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Trust experience plays a pivotal role in human–computer interaction, particularly 
for older adults, where it serves as a critical psychological threshold for technology 
adoption and sustained usage. Against the backdrop of increasingly diverse intelligent 
interaction modalities, trust directly influences older adults’ initial acceptance 
and long-term reliance on technological systems. This study focuses on the 
interactive effects of users’ experience and input modality on trust experience 
and cognitive load in the elderly. Employing a 2 (prior experience: experienced vs. 
inexperienced) × 3 (input modality: touch, speech, eye control) mixed experimental 
design. Following each task, participants completed NASA-TLX scales and trust 
perception questionnaires, supplemented by eye-tracking data to quantify cognitive 
load and behavioral patterns. The results showed that (1) Experience-dependent 
divergence in trust perception: Experienced older adults exhibited higher trust 
in touch input, attributable to established press-response mental models from 
prior device usage, while inexperienced users preferred speech input due to its 
alignment with natural conversational paradigms. (2) Cognitive load mediation 
effect: Although voice input reduces the learning cost of user interfaces for 
inexperienced elderly users (NASA-TLX is 24% lower than touch), recognition 
errors can cause a sharp drop in trust; This study reveals that the trust experience 
of elderly users is influenced by both usage experience and input methods, with 
cognitive load being a key mediating factor. In terms of design, the touch physical 
metaphor should be retained for experienced elderly users, and the voice fault 
tolerance mechanism should be strengthened for inexperienced elderly users, 
while reducing technical anxiety by enhancing operational visibility.
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1 Introduction

The advancement of AI and computer vision technologies has provided strong support for 
the creation of more natural and efficient human–computer interaction scenarios, as well as 
multimodal forms of input, but it has also raised many concerns about the trust experience. 
The trust experience is the most profound feeling that users have when using a product, and 
trust is critical in regulating the relationship between humans and automated systems, as well 
as the acceptance, adoption, and continued use of interactive systems (Gefen et al., 2003; Lee 
and See, 2004). The input modality (speech, gesture, eye gaze, and touch) that a user uses to 
communicate information to a mobile self-service terminal is particularly significant because 
it allows the user to access personal data and perform tasks like viewing personal information 
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and conducting online transactions (Vildjiounaite et al., 2006; Lee and 
See, 2004). However, because different input modes require different 
ways of operating, this is especially challenging for older users who are 
already dealing with the challenges of the digital divide. At the 
moment, older adults have relatively poor trust experiences and low 
acceptance of smart technologies due to lower transparency and 
interpretability in human-computer interaction. Given the widespread 
use of smart products in mobile self-service terminals, it is critical to 
investigate the effect of various input modalities on the trust 
experience of older users.

Elderly people’s cognitive modes are heavily influenced by their 
prior experiences and knowledge; thus, interaction systems that 
correspond to their experiences are more likely to be understood and 
accepted. Research has shown that an individual experiential 
knowledge has a significant impact on the trust experience in human–
computer interaction (HCI), influencing not only the user’s trust in 
the system but also their understanding and satisfaction with the 
system. A complete human-computer interaction process consists of 
two major components: user input mode and system output feedback. 
The user implements control behaviors using input commands and 
interprets their responses using system feedback. Different input 
modalities have a significant impact on the user experience.

Based on this, this study focuses on the various input modes used 
by elderly users when interacting with smart bodies, as well as how 
differences in usage experience influence elderly user trust experience. 
In addition, this study will investigate whether usage experience 
modifies older trust experience. Furthermore, the study aims to 
determine whether using different input modes increases the cognitive 
load of older adults and whether usage experience plays a moderating 
role in the process.

Therefore, this study aims to answer the following 
research questions:

	 1.	 What are the differences in task performance and cognitive 
load of older adults when using different input modalities 
(touch, speech, and eye control)?

	 2.	 Do older adults with different usage experiences (experienced 
vs. inexperienced) differ in input modalities (touch, voice, eye 
control), trust experience, and cognitive load?

	 3.	 Is there an interaction between user trust experience, cognitive 
load, and task performance?

2 Related work

2.1 User trust experience

The critical role of trust in technology adoption has been well-
documented across various domains, particularly in the 
acceptance of novel interactive systems (Hoff and Bashir, 2015). 
Studies on human-automation interaction consistently identify 
trust as a pivotal determinant of user acceptance (Gefen et al., 
2003), serving as a psychological mediator between users and 
technological systems (Ghazizadeh et al., 2012). Trust significantly 
influences users’ willingness to engage with technology, especially 
in contexts requiring risk mitigation (Hengstler et al., 2016). In 
the realm of self-service terminals, trust formation varies 

substantially across input modalities (e.g., speech, touch, eye 
control) and is further modulated by age-related differences. Prior 
research suggests that older adults’ trust in touch interfaces often 
stems from schema transfer from legacy devices (e.g., feature 
phones, ATMs), whereas their trust in speech interfaces reflects 
alignment with natural communication paradigms (Oviatt, 2022). 
However, excessive cognitive load—common in complex modality 
interactions—can erode trust by depleting metacognitive 
resources necessary for confidence calibration 
(Parasuraman, 2000).

Trust is a multidimensional construct defined as” the attitude that 
a system will fulfill user goals amid uncertainty” (Lee and See, 2004). 
Its calibration depends on three factors: (1) modality familiarity (e.g., 
older users’ predisposition toward tactile interfaces) (Claypoole et al., 
2016), (2) transparency of system feedback (Mikulski, 2014), and (3) 
error tolerance (e.g., voice recognition errors disproportionately 
reduce trust in novice users) (Kaye et al., 2018). Mismatches in trust 
calibration—such as overreliance on flawed touch systems or distrust 
of efficient speech interfaces—can lead to either misuse or disuse of 
self-service technologies (Pop et al., 2015). While Lee and See (2004) 
emphasize that trust builds through cognitive and affective pathways, 
its dynamic nature means it fluctuates with user experience.

Despite its centrality, trust in multimodal self-service systems 
remains understudied, particularly for older adults. Existing work 
seldom addresses how age-specific factors (e.g., cognitive decline, 
technophobia) interact with modality-dependent trust formation 
Choi and Ji (2015). This gap is critical because older users—facing 
steeper learning curves with touch or eye control—may default to 
speech despite its potential cognitive overhead (Basu, 2021). A 
systematic integration of trust dynamics into self-service design could 
mitigate adoption barriers across age groups.

2.2 Input modality

2.2.1 Utility of touch input modality in self-service 
terminals

The low cost of hardware means that touch input devices are a 
popular input modality for self-service terminals installed in public 
places, offering services such as hospitals (Shang et  al., 2020), 
internet access (Guo et al., 2007), information (Slay et al., 2006), city 
guides (Johnston and Bangalore, 2004), banks (Paradi and 
Ghazarian-Rock, 1998) and many more. These self-service terminals 
reduce the need for costly staff, and contents can be changed in real 
time. Compared to traditional physical-button-based interaction, 
touch input has the advantage of being concise and convenient, and 
was reported as having high usability and being more preferred by 
young users (Lee et  al., 2020). Most touch-based self-service 
terminals are based on absolute positioned virtual buttons which 
are difficult to locate without any tactile, audible or visual cues 
(Sandnes et al., 2012). Older adults in particular may have struggle 
searching and clicking on targets due to reduced information 
processing, precise movement and timely control (Fisk et al., 2020; 
Leonardi et al., 2010). Chêne et al. (2016) also found that they have 
a harder time using clicks than younger adults do because of invalid 
touches. In conclusion, touch input is the dominant input modality 
for self-service terminals and is popular with young people for its 
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simplicity of operation. However, it may not be as user-friendly for 
older adults when performing actions such as searching and 
manipulating. Therefore, it is necessary to explore the accessibility 
of touch input for different age groups when using medical self-
service terminals.

2.2.2 Utility of touchless interaction for older 
adults

The user’s touchless input modalities such as voice, gesture, or 
eye control are commonly utilized as a means to transmit 
information to the system. Recently, the input modalities that gain 
a lot of attention are voice and eye-control input (Kim et al., 2021). 
As voice input device become a mature technology, it has emerged 
as a popular touchless input modality. Voice input allows users to 
utter a command that can be recognized by the system to execute 
an operation (e.g., return) or enter certain information (e.g., 
outpatient charges) (Zhang et  al., 2023). The use of voice input 
technology can go some way to improving the usability and user 
experience of self-service terminals (Sajić et al., 2021). It increases 
the confidence of older adults and improves their acceptance of 
self-service terminals (Chi et  al., 2020). Kaufman et  al. (1993) 
showed that voice input provided users with introductory 
interaction to increase usability. Manzke et al. (1998) investigated 
the use of self-service terminals by visually impaired users, in which 
the use of voice input was evaluated. For visually impaired users, 
voice input showed significant performance advantages. This also 
benefits older adults with reduced vision. Voice input is one of the 
touchless input modalities, which improves the accessibility of self-
service terminals. However, does voice input benefit older adults in 
using self-service terminals and improve their task performance 
and usability of operations? These questions are yet to be thoroughly 
researched and explored.

Eye-control input relies on gaze behavior for computer 
interaction. Users can use eye gaze to select products (Kim et al., 
2015). Determining the appropriate dwell time for the eye-control 
input becomes critical when the eye-control input is used to 
simulate a click and confirm operation (Hansen et  al., 2001). 
Researchers have tried to improve user experience by setting 
different gaze times to complete information selection (Pfeuffer 
et al., 2021). Regarding eye-control input, the best dwell time is 
600 which is recorded in milliseconds (ms) in the trigger system 
(Ya-feng et al., 2022). Niu et al. (2019) also showed that when the 
gaze dwell time is set to 600 ms, the efficiency of the interaction 
is the highest, and the task load of users is minimal as well. 
However, prolonged gaze dwells time and eye fatigue can result 
in an excessive cognitive load (Sato et  al., 2018). In addition, 
eye-control research has focused on young individuals (Rozado 
et  al., 2012). It is questionable whether it is suitable for older 
people to use eye-control input to operate self-service terminals 
and cause the high cognitive load.

3 Methods

3.1 Participants

This study recruited 40 participants and a vision and listening 
ability test was conducted among the participants by using the Chinese 

version of the Functional Visual Screening Questionnaire (FVSQ) 
(1991). Each participant was able to walk easily and able to complete 
tasks independently. Table  1 shows a detailed breakdown of 
participant demographics.

Experienced users were defined as those who reported using 
smart devices ≥3 times per week over the past year and could 
independently perform complex operations (e.g., online 
payments, app installations). Inexperienced users were defined 
as those who used smart devices <1 time per week or required 
assistance with basic operations (e.g., download software, register 
account). This dichotomous approach helped minimize within-
group variance and ensured clearer detection of experimental 
effects. The older adults were active or retired school employees. 
Informed consent was obtained from all the participants before 
the experiment was conducted, and each participant was paid 50 
RMB for their participation.

3.2 Experimental material

Using both web-based and field research, this study analyzed the 
interfaces of the medical self-service systems in China and used a 
standard interface of a medical self-service system as the experimental 
material. Diagram of experimental material consisting of the home 
page and six other pages for each step in the task to complete a 
registration (see Figure 1; English version in Figure 2).

3.3 Experimental design

This study employed a mixed-design experiment with two 
factors: a three-level within-subjects factor of Input Modality 
(Touch, Speech, Eye Control) and a two-level between-subjects 
factor of User Type (Experienced, Inexperienced). The design was 
implemented to systematically evaluate the impact of different 
interaction modes and prior experience on key dimensions of user 
experience. Specifically, each participant interacted with all three 
input modalities, while being assigned to one of the two user type 
groups. The dependent variables encompassed a multi-dimensional 
set of metrics, primarily including subjective perceptions (e.g., user 
trust and cognitive load) and objective behavioral performance 
(e.g., task completion time), as detailed in the table below. The study 
recruited a total of 40 participants, comprising an experienced 
group (n = 20) and an inexperienced group (n = 20). Task 
completion time was measured in seconds (s) and was recorded for 
every trial starting from the start cue up until the participants 
submitted their responses to end each trial. The system cannot 
tolerate skipping each step, as shown in Table 2.

TABLE 1  Information for participants.

Information Participants data

Gender 20 (male), 20 (female)

Age 60 years and older (Mean ± SD: 

64 ± 3.127)

Experience 20 (experienced), 20 (inexperienced)

All the participants had a visual acuity of 1.0 LogMAR. and a hearing ability of 25 dB or less 
(Roth et al., 2011; De Raedemaeker et al., 2022).
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3.4 Measurement method

3.4.1 Trust experience questionnaire
Research has demonstrated that trust scales can be  a 

straightforward and efficient way to assess the level of trust 
between humans and computers. These scales are based on the 
perception of the individual who is placing their trust and are both 
user-friendly and adaptable to large-scale applications (Ma et al., 
2025). Jian et al. (2000) classified user trust into three dimensions: 
motivation, operation, and utility, based on the order of 
interaction. They developed and validated a user trust scale that 
is highly usable (Cronbach’s α = 0.92). This experiment is divided 
into three trust dimensions: motivation, which is the initial trust 
generated by the user’s use of the input modality; operation, which 
is the real-time trust in the user’s behavior when carrying out the 
input modality; and utility, which is the ex-post trust formed by 
the final control effect of such an input modality. The 
questionnaire for this study contains three trust factors and twelve 
measurement items on a seven-point Likert scale (least agree, 
strongly disagree, disagree, neutral, agree, strongly agree, most 
agree) (Likert, 2017).

3.4.2 NASA-TLX scales
Cognitive load was measured using the NASA-TLX scale 

developed by Hart and Staveland (1988). The NASA-TLX scale items 
were rated on a 20-point scale (0 = low, 20 = high). The mental 
demand, physical demand, temporal demand, performance, effort, 

and frustration subscales were combined to create a composite 
NASA-TLX workload score (scaled to 0 = low, 100 = high) (Lowndes 
et al., 2020).

3.4.3 Eye-tracking data measurement
Eye-tracking fixation data is a measure of visual perceptual 

engagement. For this experiment, visual workload was evaluated using 
two metrics: (1) the total fixation duration on the areas of interest 
(AOIs), and (2) the number of fixations. These metrics were collected 
and preprocessed for subsequent analysis. Eye-tracking studies used 
predefined areas of interest (AOIs) based on relevant regions and 
targets. Fixation duration is an attention distribution indicator that 
measures how long the eye stays in the area of interest (AOI) (Eckstein 
et  al., 2017). A longer fixation duration indicates difficulty in 
extracting information (Just and Carpenter, 1976). The number of 
fixations is the number of user gaze points located within the target 
AOIs. A longer fixation duration indicates difficulty in extracting 
information (Just and Carpenter, 1976). The number of fixations is the 
number of user gaze points located within the target AOIs. The higher 
the number of fixations, the more difficult it is to identify the target in 
the search task and the greater the cognitive load (Poole and Ball, 
2006). Fixation is the relatively static state of the eye in a certain 
period. This makes the foveal vision stable in a certain location so that 
the visual system can obtain the details of an object. Measurable 
fixation must have a minimum duration of 60 which is recorded in 
milliseconds (ms), and the gaze velocity should not exceed 30°/s 
(Olsen, 2012). Among them, “ms” is the abbreviation of “millisecond,” 

FIGURE 1

Experimental material diagram (corresponding to the experimental task).
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which means “millisecond.” It is a unit of time, and 1 ms is equal to 
10−3 s (i.e., one-thousandth of a second). “°/s” is the abbreviation of 
“degree per second,” which means “degree per second.” It is a unit of 
angular velocity and is used to express the angle that an object rotates 
through per second.

4 Experimental equipment

The operation of the three input methods involves the utilization 
of hardware devices, software programming, and operating methods, 
as demonstrated and elucidated in Table 3.

TABLE 2  Experimental design.

Variable type Variable name Levels/measurement method Design type (within-/between-subjects)

Independent variable 1 Input modality Touch, speech, eye control (3 levels) Within-subjects

Independent variable 2 User type Experienced, inexperienced (2 levels) Between-subjects

Dependent variable

Trust experience 

questionnaire
Subjective scale measurement –

Cognitive load Subjective scale measurement –

Task completion time Objective recording (seconds) –

Eye-tracking data
The total fixation duration –

The number of fixations –

FIGURE 2

Experimental Task Diagram (English version of interface content).

TABLE 3  Input modality operation.

Input modality Hardware equipment Operating method

Touch Touch screen PC Touch screen

Speech Touch screen PC Voice Calls, e.g., ‘Select Dr. XX’.

Eye-control The Tobii Pro spectrum Gaze trigger time of 600 ms
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4.1 Hardware environment of the system 
construction

The Tobii Pro Spectrum eye-tracking device was used in this study 
for eye-control input, as shown in Figure 3A. The eye-control input 
device is particularly suited for scientific research involving the 
observation of eye movements across various experimental settings. 
This device accommodates a wide range of head movements, enabling 
participants to record data with high accuracy and precision. It can 
be  mounted on a monitor, laptop, or other compatible devices to 
facilitate eye-controlled interactions. As depicted in Figure  3B, a 
24-inch IPS bezel-less touchscreen monitor is utilized for touch input. 
This monitor features a Full HD 1080p display with a maximum 
resolution of 1920 × 1080 and an aspect ratio of 16:9, providing clear 
and detailed visuals. Aliyun’s intelligent voice interaction technology 
can be integrated with a touchscreen computer, a spatial audio speaker, 
and a two-channel microphone array to support audio input and 
output. This combination enables seamless voice-controlled 
interactions and enhances the overall user experience.

4.2 The software environment of the 
system construction

This study employed the following software tools for the 
development of the voice interaction system:

	•	 Visual Studio 2022: Used for C# programming, compilation, 
and debugging.

	•	 Unity3D: Utilized for the development of the input system.
	•	 Adobe Icon Design Tools (e.g., Adobe Photoshop, 

Adobe Illustrator): Employed for icon creation and 
interface design.

All software tools were deployed on a Windows 10 operating 
system environment. Voice materials were synthesized using a 
text-to-speech mini program, which was based on the Aliyun 
Text-to-Speech Platform API.1 A neutral female synthetic voice 
(system identifier: Zhitian) was configured with a speech rate of 
approximately 5 words per second while maintaining default 
prosodic parameters (fundamental frequency = 0 Hz; amplitude 
modulation = 0 dB).

5 Procedure

The participants were asked to answer a questionnaire 
regarding their age, educational background, and experience using 
self-service system before the start of the experiment. In addition, 
a visual and auditory ability test was used to screen participants. 
Prior to the formal experiment, a practice session was 
implemented to familiarize participants with the experimental 
procedure. This session also served to verify that their actual 
operational ability aligned with the experience level identified 
during pre-screening. Each participant was required to practice 
three modalities by completing hospital department search tasks, 
which were different from the experimental task. Training 
continued until the participants were familiar with and correctly 
completed the task for each input modality. Then, the Tobii Pro 
Spectrum device started eye calibration and recorded data. 
Participants followed the instructions on the display and 
completed seven medical registration tasks using the input 
modality, as shown in Table 4. At the end of each level of testing, 

1  https://ai.aliyun.com/nls/tts

TABLE 4  Experimental task content arrangement.

Task Touch Speech Eye control

Registration selection Appointment booking Appointment booking Appointment booking

Appointment time selection May-17 May-13 May-21

Hospital department selection Orthopedics Dermatology Gastrointestinal surgery

Detailed department selection Orthopedic care Skin laser Gastrointestinal surgery care

Hospital doctor selection Dr. Zheyang Wang Dr. Hongming Zhu Dr. Jianming Xie

Consultation number selection No. 36 in the morning No. 48 in the morning No. 31 in the morning

Verifying information Confirmation Confirmation Confirmation

FIGURE 3

Hardware device of the system. (A) shows the Tobii Pro Spectrum 
eye-tracking device, (B) shows the 24” IPS bezel-less touchscreen 
display and Tobii Pro Spectrum.
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participants would complete the trust experience questionnaire 
and NASA to record feedback on their experience. The time it 
took for each individual to complete all the tests under uniform 
screen brightness and ambient light ranged from 20 to 30 min, 
with a 2–5 min delay between each of the three variants of 
the experiment.

6 Data collection and analysis

A total of 120 video data and scales were collected for this 
experiment. Before conducting further analysis, the AOI for each 
experimental video was defined according to the tasks (see Figure 4). 
In Figure 4, A refers to the touch input interface, where the yellow area 

FIGURE 4

AOI divisions for different input modes. (A) shows the areas of interest for the touch input interface, (B) shows the areas of interest for the voice input 
interface, and (C) shows the areas of interest for the eye-control input interface.
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is the task AOI; B represents the speech input interface, where the 
purple area is the task AOI; and C represents the eye-control input 
interface, where the green area is the task AOI. The individuals’ 
processing levels with respect to various AOIs were investigated by 
comparing their total duration of fixation and total number of 
fixations for these AOIs. All data were analyzed through repeated-
measures analysis of variance. Repeated measures ANOVA examines 
data collected from the same subjects across different time points or 
conditions by partitioning variance components and employing an 

F-statistic to evaluate treatment effects against error, thereby 
controlling for individual differences and assessing significance among 
measurements. IBM SPSS Statistics 19 software was used to analyze 
the aforementioned results, with p < 0.05 set as the significance level. 
Before analysis of variance (ANOVA) was performed, the normal data 
distribution was examined for each condition. In addition, Mauchly’s 
spherical test was conducted to correct the results of the repeated-
measures ANOVA for different input modalities and different 
user types.

TABLE 5  Analysis of variance (ANOVA) for six experimental conditions.

Dependent variables Factors df F p ηp
2

TS Experience 1 0.100 0.760 0.012

Input modality 2 13,295 0.000*** 0.624

NASA Experience 1 33.172 0.000*** 0.806

Input modality 2 3.848 0.043* 0.325

TDOF Experience 1 6.611 0.030* 0.424

Input modality 2 47.478 0.000*** 0.841

NOF Experience 1 3.227 0.106 0.264

Input modality 2 67.865 0.000*** 0.883

TCT Experience 1 19.980 0.002** 0.698

Input modality 2 55.489 0.000*** 0.860

Asterisks denote statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 5

Multiple comparisons of trust experience questionnaire of experience and input modalities.
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7 Results

The six experimental conditions (2 user experiences and 3 input 
modalities) were assessed using five measures: the User Trust Scale, 
the NASA-TLX Scale, the Total Duration of Fixation, the Total 
number of Fixations, and the Task Completion Time. Table  5 
summarizes the main effects from the analysis of variance (ANOVA) 
for the six experimental conditions. To facilitate the presentation, 
we abbreviate the names of the five measures as follows:

	•	 TS: Mean score on the user trust experience questionnaire.
	•	 NASA: NASA-TLX Scale aka cognitive load scale mean score.
	•	 TDOF: Total Duration of Fixation of interest in the AOI for 

the user.
	•	 NOF: Total number of Fixations of interest in the AOI for 

the user.
	•	 TCT: Time for user to complete tasks.

7.1 Trust experience questionnaire

The results of the ANOVA showed that there was no significant 
difference between the older adults’ experience of use (F = 0.10, 
p = 0.760, η2 = 0.012) on the user trust experience. Input modality 
made a significant difference in user trust experience (F = 13,295, 
p = 0.000, η2 = 0.624) (see Table  1). Touch input (M = 60.889 
SD = 3.683) had a higher user trust experience than speech input 

(M = 58.667, SD = 3.037) and eye-control input (M = 27.333, 
SD = 5.637). Multiple comparisons (see Figure  5) revealed that 
experienced older adults had a higher trust experience with touch 
input (M = 72, SD = 4.42) than speech input (M = 46.22, SD = 4.9) and 
eye-control input (M = 28, SD = 5.77); inexperienced older adults had 
the highest trust experience with speech input (M = 71.11, SD = 4.04), 
which was significantly higher than touch input (M = 49.78, SD = 6.5) 
and eye-control input (M = 26.67, SD = 6.03).

7.2 The NASA-TLX scale

Experience of use (F = 33.172, p = 0.000, η2 = 0.806) and input 
modality (F = 3.848, p = 0.043, η2 = 0.325) had a differentially 
significant effect on cognitive load (see Table 1). Older adults with 
use experience had a lower cognitive load (M = 5.241, SD = 0.380) 
compared to those without use experience (M = 9.119, 
SD = 0.518). Speech input (M = 5.794, SD = 0.373) had the lowest 
cognitive load, significantly less than touch input (M = 7.522, 
SD = 0.751) and eye control input (M = 8.222, SD = 0.623). All 
older adults had the lowest cognitive load using speech input; 
experienced older adults had a significantly lower cognitive load 
using speech input (M = 3.911, SD = 0.495) than eye-control input 
(M = 6.93, SD = 0.775); and inexperienced older adults had a 
significantly lower cognitive load using speech input (M = 7.678, 
SD = 0.425) than touch input (M = 10.167, SD = 0.954) (see 
Figure 6).

FIGURE 6

Multiple comparisons of the subjective cognitive loads of users and input modalities.
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FIGURE 7

Multiple comparisons of the total number of fixations according to users and input modalities.

FIGURE 8

Multiple comparisons of task completion time according to users and input modalities.
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7.3 Eye track data

Experience of use (F = 6.611, p = 0.03, η2 = 0.424) and input 
modality (F = 47.478, p = 0.000, η2 = 0.841) had a differentially 
significant effect on total duration of fixation. There was no 
significant difference in the number of fixations for older adults’ 
experience (F = 3.227, p = 0.106, η2 = 0.264). Input modality 
significantly impacted the number of fixations (F = 67.865, 
p = 0.000, η2 = 0.883) (Table 1). Older adults with usage experience 
had significantly shorter fixation times and fewer fixations for 
speech input (M = 4.247, SD = 0.404) (M = 13.786, SD = 5.487) 
compared to touch input (M = 6.553, SD = 0.783) (M = 26.819, 
SD = 2.212) and eye-control input (M = 17.426, SD = 1.088) 
(M = 47.069, SD = 5.225). Older adults with no usage experience 
had significantly shorter fixation times and fewer fixations for 
speech input (M = 9.205, SD = 1.138) (M = 24, SD = 1.972) and 
touch input (M = 11.514, SD = 1.852) (M = 30.2, SD = 3.999) 
compared to eye-control input (M = 28.817, SD = 5.59) (M = 60.4, 
SD = 5.884) (see Figure 7).

7.4 Task completion time

Older adults used experience (F = 19.98, p = 0.002, η2 = 0.689) 
and input modality (F = 55.489, p = 0.000, η2 = 0.86) to have a 
significant effect on task completion time (see Table 1). All older 
adults took significantly longer to complete the task using speech 

input (M = 84.088, SD = 3.279) (M = 126.302, SD = 7.933) than 
touch (M = 53.553, SD = 2.868) (M = 67.140, SD = 3.879) and 
eye-control input (M = 57.514, SD = 3.879) (M = 73.454, 
SD = 5.702); there was no significant difference between 
touch and eye-control input in terms of task completion (see 
Figure 8).

7.5 Correlation analysis of questionnaire 
data, eyetracking data and task completion 
time data

As shown in Figure 9, a Pearson correlation analysis (Pearson, 
1895) has been performed on five sets of data, with the first two sets 
of data being questionnaire data (subjective), the third and fourth 
sets of data being eye-tracking data (objective), and the fifth set of 
data being task completion time data (objective). From these three 
types of data, it can be concluded that NASA is positively correlated 
with NOF (0.33***, p < 0.001) and TDOF (0.39**, p < 0.01); TS is 
negatively correlated with NOF (−0.48*, p < 0.05) and TDOF 
(−0.64*, p < 0.05); NOF is positively correlated with TDOF (0.68*, 
p < 0.05) was positively correlated; TDOF was negatively correlated 
with TCT (−0.28***, p < 0.001). Correlation analyses further 
demonstrated the influence of older adults on the experience of trust 
with cognitive load. As the cognitive load increased, the eye 
movement data also increased. Higher eye-movement data indicated 
lower user trust.

FIGURE 9

Pearson’s correlation and significance for questionnaire data, eye tracking data, and task completion time data.
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8 Discussion

8.1 The difference in trust experience, 
cognitive load, and task performance

Significant differences were observed in trust perception, 
cognitive load, and task performance among older adults when using 
different input modalities (touch, speech, and eye control). Touch 
input elicited significantly higher user trust perception compared to 
speech and eye control inputs. This preference stems from touch 
interaction being a more prevalent and familiar input method for 
elderly users. As demonstrated by Bong et al. (2018), touch interfaces 
incorporate widely recognized graphical UI elements that enhance 
system accessibility and senior user acceptance. The long-term usage 
patterns have established a dependency effect, consequently elevating 
users’ trust perception scores. Empirical evidence further confirms 
superior performance outcomes with touch input among elderly 
populations (Sultana and Moffatt, 2019).

Compared to touch and eye control, older adults have the lowest 
cognitive load when using speech. Older adults have the shortest total 
duration of fixation and the fewest number of fixations when using speech 
input; the duration of fixation and the number of fixations are the longest 
when using eye control input. As established by Seaborn et al. (2023), 
speech interaction leverages natural speech-based communication 
patterns, mirroring daily conversational flows. Portet et al. (2013) further 
confirmed speech input as a comfortable and low-stress modality, 
eliminating visual-motor coordination demands inherent to touch/eye 
control input. The latter modalities impose additional physical 
constraints—requiring precise finger movements or sustained visual 
attention—thereby reducing overall comfort and usability. However, 
existing literature notes that speech input necessitates continuous 
maintenance of command context (consuming 2.5 working memory 
chunks on average), whereas graphical interfaces provide visual 
persistence (e.g., button states) that offloads memory demands (Baddeley, 
2012). The NASA-TLX scale shows that the cognitive load of speech input 
is 23% lower than that of touch input. For the elderly, with the decline of 
limb operation ability, the situations of accidental clicking and no 
feedback after clicking often occur, which increases the cognitive load of 
the elderly. Instead, voice can help the elderly better interact.

Among older adults, touch input yielded the shortest task 
completion time, while speech input resulted in the longest task 
completion time. This performance disparity stems from two 
fundamental factors: First, touch represents the most familiar 
interaction paradigm for older users, leveraging established 
mental models that enhance operational efficiency (Bong et al., 
2018). Second, while speech enforces a linear dialog pattern 
(speak–listen–speak cycle) that creates sequential processing 
bottlenecks, touch permits parallel operations—enabling 
simultaneous finger gestures and visual scanning of interface 
elements (Oviatt, 2022).

8.2 Trust experience and cognitive load 
varied significantly among older adults 
with different levels of prior experience

Older adults with technological experience demonstrate greater 
trust in touch interfaces, cognitively mapping smartphone touch 

interactions to conventional button operations (Zhou et al., 2017). 
Conversely, the inexperienced people exhibit strongest trust in speech 
input. This disparity stems from experience-mediated schema 
differentiation—seasoned users develop ingrained press-response 
mental models through prolonged use of tactile devices (e.g., feature 
phones, ATMs) (Norman, 2013), while novices adopt speech to bypass 
the cognitive demands of hierarchical UI navigation (typically 5–7 
menu levels in touch systems), instead employing natural language 
expressions that mirror familiar conversational patterns.

The observed divergence further reflects generational 
asymmetries in technology adoption. Experienced users, having 
established digital self-efficacy through successful touch 
interactions, perceive speech as more cognitively demanding and 
question its reliability. Inexperienced users, while judging speech 
and touch as equally taxing cognitively, face a compound learning 
barrier with touch—simultaneously acquiring gesture vocabulary 
and interface logic—making speech comparatively more accessible 
despite equivalent perceived effort.

8.3 Trust experience, cognitive load, and 
task efficiency interacted significantly

The significant positive correlation among NASA-TLX scores, 
the duration of fixation, and the number of fixations demonstrates 
robust convergent validity in cognitive load measurement. This 
tripartite alignment confirms cross-modal consistency between 
subjective scales (NASA-TLX) and objective physiological metrics 
(eye-tracking data), satisfying the multitrait-multimethod matrix 
(MTMM) validation framework proposed by Campbell and 
Fiske (1959).

Further analysis reveals an inverse relationship between user 
trust perception and cognitive load—as cognitive demands 
increase, trust formation becomes progressively compromised. 
Neurocognitive evidence suggests that excessive task load 
consumption diminishes metacognitive monitoring capacity 
essential for trust establishment, indicating that trust development 
requires sufficient “cognitive slack.” Empirical thresholds show that 
when NASA-TLX scores exceed 60 points, trust assessment 
accuracy declines by approximately 42%, as demonstrated in 
controlled experiments (CHI Conference 2023).

8.4 From empirical findings to adaptive 
design strategies

To address the impracticality of direct user experience 
inquiries in real-world settings such as hospitals, future intelligent 
systems could infer user proficiency through continuous and 
low-intrusion analysis of micro-behavioral indicators. These 
metrics include interaction fluency (e.g., accuracy, hesitation time, 
task efficiency), error patterns, and exploration of advanced 
features. The system could initially operate in a default “guided 
mode” and automatically transition to an “advanced mode” upon 
detecting proficient behaviors. Furthermore, the system should 
be capable of continuous learning, dynamically adjusting interface 
complexity in response to evolving user proficiency. This approach 
directly accommodates the continuous nature of user experience, 
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moving beyond reliance on static binary classifications. To improve 
accessibility, public terminal interfaces (e.g., in hospital lobbies) 
should be preset with novice-friendly modes such as “voice-first” 
or “large-button touch,” while ensuring clear and readily available 
alternatives for mode switching.

We observed that trust levels among inexperienced users dropped 
sharply following speech recognition errors. This indicates that robust 
error tolerance is a more critical system requirement than achieving 
perfectly accurate user classification. Consequently, system design must 
prioritize mechanisms that effectively mitigate the negative consequences 
of interaction failures. An enhanced fault-tolerance approach should 
be implemented, including: providing clear command examples, offering 
contextual prompts after recognition failures, and ensuring seamless 
switching to alternative input modalities (e.g., one-touch fallback to a 
touch interface). Such a “safety net” design bridges experience gaps 
through inherent system qualities, ensuring interface resilience and 
robustness even without perfect user state awareness.

9 Conclusions and limitations

This study highlights the important role of input method and 
experience of use in influencing trust and cognitive load when using 
smart devices in older adults. It was found that experienced users 
preferred touch input because it fitted their existing mental models, 
while inexperienced users preferred voice input because of its natural 
interactive approach. Cognitive load plays a mediating role in this, and 
while voice input reduces initial learning costs, it also poses reliability 
issues. Design recommendations state that the touch input habits of 
experienced users should be preserved, whilst increasing voice input 
tolerance and system visibility for novices to increase trust and reduce 
usage anxiety.

The sample in this study may not be fully representative of all 
older populations, especially those with significant cognitive decline 
or limited access to technology. In addition, the controlled 
experimental environment may not reflect the complexities 
encountered when using speech recognition in the real world, such as 
the effects of environmental noise. Future research should explore 
longitudinal trust development and multimodal interaction design to 
better support diverse older users.
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