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AIICN: a 7G multi-path
transmission based on
information-centric network
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Shanghai Donghai College, Shanghai, China

The 7G network refers to the seventh generation of mobile communication
standards, which will integrate satellites, airships, and base stations to achieve
data transmission with longer coverage. It can also be deeply integrated with
artificial intelligence, big data, and other technologies. Multi-path transmission
achieves bandwidth aggregation by establishing multiple paths between
the sender and the receiver, improving transmission reliability and data
accessibility. Therefore, it is of great significance to apply multi-path transmission
to 7G networks. However, traditional multi-path transmission technologies
(MPTCP/MPQUIC) cannot cope with the new features emerging in 7G networks,
such as path selection, low latency, and protocol incompatibility, which require
lower complexity. The Information-Centric Network (ICN) offers the advantages
of strong mobility and bandwidth efficiency and has been widely adopted in
integrated networks. Therefore, this study proposes an artificial intelligence
multi-path transmission mechanism based on the ICN and mathematically
models the entire transmission process as a mixed-integer linear programming
model to solve the problem of multi-path transmission path conflicts in 7G
networks (called AIICN). Experiments demonstrate that the proposed AIICN
multi-path transmission offers advantages of high throughput, low complexity,
and fast algorithm convergence, with a transmission throughput approximately
21% higher than that of traditional multi-path transmission. AIICN can be well
applied to 7G networks to achieve efficient multi-path transmission.
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1 Introduction

With the large-scale popularization of mobile communications, 7G is a further
upgrade and expansion of the current 5G and 6G networks (Chamola et al., 2025). Its
communication speed has also been significantly improved. In addition, the 7G network
has been more deeply integrated with technologies such as artificial intelligence and
blockchain. Besides communication, its core network can also self-learn and innovate
(Chamola et al., 2025). Therefore, some new features in the 7G network cannot be directly
applied to traditional MPTCP and MPQUIC protocols (Alkasassbeh et al., 2024). While
6G technology facilitates large-scale data transmission, it is not well-suited for use in
satellite networks. 7G networks use high-band technologies such as terahertz waves, and
their peak transmission rates can reach 36 Gbit/s, far exceeding 5G and 6G networks. They
can efficiently transmit huge data sets and model updates required by artificial intelligence
(Kaushik et al., 2024). The data transmission capacity of a 6G network can reach up to 100
Gbps, which can meet the requirements of blockchain and live applications but cannot be
effectively applied to artificial intelligence. However, the data transmission capacity of a 7G
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network can reach 300 Gbps, making it more meaningful to apply
artificial intelligence to multi-path transmission in a 7G network
(Chamola et al., 2025).

Multi-path transmission has been a part of people’s lives
for many years, as seen in the multi-path transmission of
Apple mobile phones, which offers advantages such as improved
reliability and throughput (Wei et al., 2025). The 7G network
comprises a satellite network and a terrestrial network, making
it highly suitable for implementing multi-path transmission,
as shown in Figure 1. Since the 7G network is a three-
dimensional network formed by integrating satellite networks,
terrestrial networks, and other technologies, it also presents
numerous challenges.

1. Poor transmission conditions. Due to the periodic orbit-
changing characteristics of satellites, the number of available
satellites for data transfer is limited, and the transmission link may
change due to variations in the satellite’s orbit.

Since the 7G network operates in a three-dimensional space
that encompasses both terrestrial and satellite networks, multiple
protocols coexist. The traditional multi-path mechanism cannot
cope well with transmission under multi-protocol fusion.

2. Low transmission intelligence, limited adaptability, and
high complexity. Since traditional multi-path transmission mainly
relies on ground networks, it has low intelligence and high
complexity, making it unsuitable for applications in satellite
networks, including 7G networks.

ICN uses content instead of TCP/IP to transmit data (https://
www.rfc-editor.org/info/rfc9508) and has been widely adopted in
content delivery and other fields. It is also considered the network
architecture of the future. It is a new type of network centered
on content or data. It performs large-scale data transmission

FIGURE 1

Multi-path transmission scenario composed of 7G network.

and delivery by decoupling content and location, abandoning
the communication mode centered on IP addresses in traditional
networks. It utilizes content caching to achieve efficient data
transmission, and its content caching technology is particularly
suitable for multi-path transmission (Nadeem Ali et al., 2025). The
entire network comprises content providers, users (consumers),
base stations, satellites, and other components. Users request data
from content providers through interest packets via satellite links,
and content providers respond to these requests according to the
data packets specified by the users. Since ICN has the function of
content caching and the satellite network has multiple transmission
links, the entire 7G network forms multi-path transmission.

Based on the above analysis, this study employs artificial
intelligence technology for 7G to facilitate multi-path transmission.
The main contributions include

1. The 7G network multi-path transmission is mathematically
modeled, and a calculation scheme for link transmission costs,
including satellite networks, is proposed. By calculating link
transmission costs, it is beneficial to transmit data on high-value
links. The path transmission problem of 7G network multi-path
transmission is mathematically modeled as a mixed-integer linear
programming problem, and reinforcement learning is used to solve
it, thereby realizing low-complexity, highly intelligent multi-path
transmission.

2. The proposed AIICN is simulated and validated using
network simulation tools. The results demonstrate that AIICN
possesses high intelligence and strong versatility, making it
applicable to 7G networks, including terrestrial and satellite
networks.

The rest of the article is organized as follows: In Section II,
we review existing proposals for multi-path in 7G. In Section III,
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FIGURE 2

Schematic diagram of strengthening learning to solve multi-path
transmission.

we introduce the proposed system model and its implementation
process. Section IV covers performance evaluation and result
analysis, providing a detailed comparison of the performance with
other methods. In Section V, we summarize the findings of this
study.

Next, we will further discuss the multi-path transmission for the
7G network based on artificial intelligence proposed in this study.

2 Related research

Currently, scholars have conducted extensive research on
multi-path transmission, focusing on improving transmission
throughput and reliability, as well as preventing network
congestion (Karimah et al., 2021). Since there are few studies
on 7G networks, we can refer to the research on 5G and 6G
networks for guidance. MPTCP and MPQUIC are traditional
multi-path protocols (Kusuma and Putri, 2020). For example,
in 2024, Zhao et al. (2024) proposed an MPTCP scheduling
algorithm for bandwidth allocation in 5G edge networks that
cannot meet the transmission requirements of multiple virtual
reality streams. Hikmaturokhman (2023) studied the relationship
between spectrum and tariffs in 5G networks, noting that the
new characteristics of 5G networks will impact the determination
of tariffs. By integrating cross-layer information between the
application end and the wireless end to predict latency, better user
experience quality can be achieved. Gao et al. (2020) designed
multi-path transmission for transmitting game videos in 6G
vehicle networks, effectively solving the data transmission quality
download problem caused by link switching. At the same time,
some scholars also studied multi-path transmission in satellite
networks. Yang et al. (2024a) proposed a multi-path traffic model
to address the link interruption problem caused by the high-speed
movement of satellites in integrated networks, thereby aiding the
avoidance of network congestion and enhancing throughput. In
2025, Nassef and other scholars (Nassef et al., 2025) proposed
a transmission mechanism based on the QUIC protocol to
distinguish between reliable and unreliable data packets in 5G
networks, aiming to address the problem of network congestion
caused by data packets transmitted across multiple protocol layers,
which is conducive to reducing network congestion. Hilal and other

scholars proposed multi-path transmission by reducing the number
of sub-streams to address the problem of bottleneck links affecting
data transmission, and experimental results have shown that it
is beneficial for avoiding congestion and enhancing throughput
(Hilal H et al., 2023).

6G and 7G networks are very suitable for application in
artificial intelligence data transmission (Bazzi et al., 2025). Yang
et al. (2025) also proposed a quality of service-driven commuting
framework based on MPQUIC to address the issue of video
streaming performance degradation caused by link switching in 6G
wireless networks. It can intelligently select access networks and
adapt to varying throughputs. Experiments have verified that it
can prevent video interruptions. (Yang et al., 2024b) also studied
mobile perception in wireless networks. They used ACK packets
in QUIC to transmit mobile information, allowing them to select
the optimal transmission path based on the real-time status of
the link and achieve efficient multi-path transmission. Elhachi
et al. (2025) expanded the functionality of MPQUIC in satellite
networks, enabling the elimination of unreliable transmission data,
thereby avoiding any impact on reliable transmission data packets
and improving the quality of video transmission.

Since current artificial intelligence technology has made
significant progress in many fields, many scholars have also used
artificial intelligence to solve problems in multi-path transmission
and to improve the service quality of multi-path transmission.

3 System modeling and
implementation

3.1 Mathematical model

First, we model the 7G network transmission path selection
problem, determining the objective function and constraints. The
objective function can be to maximize the transmission throughput,
minimize the path cost, etc. The constraints include the number
of paths, location restrictions, link capacity restrictions, etc. The
principle is shown in Figure 2. It consists of a user demand
acquisition module, an artificial intelligence decision module, and
a link status acquisition module. The system first obtains the user’s
demand information and the specific status of the transmission
link. Then the artificial intelligence decision module calculates
the optimal multi-path strategy based on the above information,
including path selection and data volume allocation. Finally, the
generated decision information is sent to the transmission link to
execute the multi-path transmission strategy. To better generate
real-time strategies, the results of the entire multi-path execution
will also be input into the artificial intelligence decision module,
improving the artificial intelligence algorithm.

Next, the above multi-path transmission framework is
described in detail.

3.2 Time model

Suppose the time slot set is: T = {t1, t2, . . . }, the elements in
the set T are called a transmission time slot, which satisfies the
following relationship:
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T =
|T|∑
i=1

ti, ti < ti+1, i ∈ [1, 2, . . . ] (1)

T is the total transmission time. It is assumed that the
network topology is stable and unchanged during a time slot t.
In practical applications, the air-ground connection can last for
several minutes. In this study, it is assumed that the duration is 10
s, and the dynamic network topology is characterized within a time
slot.

3.3 Network topology model

Network topology refers to a disjoint graph G in a time slot
Gt = {Vt , Et}, where V is the set of network nodes and E is the set of
edges in a connected state in 7G. In particular, the entire network is
a three-dimensional network comprising satellite node sets, ground
stations, base stations, flying machines, airships, and users, among
others. The bandwidth between transmission node m and node n is
Bm|n. In a data process, the bottleneck bandwidth of the entire path
is:

Bm|n = min{Bm|1, B1|2, . . . , B(h−1)|h, Bh|n} (2)

m|n represents the transmission path between node m and node
n. The bandwidth value is calculated by obtaining the number of
data packets in real time through the sketch algorithm installed on
each satellite node (Li et al., 2024). Sketch is a type of probabilistic
data structure widely used in the field of network measurement. It is
used to record the frequency of elements in multiple sets or streams.
It possesses the characteristics of low overhead and high precision,
and has been widely used in cloud computing and satellite networks
(Cao et al., 2024). One of the calculation methods of the sketch
vector is the product of flow and its unit.

⎡
⎢⎢⎣

f11 · · · f1g
...

. . .
...

fg1 · · · fg1

⎤
⎥⎥⎦ ×

[
tr1 tr2
tr3 tr4

]
= one sketch vector (3)

f is a hash function. tr is the historical traffic value of 4 nodes.
The calculation method for transmission delay is:

dm|n = Lm|n
v

(4)

Among them, Lm|n represents the distance between two nodes,
and its specific value can be determined based on the regularity and
predictability of satellite operations. v is the transmission speed of
light, which is a known value.

Similarly, the transmission delay D between the transmission
paths from node m to node n is given as follows:

Dm|n = {dm|1 + d1|2 + · · · + d(q−1)|q + dq|n} (5)

Then, in a single data processing step, the transmission delay
for the entire path is as follows:

Dm|n = max{Dm|1, D1|2, . . . , D(h−1)|h, Dh|n} (6)

3.4 Link transmission cost

Link transmission cost refers to the construction, resource, and
time costs involved in the data transmission process. For example,
the construction costs of satellite nodes and drones are significantly
higher than those of ground networks.

One satellite node functions as a switch and a router during
transmission, and it can calculate and save data. The calculation
method for the data buffer area at node m is as follows:

Um =
∑

(u1 + u2 + . . . ) (7)

The above formula illustrates that the calculation method for
the transmission data buffer is the sum of all data packets (i.e., the
sum of the queue lengths). um is the real-time queue length. U is
the total amount of buffer.

Based on the above analysis, the cost function of a transmission
link is as follows:

Cm|n = Cc · (1 − Bp(m|n)

BTotal
) · Dp(m|n) · max{ um

Um
,

un

Un
} (8)

Among them, Cc is the construction cost, which is a known
value. For example, the construction cost of an unmanned aerial
vehicle is higher than that of ground-wired networks. BTotal is the
total bandwidth in the network. The transmission path must choose
a lower-cost link.

3.5 System architecture and
implementation

According to the above sections, the path selection in the
multi-path transmission of the entire 7G network is a mixed-
integer linear programming (MILP) (Fard Moshiri et al., 2025),
and its optimization objectives and constraints are as follows. By
defining satellite selection variables as integer types, the model can
accurately describe the discrete decision-making process. Maximize
network throughput:

max min
M∑

m=1

N∑
n=1

(
Data
�t

· |p|) (9)

In the above formula, p represents the total number of
transmission paths, �t denotes the time interval of each
transmission, and Data represents the total amount of data that the
user needs to transmit.

Minimize the path-transmission cost:

min
M∑

m=1

N∑
n=1

Cm|n (10)

The following are the constraints.
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1. During multi-path transmission, data are transmitted
reliably, and time slots are continuously advanced. Data represents
the total amount of data transmitted through the path.

Data(t) > Data(t + 1) > . . . (11)

2. Since it is a multi-path transmission, at least two paths
are involved in data transfer. p represents the number of the
transmission path.

|p| ≥ 2 (12)

3. In a time slot, the total buffers of all transmission satellite
nodes exceed the amount of data to be transmitted on the working
path.

U(t) > Data(t) (13)

4. During multi-path transmission, the transmission direction
is forward, and no data loops are formed. m is the work path
number.

Data(n) → Data(m), m > n (14)

The path selection problem in multi-path transmission is a
Markov decision process (MDP). The task to be solved in a time
slot t can be represented by a four-tuple 〈t, St, Re, Ac〉, where St is
the state, Re is the reward obtained, and Ac is the action generated
according to the strategy, as shown in Figure 2. Figure 2 illustrates
the relationships between each entity in multi-path transmission.

The state St refers to the environmental information
perceived by the agent in the entire 7G network. Since the
state will change with the change of transmission during
the 7G multi-path transmission process, its definition is
St = 〈Datauser , 〈Statelinks, node〉〉, where 〈Statelinks, node〉 is
the state information of the transmission link and node, such as
bandwidth, packet loss rate, delay, and other key information.

Action Ac refers to the action performed by the agent in state
St, which specifically selects the path used as the data transmission
link. The action set includes the following:

Ac = {link|(1, 2, . . . ), Data} (15)

Among them, link|(1, 2, . . . ) is the set of path numbers that are
in the working state (selected by the algorithm). Data is the amount
of data allocated on the working path.

The reward Re refers to the reward function that guides the
agent’s actions. If an action is beneficial for improving throughput
and load balancing, it is encouraged; otherwise, it is discouraged.

Since there is usually no unique optimal solution to a multi-
objective optimization problem, the Epsilon constraint method
provides an effective approach to solving such problems. The idea is
to introduce a very small positive real number Epsilon and convert
the multi-objective optimization problem into a single-objective
one by treating all but one objective function as constraints, each
bounded by a corresponding Epsilon value. By continuously varying

the value of Epsilon, a set of Pareto optimal solutions can be
obtained (Saber et al., 2025).

In addition, to improve the stability of the algorithm and
prevent updates from occurring too rapidly, soft updates are
applied to gradually approach the target value, as follows:

θQ′ ← θQ · ω + θQ′ · (1 − ω)
θμ′ ← θμ · ω + θμ′ · (1 − ω)

(16)

Among them, ω is a very small number.
The entire algorithm utilizes the deep deterministic policy

gradient (DDPG) method, a deep reinforcement learning algorithm
suitable for solving problems in continuous action spaces, such as
continuous motion in driverless cars. It combines deterministic
strategies and deep neural networks, is a model-independent
reinforcement learning algorithm, and belongs to the actor-critic
framework. It leverages both DQN and PG (policy gradient)
(Zhang et al., 2024b) (Zhang et al., 2024a) (Fan et al., 2025).
DDPG uses the Bellman equation to update the target value
Q′ of the critic network Q, and the value network is μ′,
that is:

Re + γ · Q′(St′, μ′; θQ′
) (17)

γ ∈ [0, 1] is a discount factor: The larger the γ , the more
steps the agent will consider ahead, but the higher the difficulty
of training. The smaller the γ , the more the agent will focus on
immediate interests, and the easier it will be to train.

The loss function is used to estimate the degree of inconsistency
between a model’s predicted value and the true value. The smaller
the loss, the better the model’s robustness, and it is the loss
function that guides the model’s learning. Our loss function is
as follows:

∣∣∣∑(
Re + γ · Q′

(
St′, μ′; θQ′) − Q

(
St, Ac | θQ))∣∣∣ (18)

In the DDPG algorithm, the weight update rule involves two
main steps: empirical replay and deterministic policy gradient
update.

The experience replay pool can break down samples, which is
beneficial for training. In deterministic policy gradients, the weights
of the policy network are updated by maximizing the Q-value
function. The Q-value function represents the expected cumulative
reward of the current state and action and is used to evaluate the
effectiveness of the strategy.

During deterministic policy gradient updating, a batch of
experiences is randomly sampled from the experience replay pool,
and then the Q value and the current Q value are calculated
separately. The gradient is then calculated, and finally, gradient
descent is used to update the weights of the policy network.

The discount factor affects the current value of future rewards.
A higher discount factor indicates that the algorithm places greater
value on long-term returns, whereas a lower discount factor implies
that the algorithm prioritizes short-term returns. For tasks that
require long-term planning, a higher discount factor should be
chosen. For tasks that prioritize immediate rewards, it is advisable
to choose a lower discount factor.
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Input: Initialize network status, actions, and
experience replay pool Bu, Critic network Q, Actor
network μ, and initialize network Q′.

Output: An optimal action is to select the path list
set path.

1: Repeat
2: Generate random noise for exploration N.
3: Initialize a state St.
4: Repeat
5: Select an action Ac based on the current N

and strategy.
6: Execute actions and get rewards, as well as

obtain new states St′.
7: Put the result 〈St,St′,Ac,Re〉 in Bu.
8: Calculate the minimum loss with formula 18.
9: Update the target network with formula 16.
10: Until (episode = 1,2,3, . . .)
11: Until (iteration = 1,2,3, . . .)
12: return path list set path.

Algorithm 1. DDPG-based multi-path transmission algorithm

The complexity of Algorithm 1 mainly depends on two loops.
When training the Critic, using the target actor and the target
critic can reduce the variance and overestimation problems during
training. Additionally, using the target network can prevent the
critic from being overly sensitive to the current strategy, thereby
reducing overfitting. The time complexity is O(

∑I
D=1 T 2

D ∗S2∗Y).
I is the depth of the network, the number of convolutional layers
in a neural network. T is the edge length of the features output by
the convolution kernel. Y is the product of the number of channels
in each convolutional kernel and the total number of convolutional
kernels in the current convolutional layer.

4 Performance evaluation and result
analysis

In this section, we utilize Mininet v2.3 (https://www.mininet.
org/) and NS-3 to construct and simulate a 7G network
environment (Perdana et al., 2022) - (Larasati et al., 2020). We
design experiments to evaluate the performance of the proposed
algorithm and compare its throughput, transmission delay, and
other metrics. Based on the experimental method described in the
study (Chang and Lin, 2024), we designed an experiment utilizing
7G network transmission, which involved 72 consecutive hours of
data requests from 16 users, and the server was located on the
ground.

The compared algorithms include:
The proposed method refers to the algorithm introduced in this

study.
vStreamPth refers to an algorithm that ensures high-quality

real-time video streaming by designing deadline satisfaction and
applying multi-path transmission. For details, see the study (Han
et al., 2025).

ODS is a multi-path algorithm based on software definition
and network slicing used in 5G networks. For details, see the study
(Chang and Lin, 2025).

CAMP refers to an algorithm used in the underwater Internet
of Things to enhance reliability through multi-path routing. For
details, see the study (Xu et al., 2025).

APROR refers to a multi-path transmission scheme used in 5G
multi-path transmission. It minimizes carrying costs and energy
consumption through the multi-path 5G network, adaptively
distinguishing the collision domains of different types of flows,
thereby minimizing the collision probability. For details, see the
study (Chang and Lin, 2024).

MDQ refers to a QoS congestion-aware deep reinforcement
learning method for multi-path routing in dynamic SDN networks.
It uses deep reinforcement learning to intelligently select the best
multi-path and allocate traffic according to traffic demand. For
details, see the study (Aguirre Sanchez et al., 2025).

MP: In cloud networks, a multi-path protection method is
designed to reduce the reserved bandwidth on backup paths by
distributing traffic across multiple non-intersecting working paths,
thereby improving overall network reliability. For details, see the
study (Madani et al., 2025).

DGCN-ACO is applied in satellite networks and proposes
a learning-based swarm intelligence method for deterministic
flow scheduling in dynamic satellite networks. It includes an
algorithm that combines a dynamic graph convolutional network
with an adaptive ant colony optimization algorithm to achieve
deterministic flow scheduling, thereby facilitating the overcoming
of the dynamic nature of satellite networks. For details, see the study
(Wang et al., 2025).

In order to eliminate the influence of objective factors on the
experimental results, the average value of 50 experiments in each
group is included in the final result. To intuitively reflect the data
from the experiment and eliminate differences between features, all
data are normalized. After all experimental data are normalized, the
features are scaled to [0, 1]. The normalization formula is as follows:

V − Vmin

Vmax − Vmin
(19)

In the above formula, V represents the original data, while
Vmax and Vmin denote the maximum and minimum values after
characterization. After the experimental results are normalized, it
is helpful to quickly identify any abnormal values.

4.1 Transmission throughput normalization

Transmission throughput is a key indicator of overall
network performance. It refers to the total number of bytes
successfully transmitted by different algorithms simultaneously.
Network congestion, data retransmission, and so on will affect
transmission throughput. The higher the value, the better the
overall transmission performance of the network.

In the 7G network, the data transmission from the ground
to the air is dynamic, so the transmission will be ”intermittent.”
Figure 3 shows the throughput under different transmission
conditions. The algorithm proposed in this study comprehensively
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FIGURE 3

Normalized comparison of transmission throughput. (a) Normal transmission, (b) High load transmission, (c) High packet loss rate transmission, and
(d) High delay transmission.

applies multi-objective optimization to achieve multi-path
transmission. High throughput accounts for the largest proportion.

The algorithm proposed in this study utilizes artificial
intelligence technology to solve multi-objective optimization
problems, and it converges quickly. Figure 3b shows that from x ∈
(14, 20), it has been in a stable state.

4.2 Number of satellites and throughput

In this experiment, the influence of the number of satellites
on throughput was studied using the Iridium NEXT constellation.
Due to the periodic on-off characteristics of satellites, transmission
interruptions may occur. As shown in Figure 4a, as the number
of satellites increases, throughput continues to increase. However,
when x = 70, throughput remains basically unchanged. Thus, we
can conclude that in the 7G network, due to the periodic orbit
switching characteristics of satellites, the throughput is not directly
determined by the number of satellites.

4.3 Load balance

Since the entire 7G network comprises multiple transmission
nodes and complex links, there are multiple paths between the
sender and the receiver; therefore, load balancing across these
paths is crucial. If load balancing is achieved throughout the
entire network, congestion can be effectively reduced. In this
experiment, the flow values in multiple paths were measured using
a sketch, and the statistical results are shown in Figure 4b. The
data transmitted in paths 2, 4, 5, 6, and 8 are roughly equal, and
the flow values between these paths do not fluctuate significantly.
The traffic value between each path is less than 1. Therefore,
the algorithm proposed in this article achieves load balancing
between paths.

Artificial intelligence algorithms can integrate previous
historical experience and the current path status to
calculate the optimal reward function, select the optimal
transmission path, and achieve load balancing between
multiple paths.
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FIGURE 4

The transmission traffic and number of satellites in the work path. (a) Number of satellites, (b) Transmission time ×10s.

In summary, the multi-path algorithm proposed in this study is
well-suited for application in 7G networks and offers advantages in
various aspects of multi-path transmission.

5 Conclusion

7G has been integrated with technologies such as artificial
intelligence, satellite networks, and blockchain, making it a
key next-generation network. Since traditional multi-path
protocols cannot meet the requirements of 7G networks, this
study proposes a multi-path transmission scheme based on
artificial intelligence. First, the entire network is mathematically
modeled, and a method for calculating link transmission costs
is proposed. Then, the multi-path transmission mathematical
model is transformed into a mixed-integer linear programming
problem, which is solved using artificial intelligence techniques.
After experimental simulation verification, it is shown that
low-complexity, highly intelligent multi-path transmission
can be achieved, characterized by high throughput and
load balancing.

This study uses reinforcement learning to address multi-
objective optimization, which results in a high demand for high-
value samples and limits the application of the entire system.
Therefore, in future work, further research will be conducted on
using imitation learning and other techniques to solve multi-path
transmission problems.
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