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Optimized encoder-based
transformers for improved local
and global integration in railway
image classification

Lilan Li, Xuemei Zhan, TianTian Wu and Hua Ma*

School of Electronic Engineering, Zhengzhou Railway Vocational and Technical College, Zhengzhou,
China

Railway image classification (RIC) represents a critical application in railway
infrastructure monitoring, involving the analysis of hyperspectral datasets
with complex spatial-spectral relationships unique to railway environments.
Nevertheless, Transformer-based methodologies for RIC face obstacles
pertaining to the extraction of local features and the efficiency of training
processes. To address these challenges, we introduce the Pure Transformer
Network (PTN), an entirely Transformer-centric framework tailored for the
effective execution of RIC tasks. Our approach improves the amalgamation
of local and global data within railway images by utilizing a Patch Embedding
Transformer (PET) module that employs an “unfold + attention + fold”
mechanism in conjunction with a Transformer module that incorporates
relative attention. The PET module harnesses attention mechanisms to replicate
convolutional operations, enabling adaptive receptive fields for varying spatial
patterns in railway infrastructure, thus circumventing the constraints imposed
by fixed convolutional kernels. Additionally, we propose a Memory Efficient
Algorithm that achieves 35% training time reduction while preserving accuracy.
Thorough assessments conducted on four hyperspectral railway image datasets
validate the PTN’s exceptional performance, demonstrating superior accuracy
compared to existing CNN- and Transformer-based baselines.
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1 Introduction

Railway Image Classification (RIC) plays a pivotal role in railway infrastructure
monitoring and safety assessment, constituting a fundamental task involving the
processing of hyperspectral data that captures complex spatial-spectral relationships
unique to railway environments. Railway images present distinct challenges including: (1)
complex spatial-spectral relationships in hyperspectral data captured from moving trains,
(2) multi-scale infrastructure features ranging from fine-grained rail defects to large-scale
track layouts, (3) temporal consistency requirements for real-time monitoring systems,
and (4) limited computational resources in railway deployment environments. Unlike
general computer vision tasks, RIC techniques require specialized solutions to handle
these unique characteristics while maintaining high accuracy for critical safety applications.
Beyond railway applications, hyperspectral image classification techniques are extensively
applied in various fields, including agricultural monitoring (Sahadevan, 2021; Mahesh
et al., 2015), environmental assessment (Andrew and Ustin, 2008), geological exploration
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(Kirsch et al., 2018), food safety monitoring (Pu et al., 2023),
and medical diagnosis (Wang et al., 2023). Nonetheless, the high
dimensionality of hyperspectral data, along with the effective
processing of spatial-spectral information, continues to pose
significant challenges for RIC technology.

Currently, Transformer-based methods for RIC encounter
challenges associated with complex model architectures and
elevated training costs. These methods have yet to adequately
address the model’s capacity to manage local features inherent
in complex hyperspectral image data, as well as issues related
to efficiency. Specifically, existing transformer approaches
like Swin Transformer use fixed window partitioning that
may miss critical cross-scale relationships essential for
comprehensive railway condition assessment, while methods
like T2T-ViT require hierarchical token reconstruction that adds
computational overhead unsuitable for resource-constrained
railway monitoring systems. Consequently, we are endeavoring to
develop corresponding methodologies to mitigate these challenges.

Historically, traditional machine learning techniques were
predominantly employed to process hyperspectral image data.
These methods encompass support vector machines (SVM) (Platt,
1998), decision trees (Yang et al., 2003), random forests (Xia
et al., 2018), and k-nearest neighbors (KNN) (Ma et al., 2010).
While these conventional machine learning approaches excel in
identifying and classifying substances based on spectral features,
they tend to neglect the spatial relationships between pixels, which
complicates the differentiation of materials that may be spectrally
similar but spatially distinct. Furthermore, these methods primarily
focus on extracting shallow features and depend on manually
defined labels, resulting in inadequate efficiency and accuracy when
addressing hyperspectral image data characterized by complex
spatial structures.

Deep learning leverages the inherent properties of data
through sophisticated neural network architectures, demonstrating
markedly superior performance compared to traditional machine
learning techniques, particularly in the management of large-scale
and structurally complex data. Convolutional Neural Networks
(CNNs) have emerged as the predominant approach (Yang et al.,
2018; Chen et al., 2014, 2015). Initially, akin to traditional machine
learning methods, CNNs employed 1D-CNNs (Hu et al., 2015)
to extract spectral features. However, this methodology, which
concentrated solely on spectral data, has proven to be inadequate.
Yang et al. (2018) developed a network model comprising three 2D-
CNNs to extract spatial information surrounding target pixels. Yu
et al. (2020) introduced deconvolution layers to enhance the depth
of 2D-CNN models, facilitating the mapping of low-dimensional
features to higher-dimensional inputs. To comprehensively fuse
spectral and spatial features, Li et al. (2017) proposed a 3D-
CNN framework to directly process the hyperspectral image data
cube, effectively extracting deep spatial-spectral joint features.
Additionally, HybridSN (Roy et al., 2020) integrates 2D-CNN
and 3D-CNN architectures to further elucidate more abstract
spatial representations. Despite the commendable performance
of CNN-based methods in hyperspectral image classification
tasks, they frequently encounter limitations associated with fixed
convolutions, which may significantly impede performance when
addressing high-dimensional data that necessit.

Transformers effectively capture long-distance relationships
within input images, thereby enhancing the understanding
of global context information in hyperspectral imaging
(HSI) (Touvron et al., 2021; Wang et al., 2022; Wu et al.,
2021), and processing key information in hyperspectral data
with greater efficiency. HSI-BERT (He et al., 2020) captures
the global information of each pixel through the multi-head
self-attention (MHSA) mechanism within the MHSA layers.
SpectralFormer (Hong et al., 2022) adopts a sequential approach,
capturing the spectral information of HSI images either pixel
by pixel or block by block, and learning local spectral sequence
information. SATNet (Qing et al., 2021) employs spectral attention
mechanisms and self-attention mechanisms to extract spectral
and spatial features, respectively. Hit (Yang et al., 2022) integrates
convolution operations into the transformer architecture to
capture subtle spectral differences while conveying local spatial
context information. SSTN (Zhong et al., 2022) combines CNNs
and dense Transformers to provide spatial features alongside
spectral sequence relationships. LESSFormer (Zou et al., 2022)
transforms HSI data into adaptively formed spectral-spatial tokens,
explicitly enhancing local information via a simple attention mask.
GAHT (Mei et al., 2022) constrains MHSA to local spatial-spectral
contexts by grouping pixel embeddings.

Despite the effectiveness of Transformers in managing
serialized HSI data, they exhibit limitations in processing local
features. Unlike RGB images, which consist of only three channels,
hyperspectral images encompass hundreds of spectral bands.
This characteristic complicates the application of Transformers,
as it results in an excessive distribution of information on a
global scale, consequently diminishing the model’s capacity to
capture local details. Moreover, due to the inherent complexity of
Transformer architectures, their training efficiency is also subject
to limitations. These limitations are particularly problematic for
railway applications where both fine-grained local defect detection
and global track layout understanding are simultaneously required
for comprehensive condition assessment.

In response to the aforementioned challenges and inspired by
the exploration of convolution and self-attention mechanisms in
CoAtNet (Dai et al., 2021) as shown in Figure 1, we introduce
a Pure Transformer Network (PTN) specifically designed to
utilize a Transformer architecture for effectively managing local
information in HSI data while achieving efficient model training.
PTN is structured to address HSI classification tasks using a model
that is entirely based on Transformer principles.

This architecture is primarily composed of two core
components: the Patch Embedding Transformer (PET) and
the Transformer module grounded in relative attention. Within the
PET, we extract local information utilizing the "unfold + attention
+ fold" methodology, which circumvents the limitations associated
with fixed convolutional kernels commonly found in traditional
convolution operations. The key innovation of our PET module lies
in its ability to simulate adaptive convolutional operations through
learned attention weights, enabling dynamic receptive fields
that adjust to varying spatial patterns in railway infrastructure,
unlike Swin Transformer’s fixed window partitioning or T2T-ViT’s
hierarchical processing. By integrating the PET module with
the Transformer module that employs relative attention, PTN
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FIGURE 1

Overall architecture of CoAtNet.

successfully amalgamates both local and global information
within HSI data. This integration not only augments classification
accuracy but also enhances network efficiency.

Moreover, the Memory Efficient algorithm based on
Operation Fusion accelerates the model’s training process.
This algorithm achieves 35% training time reduction and 28%
memory consumption decrease while preserving mathematical
equivalence to full attention computation, making it particularly
suitable for deployment in resource-constrained railway
monitoring environments. Additional improvements arise
from enhancements in the optimizer, adjustments to learning
rates, and the optimization of training parameters. Through
these methodologies, our proposed PTN effectively synthesizes
local and global spatial-spectral information present in HSI data.
Classification assessment experiments conducted on various HSI
datasets demonstrate the superiority of our PTN approach. Our
contributions are delineated as follows:

• We proposed a novel RIC method called PTN, which
overcomes the limitations of fixed convolutional kernels,
enabling a more flexible approach to local feature extraction
while effectively integrating global information specifically
designed for railway infrastructure monitoring challenges.

• We designed a Memory Efficient algorithm based on
Operation Fusion, which achieves 35% training time reduction
and 28% memory consumption decrease when the batch size
is 256 while maintaining mathematical equivalence to full
attention computation.

• To validate the effectiveness of PTN in railway image
classification, we conducted experiments on four
hyperspectral RIC datasets, including comprehensive
comparisons with CNN- and Transformer-based baselines
such as CoAtNet, and the results show PTN achieves high-
precision classification and high training efficiency suitable
for railway deployment environments.

2 Related work

2.1 CNN-based methods for image
classification

Hu et al. (2015) approach spectral information as one-
dimensional vectors and employ one-dimensional convolutional

neural networks (1D-CNN) to directly classify hyperspectral
images (HSI) within the spectral domain. Nonetheless, these
methodologies predominantly emphasize spectral features while
neglecting the significance of spatial features. Yang et al. (2018)
developed a two-dimensional convolutional neural network (2D-
CNN) based on small blocks surrounding each pixel, effectively
harnessing spatial context information; however, they overlook
the internal correlations inherent in hyperspectral data. Chen
et al. (2016) expanded upon this methodology by utilizing
three-dimensional convolutional neural networks (3D-CNN) to
simultaneously learn both spatial and spectral features of HSI.
They mitigated the overfitting concern through the application
of L2 regularization. However, the constrained receptive field
of convolutional neural networks limits their capacity to model
long-range dependencies, consequently hampering further
enhancements in classification performance. For railway image
classification specifically, these CNN-based methods face
additional challenges due to the multi-scale nature of railway
infrastructure features, where fixed convolutional kernels may
inadequately capture the varying spatial patterns ranging from
fine-grained rail defects to large-scale track layouts. The inability
to adaptively adjust receptive fields based on input content further
limits their effectiveness in handling the complex spatial-spectral
correlations present in railway hyperspectral data.

2.2 Transformer-based methods for image
classification

SpectralFormer (Hong et al., 2022) employs a Transformer
architecture for hyperspectral image (HSI) classification from a
sequential perspective, enabling the acquisition of local spectral
sequence information from adjacent bands in HSI to generate
grouped spectral embeddings. However, the label embeddings
produced from a singular spectral or spatial dimension are often
inaccurate, and limitations persist in effectively extracting local
features from the data. SSFTT (Sun et al., 2022) integrates three-
dimensional and two-dimensional convolutional layers to capture
shallow spectral-spatial features alongside higher-level semantic
features, which are subsequently processed through Transformer
Encoder modules for feature representation and learning.
Hit (Bai et al., 2022) incorporates convolutional operations
within Transformers to discern subtle spectral differences and
convey local spatial context information, thereby addressing the
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limitations of CNNs in fully leveraging the properties of spectral
sequence features. Nonetheless, methodologies that amalgamate
convolution with Transformers remain constrained by the fixed
convolutional kernels of CNNs.

Swin Transformer (Liu et al., 2021) utilizes a hierarchical
sliding window approach with fixed window partitioning and
shifted windows to acquire image patches, which proves effective
in preserving local structural information within images. However,
this fixed partitioning strategy may miss critical cross-scale
relationships essential for railway applications where infrastructure
features exhibit both local and global dependencies. T2T-ViT
progressively tokenizes images through multiple Transformer
layers but requires hierarchical token reconstruction that adds
computational overhead unsuitable for resource-constrained
railway monitoring systems. CrossViT (Chen et al., 2021)
adopts two independent branches with differing computational
complexities to manage tokens from small and large blocks
separately. These tokens are subsequently merged multiple times
through attention mechanisms to capture a broader range of
contextual information, thereby demonstrating the viability of
employing Transformers for local feature extraction from data.
CoAtNet combines convolutional and attention mechanisms
in a hybrid architecture, but still relies on fixed convolutional
operations that cannot adaptively adjust to varying spatial patterns
in railway infrastructure. Our approach differs fundamentally by
simulating convolution through attention mechanisms, enabling
dynamic receptive fields that adapt to input content rather than
using predetermined spatial constraints.

2.3 Efficient algorithm for transformer
learning

Mixed Precision Training (Micikevicius et al., 2017) employs
half-precision floating-point numbers to train deep neural
networks, significantly reducing memory requirements by
nearly fifty percent and accelerating computations on graphical
processing units (GPUs), all without compromising model
accuracy or necessitating modifications to hyperparameters.
Automatic Mixed Precision (AMP) (Zhao et al., 2021) integrates
single-precision with half-precision to execute mixed-precision
floating-point operations, thereby enhancing efficiency in
multiplication operations while effectively minimizing rounding
errors during the accumulation phase. Switch-Transformer (Fedus
et al., 2022) adopts a single-expert strategy, which streamlines the
Mixture of Experts (MoE) routing algorithm and substitutes the
feedforward network (FFN) layer in the Transformer architecture
to diminish gate computations and communication costs, thereby
ensuring the quality of training. Flash Attention (Dao et al., 2022)
mitigates the issues of slow computation speed and high storage
consumption associated with Transformers by reducing storage
access overhead. These efficiency improvements focus primarily
on computational optimizations but do not address the specific
challenges of preserving global contextual information during
block-wise processing, particularly crucial for hyperspectral data
where spatially separated but spectrally correlated regions must
maintain their relationships. Our Memory Efficient Algorithm

addresses this gap by ensuring mathematical equivalence to full
attention computation through operation fusion and context
preservation mechanisms, making it particularly suitable for
railway deployment environments with limited computational
resources.

3 Methodology

In this section, we first introduce the basic method. Next, based
on this approach, we explore the model of using pure Transformers
for RIC classification. Finally, we designed a memory optimization
algorithm to improve the training efficiency of this classification
model.

3.1 Standard CoAtNet method

CoAtNet (Dai et al., 2021) is characterized by a five-stage
architecture (S0, S1, S2, S3, S4) that emulates the structure
of CNN, thereby enhancing feature extraction by progressively
diminishing spatial resolution while increasing the number of
channels. Specifically, S0 utilizes simple2D-CNN for preliminary
feature extraction; S1 and S2 incorporate Mobile Inverted
Bottleneck Convolution (MBConv) [38] modules with Squeeze-
and-Excitation (SE) (Hu et al., 2018) mechanisms (denoted as
“C”); whereas S3 and S4 introduce Transformer modules featuring
relative attention (Huang et al., 2018) mechanisms (denoted as
“T”). This staged structural design enables CoAtNet to effectively
capture local features in the initial stages via CNN modules, while
subsequently addressing more intricate global relationships in later
stages through Transformer modules. The overall architecture can
be succinctly summarized as C-C-T-T.

Due to CoAtNet utilizing the original image size as data
input, it necessitates multiple convolutional layers to diminish
the spatial dimensions of the input data. In contrast, we adopt
an alternative data preprocessing method, segmenting RIC data
into multiple small cubes as input, which significantly reduces the
dimensionality of data inputs and thereby lessens the reliance on
multi-layer convolutional modules for spatial dimension reduction.
For RIC data preprocessing, this research posits that CoAtNet,
when employing only Transformer modules, may be better adapted
for processing RIC data. Building on this premise, the potential of
Transformer models to extract local features from remote imagery
classification was further investigated, culminating in the design of
an enhanced Transformer-based RIC classification model.

3.2 Pure transformer network

The PTN is depicted in Figure 2. The component S0 represents
the PET module, which is tasked with the extraction of local
features. In contrast, S1 denotes a Transformer module grounded
in relative self-attention mechanisms, which is responsible for
the integration of global information. By synthesizing the PET
module with the Transformer module that employs relative self-
attention, this architecture adeptly merges local features with global
information derived from RIC data, thereby circumventing the
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FIGURE 2

Overall architecture of the proposed PTN. The PET module is utilized to extract local spatial-spectral information from Railway Image Classification
(RIC) data; subsequently, this extracted information is input into a transformer block to capture the global information of RIC data. Finally, a global
average pooling layer and a fully connected layer are employed for classification.

FIGURE 3

Illustration of T2T Module as proposed by Yuan et al. (2021).
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FIGURE 4

Comparison of the processing procedure of 2D convolution and PET module.

limitations associated with the utilization of fixed convolutional
kernels for local feature extraction.

To further investigate the capability of Transformers in local
feature extraction, the design concept of T2T-ViT (Yuan et al.,
2021) is illustrated in Figure 3. Building upon this, the PET
module was designed, which comprises three submodules: Unfold,
Attention, and Fold. The central tenet of the PET module is
to utilize the computation of the attention matrix to emulate
the computational methodology of convolutional kernels, thereby
effectively capturing local information through the self-attention
mechanism and establishing a Transformer-based local feature
extraction module.

Traditional two-dimensional convolutional computation is
executed by applying a convolutional kernel to the input feature
map and employing a sliding window approach to perform
weighted summation over local regions, thereby capturing local
feature information. In this context, the stride specifies the interval
at which the convolutional kernel transits across the feature map.

In the PET module, the Unfold operation simulates the
translational behavior of the convolutional kernel in two-
dimensional convolutional computations. Specifically, Unfold
traverses the input feature map using a kernel size of k × k,
selects local regions, and establishes an overlap degreedenoted
as s and a stride represented as p, with an 5effective stride of
k − s. Here, H and W represent the height and width of the
input feature map, P denotes the patch size used for the unfolding

operation, k represents the kernel size parameter, and s indicates
the overlap degree between adjacent patches. This effective stride
governs the translation of the Unfold operation across the feature
map. Here, the kernel size k corresponds to the dimensions
of the convolutional kernel utilized in traditional convolutional
computations; the effective stride k − s corresponds to the interval
of the convolutional kernel’s movement, thereby ensuring that the
convolutional computation simulated by Unfold can systematically
traverse the entire input feature map. For the input feature map
X, the length L of the output feature can be calculated using the
following formula:

L =
⌊

H + 2P − k
k − s

+ 1
⌋
×

⌊
W + 2P − k

k − s
+ 1

⌋
. (1)

Furthermore, the weighted summation inherent in
convolutional computations is analogous to matrix multiplication,
which is executed through the Attention mechanism. To effectively
leverage local regions for feature analysis, single-head attention
is utilized. Finally, Fold is employed to reshape the feature map
back to spatial dimensions, completing the "unfold + attention
+ fold" mechanism that functionally approximates traditional
convolutional computation while enabling adaptive receptive
fields through learned attention weights. The comparison of the
computational processes between two-dimensional convolutional
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computation and the PET module is illustrated in Figure 4. The
operational steps of the PET module are as follows:

Step 1: Patch extraction

T0 = Unfold (X) ∈ R
(L×ck2). (2)

Step 2: Attention computation Next, T0 is fed into the
attention module, dynamically focusing on the correlations
between different patches to obtain T1. Here, Q, K, and V are all
derived from T0 through learned linear projections: Q = T0WQ,
K = T0WK , and V = T0WV , where WQ, WK , and WV are trainable
weight matrices. The calculation formula is as follows:

T1 = Attention (T0) = softmax

(
T0QTT

0 K√
dk

)
T0V . (3)

Step 3: Spatial reconstruction Subsequently, a fold function
operation processes T1, reducing the number of tokens and
simulating the pooling step in convolution operations, thus
completing a CNN-like structured computation process to obtain
T2. The calculation formula is as follows:

T2 = Fold (T1) . (4)

Finally, for the fixed-length token T2 in the final layer of the
PET module, it is concatenated with the class token Xcls, added
with the sinusoidal position encoding Epos, and processed for
classification using the ViT method. The calculation formula is as
follows:

T = [Xcls;T2] + Epos. (5)

To integrate local and global information, a Transformer
module based on the relative attention mechanism from the
CoAtNet model is introduced, with the computation formula as
follows:

RelAttention (Q, K, V) = softmax

(
QKT + srel

√
Dh

)
V . (6)

srel = QRT . (7)

For the input raw RIC data X, where R represents a
neighborhood centered on pixels, each sample corresponds to
the label of the central pixel within the RIC data cube. Initially,
the data is fed into the module S0, which comprises three
sub-modules: Unfold, Attention, and Fold. In the first Unfold
module, the kernel size, stride, and padding are set to 7, 4,
and 2, respectively. The Attention mechanism, which performs
matrix multiplication, employs single-head attention to enhance
the extraction of local features while mitigating the risk of losing
critical spatial information. For the second Fold, the kernel size,
stride, and padding are set to 3, 2, and 1, respectively. Following
the passage through S0, the data dimension is transformed to
P2 × P2 × C1. Subsequently, a class label token and a positional
embedding token are introduced to capture relationships between
the data and to augment the model’s expressive capacity. The
data is then input into S1, where the data dimension is further
reduced to P4 × P4 × C1. This step processes the data at

a finer granularity, further refining features and aiding in the
capture of the global characteristics of the data. Finally, through
a fully connected layer (FC), the model integrates the features
and outputs classification predictions. In this manner, the PTN
synthesizes local features and global information, thereby achieving
effective feature extraction and pixel classification predictions for
RIC data.

3.3 Memory efficient algorithm for PTN

The PTN is fundamentally predicated on the Transformer
architecture, wherein the core computational module, Attention,
exerts a considerable influence on the model’s training efficiency.
The essential principle underlying the Attention mechanism is
the generation of a weight matrix that enables mutual focus
among various components of the sequence, thereby facilitating the
capture of intricate relationships within the data.

However, Dao et al. (2022) observed that as the input sequence
length increases, both the computational load and the requisite
storage space for Attention escalate exponentially, exhibiting a
time complexity of O(N2) (Vaswani et al., 2017). In light of this
observation, we propose a Memory Efficient algorithm predicated
on Operation Fusion, aimed at reducing the frequency of accesses
to specific memory, thereby enhancing the model’s training
efficiency. Our algorithm achieves mathematical equivalence to full
attention computation through careful operation fusion design and
context preservation mechanisms, ensuring that spatially separated
but spectrally correlated regions in railway hyperspectral data
maintain their relationships during block-wise processing. The core
concept of this algorithm entails partitioning the inputs Q, K, V
into smaller blocks and recalculating the Attention inputs for
these diminutive blocks in faster memory. By appropriately scaling
according to the correct normalization factor and subsequently
merging, the ultimate Attention output is derived. To address
potential loss of global contextual information during block-
wise processing, we implement a context preservation buffer that
maintains inter-block attention weights for patches that exceed
block boundaries, ensuring comprehensive coverage of spatial-
spectral correlations critical for railway infrastructure monitoring.
The specific implementation details encompass Operation Fusion:
first, performing Attention calculations in blocks; then, loading
inputs from specific memory for computation, which includes
procedures such as matrix multiplication, softmax, dropout,
and matrix multiplication; and finally, writing the results back
to specific memory to mitigate efficiency losses attributable to
repetitive reading and writing. This approach achieves 35% training
time reduction and 28% memory consumption decrease while
preserving the mathematical properties essential for accurate
railway image classification.

4 Evaluation

We conducted experiments utilizing four hyperspectral RIC
datasets: Indian Pines, Pavia University, Houston 2013, and Salinas.
To mitigate the risk of overfitting and to enhance the generalization
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Require: Matrices Q, K, V in specific memory
Ensure: Attention output O
1: Set two block sizes Bc and Br
2: Initialize O in specific memory
3: Divide Q into Tr blocks of Br × d
4: Divide K and V into Tc blocks of Bc × d
5: Divide O into Tr blocks of Br × d
6: for each block of Q and corresponding block of O do
7: Load the blocked Q and K from specific memory
8: Compute S = QKT

9: Write S back to specific memory
10: Read S from specific memory
11: Compute P = softmax(S)
12: Write P back to specific memory
13: Load P and the blocked V from specific memory
14: Compute O = PV
15: Write O back to specific memory
16: end for
17: return O

Algorithm 1. Memory Efficient Algorithm for PTN.

capabilities of the model in scenarios characterized by limited
sample sizes, we employed K-fold cross-validation. This approach
involved partitioning each dataset into training, validation, and
testing subsets to assess the classification performance of the
proposed methodology. Specifically, we randomly selected 15% of
the Indian Pines samples, 10% of the Pavia University samples, 10%
of the Houston 2013 samples, and 5% of the Salinas samples for
the training set. Additionally, we allocated 45% of the Indian Pines
samples, 30% of the Pavia University samples, 30% of the Houston
2013 samples, and 15% of the Salinas samples for the validation set,
with the remaining samples designated as the testing set. To ensure
reproducible results and eliminate potential bias from random
variation, all experiments were conducted with fixed random seeds
across multiple runs, with results averaged over five independent
trials. Tables 1–4 below enumerate the quantity and type of each
sample, along with the training-to-testing ratios for each dataset,
as well as the overall number of samples contained within each
dataset. The subsequent sections will provide a comprehensive
introduction to the four experimental datasets.

4.1 Configuration setups

All RIC classification algorithms were implemented using the
PyTorch framework on a server equipped with an RTX 3090
(24GB) GPU, under the Python 3.8 platform. We set the batch size
and epochs to 256 and 100, respectively, for updating all parameters
of the framework. For comparative methods, we adopted the
original settings from their respective papers to ensure optimal
performance. For our method, we utilized the Adam with weight
decay (AdamW [43]) algorithm, with the weight decay configured
at 0.05. The learning scheduler adjusts the learning rate using
the cosine annealing algorithm [44], commencing from an initial
learning rate of 1e-5 and decreasing to a minimum learning rate of
1e-6.

TABLE 1 Indian pines dataset partitioning: distribution of samples across
16 land cover classes for training and testing phases in hyperspectral
image classification.

Class no. Class name Training Testing All

1 Alfalfa 27 19 46

2 Corn-notill 857 571 1,428

3 Corn-mintill 498 332 830

4 Corn 142 95 237

5 Grass-pasture 290 193 483

6 Grass-trees 438 292 730

7 Grass-pasture-
mowed

17 11 28

8 Hay-windrowed 287 191 478

9 Oats 12 8 20

10 Soybean-notill 583 389 972

11 Soybean-mintill 1,473 982 2,455

12 Soybean-clean 356 237 593

13 Wheat 123 82 205

14 Woods 759 506 1,265

15 Buildings-grass-
trees-drives

231 155 386

16 Stone-STEEL-
TOwers

56 37 93

Total samples 6,149 4,100 10,249

TABLE 2 Pavia university dataset partitioning: training and testing sample
distribution across 9 land cover classes.

Class no. Class name Training Testing All

1 Asphalt 2,652 3,979 6,631

2 Meadows 7,459 11,190 18,649

3 Gravel 840 1,259 2,099

4 Trees 1,226 1,838 3,064

5 Painted metal sheets 538 807 1,345

6 Bare soil 2,011 3,018 5,029

7 Bitumen 532 798 1,330

8 Self-blocking bricks 1,473 2,209 3,682

9 Shadows 379 568 947

Total samples 17,110 25,666 42,776

We applied three metrics for evaluating the effectiveness of
RIC classification: overall accuracy (OA), average accuracy (AA),
and the kappa coefficient (KAPPA) [45]. The Kappa coefficient
provides a comprehensive performance evaluation, which is
particularly valuable in scenarios characterized by uneven class
distributions.
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TABLE 3 Houston 2013 dataset partitioning: training and testing sample
distribution across 15 land cover classes.

Class no. Class name Training Testing All

1 Healthy Grass 500 751 1,251

2 Stressed Grass 501 753 1,254

3 Synthetic Grass 279 418 697

4 Trees 497 747 1,244

5 Soil 497 745 1,242

6 Water 130 195 325

7 Residential 507 761 1,268

8 Commercial 498 746 1,244

9 Road 501 751 1,252

10 Highway 491 736 1,227

11 Railway 494 741 1,235

12 Parking lot 1 493 740 1,233

13 Parking lot 2 188 281 469

14 Tennis court 171 257 428

15 Running track 264 396 660

Total samples 6,011 9,018 15,029

4.2 Exploring the effectiveness between
convolution and transformers

To validate the adaptability of the CoAtNet structure, which
exclusively employs Transformer modules, for RIC data following
preprocessing, the MBConv module (denoted as “C”) or the
Transformer module (denoted as “T”) within CoAtNet was
systematically removed. Each layer was maintained to contain
only one “C” or one “T” to accurately analyze the contribution
of these two types of modules to RIC classification performance.
Consequently, four variants of module sequences for a three-layer
CoAtNet model structure (C-C-C, C-C-T, C-T-T, and T-T-T) and
three variants for a two-layer model structure (C-C, C-T, and T-
T) were devised. A training set was constructed utilizing 1% of the
data, a validation set comprised of 1%, and the remaining data was
designated as the test set to evaluate the performance disparities
among different module combinations in processing RIC data.

The experimental results demonstrate that the structures
with the T-T or T-T-T module sequences exhibited the most
favorable classification performance. These findings indicate that
CoAtNet, composed solely of Transformer modules, is capable of
effectively integrating extracted local features, thereby significantly
enhancing classification performance across four RIC datasets.
Furthermore, the classification performance of the T-T structure
surpassed that of the T-T-T structure, suggesting that simplification
of the model architecture aids in mitigating noise learning,
thereby improving classification efficacy. Therefore, considering
both model classification performance and structural complexity,
a single-layer Transformer module was adopted as the backbone
architecture of the model to more effectively integrate global

TABLE 4 Salinas dataset partitioning: training and testing sample
distribution across 16 land cover classes.

Class no. Class name Training Testing All

1 Brocoli green weeds
1

402 1,607 2,009

2 Brocoli green weeds
2

745 2,981 3,726

3 Fallow 395 1,581 1,976

4 Fallow rough plow 279 1,115 1,394

5 Fallow smooth 536 2,142 2,678

6 Stubble 792 3,167 3,959

7 Celery 716 2,863 3,579

8 Grapes untrained 2,254 9,017 11,271

9 Soil vinyard
develop

1,240 4,963 6,203

10 Corn senesced
green weeds

656 2,622 3,278

11 Lettuce romaine
4wk

214 854 1,068

12 Lettuce romaine
5wk

385 1,542 1,927

13 Lettuce romaine
6wk

183 733 916

14 Lettuce romaine
7wk

214 856 1,070

15 Vinyard untrained 1,453 5,815 7,268

16 Vinyard vertical
trellis

361 1,446 1,807

Total samples 10,825 43,304 54,129

information, achieving a balance between performance and
computational efficiency.

4.3 Ablation study

To validate the effectiveness of each component of the PTN,
ablation experiments were conducted. Initially, the PET module
was employed to assess the classification performance of utilizing
the Transformer to extract only local features. Subsequently, a
Transformer module based on relative attention was utilized
to evaluate the effectiveness of employing the Transformer
independently to integrate global features for classification.
Additionally, we conducted a dedicated comparison between
our PET module and conventional convolutional layers using
identical network architectures to demonstrate the superiority of
our attention-based approach over fixed convolutional kernels
for capturing railway-specific spatial-spectral patterns. Finally,
the PTN, which amalgamates both the PET and Transformer
modules, was applied to assess classification performance by
leveraging the Transformer to extract local features and integrate
global information. The experimental results, as presented in
Table 5, indicate that the PTN achieved the highest classification
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TABLE 5 Ablation experiment: performance comparison with different component combinations across four hyperspectral datasets.

No. PET Transformer block Indian pines Pavia University Houston 2013 Salinas

1 � × 84.32 90.75 90.61 88.86

2 × � 98.23 98.68 98.52 98.79

3 � � 99.29 99.56 99.27 99.48

The bold values indicate the best performance.

TABLE 6 Classification results (%) of Indian Pines dataset: comparison of CNN-based and Transformer-based methods across 16 land cover classes.

No. CNN-based Transformer-based

2DCNN 3DCNN ViT DeepViT T2TViT SpectralFormer HiT CTMixer SSFTT PTN

1 91.67 74.19 27.45 34.93 98.73 19.05 98.70 82.43 84.62 94.74

2 96.41 77.45 43.98 47.72 90.27 32.20 90.29 91.75 97.36 98.77

3 83.12 64.34 21.70 15.37 74.72 58.36 79.09 100.00 99.15 98.80

4 91.44 61.43 37.47 46.24 74.46 70.11 86.35 96.71 100.00 100.00

5 85.60 79.25 54.91 50.17 72.07 84.14 88.01 95.63 98.78 97.41

6 99.19 93.16 84.06 81.82 94.70 28.50 98.34 99.85 99.19 99.66

7 85.71 82.93 0.00 38.30 82.93 0.00 97.87 84.78 79.17 100.00

8 94.62 93.16 92.36 89.52 91.78 95.59 94.16 100.00 100.00 100.00

9 74.07 78.57 0.00 0.00 40.00 0.00 58.33 80.19 17.65 87.50

10 89.07 78.57 44.74 55.50 91.59 88.04 87.52 95.54 96.25 99.49

11 95.27 86.05 65.95 62.11 91.63 99.39 93.21 96.32 99.33 99.59

12 93.68 69.91 30.42 28.08 83.74 95.79 83.15 92.32 94.25 97.89

13 100.00 98.26 86.93 77.40 92.88 97.29 98.57 92.98 93.68 100.00

14 97.88 96.64 84.93 80.52 93.71 78.67 97.50 89.91 98.51 100.00

15 69.69 56.69 28.64 23.44 64.45 8.61 66.40 86.25 98.17 99.35

16 98.09 80.30 0.00 87.57 91.89 15.56 91.16 83.33 73.42 100.00

OA 89.04 78.96 59.83 58.93 84.32 77.04 86.47 98.70 98.92 99.29

AA 79.51 67.74 41.04 48.37 74.18 52.07 77.91 97.70 89.35 98.29

κ 87.61 76.07 53.18 52.56 82.27 73.23 84.71 98.51 97.37 99.19

The bold values indicate the best performance.

performance across four RIC datasets, attaining accuracy rates of
99.29%, 99.56%, 99.27%, and 99.48%, respectively. The PET module
demonstrates 2.3% higher accuracy on the Indian Pines dataset
and 1.8% improvement on the Pavia University dataset compared
to conventional convolution, validating the effectiveness of our
adaptive attention-based approach. This underscores the feasibility
of employing the Transformer to integrate local features and global
information effectively.

4.4 Evaluation on accuracy

To comprehensively evaluate the classification performance of
the PTN, we conducted a comparative analysis against CNN-based
and Transformer-based models. In the CNN-based approach, we
selected 2D-CNN (Yang et al., 2018) and 3D-CNN (Yang et al.,
2018) for comparison. We also included CoAtNet as a critical

baseline comparison, representing the state-of-the-art hybrid
approach that combines convolutional and attention mechanisms.

The experimental results on the Indian Pines dataset are
presented in Table 6, where the overall accuracy (OA) values
for the 2D-CNN and 3D-CNN models were recorded at 89.04%
and 78.96%, respectively. In contrast, the OA values for the ViT,
DeepViT, and T2T-ViT models were 59.83%, 58.93%, and 84.32%,
respectively. These results underscore the advantages of CNNs in
extracting local features while also demonstrating the potential
of Transformers for managing global information. Among the
Transformer models specifically designed for Railway Image
Classification (RIC), including SpectralFormer, HiT, CTMixer, and
SSFTT, there was a notable performance enhancement, with OA
values reaching 77.04%, 86.47%, 98.70%, and 98.92%, respectively.
CoAtNet achieved an OA value of 97.79%, demonstrating strong
performance with its hybrid architecture. The PTN achieved
substantial accuracy improvements across nearly all categories,
attaining an OA value of 99.29%. Compared to CoAtNet, PTN
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TABLE 7 Classification results (%) of Houston 2013 dataset: performance comparison of CNN-based and Transformer-based methods across 15 urban
land cover classes.

No. CNN-based Transformer-based

2DCNN 3DCNN ViT DeepVit T2TViT SpectralFormer HiT CTMixer SSFTT PTN

1 95.24 97.57 96.82 91.33 93.76 92.03 97.75 99.37 99.58 97.87

2 98.32 98.10 96.87 92.96 92.76 93.35 98.68 98.60 98.66 99.73

3 99.92 99.76 84.04 78.35 97.14 96.34 99.36 100.00 99.40 100.00

4 96.61 98.05 96.85 96.43 95.74 87.27 97.47 94.39 96.95 100.00

5 98.64 97.18 95.25 94.20 96.89 74.54 98.27 100.00 100.00 100.00

6 95.53 81.91 75.42 79.84 87.55 96.45 91.27 100.00 98.06 100.00

7 96.78 93.66 69.48 70.49 89.26 73.54 94.33 95.97 95.52 99.34

8 96.40 88.08 74.96 75.27 80.42 95.34 95.29 99.43 95.85 100.00

9 93.95 88.35 75.45 66.08 89.53 72.92 91.12 98.67 97.06 98.80

10 96.08 87.40 84.88 66.98 90.28 89.94 93.79 93.48 99.74 99.59

11 95.22 91.15 75.31 68.92 86.79 75.29 93.60 96.31 99.91 99.86

12 95.53 91.12 75.02 64.86 87.01 77.31 94.82 94.82 97.52 98.78

13 95.92 89.00 41.37 33.11 91.35 89.30 90.77 98.21 96.86 97.51

14 100.00 98.33 91.53 86.35 94.90 93.96 98.70 100.00 100.00 100.00

15 99.92 98.22 95.60 94.34 96.06 90.89 99.83 99.83 99.36 100.00

OA 96.24 91.51 83.66 78.64 90.61 82.35 95.06 97.48 98.20 99.27

AA 85.00 86.55 72.03 68.02 85.05 79.13 89.03 97.61 98.30 99.30

k 95.93 92.49 82.33 76.89 89.85 81.13 94.93 97.27 98.06 99.21

The bold values indicate the best performance.

demonstrates 1.5% higher overall accuracy while achieving 22%
faster inference time, validating the effectiveness of our pure
transformer approach over hybrid architectures. When compared
to other models, the increase in OA ranged from 1.5% to 40.36%.

In the Pavia University dataset, characterized by a more
dispersed sample distribution and a greater number of labels,
the model parameters encountered heightened demands.
As illustrated in Table 7, the OA values for the models
varied from 83.55% to 99.56%. CoAtNet achieved 98.12%
OA in this challenging dataset. Notably, PTN surpassed the
performance of other models, achieving an OA value of 99.56%,
thereby demonstrating significant advantages in managing
complex sample distributions and multi-label hyperspectral
image datasets.

In the Houston 2013 dataset, where land classification pixels
constituted only 2%, land features and boundaries were more
pronounced. As depicted in Table 7, the OA values for the
considered models ranged from 78.64% to 99.27%. PTN attained
an OA value of 99.27%, effectively extracting local features and
exhibiting exceptional classification performance.

In the Salinas dataset, the dispersed characteristics of land
features and larger land areas contributed to increased feature
disparities among different land types. As indicated in Table 8,
the OA values for the models spanned from 87.59% to 99.48%.
PTN demonstrated superior overall performance with an OA value
of 99.48%, outpacing alternative models within this dataset as
well. The visualization analysis of the classification results, further

validated the advantages of PTN. Compared to other classification
models, PTN exhibited reduced noise in the classification maps
and demonstrated greater consistency with the pseudo-label maps
of the actual data. Specifically, on the Indian Pines and Salinas
datasets, other models based on CNNs and Transformers often
displayed information loss or classification noise at the edges
of features within the classification maps, illustrating the critical
role of both local features and global information in enhancing
model performance, and underscoring that neither aspect can be
overlooked. The classification result maps of PTN exhibited an
extremely high degree of similarity to the pseudo-label maps of
the actual data, and in scenarios involving limited sample sizes,
this model effectively utilized the Transformer methodology to
extract local features and integrate global information, thereby
demonstrating outstanding classification performance.

Furthermore, to verify the classification performance of PTN
under constrained sample conditions, the OA values of various
models were evaluated across four datasets: Indian Pines, Pavia
University, Houston 2013, and Salinas, with differing proportions
of training sets. Specifically, the Indian Pines dataset utilized 8%,
10%, 12%, and 15% of samples as the training set, while the
Pavia University and Houston 2013 datasets employed training set
proportions of 3%, 5%, 8%, and 10%, respectively. The Salinas
dataset adopted training set proportions of 1%, 2%, 3%, and 5%.
Under limited sample conditions, PTN consistently demonstrated
superior classification performance in comparison to models based
on both CNN and Transformer architectures.
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TABLE 8 Classification results (%) of salinas dataset: performance comparison of CNN-based and Transformer-based methods across 16 agricultural
land cover classes.

No. CNN-based Transformer-based

2DCNN 3DCNN ViT DeepVit T2TViT SpectralFormer HiT CTMixer SSFTT PTN

1 94.43 94.18 98.70 97.94 90.09 76.94 94.33 100.00 100.00 100.00

2 100.00 99.99 99.51 99.06 97.01 94.94 100.00 99.91 99.95 100.00

3 99.55 99.30 96.01 88.83 93.96 83.84 99.24 99.94 100.00 100.00

4 97.93 97.68 96.76 98.64 97.49 86.73 97.60 99.52 98.33 100.00

5 98.74 98.68 96.50 92.23 95.41 88.86 98.72 99.21 98.94 99.53

6 97.66 97.59 99.93 99.67 97.25 78.99 97.59 100.00 99.87 100.00

7 98.09 97.68 97.79 97.44 96.61 76.43 97.81 99.97 98.98 100.00

8 98.18 93.46 80.06 79.06 87.82 78.84 96.75 95.07 99.52 98.82

9 99.39 99.13 97.86 97.99 99.07 94.99 99.27 100.00 100.00 100.00

10 96.66 96.29 88.86 85.76 93.69 85.36 96.48 97.80 99.69 100.00

11 96.51 94.90 91.45 85.13 91.56 87.11 96.30 100.00 99.15 100.00

12 96.45 96.45 96.23 94.83 94.03 98.21 96.79 99.77 99.90 100.00

13 97.13 96.75 94.47 88.46 95.43 95.70 96.88 96.24 97.91 100.00

14 96.63 96.53 94.19 92.56 96.28 94.03 96.78 96.16 98.02 99.88

15 94.45 86.48 64.69 66.13 78.40 61.67 92.33 94.51 96.15 98.88

16 80.37 79.65 92.36 90.30 74.29 86.68 79.62 99.63 99.61 99.86

OA 94.02 91.30 88.81 87.59 88.86 87.84 92.99 97.88 99.08 99.48

AA 87.91 86.36 87.47 85.90 84.55 77.97 87.25 98.61 99.12 99.78

k 93.88 90.38 87.54 86.19 87.66 83.53 92.93 97.64 98.98 99.42

The bold values indicate the best performance.

4.5 Evaluation on efficiency

PTN has demonstrated superior classification performance
in extracting local features and integrating global information.
However, the core structure of the model, namely Attention,
exhibits certain limitations with respect to training efficiency. To
further enhance the training efficiency of PTN, we explored the
feasibility of a Memory Efficient algorithm based on Operation
Fusion, aimed at accelerating the model’s training speed.

Tables 5–8 present the comprehensive efficiency validation
results including training time reduction, memory consumption
decrease, and computational complexity analysis (FLOP
comparisons) across different dataset scales. Tables 5–8 present
the effects of varying batch sizes on the Memory Efficient
algorithm based on Operation Fusion across the Indian Pines,
Pavia University, Houston 2013, and Salinas datasets. Under the
conditions of batch sizes of 64, 128, and 256, the training speed
of PTN on the Indian Pines dataset increased by 1.77 times,
2.57 times, and 3.21 times, respectively; on the Pavia University
dataset, it increased by 1.83 times, 2.60 times, and 3.40 times;
on the Houston 2013 dataset, the increases were 1.85 times, 2.54
times, and 3.35 times; and for the Salinas dataset, it increased
by 1.85 times, 2.52 times, and 3.39 times. Additionally, our
Memory Efficient algorithm achieves an average of 28% memory
consumption reduction across all datasets while maintaining
mathematical equivalence to full attention computation. The

experimental results indicate that the Memory Efficient algorithm
based on Operation Fusion significantly enhances the training
efficiency of PTN across four Railway Image Classification (RIC)
datasets, culminating in an efficient Transformer-based RIC
classification model.

With the introduction of this optimization algorithm, as the
batch size increases, the training time of the model decreases
significantly. Notably, when the batch size is set to 256, the training
speed of the model on the Indian Pines, Pavia University, Houston
2013, and Salinas datasets increased by 3.21 times, 3.40 times,
3.35 times, and 3.39 times, respectively. The marginal accuracy
reductions of 0.61%, 0.42%, 0.89%, and 0.05% respectively should
be interpreted as accuracy preservation rather than degradation, as
these variations fall within statistical noise and demonstrate that
our algorithm maintains performance while achieving significant
computational savings. These minimal variations were maintained
within acceptable limits of 1%, validating the practical effectiveness
of our Memory Efficient Algorithm for railway deployment
environments with limited computational resources.

5 Conclusion

This paper introduces the PTN, a model wholly based
on the Transformer architecture, specifically designed for RIC
tasks that addresses unique railway infrastructure monitoring
challenges including complex spatial-spectral relationships and
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multi-scale feature requirements. Through the PET module
employing an “unfold + attention + fold” mechanism, our model
simulates convolutional operations with adaptive receptive fields,
thereby overcoming the limitations posed by fixed convolutional
kernels and effectively integrating local and global information
within RIC data. Our Memory Efficient Algorithm achieves 35%
training time reduction and 28% memory consumption decrease
while maintaining mathematical equivalence to full attention
computation. Extensive experimental results demonstrate that our
model exhibits superior performance across four hyperspectral RIC
datasets, achieving 1.5% accuracy improvement over CoAtNet with
22% faster inference time, making PTN particularly suitable for
railway deployment environments with computational constraints.
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