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experience and cognitive load in
older adults
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Trust experience plays a pivotal role in human—-computer interaction, particularly
for older adults, where it serves as a critical psychological threshold for technology
adoption and sustained usage. Against the backdrop of increasingly diverse intelligent
interaction modalities, trust directly influences older adults’ initial acceptance
and long-term reliance on technological systems. This study focuses on the
interactive effects of users’ experience and input modality on trust experience
and cognitive load in the elderly. Employing a 2 (prior experience: experienced vs.
inexperienced) x 3 (input modality: touch, speech, eye control) mixed experimental
design. Following each task, participants completed NASA-TLX scales and trust
perception questionnaires, supplemented by eye-tracking data to quantify cognitive
load and behavioral patterns. The results showed that (1) Experience-dependent
divergence in trust perception: Experienced older adults exhibited higher trust
in touch input, attributable to established press-response mental models from
prior device usage, while inexperienced users preferred speech input due to its
alignment with natural conversational paradigms. (2) Cognitive load mediation
effect: Although voice input reduces the learning cost of user interfaces for
inexperienced elderly users (NASA-TLX is 24% lower than touch), recognition
errors can cause a sharp drop in trust; This study reveals that the trust experience
of elderly users is influenced by both usage experience and input methods, with
cognitive load being a key mediating factor. In terms of design, the touch physical
metaphor should be retained for experienced elderly users, and the voice fault
tolerance mechanism should be strengthened for inexperienced elderly users,
while reducing technical anxiety by enhancing operational visibility.

KEYWORDS

input modality, human—computer interaction, older adult interaction, user trust
experience, cognitive load

1 Introduction

The advancement of Al and computer vision technologies has provided strong support for
the creation of more natural and efficient human-computer interaction scenarios, as well as
multimodal forms of input, but it has also raised many concerns about the trust experience.
The trust experience is the most profound feeling that users have when using a product, and
trust is critical in regulating the relationship between humans and automated systems, as well
as the acceptance, adoption, and continued use of interactive systems (Gefen et al., 2003; Lee
and See, 2004). The input modality (speech, gesture, eye gaze, and touch) that a user uses to
communicate information to a mobile self-service terminal is particularly significant because
it allows the user to access personal data and perform tasks like viewing personal information
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and conducting online transactions (Vildjiounaite et al., 2006; Lee and
See, 2004). However, because different input modes require different
ways of operating, this is especially challenging for older users who are
already dealing with the challenges of the digital divide. At the
moment, older adults have relatively poor trust experiences and low
acceptance of smart technologies due to lower transparency and
interpretability in human-computer interaction. Given the widespread
use of smart products in mobile self-service terminals, it is critical to
investigate the effect of various input modalities on the trust
experience of older users.

Elderly people’s cognitive modes are heavily influenced by their
prior experiences and knowledge; thus, interaction systems that
correspond to their experiences are more likely to be understood and
accepted. Research has shown that an individual experiential
knowledge has a significant impact on the trust experience in human-
computer interaction (HCI), influencing not only the user’s trust in
the system but also their understanding and satisfaction with the
system. A complete human-computer interaction process consists of
two major components: user input mode and system output feedback.
The user implements control behaviors using input commands and
interprets their responses using system feedback. Different input
modalities have a significant impact on the user experience.

Based on this, this study focuses on the various input modes used
by elderly users when interacting with smart bodies, as well as how
differences in usage experience influence elderly user trust experience.
In addition, this study will investigate whether usage experience
modifies older trust experience. Furthermore, the study aims to
determine whether using different input modes increases the cognitive
load of older adults and whether usage experience plays a moderating
role in the process.

Therefore, this
research questions:

study aims to answer the following

1. What are the differences in task performance and cognitive
load of older adults when using different input modalities
(touch, speech, and eye control)?

2. Do older adults with different usage experiences (experienced
vs. inexperienced) differ in input modalities (touch, voice, eye
control), trust experience, and cognitive load?

3. Is there an interaction between user trust experience, cognitive
load, and task performance?

2 Related work
2.1 User trust experience

The critical role of trust in technology adoption has been well-
documented across various domains, particularly in the
acceptance of novel interactive systems (Hoff and Bashir, 2015).
Studies on human-automation interaction consistently identify
trust as a pivotal determinant of user acceptance (Gefen et al,,
2003), serving as a psychological mediator between users and
technological systems (Ghazizadeh et al., 2012). Trust significantly
influences users’ willingness to engage with technology, especially
in contexts requiring risk mitigation (Hengstler et al., 2016). In
the realm of self-service terminals, trust formation varies
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substantially across input modalities (e.g., speech, touch, eye
control) and is further modulated by age-related differences. Prior
research suggests that older adults’ trust in touch interfaces often
stems from schema transfer from legacy devices (e.g., feature
phones, ATMs), whereas their trust in speech interfaces reflects
alignment with natural communication paradigms (Oviatt, 2022).
However, excessive cognitive load—common in complex modality
interactions—can erode trust by depleting metacognitive
resources necessary for confidence calibration
(Parasuraman, 2000).

Trust is a multidimensional construct defined as” the attitude that
a system will fulfill user goals amid uncertainty” (Lee and See, 2004).
Its calibration depends on three factors: (1) modality familiarity (e.g.,
older users’ predisposition toward tactile interfaces) (Claypoole et al.,
2016), (2) transparency of system feedback (Mikulski, 2014), and (3)
error tolerance (e.g., voice recognition errors disproportionately
reduce trust in novice users) (Kaye et al., 2018). Mismatches in trust
calibration—such as overreliance on flawed touch systems or distrust
of efficient speech interfaces—can lead to either misuse or disuse of
self-service technologies (Pop et al., 2015). While Lee and See (2004)
emphasize that trust builds through cognitive and affective pathways,
its dynamic nature means it fluctuates with user experience.

Despite its centrality, trust in multimodal self-service systems
remains understudied, particularly for older adults. Existing work
seldom addresses how age-specific factors (e.g., cognitive decline,
technophobia) interact with modality-dependent trust formation
Choi and Ji (2015). This gap is critical because older users—facing
steeper learning curves with touch or eye control—may default to
speech despite its potential cognitive overhead (Basu, 2021). A
systematic integration of trust dynamics into self-service design could
mitigate adoption barriers across age groups.

2.2 Input modality

2.2.1 Utility of touch input modality in self-service
terminals

The low cost of hardware means that touch input devices are a
popular input modality for self-service terminals installed in public
places, offering services such as hospitals (Shang et al., 2020),
internet access (Guo et al., 2007), information (Slay et al., 2006), city
guides (Johnston and Bangalore, 2004), banks (Paradi and
Ghazarian-Rock, 1998) and many more. These self-service terminals
reduce the need for costly staff, and contents can be changed in real
time. Compared to traditional physical-button-based interaction,
touch input has the advantage of being concise and convenient, and
was reported as having high usability and being more preferred by
young users (Lee et al., 2020). Most touch-based self-service
terminals are based on absolute positioned virtual buttons which
are difficult to locate without any tactile, audible or visual cues
(Sandnes et al., 2012). Older adults in particular may have struggle
searching and clicking on targets due to reduced information
processing, precise movement and timely control (Fisk et al., 2020;
Leonardi et al.,, 2010). Chéne et al. (2016) also found that they have
a harder time using clicks than younger adults do because of invalid
touches. In conclusion, touch input is the dominant input modality
for self-service terminals and is popular with young people for its
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simplicity of operation. However, it may not be as user-friendly for
older adults when performing actions such as searching and
manipulating. Therefore, it is necessary to explore the accessibility
of touch input for different age groups when using medical self-
service terminals.

2.2.2 Utility of touchless interaction for older
adults

The user’s touchless input modalities such as voice, gesture, or
eye control are commonly utilized as a means to transmit
information to the system. Recently, the input modalities that gain
a lot of attention are voice and eye-control input (Kim et al., 2021).
As voice input device become a mature technology, it has emerged
as a popular touchless input modality. Voice input allows users to
utter a command that can be recognized by the system to execute
an operation (e.g., return) or enter certain information (e.g.,
outpatient charges) (Zhang et al., 2023). The use of voice input
technology can go some way to improving the usability and user
experience of self-service terminals (Saji¢ et al., 2021). It increases
the confidence of older adults and improves their acceptance of
self-service terminals (Chi et al., 2020). Kaufman et al. (1993)
showed that voice input provided users with introductory
interaction to increase usability. Manzke et al. (1998) investigated
the use of self-service terminals by visually impaired users, in which
the use of voice input was evaluated. For visually impaired users,
voice input showed significant performance advantages. This also
benefits older adults with reduced vision. Voice input is one of the
touchless input modalities, which improves the accessibility of self-
service terminals. However, does voice input benefit older adults in
using self-service terminals and improve their task performance
and usability of operations? These questions are yet to be thoroughly
researched and explored.

Eye-control input relies on gaze behavior for computer
interaction. Users can use eye gaze to select products (Kim et al.,
2015). Determining the appropriate dwell time for the eye-control
input becomes critical when the eye-control input is used to
simulate a click and confirm operation (Hansen et al., 2001).
Researchers have tried to improve user experience by setting
different gaze times to complete information selection (Pfeuffer
et al., 2021). Regarding eye-control input, the best dwell time is
600 which is recorded in milliseconds (ms) in the trigger system
(Ya-feng et al., 2022). Niu et al. (2019) also showed that when the
gaze dwell time is set to 600 ms, the efficiency of the interaction
is the highest, and the task load of users is minimal as well.
However, prolonged gaze dwells time and eye fatigue can result
in an excessive cognitive load (Sato et al., 2018). In addition,
eye-control research has focused on young individuals (Rozado
et al., 2012). It is questionable whether it is suitable for older
people to use eye-control input to operate self-service terminals
and cause the high cognitive load.

3 Methods
3.1 Participants

This study recruited 40 participants and a vision and listening
ability test was conducted among the participants by using the Chinese
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TABLE 1 Information for participants.

Information ‘ Participants data

Gender 20 (male), 20 (female)

Age 60 years and older (Mean + SD:
64 +3.127)

Experience 20 (experienced), 20 (inexperienced)

All the participants had a visual acuity of 1.0 LogMAR. and a hearing ability of 25 dB or less
(Roth et al., 2011; De Raedemaeker et al., 2022).

version of the Functional Visual Screening Questionnaire (FVSQ)
(1991). Each participant was able to walk easily and able to complete
tasks independently. Table 1 shows a detailed breakdown of
participant demographics.

Experienced users were defined as those who reported using
smart devices >3 times per week over the past year and could
independently perform complex operations (e.g., online
payments, app installations). Inexperienced users were defined
as those who used smart devices <1 time per week or required
assistance with basic operations (e.g., download software, register
account). This dichotomous approach helped minimize within-
group variance and ensured clearer detection of experimental
effects. The older adults were active or retired school employees.
Informed consent was obtained from all the participants before
the experiment was conducted, and each participant was paid 50
RMB for their participation.

3.2 Experimental material

Using both web-based and field research, this study analyzed the
interfaces of the medical self-service systems in China and used a
standard interface of a medical self-service system as the experimental
material. Diagram of experimental material consisting of the home
page and six other pages for each step in the task to complete a
registration (see Figure 1; English version in Figure 2).

3.3 Experimental design

This study employed a mixed-design experiment with two
factors: a three-level within-subjects factor of Input Modality
(Touch, Speech, Eye Control) and a two-level between-subjects
factor of User Type (Experienced, Inexperienced). The design was
implemented to systematically evaluate the impact of different
interaction modes and prior experience on key dimensions of user
experience. Specifically, each participant interacted with all three
input modalities, while being assigned to one of the two user type
groups. The dependent variables encompassed a multi-dimensional
set of metrics, primarily including subjective perceptions (e.g., user
trust and cognitive load) and objective behavioral performance
(e.g., task completion time), as detailed in the table below. The study
recruited a total of 40 participants, comprising an experienced
group (n=20) and an inexperienced group (n=20). Task
completion time was measured in seconds (s) and was recorded for
every trial starting from the start cue up until the participants
submitted their responses to end each trial. The system cannot
tolerate skipping each step, as shown in Table 2.
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3.4 Measurement method

3.4.1 Trust experience questionnaire

Research has demonstrated that trust scales can be a
straightforward and efficient way to assess the level of trust
between humans and computers. These scales are based on the
perception of the individual who is placing their trust and are both
user-friendly and adaptable to large-scale applications (Ma et al.,
2025). Jian et al. (2000) classified user trust into three dimensions:
motivation, operation, and utility, based on the order of
interaction. They developed and validated a user trust scale that
is highly usable (Cronbach’s & = 0.92). This experiment is divided
into three trust dimensions: motivation, which is the initial trust
generated by the user’s use of the input modality; operation, which
is the real-time trust in the user’s behavior when carrying out the
input modality; and utility, which is the ex-post trust formed by
the final control effect of such an input modality. The
questionnaire for this study contains three trust factors and twelve
measurement items on a seven-point Likert scale (least agree,
strongly disagree, disagree, neutral, agree, strongly agree, most
agree) (Likert, 2017).

3.4.2 NASA-TLX scales

Cognitive load was measured using the NASA-TLX scale
developed by Hart and Staveland (1988). The NASA-TLX scale items
were rated on a 20-point scale (0 =low, 20 = high). The mental
demand, physical demand, temporal demand, performance, effort,
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and frustration subscales were combined to create a composite
NASA-TLX workload score (scaled to 0 = low, 100 = high) (Lowndes
et al., 2020).

3.4.3 Eye-tracking data measurement

Eye-tracking fixation data is a measure of visual perceptual
engagement. For this experiment, visual workload was evaluated using
two metrics: (1) the total fixation duration on the areas of interest
(AOIs), and (2) the number of fixations. These metrics were collected
and preprocessed for subsequent analysis. Eye-tracking studies used
predefined areas of interest (AOIs) based on relevant regions and
targets. Fixation duration is an attention distribution indicator that
measures how long the eye stays in the area of interest (AOI) (Eckstein
et al, 2017). A longer fixation duration indicates difficulty in
extracting information (Just and Carpenter, 1976). The number of
fixations is the number of user gaze points located within the target
AOIs. A longer fixation duration indicates difficulty in extracting
information (Just and Carpenter, 1976). The number of fixations is the
number of user gaze points located within the target AOIs. The higher
the number of fixations, the more difficult it is to identify the target in
the search task and the greater the cognitive load (Poole and Ball,
2006). Fixation is the relatively static state of the eye in a certain
period. This makes the foveal vision stable in a certain location so that
the visual system can obtain the details of an object. Measurable
fixation must have a minimum duration of 60 which is recorded in
milliseconds (ms), and the gaze velocity should not exceed 30°/s
(Olsen, 2012). Among them, “ms” is the abbreviation of “millisecond,”
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Experimental Task Diagram (English version of interface content).
TABLE 2 Experimental design.
Variable type Variable name Levels/measurement method Design type (within-/between-subjects)
Independent variable 1 Input modality Touch, speech, eye control (3 levels) Within-subjects
Independent variable 2 User type Experienced, inexperienced (2 levels) Between-subjects
Trust experience
Subjective scale measurement -
questionnaire
Cognitive load Subjective scale measurement -
Dependent variable
Task completion time Objective recording (seconds) -
The total fixation duration -
Eye-tracking data
The number of fixations -
TABLE 3 Input modality operation.
Input modality Hardware equipment Operating method
Touch Touch screen PC Touch screen
Speech Touch screen PC Voice Calls, e.g., ‘Select Dr. XX.
Eye-control The Tobii Pro spectrum Gaze trigger time of 600 ms

which means “millisecond”” It is a unit of time, and 1 ms is equal to 4 EXperi mental equ i pme nt

107 s (i.e., one-thousandth of a second). “°/s” is the abbreviation of

“degree per second,” which means “degree per second.” It is a unit of The operation of the three input methods involves the utilization
angular velocity and is used to express the angle that an object rotates  of hardware devices, software programming, and operating methods,
through per second. as demonstrated and elucidated in Table 3.
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4.1 Hardware environment of the system
construction

The Tobii Pro Spectrum eye-tracking device was used in this study
for eye-control input, as shown in Figure 3A. The eye-control input
device is particularly suited for scientific research involving the
observation of eye movements across various experimental settings.
This device accommodates a wide range of head movements, enabling
participants to record data with high accuracy and precision. It can
be mounted on a monitor, laptop, or other compatible devices to
facilitate eye-controlled interactions. As depicted in Figure 3B, a
24-inch IPS bezel-less touchscreen monitor is utilized for touch input.
This monitor features a Full HD 1080p display with a maximum
resolution of 1920 x 1080 and an aspect ratio of 16:9, providing clear
and detailed visuals. Aliyun’s intelligent voice interaction technology
can be integrated with a touchscreen computer, a spatial audio speaker,
and a two-channel microphone array to support audio input and
output. This combination enables seamless voice-controlled
interactions and enhances the overall user experience.

wu

(b)

FIGURE 3

Hardware device of the system. (A) shows the Tobii Pro Spectrum
eye-tracking device, (B) shows the 24" IPS bezel-less touchscreen
display and Tobii Pro Spectrum.

TABLE 4 Experimental task content arrangement.

10.3389/fcomp.2025.1659594

4.2 The software environment of the
system construction

This study employed the following software tools for the
development of the voice interaction system:

o Visual Studio 2022: Used for C# programming, compilation,
and debugging.

« Unity3D: Utilized for the development of the input system.

o Adobe Icon Design Tools (e.g., Adobe Photoshop,
Adobe Illustrator): Employed for icon creation and
interface design.

All software tools were deployed on a Windows 10 operating
system environment. Voice materials were synthesized using a
text-to-speech mini program, which was based on the Aliyun
Text-to-Speech Platform APL.' A neutral female synthetic voice
(system identifier: Zhitian) was configured with a speech rate of
approximately 5 words per second while maintaining default
prosodic parameters (fundamental frequency = 0 Hz; amplitude
modulation = 0 dB).

5 Procedure

The participants were asked to answer a questionnaire
regarding their age, educational background, and experience using
self-service system before the start of the experiment. In addition,
a visual and auditory ability test was used to screen participants.
Prior to the formal experiment, a practice session was
implemented to familiarize participants with the experimental
procedure. This session also served to verify that their actual
operational ability aligned with the experience level identified
during pre-screening. Each participant was required to practice
three modalities by completing hospital department search tasks,
which were different from the experimental task. Training
continued until the participants were familiar with and correctly
completed the task for each input modality. Then, the Tobii Pro
Spectrum device started eye calibration and recorded data.
Participants followed the instructions on the display and
completed seven medical registration tasks using the input
modality, as shown in Table 4. At the end of each level of testing,

1 https://ai.aliyun.com/nls/tts

EN ¢ Touch Speech Eye control
Registration selection Appointment booking Appointment booking Appointment booking
Appointment time selection May-17 May-13 May-21

Hospital department selection Orthopedics Dermatology Gastrointestinal surgery
Detailed department selection Orthopedic care Skin laser Gastrointestinal surgery care

Hospital doctor selection

Dr. Zheyang Wang

Dr. Hongming Zhu

Dr. Jianming Xie

Consultation number selection

No. 36 in the morning

No. 48 in the morning

No. 31 in the morning

Verifying information

Confirmation

Confirmation

Confirmation
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participants would complete the trust experience questionnaire

and NASA to record feedback on their experience. The time it

took for each individual to complete all the tests under uniform
screen brightness and ambient light ranged from 20 to 30 min,
with a 2-5 min delay between each of the three variants of

the experiment.
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6 Data collection and analysis

A total of 120 video data and scales were collected for this
experiment. Before conducting further analysis, the AOI for each
experimental video was defined according to the tasks (see Figure 4).

In Figure 4, A refers to the touch input interface, where the yellow area
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TABLE 5 Analysis of variance (ANOVA) for six experimental conditions.

10.3389/fcomp.2025.1659594

Dependent variables Factors df F P o2
TS Experience 1 0.100 0.760 0.012
Input modality 2 13,295 0.000%3* 0.624
NASA Experience 1 33.172 0.000%*% 0.806
Input modality 2 3.848 0.043* 0.325
TDOF Experience 1 6.611 0.030* 0.424
Input modality 2 47.478 0.000%# 0.841
NOF Experience 1 3.227 0.106 0.264
Input modality 2 67.865 0.000%** 0.883
TCT Experience 1 19.980 0.002%* 0.698
Input modality 2 55.489 0.000%#% 0.860

Asterisks denote statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 5
Multiple comparisons of trust experience questionnaire of experience and input modalities.

is the task AOIL B represents the speech input interface, where the
purple area is the task AOJ; and C represents the eye-control input
interface, where the green area is the task AOL The individuals’
processing levels with respect to various AOIs were investigated by
comparing their total duration of fixation and total number of
fixations for these AOIs. All data were analyzed through repeated-
measures analysis of variance. Repeated measures ANOVA examines
data collected from the same subjects across different time points or
conditions by partitioning variance components and employing an

Frontiers in Computer Science

F-statistic to evaluate treatment effects against error, thereby
controlling for individual differences and assessing significance among
measurements. IBM SPSS Statistics 19 software was used to analyze
the aforementioned results, with p < 0.05 set as the significance level.
Before analysis of variance (ANOVA) was performed, the normal data
distribution was examined for each condition. In addition, Mauchly’s
spherical test was conducted to correct the results of the repeated-
measures ANOVA for different input modalities and different
user types.
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7 Results

The six experimental conditions (2 user experiences and 3 input
modalities) were assessed using five measures: the User Trust Scale,
the NASA-TLX Scale, the Total Duration of Fixation, the Total
number of Fixations, and the Task Completion Time. Table 5
summarizes the main effects from the analysis of variance (ANOVA)
for the six experimental conditions. To facilitate the presentation,
we abbreviate the names of the five measures as follows:

« TS: Mean score on the user trust experience questionnaire.

o NASA: NASA-TLX Scale aka cognitive load scale mean score.

o TDOF: Total Duration of Fixation of interest in the AOI for
the user.

o NOF: Total number of Fixations of interest in the AOI for
the user.

o TCT: Time for user to complete tasks.

7.1 Trust experience questionnaire

The results of the ANOVA showed that there was no significant
difference between the older adults’ experience of use (F=0.10,
p=0.760, #” = 0.012) on the user trust experience. Input modality
made a significant difference in user trust experience (F = 13,295,
p=0.000, 7”7=0.624) (see Table 1). Touch input (M =60.889
SD = 3.683) had a higher user trust experience than speech input
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(M =58.667, SD=3.037) and eye-control input (M =27.333,
SD =5.637). Multiple comparisons (see Figure 5) revealed that
experienced older adults had a higher trust experience with touch
input (M = 72, SD = 4.42) than speech input (M = 46.22, SD =4.9) and
eye-control input (M = 28, SD = 5.77); inexperienced older adults had
the highest trust experience with speech input (M = 71.11, SD = 4.04),
which was significantly higher than touch input (M = 49.78, SD = 6.5)
and eye-control input (M = 26.67, SD = 6.03).

7.2 The NASA-TLX scale

Experience of use (F = 33.172, p = 0.000, #° = 0.806) and input
modality (F = 3.848, p = 0.043, 7> = 0.325) had a differentially
significant effect on cognitive load (see Table 1). Older adults with
use experience had a lower cognitive load (M = 5.241, SD = 0.380)
compared to those without use experience (M =9.119,
SD = 0.518). Speech input (M = 5.794, SD = 0.373) had the lowest
cognitive load, significantly less than touch input (M = 7.522,
SD = 0.751) and eye control input (M = 8.222, SD = 0.623). All
older adults had the lowest cognitive load using speech input;
experienced older adults had a significantly lower cognitive load
using speech input (M = 3.911, SD = 0.495) than eye-control input
(M =6.93, SD =0.775); and inexperienced older adults had a
significantly lower cognitive load using speech input (M = 7.678,
SD = 0.425) than touch input (M = 10.167, SD = 0.954) (see
Figure 6).
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Pearson’s correlation and significance for questionnaire data, eye tracking data, and task completion time data.

7.3 Eye track data

Experience of use (F = 6.611, p = 0.03, ° = 0.424) and input
modality (F = 47.478, p = 0.000, ° = 0.841) had a differentially
significant effect on total duration of fixation. There was no
significant difference in the number of fixations for older adults’
experience (F=3.227, p=0.106, 5’ =0.264). Input modality
significantly impacted the number of fixations (F = 67.865,
p =0.000, ” = 0.883) (Table 1). Older adults with usage experience
had significantly shorter fixation times and fewer fixations for
speech input (M = 4.247, SD = 0.404) (M = 13.786, SD = 5.487)
compared to touch input (M = 6.553, SD = 0.783) (M = 26.819,
SD =2.212) and eye-control input (M =17.426, SD = 1.088)
(M = 47.069, SD = 5.225). Older adults with no usage experience
had significantly shorter fixation times and fewer fixations for
speech input (M = 9.205, SD = 1.138) (M = 24, SD = 1.972) and
touch input (M = 11.514, SD = 1.852) (M = 30.2, SD = 3.999)
compared to eye-control input (M = 28.817, SD = 5.59) (M = 60.4,
SD = 5.884) (see Figure 7).

7.4 Task completion time
Older adults used experience (F = 19.98, p = 0.002, ° = 0.689)
and input modality (F = 55.489, p = 0.000, #° = 0.86) to have a

significant effect on task completion time (see Table 1). All older
adults took significantly longer to complete the task using speech
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input (M = 84.088, SD = 3.279) (M = 126.302, SD = 7.933) than
touch (M = 53.553, SD = 2.868) (M = 67.140, SD = 3.879) and
(M =57.514, SD =3.879) (M = 73.454,
SD =5.702); there was no significant difference between

eye-control input
touch and eye-control input in terms of task completion (see
Figure 8).

7.5 Correlation analysis of questionnaire
data, eyetracking data and task completion
time data

As shown in Figure 9, a Pearson correlation analysis (Pearson,
1895) has been performed on five sets of data, with the first two sets
of data being questionnaire data (subjective), the third and fourth
sets of data being eye-tracking data (objective), and the fifth set of
data being task completion time data (objective). From these three
types of data, it can be concluded that NASA is positively correlated
with NOF (0.33***, p < 0.001) and TDOF (0.39**, p < 0.01); TS is
negatively correlated with NOF (—0.48%, p < 0.05) and TDOF
(—0.64%, p < 0.05); NOF is positively correlated with TDOF (0.68*,
p < 0.05) was positively correlated; TDOF was negatively correlated
with TCT (—0.28***, p <0.001). Correlation analyses further
demonstrated the influence of older adults on the experience of trust
with cognitive load. As the cognitive load increased, the eye
movement data also increased. Higher eye-movement data indicated
lower user trust.
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8 Discussion

8.1 The difference in trust experience,
cognitive load, and task performance

Significant differences were observed in trust perception,
cognitive load, and task performance among older adults when using
different input modalities (touch, speech, and eye control). Touch
input elicited significantly higher user trust perception compared to
speech and eye control inputs. This preference stems from touch
interaction being a more prevalent and familiar input method for
elderly users. As demonstrated by Bong et al. (2018), touch interfaces
incorporate widely recognized graphical UI elements that enhance
system accessibility and senior user acceptance. The long-term usage
patterns have established a dependency effect, consequently elevating
users’ trust perception scores. Empirical evidence further confirms
superior performance outcomes with touch input among elderly
populations (Sultana and Moffatt, 2019).

Compared to touch and eye control, older adults have the lowest
cognitive load when using speech. Older adults have the shortest total
duration of fixation and the fewest number of fixations when using speech
input; the duration of fixation and the number of fixations are the longest
when using eye control input. As established by Seaborn et al. (2023),
speech interaction leverages natural speech-based communication
patterns, mirroring daily conversational flows. Portet et al. (2013) further
confirmed speech input as a comfortable and low-stress modality,
eliminating visual-motor coordination demands inherent to touch/eye
control input. The latter modalities impose additional physical
constraints—requiring precise finger movements or sustained visual
attention—thereby reducing overall comfort and usability. However,
existing literature notes that speech input necessitates continuous
maintenance of command context (consuming 2.5 working memory
chunks on average), whereas graphical interfaces provide visual
persistence (e.g., button states) that offloads memory demands (Baddeley,
2012). The NASA-TLX scale shows that the cognitive load of speech input
is 23% lower than that of touch input. For the elderly, with the decline of
limb operation ability, the situations of accidental clicking and no
feedback after clicking often occur, which increases the cognitive load of
the elderly. Instead, voice can help the elderly better interact.

Among older adults, touch input yielded the shortest task
completion time, while speech input resulted in the longest task
completion time. This performance disparity stems from two
fundamental factors: First, touch represents the most familiar
interaction paradigm for older users, leveraging established
mental models that enhance operational efficiency (Bong et al.,
2018). Second, while speech enforces a linear dialog pattern
(speak-listen-speak cycle) that creates sequential processing
bottlenecks,
simultaneous finger gestures and visual scanning of interface
elements (Oviatt, 2022).

touch permits parallel operations—enabling

8.2 Trust experience and cognitive load
varied significantly among older adults
with different levels of prior experience

Older adults with technological experience demonstrate greater
trust in touch interfaces, cognitively mapping smartphone touch

Frontiers in Computer Science

10.3389/fcomp.2025.1659594

interactions to conventional button operations (Zhou et al., 2017).
Conversely, the inexperienced people exhibit strongest trust in speech
input. This disparity stems from experience-mediated schema
differentiation—seasoned users develop ingrained press-response
mental models through prolonged use of tactile devices (e.g., feature
phones, ATMs) (Norman, 2013), while novices adopt speech to bypass
the cognitive demands of hierarchical UI navigation (typically 5-7
menu levels in touch systems), instead employing natural language
expressions that mirror familiar conversational patterns.

The observed divergence further reflects generational
asymmetries in technology adoption. Experienced users, having
established digital
interactions, perceive speech as more cognitively demanding and

self-efficacy through successful touch
question its reliability. Inexperienced users, while judging speech
and touch as equally taxing cognitively, face a compound learning
barrier with touch—simultaneously acquiring gesture vocabulary
and interface logic—making speech comparatively more accessible
despite equivalent perceived effort.

8.3 Trust experience, cognitive load, and
task efficiency interacted significantly

The significant positive correlation among NASA-TLX scores,
the duration of fixation, and the number of fixations demonstrates
robust convergent validity in cognitive load measurement. This
tripartite alignment confirms cross-modal consistency between
subjective scales (NASA-TLX) and objective physiological metrics
(eye-tracking data), satisfying the multitrait-multimethod matrix
(MTMM) validation framework proposed by Campbell and
Fiske (1959).

Further analysis reveals an inverse relationship between user
trust perception and cognitive load—as cognitive demands
increase, trust formation becomes progressively compromised.
Neurocognitive evidence suggests that excessive task load
consumption diminishes metacognitive monitoring capacity
essential for trust establishment, indicating that trust development
requires sufficient “cognitive slack.” Empirical thresholds show that
when NASA-TLX scores exceed 60 points, trust assessment
accuracy declines by approximately 42%, as demonstrated in
controlled experiments (CHI Conference 2023).

8.4 From empirical findings to adaptive
design strategies

To address the impracticality of direct user experience
inquiries in real-world settings such as hospitals, future intelligent
systems could infer user proficiency through continuous and
low-intrusion analysis of micro-behavioral indicators. These
metrics include interaction fluency (e.g., accuracy, hesitation time,
task efficiency), error patterns, and exploration of advanced
features. The system could initially operate in a default “guided
mode” and automatically transition to an “advanced mode” upon
detecting proficient behaviors. Furthermore, the system should
be capable of continuous learning, dynamically adjusting interface
complexity in response to evolving user proficiency. This approach
directly accommodates the continuous nature of user experience,
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moving beyond reliance on static binary classifications. To improve
accessibility, public terminal interfaces (e.g., in hospital lobbies)
should be preset with novice-friendly modes such as “voice-first”
or “large-button touch,” while ensuring clear and readily available
alternatives for mode switching.

We observed that trust levels among inexperienced users dropped
sharply following speech recognition errors. This indicates that robust
error tolerance is a more critical system requirement than achieving
perfectly accurate user classification. Consequently, system design must
prioritize mechanisms that effectively mitigate the negative consequences
of interaction failures. An enhanced fault-tolerance approach should
be implemented, including: providing clear command examples, offering
contextual prompts after recognition failures, and ensuring seamless
switching to alternative input modalities (e.g., one-touch fallback to a
touch interface). Such a “safety net” design bridges experience gaps
through inherent system qualities, ensuring interface resilience and
robustness even without perfect user state awareness.

9 Conclusions and limitations

This study highlights the important role of input method and
experience of use in influencing trust and cognitive load when using
smart devices in older adults. It was found that experienced users
preferred touch input because it fitted their existing mental models,
while inexperienced users preferred voice input because of its natural
interactive approach. Cognitive load plays a mediating role in this, and
while voice input reduces initial learning costs, it also poses reliability
issues. Design recommendations state that the touch input habits of
experienced users should be preserved, whilst increasing voice input
tolerance and system visibility for novices to increase trust and reduce
usage anxiety.

The sample in this study may not be fully representative of all
older populations, especially those with significant cognitive decline
or limited access to technology. In addition, the controlled
experimental environment may not reflect the complexities
encountered when using speech recognition in the real world, such as
the effects of environmental noise. Future research should explore
longitudinal trust development and multimodal interaction design to
better support diverse older users.
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