agents are statically bound to their roles and may only leave

them, in which case their execution terminates.

In principle, these restrictions can be relaxed following

the approach of Deniélou and Yoshida (2011), which allows

participants to dynamically join and leave roles. However, in order

to guarantee input-lock freedom and to prevent orphan messages,

all communications must be routed through a centralized registry

responsible for maintaining the association between participants

and roles.We contend that this solution is not fully aligned with the

agent-oriented paradigm and is likely to introduce a performance

bottleneck. This perspective is supported by the fact that the line

of work initiated in Deniélou and Yoshida (2011) has not been

subsequently pursued, whereas later extensions of global types

accommodating role sets—reviewed in the introduction—tend to

converge toward solutions closer to ours.

By contrast, the restriction on the map construct, which

disallows nesting, is of a purely technical nature. The definitions of

global and local types, their projections, and the dynamic semantics

presented in Figure 2 remain unaffected. The restriction becomes

relevant only in the implementation of the agents corresponding

to local types. As discussed in Section 4, the coordinator agent

maintains only minimal information about the role set participants:

their addresses and, in the case of a map construct, the number

of participants that have not yet completed their interaction. The

support of nested maps would require maintaining a tree of

pending interactions. While feasible, such an extension would also

necessitate a substantial generalization of the correctness proof.

Note that an alternative approach to alleviate this limitation, as

proposed in Viering et al. (2021), consists in structuring global

types into hierarchical parent-child subtypes, whose maintenance

is delegated to the running system. Such an approach, however,

presupposes the existence of auxiliary agents—external to the

protocol participants—entrusted with tracking the refinement and

evolution of subtypes. This reliance on meta-level supervisory

entities introduces an architectural overhead that is at odds with

the autonomy and locality principles underpinning agent-based

systems.

3 Featherweight Jadescript

We introduce the subset of Jadescript, FJS, that is relevant

to our translation. In defining FJS we adopt the standard

agent terminology, calling agents what in the session type world

are participants.

An FJS program is a sequence of agent and behavior

declarations, Ag and Bh, defined by

Ag : : = agent a [property rs,cnt] on create P

agent declaration

Bd : : = id(x) = Bh behaviour declaration

Bh : : = 〈P, ai?{mi(x
i).Pi}i∈I〉 behaviour handlers
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P : : = 0 | a!m(e).P | rs!m(e).P | id(e).P | st.P process

| if e1:P1 elif e2:P2 · · ·else Pn (n ≥ 2)

v : : = true | false | n | · · · value

e : : = v | x | e op e | · · · general expression

| rs[i] access to role set

st : : = rmv(rs, a) | init(cnt) | cnt-- statement

where I is non-empty, and for all h, k ∈ I, h 6= k, either mh 6= mk

or ah 6= ak. An agent has a name and a process P which is executed

when the agent is created. For agents who are coordinators, we also

have the fields, rs and cnt, denoting the set of the agents of the

role set it coordinates and a counter used to iterate on them. We

use a, b, c for agent names.

Behaviors specify how an agent reacts to events. We consider

the internal event raised by the scheduling of the behavior for

execution, and the external events raised by the reception of messages

from other agents. In particular, P is the process executed when

the behavior is selected for execution and ai?{mi(x
i).Pi}i∈I , where

I is non-empty, and for all h, k ∈ I, h 6= k, either mh 6= mk or

ah 6= ak, says that if m is received from ai, then the process Pi is

executed by substituting the variables xi with the values specified

by the received message.

The process 0 terminates a behavior, rs!m(e).P (or a!m(e).P)

is a send of the message m to all the agents of the role set rs

(or to the agent a) followed by the execution of a P, and id(e).P

is the activation of the behavior id followed by the execution of

P. Activation of a behavior does not start the execution of the

behavior but only adds it to the list of active behaviors of an

agent. The process st.P executes the statement st followed by P.

The statement rmv(rs, a) removes the agent a from the role set

list (when a sends the message Quit to its coordinator). The other

two statements are used in the translation of the map construct

to wait for the end of the execution of the sub-protocol of all the

agents in the role set. The conditional construct if-elif-else

is an internal choice among the processes Pi, 1 ≤ i ≤ n. The

process executed is Pj, where j is such that the guard ej evaluates

to true and all ei, i < j, evaluate to false. We assume an

expression language including booleans and integers and some

basic operations.

In FJS we do not include the ontology, i.e., the classification

of the content of messages in the considered domain, present in

Jadescript and, as customary, in agent languages. The ontology is,

however, considered in our implementation, which assumes that it

is provided with the input global type.

3.1 Operational semantics of FJS

The operational semantics of FJS is specified, as for session

types, by a labeled reduction on configurations in Figure 3.

Configurations, χ , are defined by

χ : : = A1 ‖ · · · ‖ An configuration

A : : = a[[mb, [(Rs, cnt), ]P,Bh ]] runtime agent

mb : : = 〈a,m, v〉 mailbox

A configuration is the parallel composition of runtime agents.

An agent is identified by a name, e.g. a, and to it the following are

associated: a mailbox mb, the running process P, and a multiset

of active behaviors, Bh. Mailboxes, like queues for participants

of Section 2.4, contain the messages specifying the sender of the

message, its label, and, in this case, the values of the payload. Also

here, messages can be rearranged according to the equivalence

that allows one to swap messages coming from different agents,

so that only the order of messages coming from the same agent

is relevant. As for session types, we assume the standard laws for

parallel composition, stating that ‖ is associative, commutative, and

has a neutral element a[[ ∅,0, ∅ ]].

The labels of the reduction, ℓ, as for session types, record the

interaction that happens during the reduction:

ℓ : : = a!b.m | a?b.m | τ

and in addition, we have the label τ , which is used for a reduction

that does not involve an interaction between agents.

The labels of the reductions and their meanings are the ones of

Section 2.4.

The rules of the labeled reductions are given in Figure 3, where

with e ⇓ v we indicate that the evaluation of e produces the value

v. Similarly for sequences of expressions, e ⇓ v. We use the same

convention about the use of _ as in Section 2.4.

Rule (SND-MSG) sends one of the messages to an agent, by adding

it at the end of the receiver’s mailbox and then continues the

execution with the following process.

In Rule (SND-MSG-RS) the message is put in the mailbox of all the

agents in the list Rs.

Rule (ACTV) adds a behavior to the set of active behaviors of

the agent. The behavior must be one of the defined ones. The

formal parameters are substituted by the values resulting from the

evaluation of the argument of the behavior.

Rule (STAT) executes a statement before continuing with the

following process. The statement modifies either the list of agents

in the role set, if the statement asks to remove an agent from it,

or the counter. The counter is used in the translation of the map

construct present in the type of a coordinator to count the number

of agents in the role set that have completed the sub-protocol body

of the map. Its initialization is done with the statement init(cnt)

that sets the field to the current length of the list Rs.

The conditional construct executes the first process whose

guard is true, Rules (IF-THEN) and (IF-CONT) , or the one in the else

branch if none of them was true, Rule (IF-ELSE). The two rules that

follow are executed when the agent is idle.

Rule (EXEC) schedules for execution a behavior from the set of

active behaviors and starts executing the process in its handler

for execution.

Rule (RCV) specifies how the event of receiving a message

is handled. If the agent is not running any process, and has

already executed its execution handler, in case there is a message

in the mailbox with sender, message label and number of

parameters matching one of the handlers, it removes the message

from the mailbox and executes the process associated with

its handler after substituting the variables with the payload of

the message.

We assume that behaviors with 0 as the handler for execution

and empty message handlers are removed from the list of

active behaviors.
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(SND-MSG) a[[ _, b!m(e).P,Bh ]] ‖ b[[mb, _P′,Bh
′
]] ‖ χ

a!b.m
−−−→

a[[ _, P,Bh ]] ‖ b[[mb 〈a,m, v〉, _P′,Bh
′
]] ‖ χ e ⇓ v

(SND-MSG-RS) a[[ _, (Rs, cnt),rs!m(e).P,Bh ]] ‖b∈Rs b[[mbb, Pb,Bhb ]] ‖ χ
a!rs.m
−−−−→

a[[ _, (Rs, cnt), P,Bh ]] ‖b∈Rs b[[mbb 〈a,m, v〉, Pb,Bhb ]] ‖ χ e ⇓ v

(ACTV) a[[ _, id(e).P,Bh ]] ‖ χ
τ
−→ a[[ _, P,BhBh′[v/x] ]] ‖ χ id(x) = Bh′ ∧ e ⇓ v

(STAT) a[[ _, (Rs, cnt), st.P,Bh ]] ‖ χ
τ
−→ a[[ _, (Rs′, cnt′), P,BhBh′[v/x] ]] ‖ χ

(Rs′, cnt′) =















(Rs, len(Rs)) st = init(cnt)

(Rs, cnt− 1) st = cnt--

(Rs \ b, cnt) st = rmv(rs, b)

(IF-THEN) a[[ _,if e1:P1 · · · ,Bh ]] ‖ χ
τ
−→ a[[ _, P1,Bh ]] ‖ χ e1 ⇓ true

(IF-CNT) a[[ _,if e1:P1 elif e2:P2 · · ·,Bh ]] ‖ χ
τ
−→ a[[ _,if e2:P2 · · · ,Bh ]] ‖ χ e1 ⇓ false

(IF-ELSE) a[[ _,if e:P else P′,Bh ]] ‖ χ
τ
−→ a[[ _, P′,Bh ]] ‖ χ e ⇓ false

(EXC) a[[ _,0,Bh 〈P, ai?{mi(x
i).Pi}i∈I〉 ]] ‖ χ

τ
−→ a[[ _, P,Bh 〈0, ai?{mi(x

i).Pi}i∈I〉 ]] ‖ χ P 6= 0

(RCV) a[[ 〈aj,mj, v〉mb, _0,Bh 〈0, ai?{mi(x
i).Pi}i∈I〉 ]]‖χ

a?aj .mj
−−−−→ a[[mb, _Pj[v/xj],Bh ]]‖χ j ∈ I

FIGURE 3

Operational semantics of FJS.

4 Translation from local types to FJS

In this section, we present the formalization of the translation

between session types and FJS agents and its correctness.

The syntax-directed translation, presented in Figure 4, takes as

input a session type and an association between recursion variables

and names of behaviors, and returns an FJS agent and a list

of definitions of behaviors. Moreover, the translation is indexed

by a process whose use will be made clear when looking at the

translation of the map construct.

The syntax-directed rules of the translation are given in

Figure 4. We assume a correspondence between the identifiers used

as senders and receivers of messages in the session types and the

ones in FJS given by

([p]) = ap ([R]) = rs ([x]) = x

As expected, a participant and a role set denote the

corresponding agent and role set. The variable of the map construct

is left unchanged, since it will be substituted by the translation of

map with the reference to an agent in the role set.

An internal choice, Rule (TR-INT-CH), is translated into the

activation of a behavior, id(), and then stops. The behavior id()

contains only the process executed when the behavior is scheduled

for execution. This process is an FJS conditional construct that,

under some conditions, ci, selects the sending of the message with

labelmi to ([Q]), followed by the process which is the translation of

the type in the corresponding branch. Here, e and c are placeholders

for expressions and conditions, respectively, that have to be filled

when instantiating the translation to produce a Jadescript program.

The behaviors generated by the translation of the branches of the

choice are collected together, and the newly defined behavior is

added. Note that its name is fresh so that it does not collide with

the ones in Bd
i
for i ∈ I.

Rule (TR-EXT-CH) produces a process that activates a behavior,

id(), and then ends its execution. The behavior id() has only

incoming message handlers. In particular, the handlers on

reception of one of the messages with labels mi from
([

p
])

will

execute the process corresponding to the selected branch. So, once

scheduled for execution, id() will wait until one of these messages

is present in its mailbox. The behaviors generated are as in the

previous case.

The following two rules translate a recursive interaction. In

Rule (TR-REC), we define the behavior id(), which contains the process

P executed when the behavior is scheduled for execution. The code

of the process P is obtained by the translation of the body of the

type T. The process associated with the recursion variable activates

id() and then stops. So it does exactly what the translation of µX.T
does. Rule (TR-VAR) returns the process associated with the recursion

variable that as we can see from Rule (TR-REC), coincides with the

translation of µX.T.
The translation of the map construct is the most complex

one because we have to produce a process that activates the

execution of the sub-protocol corresponding to the body of the

map on all the agents in the role set, and then controls the

end of their executions before continuing with the execution of

the process P′ translating the type after the semicolon. For each

agent in the role set we define a behavior idi() by replacing the

variable x with the i-th agent name in the role set in the process

P obtained from the translation of the sub-protocol T. Also, in
the behaviors obtained from this translation, the variable x is
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(TR-INT-CH)
([X̄ 7→ P̄, Ti])

P = 〈P′i ,Bd
i
〉 P′′i = ([Q])!mi(e

i) · P′i i ∈ I id fresh

([X̄ 7→ P̄, Q!{mi〈S̄i〉 · Ti}i∈I])P = 〈id() · 0,
⋃

i∈I Bd
i
∪ {id() = 〈P′, ∅〉}〉

where

P′ = if c1 : P
′′
1 elif c2 : P

′′
2 · · · else P

′′
n

(TR-EXT-CH)
(X 7→ P, Ti)

P = 〈P′i ,Bd
e〉 i ∈ I id fresh

(X̄ 7→ P̄, p?{mi〈S̄i〉 · Ti}i∈I |)P
′
= 〈id() · 0,

⋃

i∈I Bd
i
∪ {id() = 〈0, ([p])?{mi〈x̄i〉 · P

′
i}i∈I〉}〉

(TR-REC)
(X̄ 7→ P̄X 7→ P′′,T)P = 〈P′,Bd〉 P′′ = id().0 id fresh

(X̄ 7→ P̄,µX.T)P = 〈id().0,Bd ∪ {id() = 〈P′, ∅〉}〉

(TR-VAR)
X 7→ P ∈ X̄ 7→ P̄

(X̄ 7→ P̄,X)P = 〈P, ∅〉

(TR-MAP)
(∅,T)Pe = 〈P,Bd〉 (X̄ 7→ P̄, T′)0 = 〈P′,Bd′〉

(X̄ 7→ P̄, map x :〈R, q〉T;T′)0 = 〈id().0,
⋃

1≤i≤n Bd
i
∪ Bd

′
∪ {id′() = 〈P′, ∅〉, id() = Bhb}〉

where

Pe = cnt–.if cnt==0 : id′().0 else 0 Bhb = 〈init(cnt).
∑

1<i<n idi().0, ∅〉

Bd
i
= Bd[rs[i]/x] ∪ {idi() = 〈P[rs[i]/x], ∅〉}

(TR-END)(X̄ 7→ P̄, End )P = 〈P, ∅〉

(TR-QUIT)(X̄ 7→ P̄, p ? Quit .End) P = 〈id().0, {id() = 〈0, (p) ? Quit .rmv(rs, ([p])). P〉}〉.

FIGURE 4

Translation of a session type into a Jadescript agent.

replaced. The process returned from the translation activates all

the defined behaviors. We use the summation just to indicate the

sequence of activations. To control the end of execution, we also

initialize the coordinator variable cnt to the number of agents

in the role set. The process that will be executed at the end

of the sub-protocol, Pe, decrements cnt and, if the counter is

zero, then activates the execution of the behavior whose handler

executes the process P′ translating the type after the semicolon. To

trigger the execution of the process Pe at the end of the execution

of the sub-protocol T, we decorate its translation with it. Note

that we expect the translation of map and the one of the type

following the semicolon to be decorated with 0, since we do not

allow nested map. As we can see from Rule (TR-END), occurrences

of End inside a map will be translated with Pe, producing the

required result.

Finally, the translation of the acceptance of the message Quit ,
Rule (TR-QUIT), activates a behavior with a handler for the incoming

message Quit that removes the agent from the role set and

then executes the process associated with the end of the map

(as for Rule (TR-END)).

Let Lp be the local protocol

local protocol name at Z(p; 〈R, q〉) = T
and (∅,T)0 = 〈P,Bd〉 . The translation of Lp, dubbed

([

Lp
])

, is the

agent declaration

agent ([Z]) [property rs,cnt] on create P Bd

The process of the agent that will be executed at the creation

of the agent (in the initial configuration) is the translation of

the type T. The behaviors of the agent are the ones produced

by the translation, and the fields rs and cnt are present if the

participant/agent is a coordinator.

Definition 4.1. LetRi be the set of initial participants of the role set

Ri. The initial configurations of local protocols, It(_), and the ones

of their (agent) translations, Ia(_), are defined by:

It(local protocol name at Z(p; 〈R, q〉) = T) =














p[[ ∅,T ]] if Z = p ∈ p

qi[[ ∅,Ri,T ]] if Z = qi and 〈qi,Ri〉 ∈ 〈q,R〉

‖r∈Ri
r[[ ∅,T ]] if Z = Ri and 〈qi,Ri〉 ∈ 〈q,R〉

and

Ia(agent ([Z]) [property rs,cnt] on create P) =














([p]) [[ ∅, P, ∅ ]] if Z = p ∈ p

([qi]) [[ ∅, (Rsi, 0), P, ∅ ]] if Z = qi ∈ q

‖r∈Ri
([r]) [[ ∅, P, ∅ ]] if Z = Ri

where Rsi = {([p]) | p ∈ Ri}

We now prove that the agent system obtained by translating

the session types that are projections of a global type correctly

executes the global protocol. We show session fidelity, i.e., the
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communications of the agents match the ones of the session types

projection of the global type. For agents, the labels of the reductions

show, in addition to the interactions between agents, also the

internal actions of agents. So we define a reduction that filters

these “silent” actions and only shows the interactions between

agents. We then use this reduction to match the one of the

session types.

The reduction on agent configurations χ
ℓ
H⇒ χ ′, where ℓ =

a†b.m and † =! or † =?, is defined by

χ
ℓ
H⇒χ ′ iff χ

τ
−→ χ1

τ
−→ · · ·

τ
−→ χn

ℓ
−→χ

That is, any number of silent reductions followed by one of the

actions (input or output).

Theorem 4.2 (Session Fidelity). Let Lp1,....,Lpn be the

projections of

global protocol name(p; 〈R, p〉) = G

on all its participants. Consider the initial configurations

N0 =‖1≤i≤n It(Lpi) and χ0 =‖1≤i≤n Ia(
([

Lpi
])

). For all n ∈ N,

1. χ0
ℓ1
H⇒ χ1

ℓ2
H⇒ · · ·

ℓn
H⇒ χn implies N0

α1
−→ N2

α2
−→ N2 · · ·

αn
−→

Nn

where if ℓi = a†b.m, then αi = p†q.m and a = ([p]) and

b = ([q])

2. Nn
p?q.m
−−−→ Nn+1 implies χn

([p])?([q]).m
HHHHHH⇒ χn+1 and

3. Nn
p!q.mh
−−−−→ Nn+1 implies χn

([p])!([q]).mk
HHHHHH⇒ χn+1 where mh,mk ∈

{mi}i∈I for some I.

Proof. The proof is by induction on n. For the proof, we

consider for the agents an extended agent configuration, in which

we add to each agent the set of behaviors defined by the

translations. As in Giannini et al. (2006) we define a relation,

Rel(N,A), between a type configuration and an extended agent

configuration that, loosely speaking, expresses the fact that the

agent configuration A implements the type configuration N.

We show that the initial configurations, N0 and A0, stand

in the relation, i.e., Rel(N0,A0) and that the relation is an

invariant maintained by input and output reductions. This yields

the result.

The theorem says that the interactions made by the agents

follow the protocol specified by the session types, Item 1, and vice

versa the interaction required by the protocol can be done by the

agents, Items 2 and 3. When a session type requires to do a send

chosen in a set mh ∈ {mi}i∈I , Item 3, then the corresponding

agent, ([p]), may send a different message,mk, to ([q]). However, this

message will be chosen in the same set. So from χn
([p])!([q]).mk
−−−−−−→ χn+1

and Item 1, by Rule (SND), we also get Nn
p!q.mk
−−−→ Nn+1. This is

correct since the type q!{mi〈S
i
〉.Ti}i∈I of participant p only requires

that the participant start by sending a message to q within the

set {mi}i∈I .

The Supplemental material contains the definition of the

relation Rel(N,A) and the proofs of the needed results.

FIGURE 5

Xtext application workflow.

5 The toolchain: from global types to
Jadescript agents

Jadescript is a scripting language designed to simplify the

development of JADE agents. The agent behavior is specified by

the definition of behaviors, which encapsulate their execution logic.

Each behavior can be either one-shot, meaning it is executed only

once, or cyclic, meaning it runs repeatedly until explicitly stopped.

The toolchain is implemented as an Xtext application that takes

a global type and automatically generates the corresponding local

types and FJS agents. Using Xtext, we defined the Domain-Specific

Language (DSL) for both global and local types, and we employed

its validation and generation modules to support the development

of the translator.

The workflow of the Xtext application is illustrated in Figure 5.

In the example shown, starting from the definition of the global

type for the brokering interaction protocol, a set of files (highlighted

in green) is generated. These files include the agent code, the

shared ontology, and a Java file to start the interaction. The user-

defined .jglobal global type is parsed to construct anAbstract Syntax

Tree (AST). Validation is then performed on the AST to enforce

properties that cannot be expressed syntactically, such as the correct

format of the first message in a choice, the scope of variables in

the map construct, and the proper use of role set identifiers. We

assume that the file containing the initial global type also specifies

the ontology, as this is required by Jadescript. From the AST, two

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1659785
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bergenti et al. 10.3389/fcomp.2025.1659785

additional files are generated: ontology.jade, the shared ontology

used by Jadescript agents for communication, and Start.java, a Java

script that simplifies launching the multi-agent system.

If validation of the global type is successful, its AST is projected

onto local types according to the rules in Definition Projection of

global types onto participants, with each local type written into a

separate file. This projection is implemented in the Xtext generation

module, using a mix of Xtend and Java code. Projection may fail,

since the merge operation, as defined in Yoshida and Gheri (2020),

is not always guaranteed to succeed.

The local type files are then parsed to build their ASTs,

followed by another validation phase. This additional validation

is important because we want our tool to also support local types

provided directly by the user, which are not necessarily generated

by projection and therefore may not be correct by construction.

If validation succeeds, the final FJS code is generated using Xtext’s

code generation tools.

The result is a collection of files that include the agents’ internal

code, their communication ontology, and the Java start file. At

this point, the application workflow is complete, and the developer

can proceed to integrate the logic and infrastructure required for

protocol execution.

The generated agents contain not only code derived from

their local protocol specifications but also additional initialization

steps not explicitly defined in the protocol. This initialization step

sets up variables that store the Agent Identifiers (AIDs) of other

agents, since an agent must know the AID of its peers in order to

communicate with them. For agents not in a role set, the AID can

be retrieved directly from their name, which is hard-coded during

code generation. For role sets, however, the number of agents is

not known at generation time, so a different strategy is required:

when an agent in a role set is created, it sends a Hello message

to its coordinator. Upon receiving the message, the coordinator

stores the agent’s AID in a list. The coordinator stops waiting for

additional agents after a predefined timeout. If the agent itself is a

coordinator, it also instantiates and initializes map-related variables

used to manage the map construct. This initialization code is

implemented as an on create behavior, which is not part of FJS,

whereas on activate has the same meaning in both frameworks.

In Jadescript, behaviors can be either one-shot or cyclic. A

one-shot behavior executes its on-execute handler once and then

checks its mailbox for a matching message. If such a message exists,

the corresponding handler is executed; otherwise, the behavior

is deactivated. Cyclic behaviors, by contrast, remain active after

executing their on-execute handler, continuously monitoring the

mailbox and attempting to match incoming messages to their

handlers. These behaviors must be explicitly deactivated. Because

message exchange is asynchronous, we cannot guarantee that a

mailbox already contains amessage when a behavior with amessage

handler is activated. To preserve the intended FJS semantics

described in Section 3.1, our implementation relies on cyclic

behaviors, explicitly deactivating them when the inactive process

is reached.

The repository https://github.com/LMetal/Jadescript contains

both the application implementation and the Eclipse plugin. A set

of examples–including global types, projected local types, and the

corresponding Jadescript agents generated by the translation–can

be found in the top-level Examples directory. The implemented

translation also performs some optimizations. For instance, it

avoids generating code that first defines a behavior and then

immediately activates it, which we included in the formal definition

only to maintain uniformity and simplify proofs.

6 Related work and conclusions

While session types have not traditionally been employed

within agent-oriented languages, their application in actor-based

languages has been explored for some time. This interest stems

from a key limitation of the actor model: it does not inherently

guarantee the correct sequencing of interactions among concurrent

processes. Consequently, ensuring proper coordination among

actors–especially when systems scale–remains a complex and

pressing challenge. Pioneering work by Mostrous and Vasconcelos

(2011) introduced a session typing system for a minimal subset

of Erlang, known as Featherweight Erlang. Their approach used

session-typed references (similar to channels) to uniquely identify

communication sessions, ensuring that processes adhered to the

specified protocol behavior. However, this framework lacked

tooling support for verifying Featherweight Erlang programs.

Subsequent research has shifted toward runtime verification of

actor interactions using MPSTs. Neykova and Yoshida (2017)

presented a framework that generates runtime monitors from

MPSTs. In their implementation, actors written in Python

communicate using the Advanced Message Queuing Protocol

(AMQP), thereby simulating actor-like behavior. In parallel, Fowler

(2016) proposed an Erlang-based adaptation of this monitoring

strategy. Both approaches make use of Scribble, a Java-based

toolchain for specifying global communication protocols. Scribble

enables the parsing, validation, and projection of local types

from global MPST definitions. Nevertheless, these systems do not

support static type checking to verify protocol conformance prior

to execution. Building on these foundations, Harvey et al. (2021)

introduced EnsembleS, an actor-oriented programming language

that integrates MPSTs natively. EnsembleS enables compile-time

verification of protocol adherence and supports safe, dynamic

adaptation, particularly in the face of actor failures and recoveries.

In Egidi et al. (2022), an Erlang implementation for multiparty

protocols using a reduced yet significant set of Erlang constructs

(FErlang), including constructs for delegation, was presented.

A tool-chain including projection from global types on session

types and a type checker for FErlang programs was implemented.

The implementation was done using the meta compiler JastAdd,

resulting in a system that could be easily extended to include new

syntactic constructs. More recently, Tabone and Francalanza (2021,

2022) added (binary) session types to Elixir, and Francalanza and

Tabone (2023) established a result of session fidelity between this

session type system and the runtime behavior of a client handler.

Beyond the Erlang ecosystem, session types have also been

applied to the Scala programming language. Scalas and Yoshida

(2016) encoded binary session types as Scala classes, utilizing the

compiler to enforce session fidelity, and then Scalas et al. (2019b,a)

advanced this line of research by incorporating session types into

Scala 3, employing dependent function types and model checking

techniques to achieve compile-time protocol verification. Burlò

et al. (2021) extended this approach by verifying one side of a
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communication protocol statically while using runtime monitors

for the other. Finally, Hähnle et al. (2020) extended the active object

language ABS— which uses futures for handling method results —

by incorporating session types and global protocols fromMPSTs to

define the sequence of method invocations across objects.

Our approach is different; instead of adding a session type

system to the language and then type checking the system, we

enforce the good properties of well-typed programs by translating

the protocol into a program, i.e., in our case a set of agent

definitions. By proving that our translation preserves the intended

semantics of the session types, we obtain a program that is correct

by construction. In the article, we focus on the typical interactions

present in the FIPA interaction protocols that involve the presence

of some participants and some groups of participants interacting

with a coordinator. To express these protocols, we defined an

extension of the standard global and session types of Honda et al.

(2008). In particular, we added the notion of “role sets”, inspired

by Cledou et al. (2022), and its “coordinator”, coupled with a

construct synchronizing the interaction of a coordinator with all

the participants in a role set. Moreover, a member of a role set may

decide to exit from the protocol by informing its coordinator. We

defined the projection of these new global types on the individual

participants/agents and on role sets, and then the translation of the

session types into Jadescript agents. We proved that the defined

translation preserves the semantics of the session types obtained as

projection from the global type. To this end, we defined a core agent

language FJS incorporating the features of Jadescript needed for the

translation with its operational semantics. We also implemented a

plugin for Eclipse, in Xtext, that provides an editor for global and

session types and the projection and translation.

This work is part of a larger research project within the Italian

project Typefull Language Adaptation for Dynamic, Interacting

and Evolving Systems (T-Ladies), one of whose goals is to

provide support for development/maintenance, automatic property

verification/enforcement, and bug detection of loosely connected,

distributed, possibly heterogeneous interacting systems.

As future work, we plan to make the implementation of the

translation more efficient. The current translation was defined to

support its proof of correctness, but some behaviors we define (and

then activate) can be avoided. Moreover, we are undertaking a

similar translation for Elixir, which is an actor language with a wider

distribution and a different audience than Jadescript.
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