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Recent advances in Large Language Models (LLMs) have sparked significant
interest in their application to code verification and the assessment of
LLM-generated code safety. This review examines current research on the
intersection of LLMs with software verification, focusing on two main aspects: the
use of LLMs as verification tools and the verification of code produced by LLMs.
We analyze the emerging approaches for integrating LLMs with traditional static
analyzers and formal verification tools, including prompt engineering techniques
and combinations with established verification frameworks. The review explores
various verification methodologies, from standalone LLM applications to hybrid
approaches incorporating traditional verification methods. We examine research
addressing the safety assessment of LLM-generated code and investigate
frameworks developed for vulnerability detection and repair. Through this
analysis, we aim to provide insights into the current state of LLM applications
in code verification, identify key challenges in the field, and outline important
directions for future research in this rapidly evolving domain.
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1 Introduction

Large Language Models (LLMs) have substantially transformed Artificial Intelligence,
particularly influencing the domain of automatic code generation (e.g., Tihanyi et al,
2023). In recent years, these models have expanded remarkably in scale and capability,
reshaping the ways in which code is generated and utilized (Jiang et al., 2025; Jain
et al., 2024). Moreover, recent studies, including Chapman et al. (2024) and Li Z. et al.
(2024), have introduced innovative approaches that leverage LLMs for static analysis,
more precisely, positioning LLMs as static analyzers themselves. However, the increased
productivity enabled by LLMs comes with inherent risks. As developers increasingly
incorporate these models into automated coding workflows, concerns about the integrity
and security of the produced code have become increasingly prominent, as highlighted
in recent studies like Pearce et al. (2022) and Ullah et al. (2024): although automated
code generation can streamline development processes, it can also introduce subtle errors
or vulnerabilities that traditional verification methods or fast deployment might not
immediately detect. This inherent trade-off between increased productivity and potential
compromises in code security forms the core motivation behind this review. This tension
encapsulates a multifaceted challenge. On one side, the promise of LLMs is tied to their
ability to process voluminous datasets and generate code quickly, which can significantly
enhance developer productivity, for example allowing fast prototyping (Kolthoff et al.,
2025). On the other side, the opacity of these models, inherently due to their black
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box and non-explainable architectures, often makes debugging and
security verification a challenging task (Liu et al., 2024b).

In response to the challenges accompanying LLM-driven code
generation, our primary objective is to map the intersection
between automated code production and code security. We
observed that review and survey studies available in literature focus
on specific aspects of these problems: for example, strategies for
program repair (Huang et al., 2025; Zhang et al., 2024), security
issues in code generation (Basic and Giaretta, 2024; Negri-Ribalta
etal., 2024), vulnerability detection capabilities (Zhou et al., 2024a),
and so on. These aspects probe very different skills of LLMs, thereby
positioning them along only a single axis of evaluation. However,
we also noticed that cutting-edge proposals in the experimental
literature on LLMs increasingly attempt to address multiple tasks
in an all-in-one fashion (Alrashedy et al., 2023; Pearce et al., 2023;
Gong et al., 2024), often relying on a partial understanding of the
true capabilities of these models. By examining this body of work
more closely, we concluded that a major subdivision should be
made by identifying two distinct points of view. Therefore, in this
review, we propose a dual perspective: (i) exploring the potential
of LLMs as tools for code verification (LLM4Verification) and (ii)
assessing techniques for verifying the integrity of code produced by
these models (Verification4dLLM). This mapping exercise involves
analyzing the literature to pinpoint the strengths and weaknesses
of current approaches, illustrating them and their limitations. To
achieve this, we conducted a comprehensive review of current
methodologies and empirical studies that address both the use of
LLMs for verification and the development of techniques aimed at
enhancing the security of LLM-generated code.

A taxonomy of existing LLM-based techniques for secure code
generation and verification is provided to classify the diverse
range of strategies proposed to improve both the productivity and
security of the LLM-generated code and outputs. This taxonomy
includes methods such as prompt engineering (Marvin et al,
2023)—where the quality of input prompts is optimized to
achieve better and more secure outputs—as well as techniques
like Retrieval-Augmented Generation (RAG) (Lewis et al., 2020),
which leverages external databases to enhance the generated
content. Additionally, we examine tool integrations that combine
LLM outputs with traditional security verification tools, offering a
layered defense mechanism against vulnerabilities. This taxonomy
serves as a structured framework that simplifies the complex
landscape of current research.

This paper presents a comprehensive review of the intersection
between LLMs and code verification, offering a dual-perspective
framework that advances understanding and research in this
emerging field. Our main contributions are summarized as follows:

e Dual perspective framework: We introduce a novel dual
perspective by analyzing both the use of LLMs as tools
for code verification (LLM4Verification) and the verification
of code generated by LLMs themselves (Verification4LLM).
This bifocal approach enables a holistic understanding of the
challenges and opportunities in leveraging LLMs for software
security.

e Taxonomy of strategies: We develop a detailed taxonomy
categorizing the diverse strategies employed to enhance
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the productivity and security of LLM-generated code. This
taxonomy encompasses prompt engineering techniques, fine-
tuning, integration with traditional static analyzers and formal
verification tools, RAG, and emerging agentic frameworks,
providing a structured framework to navigate the complex
landscape of current research.

e Overview of framework and datasets: We review and
analyze a broad spectrum of LLM-based framework and
datasets for program verification addressed in the literature.
This overview highlights prevalent programming languages,
common security weaknesses introduced by LLM-generated
code, and the state-of-the-art models and benchmarks utilized
in secure code generation, vulnerability detection and repair.

e Identification of future directions: Through critical analysis,
we identify key limitations and open challenges in current
methodologies, such as high false positive rates in vulnerability
detection, limitations in handling complex vulnerabilities, and
scalability issues.

Together, these contributions aim to provide a foundational
reference for researchers and practitioners seeking to harness LLMs
for secure and reliable software development.

The structure of the paper is organized as follows. Section 2
details the review methodology, including research questions,
inclusion and exclusion criteria, and quality assessment. Section 3
surveys related work on LLMs in code verification and security.
Section 4 examines the use of LLMs as verification tools, presenting
strategies, empirical findings, and limitations. Section 5 focuses
on the verification of code generated by LLMs, discussing
methodologies, effectiveness, and common vulnerabilities.
Section 6 addresses cross-cutting aspects such as dataset
availability, open-source practices, and ethical considerations.

The paper is then concluded by Section 7.

2 Methodology

2.1 Relevant research questions

We identified eight Research Questions (RQs) and two
Discussion (D) questions, which are categorized and shown
in Table 1. Three categories are defined to subdivide the
RQs and D questions conceptually, namely the use of LLMs
as code verification tools (LLM4Verification), the verification
of LLMs generated code (Verification4LLM), and broader
contextual and ethical considerations (Cross-cutting Aspects).
In this section, as in the rest of the article, we will use the
following color scheme: blue for LLM4Verification, green for
Verification4LLM, and fuchsia for the remaining cross-cutting
aspects. The first question, RQI, aims to search for studies
that compare baseline LLMs with traditional static- or dynamic-
analysis approaches, as well as composite frameworks proposed
in the literature. RQ2 and RQ3 investigate the effectiveness and
limitations of common strategies by investigating their use in
current literature, both for verifying existing code by means
of LLMs powered approaches, and for verifying code directly
produced by LLMs. RQ4 and RQ5 consider those studies that
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TABLE 1 Research questions and discussion points.

Name and topic Research question Inclusion criteria Exclusion criteria

RQI: Effectiveness of LLMs and
LLM-based frameworks

How effective are LLMs in detecting
vulnerabilities in code, compared to
traditional approaches and custom
methods based on LLM?

RQ2: Strategies, effectiveness, and
limitations of LLMs in code
verification tasks

What are the key strategies (e.g., prompt
engineering, tool integration, agents,
RAG, etc.) that enhance the
performance of LLMs in code
verification tasks, how effective are they
and what are their limitations?

RQ3: Strategies, effectiveness, and
limitations of LLMs’ secure code
generation

What are the key strategies (e.g., prompt
engineering, tool integration, agents,
RAG, etc.) that enhance the safety and
security of the code generated by LLMs,
how effective are they and what are their
limitations?

RQ4: Strategies for tool integration

RQ5: Code generation and tool
integration

RQ6: Common vulnerabilities
introduced by LLMs

How can LLMs be integrated with
existing static analyzers and formal
verification tools to create more robust
verification frameworks?

How can LLMs be integrated with
existing static analyzers and formal
verification tools to create more robust
code generations?

What types of vulnerabilities are most
commonly introduced by LLMs? Are
they the same introduced by human
generated code?

RQ7: Effectiveness and limitations of
LLMs in repairing vulnerabilities

How effective are LLMs in repairing
vulnerabilities in code, and what are the
limitations of LLM-based program
repair techniques (eventually w.r.t.
traditional techniques)?

RQ8: Open-source reliance in
LLM-based software verification

To what extent is open-source code used
in the selected paper on these topics?

D1: Code security awareness with
LLMs

How can LLMs be used to educate
developers about secure coding
practices and improve overall code
security awareness?

D2: Ethical considerations and
potential risks

What are the ethical considerations and
potential risks associated with using
LLMs in code verification and software
security?

integrate formal verification tools with LLMs. With respect
to code generation, another question arises when comparing
LLMs introduced vulnerabilities with those present in human-
produced code, namely RQ6. As another topic of research, many
studies focus on program repair in addition to, or in parallel
with, vulnerability detection. Even in this case, we performed
a survey on repair techniques, highlighting effectiveness and
limitations in RQ7. We checked the availability of open-source
code, data, and models, for each investigated source. Finally,
we open a discussion about secure coding practices and the
education of developers that could emerge from recent literature
about LLMs in D1. Then we discuss the ethical considerations
and potential risks that could derive from the use of those
tools in D2.
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TABLE 2 Numbered inclusion and exclusion criteria for paper selection.

11. The paper employs LLMs for
code-related tasks.

E1. The paper is less than 5 pages
in length.

12. The paper concerns the verification of
code generated by LLMs or utilizes LLMs
to verify code.

E2. The paper is gray literature
(e.g., theses, technical reports,
reviews, editorials, demos, etc.).

I3. The paper is available in full text,
written in English, and published in
conferences, workshops, journals, or on
arXiv®,

E3. The paper is not written in
English.

14. The paper proposes a novel approach,
study (including empirical or
experimental work), or tool.

E4. The paper uses LLMs for code
but does not concern software
verification.

E5. The paper focuses on hardware
bugs or vulnerabilities.

E6. The paper is a duplicate.

E7. The paper mentions LLMs only
in the context of future work.

2https://arxiv.org/.

2.2 Research strategy and
inclusion-exclusion criteria

In order to ensure the relevance, quality, and consistency of the
papers included in this study, a set of well-defined inclusion and
exclusion criteria was established. These criteria have been used as
guidelines for creating the initial dataset of papers to analyze in
the review. They have been selected to include papers that directly
address the research questions, while filtering out those that do
not meet the necessary standards or scope. Due to the vast and
rapidly growing body of LLM-related studies, our inclusion criteria
were designed to capture papers that employ LLMs for code-related
tasks, particularly in the context of software verification, and that
present novel approaches, empirical studies, or tools. Only papers
available in full text, written in English, and published in reputable
venues such as conferences, workshops, journals, or on arXiv were
considered. Conversely, the exclusion criteria were formulated to
omit papers that lack sufficient length, are not original research
(e.g., gray literature), are not written in English, do not focus on
software verification, address hardware bugs, are duplicates, or
mention LLMs solely as future work. The careful application of
these criteria is critical for maintaining the integrity and validity
of the review, as it ensures that the selected dataset of 154 papers
is both comprehensive and directly relevant to the investigation
of LLMs in software verification. Table 2 summarizes the inclusion
and exclusion criteria.

The number of papers relevant to the general topic of LLMs
in software verification, and compliant with the inclusion and
exclusion criteria, is 154. These papers constitute the initial dataset.

2.3 Quality assessment

Of the 154 articles in the initial database, we assessed the overall
quality of each single paper to select the portion of more impactful
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TABLE 3 Quality assessment criteria.

Criteria Description

Publisher/venue
classification

Journals are evaluated based on their impact factor and
quantile, referring to Scimago Journal & Country
Rank®: Q1 journals are valued 1 point, Q2 journals are
valued 0.5 points, Q3 and Q4 are valued 0 points;
venues are evaluated using ICORE? classification: A*
and A conferences are valued 1 point, B conferences are
valued 0.5 points, others are valued 0 points.

Contributions Contributions of the analyzed paper are scored based
on their clarity and presentation in the text, possibly in
the introductory part of the paper. Points are assigned

as 0,0.5,or 1.

Experimental
setting

Experimental setup sections are evaluated based on the
clarity, and on the presence of sufficient details to, at
least in principle, reproduce the experiments. Points are
assigned as 0, 0.5, or 1.

Results Results are evaluated based on their presentation and
clarity, taking into account appropriate comparison
with other LLM-based SOTA methods, possible
ablation studies, and understandable visualization.

Points are assigned as 0, 0.5, or 1.

Limitations Limitations are measured based on how clearly and
in-depth they are discussed in the analyzed paper.

Points are assigned as 0, 0.5, or 1.

Comparisons The presence of comparisons with traditional methods
and not-LLM-based approaches is indicated with a flag

Oorl.

If more than one LLM is used, and more than one
strategy (i.e., prompt-engineering, RAG, fine-tuning,
and so on) is leveraged, a score of 1 is assigned. 0.5
points are scored if only one of these two conditions
holds, and 0 in other cases.

LLMs and strategies

Open-source The availability of an open-source reproducibility
package for the analyzed paper is evaluated with a score

of 1, otherwise 0 points are assigned.

2https://www.scimagojr.com/. bhtlps://purlal.cm‘c.cdu.au/c()n f-ranks/.

and promising research. Each article was independently reviewed
by the authors, who assigned numerical scores according to the
quality assessment criteria described in Table 3. The assigned points
are then discussed by the authors of this paper, reaching a common
agreement on each score for each criteria, for each article analyzed.
The final score of each paper ranges from 0 points to 8 points, and
the articles with an average score greater than 6 were selected to
contribute to the next investigation phase.

The number of papers that passed the quality assessment phase
is 50. These articles form the evidence base examined to address the
research questions presented in Section 2.1.

2.4 Data extraction and categorization

The majority of papers included in our review were published
between 2023 and 2024, with 16 and 24 papers selected from those
years, respectively, with an average publication year of 2,023.56.
Fewer papers were chosen from 2021 (1 paper), 2022 (4 papers),
reflecting the initial period of publication in this topic, and 2025
(5 papers) due to the year not being finished yet. This reflects the
temporal focus of our selection process and overall reflects the
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growing publication trends in the field. The distribution of selected
papers by year is shown in Appendix Figure 3.

Most of the papers included in our review were published in
A* (16 papers) and Q1 (13 papers) venues. Additionally, 11 papers
were selected from arXiv, while fewer papers were chosen from
A (8 papers), B (1 paper), and Q2 (1 paper) venues. This reflects
our selection’s emphasis on highly ranked publication sources.
The distribution of selected papers by ranking is presented in
Appendix Figure 4.

The distribution of adopted LLMs across studies shows a
strong preference for CodeBERT, GPT-3.5 Turbo, and GPT-
4, each of which appears in the highest number of selected
papers. CodeT5 and GraphCodeBERT also feature prominently,
indicating their widespread adoption in recent research. Other
models such as GPT-3.5, RoBERTa, T5, and PLBART are frequently
utilized, reflecting a diverse landscape of LLM usage. Notably, both
open-source models (e.g., CodeBERT, CodeT5, CodeLlama) and
proprietary models (e.g., GPT-3.5 Turbo, GPT-4, Bard) are well
represented, suggesting that researchers are leveraging a range of
resources depending on task requirements and accessibility. The
presence of models like CodeGen and Bard, albeit less frequently,
highlights ongoing experimentation with both established and
emerging LLMs in the field. Overall, this distribution underscores
the central role of code-oriented and general-purpose LLMs in
current research practices. Appendix Figure 5 displays the top 15
most-used LLMs among the analyzed papers.

The most frequently targeted languages are C/C++ (24 papers),
Java (12 papers), Python (9 papers), and C (8 papers), with
fewer papers focusing on JavaScript (4), Solidity (3), Verilog
(1), Dafny (1), and Alloy (1).
strong emphasis on languages that are widely used in software
development and are known for their relevance to software

This distribution reflects a

security and vulnerability research. In particular, C and C++
are historically associated with critical security issues such as
buffer overflows and memory management errors, making them a
central focus in vulnerability detection studies. Java and Python,
as popular high-level languages, also present unique security
challenges. The inclusion of languages like Solidity highlights
growing interest in the security of smart contracts and blockchain
applications. Overall, the selection of target languages aligns with
the broader landscape of software security research, prioritizing
those environments where vulnerabilities are both prevalent and
impactful. Appendix Figure 6 summarizes the distribution of target
programming languages across the selected papers.

In Appendix Table 6, a comprehensive list of the analyzed
articles is presented, along with a description of the downstream
task addressed in each paper. Each task is conceptually decomposed
into its inputs, the approach adopted, and the resulting outputs.
To highlight the nature of each task, a color-coding scheme is
used: tasks related to LLM4Verification are marked in blue, those
related to Verification4dLLM are shown in green, and tasks that
involve both verifying LLM-generated code and using LLMs as
code verification tools are indicated in cyan.

For classification purposes, the selected papers were grouped
into two categories: those employing Transformer-based models
(prior works, representing only 9 out of 50) and those utilizing
LLMs (the others). The thematic areas identified include
Vulnerability Detection (VulDet), Vulnerability Explanation
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(VulExpl), Software Verification (SWVerif), Static Analysis
(SA), Repair—Correctness (RepCorr), Repair—Verification
(RepVerif), Code Generation (CodeGen), Smart Contracts
(Smart), Frameworks (FW), Datasets (Dataset), and Benchmarks
(Bench). For brevity and clarity, the concise topic labels shown
in parentheses are used in Appendix Table 6 to present the
classification results in a compact form. As an example, 17 papers
focus only on LLMs for Vulnerability Detection, while 6 papers use
Transformer approaches for Vulnerability Detection. 12 papers are
focused on LLMs for Software Verification, 9 papers on LLMs for
Repair—Verification, and, notably, 7 papers intertwine LLMs with
Static Analysis.

Of the 50 analyzed papers, 41 are focused on LLM4Verification,

6 on Verification4LLM, and 3 on both.

3 Related work

As related work, we examined surveys, reviews, and systematic
reviews (Systematic Literature Review - SLR) previously published
in the literature, summarizing their key contributions and findings.

LLMs have demonstrated significant potential in transforming
software security practices by reducing manual effort while
improving the effectiveness and accuracy of security applications,
as demonstrated in Zhu et al. (2025) (survey study), and
Zubair et al. (2025) (SLR). These studies reveal that LLMs
excel particularly in generating short, localized bug fixes and
test assertions, with performance enhanced through sophisticated
prompt engineering strategies. Differently from our work, these
investigations focus solely on the techniques of fuzzing, unit test,
program repair, bug reproduction, data-driven bug detection, and
bug triage, using LLMs as companions. In our dual perspective,
we recognize that such tasks could be accomplished using both
LLMs as verifiers, and LLMs as code-generator to be verified, and
discussed them accordingly. Similarly, Huang et al. (2025) (review)
emphasizes the critical role of deep learning in Automated Program
Repair (APR), particularly highlighting how learning-based
techniques outperform traditional search-based and constraint-
based approaches. The perspective guiding (Huang et al., 2025)
is organized around four patch generation schemes: search-based,
constraint-based, template-based, and learning-based. In contrast,
our work is less concerned with these specific categories and
instead examines the broader landscape of LLM-based approaches.
Zhang et al. (2024) (SLR) provides a comprehensive systematic
literature review revealing a growing trend in LLM-based APR
and emphasizes that prompt input represents the predominant
application form for LLM-based program repair, highlighting
the critical importance of effective prompt design for leveraging
natural language processing capabilities. This comprehensive SLR
concentrates on three specific strategies for deploying LLMs in
APR, a focus that is considerably narrower compared to the scope
of our study.

In the context of code security, studies like Basic and Giaretta
(2024) (SLR) and Dolcetti et al. (2024) (experimental study) reveal a
critical paradox where LLMs can both introduce, detect and repair
security vulnerabilities, with common vulnerabilities including
injection flaws, memory management issues, file management
problems, and sensitive data exposure stemming from unsafe
coding practices and potentially compromised training data.
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While LLMs demonstrate potential in vulnerability detection and
repair, with performance varying based on model size and training
data quality, they frequently produce high false positive rates,
particularly in complex codebases, and struggle with correcting
complex vulnerabilities requiring deep contextual understanding.
Basic and Giaretta (2024) emphasizes that prompting techniques
significantly influence LLM effectiveness in vulnerability detection
and correction, with Chain-of-Thought (CoT) prompting showing
particular promise, while data poisoning poses substantial
risks to LLMs ability to generate secure code and accurately
identify vulnerabilities. Likewise, Negri-Ribalta et al. (2024) (SLR)
reveals critical security concerns regarding Al-generated code,
demonstrating that such code is not inherently secure and contains
documented security vulnerabilities, with particular attention to
MITRE CWE Top-25 vulnerabilities including CWE-787 and
CWE-89, while security performance varies significantly across
programming languages with Python appearing more secure than
C-family languages and Verilog experiencing similar issues to C.
These works concentrate exclusively on the types of vulnerabilities
that LLMs may introduce when generating code, as well as on their
ability to detect and repair vulnerabilities in existing code, and
on how the chosen prompting strategy influences performance
in these two tasks. In our view, this focus pertains solely to the
Verification4LLM perspective.

Zhou et al. (2024a) (SLR) reveals that, in the context
of vulnerability detection, fine-tuning represents the dominant
adaptation technique at approximately 73%, followed by prompt
engineering at 17% and retrieval augmentation generation at
10%, with datasets primarily focusing on function or line-
level analysis while showing limited exploration at class or
repository levels. This work focuses exclusively on surveying
studies related to vulnerability detection, and partially on
vulnerability repair; within our framework, this falls solely under
the LLM4Verification perspective.

Wang and Chen (2023) (review) identifies a significant
research gap between LLM application for code generation
and the evaluation of generated code quality, with evaluation
receiving considerably less attention despite LLMs capability to
handle various software engineering tasks and enhance developer
productivity through applications like GitHub Copilot. The study
reveals that while LLMs excel in bug correction and can outperform
traditional APR tools, the generated code presents security
concerns as vulnerabilities and malicious code from training data
can leak into LLM outputs, with current evaluation focusing
primarily on functional correctness and security while neglecting
other critical quality aspects such as compatibility, maintainability,
and portability. While this study presents a comprehensive view of
LLMs in the context of code generation, it offers comparatively little
on their use as verifiers. Our work complements this by analyzing
the verification perspective as well.

In summary, while LLMs have shown substantial promise
in software security and automated program repair, persistent
challenges include limited understanding of complex code,
data quality and high
computational costs (Zhu et al., 2025; Zhang et al., 2024; Wang

insufficient  generalization, issues,
and Chen, 2023). Security concerns remain due to LLMs’ tendency
to introduce vulnerabilities and produce high false positive
rates, especially in complex or real-world scenarios (Basic and

Giaretta, 2024; Negri-Ribalta et al., 2024). Evaluation frameworks
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often neglect important code quality aspects beyond functional
correctness, such as maintainability and portability (Wang and
Chen, 2023). Future directions emphasize developing high-quality,
leakage-free benchmarks, hybrid approaches combining LLMs
with traditional tools, and comprehensive evaluation methods.
Addressing these challenges is crucial for realizing the full potential
of LLMs in secure, reliable software engineering.

Compared to our work, existing analyses in the field tend to
concentrate on narrow dimensions of the broader challenges at
hand, such as methods for repairing faulty programs, addressing
security flaws in automatically generated code, or detecting
vulnerabilities in software. Each of these directions examines a
distinct capability of LLMs, effectively placing them along a single
line of assessment. In contrast, more recent experimental efforts
increasingly aim to tackle a wide range of tasks within a single
framework. A closer examination of this body of work indicates
that it can be meaningfully structured by distinguishing between
two fundamentally different perspectives: LLM4Verification and
Verification4LLM. Our study seeks to bridge this gap.

4 LLM for verification

LLM4Verification addresses RQ1, RQ2, RQ4, and RQ7.
Figure 1 illustrates the roadmap of this section, which is described
in the following. To answer RQ1, we surveyed approaches that
leverage LLMs for various verification tasks, with vulnerability
detection emerging as the most prominent. Both standalone LLMs
and custom frameworks were considered. In response to RQ2,
we identified five key strategies: prompt engineering, fine-tuning,
integration with tools and feedback loops, retrieval-augmented
generation (RAG), and agentic approaches. For each strategy,
we assessed both effectiveness and limitations. RQ4 narrows the
focus to tool integration, which is examined in greater detail.
Finally, RQ7 explores the applicability of LLMs in program repair,
with particular attention to custom frameworks designed for
this purpose.

4.1 RQ1: Effectiveness of LLMs in
vulnerability detection compared to
traditional approaches and custom
LLM-based methods

Of the 50 analyzed papers, 30 show insights on this research
question, i.e., 60% of the database.

According to Thapa et al. (2022), LLMs generally outperformed
traditional RNN-based models (e.g., BiLSTM) in vulnerability
detection, showing significant improvements in Fl-score, False
Positive Rate (FPR), and False Negative Rate (FNR). Nevertheless,
significant limitations and inconsistencies remain, particularly
in realistic or complex scenarios. Using the DiverseVul dataset
(Chen et al,, 2023), LLMs significantly outperformed Graph Neural
Networks (GNNs) (47.15% vs. 29.76% F1-score); however, overall
Fl-scores remained low, suggesting the technology is not yet
viable for large-scale deployment because of high FPR. Liu et al.
(2024a) observed LLMs perform well in simple binary classification
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tasks (e.g., vulnerability existence, >85% accuracy), but their
performance significantly drops (accuracy below 30%) in more
complex tasks like localizing root causes or trigger points.

Ullah et al. (2024) concluded that LLMs are currently unreliable
for vulnerability detection, showing high FPR, non-deterministic
outputs, incorrect reasoning even when vulnerabilities are correctly
identified, and fragility to simple code augmentations. Some
sources (Yin et al., 2024; Wen X.-C. et al., 2024; Yang et al., 2024)
imply that improvements often depend heavily on fine-tuning
on domain-specific data, and without it, general-purpose LLMs
struggle with the intricate semantics required for vulnerability
detection. Moreover, potential data leakage in training datasets can
lead to artificially inflated performance. Yin et al. (2024) reported
that although fine-tuned LLMs show improvements, they remain
inferior to transformer-based methods, with baseline techniques
often outperforming LLMs, particularly in few-shot scenarios.
Another paper, by Ding et al. (2024), directly stated that LLMs,
including state-of-the-art models like GPT-4, are largely ineffective
and “useless in practice” in realistic vulnerability detection settings.

OpenAl models are worth a separate discussion. According to
Liu P.etal. (2024), ChatGPT demonstrated capabilities comparable
or superior to some state-of-the-art methods in security bug report
identification, but its Fl-score remained low compared to other
top-performing approaches. For vulnerability severity evaluation,
its performance was slightly inferior to some baselines. Studies like
Gong et al. (2024) indicated that GPT-3.5 had limited practical
value for vulnerability detection (43.6% accuracy, comparable
to random guessing), and while GPT-4 showed superior code
understanding (74.6% accuracy), it still exhibited unacceptably high
FPR compared to static analyzers like Bandit and CodeQL. For
smart contracts, Chen et al. (2025), ChatGPT showed high recall
but low precision (e.g., 88.2% recall but 22.6% precision for GPT-
4), leading to many false positives. It performed better for specific
vulnerability types like Denial of Service and Front Running, but
underperformed for most others compared to traditional tools.

Generally, LLM-based approaches show promising, often
superior, performance in vulnerability detection when adequately
trained or integrated with other tools. We conclude this section
with an analysis of the performance of the examined tools and
frameworks, with numerical details when available:

e AIBugHunter (Fuetal,, 2024b) demonstrated greater accuracy
than traditional program analysis tools like Cppcheck
for line-level vulnerability prediction. Its Multi-Objective
Optimization (MOQO) approach achieved 65% multiclass
accuracy for vulnerability identification, surpassing baselines
like BERT-base and CodeBERT by 10%-141%. However, it
struggled with underrepresented vulnerabilities and severity
identification, and accuracy as a metric was noted as
problematic due to dataset imbalance.

e DLAP (Yang et al, 2025) consistently outperformed
traditional deep learning models and other LLM-based
prompting frameworks, showing improvements like a 10%
higher Fl-score and 20% higher Matthews Correlation
Coeflicient (MCC) over baselines. The overall Fl-score for
DLAP was noted as still low, indicating it might not be suitable
for real-world production systems despite improvements over
baselines.
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Roadmap of Section 4, including the list of names of LLM-based custom frameworks for verification, both for vulnerability detection (RQ1) and
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GRACE (Lu et al., 2024) was found to be more effective than
six state-of-the-art graph-based and sequence-based methods
across various datasets.

IRIS (Li et al.,, 2025) was significantly more effective than
traditional static analysis tools alone, detecting 103.7% more
vulnerabilities and achieving a lower false discovery rate
compared to CodeQL.

LineVul (Fu and Tantithamthavorn, 2022) achieved an F-
measure of 91% for function-level vulnerability prediction, a
160%-379% improvement over state-of-the-art methods, and
outperformed baselines in precision (97%) and recall (86%).
LLift (Li et al, 2023) framework propose to use ChatGPT
alongside with UBITech to produce bug reports. They
observed GPT-4 significantly outperformed GPT-3.5 in terms
of soundness (94% vs. 61%) and completeness (94% vs. 44%).
It also successfully identified 16 out of 20 false positives and
one missed bug that UBITect failed to detect due to symbolic
execution limitations.
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SecureFalcon (Ferrag et al, 2025) achieved 94% binary
and 92% multiclass accuracy, outperforming traditional ML
algorithms by up to 11% and other LLMs by 4%. It also showed
higher detection rates than static/formal tools, could handle
non-compilable code, and was faster than Bounded Model
Checking (BMC).

SkipAnalyzer (Mohajer et al., 2023) significantly improved
precision over the state-of-the-art static bug detector Infer,
with increases of 12.86% for Null Dereference bugs and
43.13% for Resource Leak bugs.

SmartGuard (Ding et al.,, 2025) significantly outperformed
traditional static analysis tools like Slither (by 41.16% recall)
and previous LLM-based approaches, achieving 95.06% recall
and 94.95% F1-score on a benchmark dataset, and uniquely
detecting multiple vulnerabilities simultaneously.
Smart-LLaMA (Yu et al, 2024) consistently outperformed
16 state-of-the-art baselines, including traditional rule-based
tools, neural network-based techniques, and other LLM-based
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approaches, achieving average improvements of 6.49% in F1-
score and 3.78% in accuracy.

e VFFinder (Wu et al., 2024) showed promising performance
(Top-1 accuracy of 27.27% on vulnerable function
identification, which is 2.37 times higher than the best
baseline methods), but overall results were still generally low.

e VulBERTa (Hanif and Maffeis, 2022) proved highly effective,
consistently outperforming traditional deep learning
baselines and existing vulnerability detection approaches,
often achieving state-of-the-art performance with high
precision and F1-scores.

e Finetuned WizardCoder (Shestov et al., 2025) demonstrated

CodeBERT-based models

on both balanced

superior effectiveness over

in vulnerability detection, and

imbalanced datasets.

4.1.1 Discussion

The use of LLMs for vulnerability detection is a rapidly
emerging trend, though the scientific literature presents conflicting
perspectives about their effectiveness. Experimental evaluations
such as those in Thapa et al. (2022), Chen et al. (2023), Liu P.
et al. (2024), and Liu et al. (2024a) highlight promising results
when comparing LLMs to traditional ML and DL approaches. In
contrast, studies like Ullah et al. (2024), Yin et al. (2024), Ding
et al. (2024), Gong et al. (2024), and Chen et al. (2025) emphasize
the limitations of LLMs, finding them unreliable and ineffective
when used out-of-the-box for vulnerability detection. Despite these
discrepancies, there has been a proliferation of custom frameworks
that integrate static analysis tools, specialized training strategies,
and tailored model architectures into novel pipelines that claim
superior performance. However, meaningful comparison across
these approaches remains difficult due to the heterogeneity of
datasets, benchmarks, and evaluation methodologies: this marks
a gap in current literature. A promising future direction lies in
the development of unified and comprehensive frameworks that go
beyond the standalone use of LLMs.

4.2 RQ2: Strategies, effectiveness, and
limitations of LLMs in code verification
tasks

Of the 50 analyzed papers, 42 show insights on this research
question, i.e., 84% of the database.

4.2.1 Fine-tuning

The first notable strategy is fine-tuning. This is a pervasive
strategy, often involving pre-trained models on domain-specific
data. A specific approach is the one used in Fu et al. (2024b), Multi-
Objective Optimization (MOO), with customized loss functions.
In work like Liu et al. (2024a) and Li D. et al. (2024), Parameter-
Efficient Fine-Tuning (PEFT) techniques like LoRA (Low-Rank
Adaptation) are leveraged for specific tasks. Yang et al. (2024)
proposed Multitask Self-Instructed Fine-Tuning (MSIVD), which
involves integration with GNNs and the use of PEFT. For smart
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contracts, Yu et al. (2024) proposed Smart Contract-Specific
Continual Pre-Training (SCPT) and Explanation-Guided Fine-
Tuning (EGFT). Another technique is to perform fine-tuning
across diverse error types simultaneously, pre-training the model
on bug-fix data (Fu et al., 2024a).

4.2.1.1 Effectiveness

Fine-tuned LLMs
vulnerability repair and strong generalization, outperforming
various baselines (Wu et al., 2023; Zhang et al., 2023; Shestov et al.,
2025; Huang et al.,, 2023). They can achieve high accuracy and

generally show great potential for

instant inference times (SecureFalcon, Ferrag et al., 2025).

4.2.1.2 Limitations

Fu et al. (2024b) noted that their tool (AIBugHunter), being
in an early stage, it may not generalize well to languages other
than C/C++ (the one was tuned on). Another tool, PDBERT
(Liu et al., 2024d) suffers from the same problem, struggling to
generalize outside the C/C++ language on which it was trained
on. This is further confirmed by Huang et al. (2023) and Yang
et al. (2025), which observed that fine-tuning a pre-trained model
could lead to catastrophic forgetting of the previous knowledge and
linguistic capabilities of the LLM, even producing repetitive outputs
(Yu et al., 2024). Moreover, Thapa et al. (2022) remarked that
the high computational costs of fine-tuning make it impractical
for the majority of tasks, while Fu et al. (2023) noticed that
knowledge distillation depends on the quality of teacher models
and may struggle with noisy or incorrect labels. On DiverseVul, by
Chen et al. (2023), fine-tuning could lead to poor generalization
performance of the LLMs on unseen projects. Contrary to many
other studies, Yang et al. (2024) assessed the performance of fine-
tuning as only an incremental improvement versus LLMs-based
approaches such as LineVul (Fu and Tantithamthavorn, 2022).
Berabi et al. (2021) and Hanif and Maffeis (2022) also observed
that a fine-tuned model’s effectiveness is often tied to the quality
of datasets, which usually require extensive cleaning and filtering to
remove noise.

4.2.2 Prompt engineering

The second notable strategy is prompt engineering. This
involves crafting prompts to elicit the desired responses from
LLMs, enhancing their performance on specific tasks. The most
popular strategies to perform prompt engineering are listed in the
following.

e Chain-of-Thought (CoT):
intermediate reasoning steps. Papers that use this approach
are Fu et al. (2022), Ding et al. (2024), Li et al. (2023), Wen
et al. (2024a), Lu et al. (2024), Wang et al. (2024), Ullah et al.
(2024), Misu et al. (2024), Yang et al. (2025), Li H. et al. (2024),
and Ding et al. (2025).

e Few-shot and Zero-shot prompting: providing a few examples

guiding models through

or no examples in the prompt to demonstrate the desired
output format or task. Papers that use this approach are Yin
et al. (2024), Liu et al. (2024a), Wen et al. (2024a), Liu P. et al.
(2024), Ullah et al. (2024), Mohajer et al. (2023), and Li et al.
(2025).
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e In-Context Learning (ICL): providing a few examples in the
prompt to add context to the request(s). This method could
be seen in DLAP (Yang et al., 2025), in VFFinder (Wu et al.,
2024), in GRACE (Lu et al.,, 2024), and in SmartGuard (Ding
et al,, 2025) frameworks. It slightly differs from few-shot
prompting in the scope and type of examples.

e Task decomposition: breaking down complex problems into
smaller, more manageable sub-problems for the LLM, as in Li
etal. (2023), Wang et al. (2024), and Li H. et al. (2024).

e Progressive prompting: allowing LLMs to request additional
information (e.g., function definitions) as needed, as in Li et al.
(2023) and Li H. et al. (2024).

e Role-oriented: assigning the LLM a specific persona, e.g.,
“security expert” as in Ullah et al. (2024).

e Contextual information: including comments or external
feedback within the prompt. Papers that use this approach are
Lu et al. (2024), Pearce et al. (2023), Liu P. et al. (2024), and Li
et al. (2025).

4.2.2.1 Effectiveness
Prompt task

improve

(CoT,
substantially

engineering  strategies few-shot,
decomposition, progressive prompts)
LLM performance. Notably, GPT-4, with these strategies, achieved
94% soundness and completeness for UBI bug analysis, a significant
improvement over GPT-3.5 (Li H. et al., 2024). ICL with CoT can
lead to significant performance leaps. In particular, the GRACE
framework (Lu et al., 2024) first demonstrated that graph structure
integration, such as Abstract Syntax Trees (ASTs), Program
Dependencies Graphs (PDGs), and Control Flow Graphs (CFGs),

significantly improves vulnerability detection.

4.2.2.2 Limitations

Lietal. (2023) noted inconsistency in CoT prompt engineering:
ChatGPT showed inconsistency between the reasoning steps
obtained and the final verdict, occasionally mis-categorizing a
variable despite intermediate steps suggesting otherwise. This
is a known limitation of CoT prompting (Ullah et al, 2024):
Multi-round conversations sometimes show limited enhancement
or even decline in detection performance (Chen et al., 2025).
Few-shot prompting can improve performance for some tasks
(e.g., bug report summarization), but may negatively impact
others (e.g., localization) due to diversity or misleading examples
(Liu et al.,, 2024a), and may introduce randomness that hinders
reproducibility (Yin et al., 2024). Moreover, Ding et al. (2025)
noted that performance degrades with too many input examples
(>8). Few-shot prompting can be labor-intensive and expensive
due to engineering efforts for tuning and post-processing (Wang
et al., 2023). According to Wu et al. (2024), ICL depends on the
relevance of the examples in the case pool: at the same time,
creating the case pool is time-consuming and requires a substantial
manual effort. Progressive prompts may use too many tokens (Li
H. et al, 2024). Complex prompts do not consistently enhance
ChatGPT’s performance and can even confuse it (Liu P. et al,
2024). However, they also noted that prompts effectiveness could
vary from the used model, making the results hardly generalizable.
Overall, the majority of the above cited studies agree in recognizing
that long sequences and large functions could be challenging due to
token limitations and possibly small context windows of available
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models, especially when ICL is used or other context information
are provided (Lu et al, 2024; Li et al., 2025). Context and
generalization challenges persist, as extracted code snippets may
lack sufficient context. Generalizability to different programming
languages, complex side-effects, or new vulnerability types is still
limited, and effectiveness relies heavily on prompt quality (Mohajer
etal., 2023).

4.2.3 Tool integration and external feedback

Combining LLMs with traditional Static Analysis (SA) tools,
formal verification tools, or other external analyzers is another
notable strategy. This includes: feeding SA reports to LLMs for
analysis or false positive reduction, e.g., using ESLint (Berabi et al.,
2021), Bandit (Alrashedy et al, 2023), CodeQL (Pearce et al,
2023), and other tools (Li et al., 2023; Mohajer et al., 2023; Wen
et al., 2024a; Li H. et al,, 2024; Ge et al., 2024); LLMs generating
inputs (e.g., function summaries, taint specifications) for SA tools
(Li et al,, 2023, 2025); using formal verifiers, e.g., Alloy Analyzer
(Alhanahnah et al., 2024), Frama-C (Wen et al., 2024b), ESBMC
(Ferrag et al.,, 2025), to validate LLM-generated specifications or
code; integration with SMT solvers for path feasibility validation
(Wang et al., 2024).

4.2.3.1 Effectiveness

External feedback from static analyzers (e.g., Bandit, CodeQL,
ESLint, Infer) LLM capabilities in
vulnerability refinement and bug detection, leading to improved

significantly improves

precision, recall, and accuracy. It can reduce false positives and
address cases where static analysis times out (Li et al., 2023; Li H.
et al., 2024). Integration with formal verification tools (e.g., Alloy
Analyzer, Frama-C, ESBMC) ensures validation and correctness of
generated specifications and code.

4.2.3.2 Limitations

In Wen et al. (2024b), the integration with SA and theorem
prover helps validate the specifications, but there is a need for
iterative validation to avoid error accumulation. Li H. et al
(2024) also noted that the analysis could have a limited scope.
Differently from traditional tools, LLMs are black boxes, so there is
uncertainty even when performance are high, and no explanation
for their decisions (Pearce et al., 2023). These approaches may
suffer from long prompts problems (see previous subsection),
leading to challenges in handling large functions or complex path
conditions (Wang et al., 2024, 2023; Mohajer et al., 2023). Using
a specialized SA tool, such as ESLint for JavaScript in Berabi et al.
(2021), could lead to poor generalization of the proposed method,
limiting the applicability to other languages or error types. Finally,
computational cost is a significant concern due to frequent LLM
queries in iterative processes, leading to high financial and resource
expenditures, e.g., integrating formal verification (BMC) in such
processes could be slow or resource-intensive (Ferrag et al., 2025).

4.2.4 Retrieval augmented generation

More and more research papers are exploring the method of
Retrieval-Augmented Generation (RAG). This involves leveraging
external knowledge or semantically similar examples retrieved from
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a codebase to augment LLM input. This strategy is used in the
following analyzed papers: Shestov et al. (2025), Yang et al. (2025),
Lu et al. (2024), Wang et al. (2023), Misu et al. (2024), and Chen
et al. (2025).

4.2.4.1 Effectiveness

RAG generally enhances performance by leveraging relevant
examples or external knowledge. The particular RAG utilized
in DLAP (Yang et al, 2025) is reported to be the reason
of it outperforming CoT, role-based prompting, and GRACE
techniques. Also in GRACE (Lu et al., 2024) is observed the crucial
role of RAG, by means of an ablation study that demonstrated
its significant contribution. Even when fine-tuning is the main
technique, in Shestov et al. (2025), RAG demonstrated significant
improvement in precision, recall and F1-score.

4.2.4.2 Limitations

According to Yang et al. (2025), RAG is an effective technique,
but it heavily depends on training data. Moreover, as a result of
RAG could be generated overloading prompts, which confuses the
models (Chen et al., 2025).

4.2.5 Agentic frameworks

Finally, agentic frameworks are emerging as a strategy
LLM These
implementing multi-agent systems where LLMs interact to

to enhance capabilities. frameworks involve
refine outputs or perform tasks. For example, in Alhanahnah et al.
(2024), a dual-agent LLM framework involving a Repair Agent
and a Prompt Agent has been explored. In Ding et al. (2024),
an integration with traditional tools and agents is discussed, but
not implemented. As agents and multi-agent systems approaches
continue to evolve, experiencing a new flowering and increasing
growth in commercial frameworks as well (e.g., Langchain?,
Autogen?, MetaGPT® by Hong et al., 2024, and so on), we expect
this strategy to become one of the leading methodologies for

Al-based program verification frameworks in the next years.

4.2.5.1 Effectiveness
According to Alhanahnah et al. (2024), auto-feedback
generated by LLMs is more effective than human-created generic

prompts for automatic program repair.

4.2.5.2 Limitations

In Alhanahnah et al. (2024), the use of a multi-agent framework
may result in a marginal increase in token consumption, since
auto-feedback usually require a greater number of iterations.

4.2.6 Discussion

Among the various strategies employed in code verification
tasks using LLMs, prompt engineering remains by far the most
widely adopted. Its popularity continues to grow, largely due to
its low cost and immediate applicability, often yielding surprisingly
strong results with minimal overhead. However, the scientific

1 https://github.com/langchain-ai/langchain
2 https://microsoft.github.io/autogen/stable//index.html
3 https://github.com/FoundationAgents/MetaGPT
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literature presents mixed views on its effectiveness, highlighting
issues such as inconsistent behavior, randomness in outputs, and
limitations when handling long or complex input sequences.
An alternative and more robust approach involves fine-tuning
LLMs to transfer learned patterns into a specific target domain.
While this method can significantly improve performance, it is
computationally expensive and carries risks such as catastrophic
forgetting. A notable gap in current research is the limited
exploration of agentic frameworks, which are beginning to gain
traction in commercial applications but remain under-analyzed
in the context of security and code verification. Future research
directions should prioritize the development and evaluation of
agentic approaches, as they hold potential for more autonomous
and adaptive verification pipelines.

4.3 RQ4: Strategies for tool integration

Of the 50 analyzed papers, 19 show insight into this research
question, i.e., 38% of the database.

Integration strategies between LLMs and security tools are
diverse and sophisticated. A core method involves feedback loops,
i.e. intertwining static/dynamic analyzer with LLMs to check the
safety and security of analyzed code (as in Yang et al., 2025), and
iterative refinements, i.e. asking the LLMs to fix, patch, or repair
the detected insecure code in one or more steps (as in Alrashedy
et al., 2023).

LLM-generated context and inputs for tools are another key
strategy. LLMs can generate precise function summaries (Li et al.,
2023) or taint specifications (Li et al., 2025) for SA tools, enhancing
their accuracy by reducing false positives and negatives. Conversely,
LLMs can act as post-processors for tool outputs. Static analyzers
often produce numerous warnings. LLMs can process and classify
these reports, helping to filter out false positives and identify
genuine bugs, thus streamlining the manual triage process (Wen
et al., 2024a; Wu et al., 2024).

Automated validation of fixes (e.g., by ESLint in Pearce et al.,
2023 and Wang et al, 2023) guarantees error removal without
introducing new ones (Berabi et al, 2021). These integrations
are crucial in overcoming tools and LLMs’ limitations. LLMs can
handle cases where SA tools time out (e.g., symbolic execution
issues, as in Li et al., 2023 and Li H. et al., 2024), while contextual
code snippet extraction mitigates LLM token limitations (Wen
et al., 2024a).

In more advanced setups, direct tool invocation by LLM agents
allows LLM-based agents to directly call external validation tools
(e.g., Alloy Analyzer, as in Alhanahnah et al., 2024, SMT solver
as in Wang et al., 2024) to check the correctness of proposed
specifications or dataflow paths in real-time.

Finally, hybrid frameworks and data integration combine
LLMs with various security tools and data sources. Program
dependency analysis tools (e.g., Joern, as in Liu et al., 2024d) can
extract structural data [ASTs, PDGs, as in the GRACE framework
by Lu et al. (2024)] to train LLMs or validate their analysis.
GNNs modeling CFGs can provide embeddings that, when
combined with LLM outputs, improve vulnerability classification
(Yang et al, 2024). LLMs can also integrate with Software

frontiersin.org


https://doi.org/10.3389/fcomp.2025.1655469
https://github.com/langchain-ai/langchain
https://microsoft.github.io/autogen/stable//index.html
https://github.com/FoundationAgents/MetaGPT
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Dolcetti and lotti

Composition Analysis (SCA) tools to reduce false positives in
vulnerability detection (Wu et al., 2024; Ge et al., 2024), or combine
with BMC and traditional static analyzers for comprehensive
vulnerability detection (Ferrag et al, 2025). For example, the
framework LLMDFA (Wang et al., 2024) leverages LLMs’ semantic
understanding and formal tools’ logical reasoning for a robust
hybrid approach.

The integration significantly enhances security capabilities,
with studies showing vulnerability refinement improvements
of up to 30% with GPT-4 using Bandit feedback (Alrashedy
et al, 2023). Precision of static analyzers is also enhanced
by filtering false positives (e.g., SkipAnalyzer, by Mohajer
et al, 2023 improved Infer’s precision by 12.86% to 43.13%).
Furthermore, integrated approaches increase the number of
detected vulnerabilities and reduce false discovery rates (e.g., IRIS
by Li et al, 2025 with GPT-4 detected 55 vulnerabilities vs.
27 by CodeQL). Enhanced code/specification quality is another
benefit, as integration with formal verification tools ensures
generated specifications are satisfiable and adequate (Wen et al,,
2024b).

4.3.1 Discussion

Integrating LLMs with static analysis tools is a strategy
increasingly adopted by researchers, with the goal of correcting,
specializing, and enhancing both the outputs of LLMs and the
feedback provided by static analyzers. This synergy has shown
generally promising results, suggesting that the combination can
help mitigate the limitations inherent in each approach when used
independently. However, these results remain difficult to compare
meaningfully due to the lack of standardized benchmarks and
ground truth datasets, which creates a gap in the field. To move
forward, a promising direction lies in the development of robust
and reliable frameworks that systematically combine LLMs and
static analysis, enabling consistent evaluation and maximizing the
strengths of both methodologies.

4.4 RQ7: Effectiveness and limitations of
LLMs in repairing vulnerabilities

Of the 50 analyzed papers, 17 show insight into this research
question, i.e., 34% of the database.

LLMs exhibit promising capabilities in the realm of
vulnerability ~repair, marking a significant advancement
in Automated Program Repair (APR). Certain LLM-based
approaches, such as FDSP (Alrashedy et al., 2023), VulMaster
(Zhou et al., 2024b), RAP-Gen (Wang et al., 2023), SkipAnalyzer
(Mohajer et al., 2023), TFix (Berabi et al., 2021), Vision
Transformers based on vulnerability queries and masks (Fu et al.,
2024a), and VulRepair (Fu et al., 2022, 2024b), have demonstrated
a notable outperformance of traditional or baseline learning-based
APR methods. GPT-4 with expertise prompts has achieved an
impressive 92.8% valid repair rate, showcasing its potential in
real-world scenarios (Liu P. et al., 2024). Moreover, fine-tuning
generally enhances LLMs’ vulnerability-fixing capabilities, allowing
them to specialize in security-related code modifications (Zhang
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etal., 2023; Wu et al,, 2023). Among pre-trained models, VulRepair
(Fu et al, 2022) stands out by achieving a perfect prediction
accuracy of 44%, which is 13%-21% higher than two baseline
approaches (VRepair and CodeBERT). This is further remarked by
Zhang et al. (2023), that reported prediction accuracy ranging from
32.94% to 44.96% in APR using pre-trained models, consistently
outperforming existing techniques.

As described in the previous section, iterative feedback
from static analyzers substantially improves LLMs’ vulnerability
refinement capabilities (Gong et al., 2024; Alrashedy et al., 2023).
This closed-loop approach allows LLMs to learn from detected
errors and iteratively correct their generated patches. Concrete
examples underscore the high performance achieved by LLM-based
repair techniques:

e According to Gong et al. (2024), GPT-4 has demonstrated
promising abilities in self-correction and cross-model repair,
achieving an 85.5% success rate when repairing its own
generated vulnerable code and a 77.4% success rate when
repairing code generated by other LLMs, particularly when
provided with Common Weakness Enumeration (CWE)
descriptions to guide the repair process.

e Using ChatGPT, multi-round fixing processes have
demonstrated high success rates, capable of successfully
addressing over 89% of vulnerabilities (Liu et al.,, 2024c).
However, they also note that ChatGPT’s ability to directly fix
erroneous code is relatively weak without iterative interaction.

e SkipAnalyzer has demonstrated high logic correctness (up to
97.30%) and syntax correctness (up to 99.55%) for specific
bug types, indicating its precision in targeted repairs (Mohajer
etal., 2023).

e Alhanahnah et al. (2024) used GPT 4 with auto-feedback to
repair Alloy specifications, surpassing traditional state-of-the-
art repair tools.

4.4.1 Discussion

Despite their promising capabilities, LLM-based program
repair techniques are subject to several significant limitations
that hinder their widespread adoption and reliability. A primary
concern is that LLMs are not yet sufficiently reliable for APR
in zero-shot scenarios (Pearce et al., 2023). Generated fixes
can often be implausible, unreasonable, or, critically, introduce
new vulnerabilities or bugs, potentially failing to preserve
the original functional correctness of the code (Alrashedy
et al., 2023; Pearce et al, 2023). LLMs may also struggle to
effectively incorporate valid feedback, especially when dealing
with highly complex vulnerabilities that require deep contextual
understanding (Alrashedy et al, 2023). Furthermore, some
generated patches can be uncompileable or lack necessary
contextual information, rendering them impractical (Wu et al.,
2023).

In particular, Alrashedy et al. (2023) noted that LLMs face
considerable difficulty in handling complex vulnerabilities, such as
SQL injection or OS command injection, which require intricate
semantic understanding and context-aware modifications. They
also struggle with certain specific CWE types (e.g., CWE-325,
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CWE-444, CWE-119, and other rare CWE types) and multi-hunk
code changes (Wu et al., 2023; Zhang et al., 2023; Fu et al., 2022).

Their applicability is often limited to a few dominant
programming languages, with very few Java vulnerabilities reported
as fixed by existing LLMs according to Wu et al. (2023). Token
limitations (e.g., typically around 500 tokens) pose a challenge
when dealing with long vulnerable functions or complex path
conditions, as the model may not be able to process all relevant
information (Zhou et al., 2024b; Zhang et al., 2023; Pearce et al,,
2023; Fu et al, 2022; Huang et al, 2023; Wang et al.,, 2023).
Consequently, the effectiveness of LLMs tends to decrease with
longer or more complex fixes.

The performance of LLM-based repair techniques heavily relies
on the availability of high-quality, balanced training data (Berabi
et al., 2021; Fu et al,, 2024a; Huang et al., 2023). Performance can
significantly suffer from small sample sizes, class imbalance, or
noisy data.

As for program verification, a critical issue is the potential
for catastrophic forgetting of pre-trained knowledge during fine-
tuning, which can degrade the model’s general capabilities while
specializing (Huang et al, 2023). Yang et al. (2025) propose a
potential solution by using DLAP to guide the repair process,
rather than directly fine-tuning LLMs, since fine-tuning may yield
better binary classifiers, but it could come at the cost of linguistic
capabilities that are valuable for effective code repair.

Moreover, frequent LLM queries within iterative repair
processes can lead to high computational and financial
costs, making continuous deployment challenging for some
organizations (Wang et al., 2023; Li et al., 2025). When compared
to traditional APR techniques, LLM-based approaches sometimes
fall short. For instance, in Alhanahnah et al. (2024) for specification
repair, GPT-3.5 Turbo has been noted to evidently underperform
w.r.t. other Alloy repairers, which are not based on LLM, and
only GPT-4 with auto-feedback proved to be effective. Berabi
et al. (2021) further observed that traditional techniques, such as
symbolic analysis or test-suite-based repair, often offer stronger
correctness guarantees, primarily because they are founded
on rigorous logical reasoning or exhaustive test coverage.
In contrast, LLMs often focus on syntactic fixes and may
introduce subtle bugs due to their statistical nature and lack of
formal guarantees.

In summary, LLMs represent a promising future direction for
ML-based APR. However, their effective adoption depends
that
integrate complementary techniques, such as static analysis,

on the development of comprehensive frameworks
prompt engineering, and symbolic reasoning, to fully leverage

their potential.

5 Verification of LLMs’ generated code

RQ3, RQ5, and RQ6 pertain to the verification of code
generated by LLMs. Figure 2 traces the roadmap of this section,
as detailed in the following. In addressing RQ3, we identified
four main strategies: prompt engineering, multi-round generation
processes, integration with external tools and feedback loops, and
model-based approaches including fine-tuning. Among these, the
custom framework CoSec is discussed in detail. RQ5 narrows

Frontiersin Computer Science

10.3389/fcomp.2025.1655469

the focus to tool integration, examining its role in enhancing
verification accuracy, and describing PromSec. Finally, RQ6
provides an overview of the types of vulnerabilities commonly
found in LLM-generated code, as reported in the literature.

5.1 RQ3: Strategies, effectiveness, and
limitations of LLMs’ secure code generation

Of the 50 analyzed papers, only 8 show insight into this research
question, i.e., 16% of the database.

5.1.1 Prompt engineering

As for program verification using LLMs, also in LLMs
generated program verification (Verification4LLM), prompt
engineering is a key strategy. Prompt engineering represents a
fundamental approach to enhancing LLM security capabilities
through sophisticated input design. Neutral zero-shot prompting
was tested by Tihanyi et al. (2025) and Gong et al. (2024) to
explicitly assess the baseline capabilities of LLMs in generating
secure code. To improve this baseline, one key technique
involves using property-specific continuous vectors, known
as prefixes, to guide LLMs toward generating secure code,
as demonstrated in the SVEN framework by He and Vechev
(2023). This approach is complemented by the employment
of optimized and structured prompts that incorporate detailed
construction principles, significantly improving both the security
and functionality of generated code (Liu et al., 2024c; Nazzal
et al., 2024). The effectiveness of prompt engineering is further
enhanced by leveraging variations of prompts and incorporating
contextual information, few-shot examples, CoT reasoning for
complex tasks such as generating formal method postconditions
or verified methods, as in Misu et al. (2024). Moreover, iterative
prompt optimization based on feedback from SA tools, as
implemented in PromSec (Nazzal et al., 2024), creates a dynamic
improvement cycle.

5.1.1.1 Effectiveness

Prompting’s impact reveals the profound influence that
sophisticated prompt design can have on security outcomes in
LLM-generated code. Optimized prompts and property-specific
vectors, as implemented in the SVEN framework (He and Vechev,
2023), significantly improve both the security and functionality
of generated code, with secure code generation rates increasing
dramatically from 59.1% to 92.3% in documented cases (He and
Vechev, 2023). The effectiveness of advanced prompting techniques
is further demonstrated through CoT prompts combined with
RAG, which can achieve remarkably high success rates in
specification synthesis, including 100% specification synthesis and
58% strong specification verification when using GPT-4 (Misu
et al., 2024). In PromSec (Nazzal et al., 2024), optimized prompts
ensure the quality and security of generated code, while combined
with gGAN (graph Generative Adversarial Networks), observing
that the gGAN itself without LLMs contribution does not achieve
adequate results since it does not capture the semantics.
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Roadmap of Section 5. Details about the findings for each RQ are provided. CoSec and PromSec are the names of custom LLM-based frameworks
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5.1.1.2 Limitations

Many studies reveal significant limitations in the ability of
prompt engineering techniques to ensure secure code generation.
Evidence demonstrates that prompt engineering alone is
insufficient to guarantee security, regardless of sophistication
in design (Liu et al., 2024¢; Tihanyi et al, 2025). According to
Tihanyi et al. (2025), all the examined LLMs employing neutral
zero-shot prompting still produce vulnerabilities in generated
code, at an unacceptable rate. Gong et al. (2024) further confirms
this insight, testing four GPT models and observing that all
performed poorly, with an average 76.2% of the generated
code being insecure. Technical constraints further complicate
prompt design, as token limits often restrict the amount of
contextual information or examples that can be provided in
prompts, while overloading prompts can confuse the model and
degrade performance (Misu et al., 2024). Furthermore, designing
effective prompts and examples requires significant manual effort,
creating scalability challenges for widespread deployment (Misu
et al., 2024). Furthermore, code security generated by LLMs is
highly scenario-dependent, creating inconsistent reliability across
different contexts (Gong et al., 2024). These challenges culminate
in significant risks, including a false sense of security and the
systematic replication of insecure coding patterns (Tihanyi et al,
2025; Nazzal et al., 2024).

5.1.2 Tool integration and feedback loops

Tool integration and feedback loops establish sophisticated
mechanisms for validating and improving LLM-generated code
through external verification systems. A primary strategy involves
integrating LLMs with SA tools such as Bandit, CodeQL, and
ESLint to provide external feedback, identify vulnerabilities, and
validate generated fixes. This integration forms an iterative

Frontiersin Computer Science

refinement loop where static analysis outputs can drive prompt
optimization or directly inform subsequent generation steps (Liu
et al., 2024c; Nazzal et al., 2024; Alrashedy et al., 2023; Pearce et al.,
2023; Gong et al., 2024). Complementing this approach, researchers
have demonstrated the value of combining LLM-generated code
with formal verification tools, including ESBMC (Tihanyi et al,
2025) and Dafny (Misu et al., 2024), to systematically identify
issues, ensure correctness, and validate generated specifications
such as preconditions, post-conditions, and loop invariants. This
methodology often incorporates a verification feedback loop to
refine solutions iteratively.

5.1.2.1 Effectiveness

Research has shown that providing external feedback from
static analyzers, such as Bandit, significantly improves vulnerability
refinement capabilities, with improvements of up to 30% observed
when using GPT-4 (Alrashedy et al., 2023). Notably, verbalizing
this feedback can offer slight additional gains beyond the base
improvement (Alrashedy et al., 2023). The integration with formal
verification tools, such as ESBMC and Dafny, further enhances
robustness by ensuring generated specifications are satisfiable and
adequate, while helping refine solutions to ensure correctness. This
integration approach leads to a substantial increase in successful
program handling across various benchmarks (Tihanyi et al., 2025;
Misu et al., 2024). Additionally, combining LLMs with vulnerability
detection tools such as CodeQL has proven effective in mitigating
security issues in generated code and improving overall security
robustness (Liu et al., 2024c¢).

5.1.2.2 Limitations

LLMs sometimes fail to effectively incorporate valid feedback,
particularly when dealing with complex vulnerabilities such as
SQL injection and high-risk library calls (Alrashedy et al., 2023).
Paradoxically, excessive iteration with SA tools may not prove
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effective for repair tasks, suggesting diminishing returns from over-
reliance on iterative approaches (Gong et al., 2024). The coverage
limitations of static security tools used for feedback can create
blind spots in vulnerability detection and remediation (Nazzal
et al,, 2024). Certain specialized tools like gGAN may not function
effectively without LLMs, as they lack the semantic understanding
necessary for independent operation (Nazzal et al., 2024).

5.1.3 lIterative refinement and multi-round
processes

Iterative Refinement and multi-round fixing have emerged as
critical strategies for improving the quality and security of LLM-
generated code through repeated enhancement cycles. Research has
demonstrated that employing iterative refinement with multiple
solution attempts for vulnerability patching shows significantly
greater impact than single iterations (Alrashedy et al., 2023). This
principle extends to implementing multi-round fixing processes
specifically designed for vulnerable code snippets detected in LLM-
generated code (Liu et al., 2024c¢).

5.1.3.1 Effectiveness

Iterative processes yield strong results by leveraging multiple
refinement cycles to achieve superior security outcomes compared
to single-pass approaches. Multi-round fixing processes for
vulnerable code snippets have demonstrated exceptionally high
success rates, successfully addressing between 89.4% to 100%
of identified vulnerabilities in previously generated code (Liu
et al, 2024c). This success is reinforced by evidence that
iterative refinement with multiple solutions consistently improves
performance beyond approaches that rely solely on single feedback
loops, establishing the superiority of multi-iteration strategies
(Alrashedy et al., 2023).

5.1.3.2 Limitations

As in feedback loops, iterative refinements are subject to a
decline in performance when too many iterations are produced.
According to Alrashedy et al. (2023), potential correctness issues
could be introduced during automatic repairs due to multiple
interactions with external systems or databases that cannot be easily
verified through unit tests.

5.1.4 Model-specific approaches and fine-tuning

Model-specific approaches and fine-tuning encompass
advanced techniques that modify or enhance the underlying LLM
architecture to improve security outcomes. One prominent
approach involves applying Security Model Fine-Tuning
techniques such as LoRA for more secure token generation,
as implemented in the CoSec framework (Li D. et al, 2024).
This is complemented by Supervised Co-Decoding, where
a specialized security model co-decodes with the base LLM,
adjusting token probabilities to favor secure outputs (Li D. et al.,
2024). Additionally, innovative approaches include implementing
gGAN in conjunction with LLMs to reduce vulnerabilities while
preserving semantic and functional integrity, guided by security
analyzer feedback as demonstrated in PromSec (Nazzal et al,

2024).
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5.1.4.1 Effectiveness

Model-specific hardening techniques have shown measurable
improvements in LLM security capabilities through targeted
architectural modifications and specialized training approaches.
The CoSec framework significantly improves the average relative
security ratio of LLMs by up to 37.14%, demonstrating that security
enhancements need not come at the expense of code functionality
(LiD. et al., 2024).

5.1.4.2 Limitations

Generalization to new programming languages or security
behaviors outside the training scope remains a persistent challenge,
limiting the adaptability of current approaches (He and Vechev,
2023). Security hardening approaches such as CoSec can lead to
slight reductions in functional correctness or increased inference
speed due to dual-model operation requirements (Li D. et al., 2024).

5.1.5 Discussion

Prompt engineering is currently the most widely used
strategy for code generation with LLMs. However, this area
is underrepresented in our database, primarily due to the
scarcity of scientific literature focused on evaluating the quality
of Al-generated code. This represents a significant gap in our
understanding of LLM capabilities, especially considering their
widespread real-world adoption for source code generation. A
promising future direction would be the development of robust
benchmarks to systematically assess the quality and safety of
generated code. Such benchmarks should ensure that LLMs do not
produce unacceptable or insecure outputs, ideally by evaluating
them alongside complementary tools like static analyzers.

5.2 RQ5: Code generation and tool
integration

Of the 50 analyzed papers, only 6 show insight into this research
question, i.e., 12% of the database.

A strategy for improving the quality and security of LLM-
generated outputs involves establishing robust iterative feedback
loops. In this approach, LLMs generate initial versions of code,
proposed fixes for vulnerabilities, or formal specifications. These
outputs are then systematically evaluated by a range of automated
security and verification tools. The crucial step involves feeding
the analysis results back to the LLM. Then, the LLM utilizes
this comprehensive feedback to iteratively refine its generated
code, fixes, or specifications. In Alrashedy et al. (2023), initially
generated code is analyzed by Bandit; identified vulnerabilities
trigger solution generation by the LLM; these solutions iteratively
refine vulnerable code until no further issues are detected by Bandit
or maximum iterations are reached. In Liu et al. (2024c), the
multi-round process with CodeQL proved effectiveness to address
vulnerabilities in generated code snippets using ChatGPT, and
leveraging CWE information for automatic fixes. This approach
demonstrates promising results in improving security robustness.

PromSec (Nazzal et al, 2024) framework integrates an LLM
with static security analysis tools (Bandit and SpotBugs) in an
iterative loop into its pipeline to identify vulnerabilities (CWEs)
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in generated code. The output of the security analyzers (number
of CWEs) drives prompt optimization via a gGAN, which in turn
influences the LLM to generate more secure code. This iterative
approach, where the output of the verification tools informs
the LLM through prompt optimization, creates a more robust
verification framework for generating secure code.

Automated validation is another critical strategy to ensure the
high quality and security of LLM-generated artifacts. SA tools, such
as CodeQL, are employed to automatically validate LLM-generated
code and proposed fixes. Their role is to ensure functional
correctness by identifying common programming errors, enforce
coding standards, and, crucially, prevent the introduction of new
security vulnerabilities or regressions in the codebase. Pearce et al.
(2023) uses CodeQL to evaluate generated code for functional
correctness and security vulnerabilities. This integration allows for
automated validation of generated fixes, demonstrating how SA
tools can improve robustness in code generation workflows. Formal
verification tools, including ESBMC and Dafny, are utilized to
rigorously check LLM-generated code and formal specifications.
The aim here is to ensure that these outputs are satisfiable (i.e.,
not inherently contradictory), adequate (i.e., sufficiently capture
the intended properties), and free from logical inconsistencies.
Tihanyi et al. (2025) discusses integrating LLMs with formal
verification tools like ESBMC for vulnerability detection. The
approach does not explicitly integrates LLMs with SA tools,
but ESBMC was used to classify vulnerabilities in generated
code, proving that combining LLM-generated code with formal
verification tools can enhance robustness by identifying potential
issues systematically. Misu et al. (2024) demonstrates that LLMs
can complement formal verification tools like Dafny by generating
both method implementations and specifications (pre-conditions,
post-conditions, and loop invariants). When LLMs generate code,
formal verification tools can provide feedback on whether the code
meets the specifications. This iterative process helps refine the
generated solutions and ensures correctness.

5.2.1 Discussion

Recent work reveals a clear trend toward integrating LLMs
with automated security analysis and formal verification tools in
iterative feedback loops, aiming to progressively enhance code
quality and security. These approaches, ranging from vulnerability-
driven refinement with Bandit or CodeQL to prompt optimization
pipelines like PromSec, demonstrate promising gains in robustness.
However, there is a notable divergence in focus: some studies
emphasize static analysis for vulnerability detection and repair,
while others explore formal verification for logical soundness,
with limited methodological integration between the two. This
separation highlights a gap in unified frameworks that combine
both functional correctness and security guarantees in a single
iterative process. Moreover, most current methods rely on tool-
specific feedback, raising questions about generalizability across
domains and programming languages. Future research should
explore hybrid pipelines that integrate static analysis, formal
verification, and adaptive prompting in a cohesive loop, supported
by standardized benchmarks to evaluate both security resilience
and specification compliance.

Frontiersin Computer Science

10.3389/fcomp.2025.1655469

5.3 RQ6: Common vulnerabilities
introduced by LLMs

Of the 50 analyzed papers, only 8 show insight into this research
question, i.e., 16% of the database.

LLMs, while powerful code generators, frequently introduce
a range of vulnerabilities into the code they produce. These
weaknesses often mirror those found in human-written code,
stemming from the patterns and practices learned from their
training data. LLMs commonly generate code containing the
following types of vulnerabilities:

e Injection-related issues: these are pervasive and include
critical flaws like OS command injection (CWE-78), as noted
by Gong et al. (2024); and frequently reported SQL Injection
(CWE-89), e.g., by Alrashedy et al. (2023), Pearce et al. (2023),
and Nazzal et al. (2024). These vulnerabilities arise when
user-supplied data is directly incorporated into commands
or queries without proper sanitization, allowing attackers to
execute arbitrary code or manipulate databases.

e Input validation issues: as shown by Alrashedy et al. (2023),
Gong et al. (2024), and Liu et al. (2024c) LLMs often
neglect robust input validation, leading to vulnerabilities
such as improper input validation (CWE-20), path traversal
(CWE-22), and unrestricted upload of file with dangerous
type (CWE-434). These allow attackers to bypass security
controls by manipulating input to access unauthorized files or
resources.

e Hard-coded credentials: a recurring security flaw (Alrashedy
et al, 2023; Nazzal et al., 2024) is the use of hard-
coded password (CWE-259), where sensitive authentication
information is embedded directly into the code, making it
easily discoverable and exploitable.

e Resource management issues: in addition, Alrashedy et al.
(2023) and Liu et al. (2024¢) observed that LLMs can generate
code that leads to uncontrolled resource consumption
(CWE-400), potentially enabling denial-of-service attacks by
exhausting system resources.

e Memory and pointer errors: particularly prevalent in
languages like C/C++, LLMs can introduce dangerous
memory and pointer errors. These include dereference

(e.g, NULL pointer

buffer overflows (e.g., PotentialBufferOverflow), arithmetic

failures issues/MissingNullTest),
overflows, array bounds violations, and other unsafe memory
operations. As a matter of fact, Tihanyi et al. (2025) and Liu
et al. (2024c) found a prevalence of CWE-416, and CWE-476.
Liu et al. (2024c) also spotted CWE-787, CWE-125 and
CWE-119. Such errors can lead to crashes, data corruption, or
arbitrary code execution.

e Other common weaknesses: in Gong et al. (2024), it was
pointed out that the generated code may also exhibit
vulnerabilities like improper restriction of XML external entity
reference (CWE-611), open redirect (CWE-601), and cross-
site scripting (XSS) (CWE-725), which can compromise user
data and application integrity.

Beyond these categories, LLMs also commonly introduce
vulnerabilities related to the use of unsafe library functions and a
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general lack of robust credentials protection mechanisms within the
generated code (Tihanyi et al., 2025; Gong et al., 2024).

Moreover, Misu et al. (2024) identify two main types of issues
in unverified methods generated by LLMs, namely compilation
errors and verification failures. The former refers to syntax errors
or references to unknown types or functions not defined in Dafny’s
standard library. Verification failures refers to incorrect or weak
specifications (e.g., post-conditions) or incorrect implementations
that fail to meet specifications.

Interestingly, He and Vechev (2023) observed that the types
of vulnerabilities introduced by LLMs are largely similar to those
frequently found in human-generated code. This commonality
suggests that LLMs, by learning from vast code corpora, internalize
not only secure patterns but also insecure ones. For instance,
LLM-generated runtime errors, such as overflows in static
languages, align perfectly with common mistakes made by human
developers. This similarity is often attributed to the replication
of insecure coding practices prevalent in the massive open-source
datasets on which LLMs are trained. Essentially, if a common
vulnerability pattern exists in the training data, the LLM is likely to
reproduce it. In fact, Liu et al. (2024c¢) reports that runtime errors
in code generated in static languages (C, C++, Java) are mainly
overflows, while in dynamic languages (Python3, JavaScript), type
errors predominate, similar to human errors.

5.3.1 Discussion

The literature consistently shows that LLM-generated code is
prone to a wide spectrum of vulnerabilities, ranging from injection
flaws and weak input validation to hard-coded credentials, unsafe
memory operations, and resource mismanagement, mirroring
many of the same weaknesses found in human-written code. This
parallel suggests a clear trend: LLMs inherit both secure and
insecure coding patterns from their training data. Future work
should focus on developing integrated frameworks that combine
vulnerability detection, formal verification, and secure-by-design
prompting, alongside curated training datasets that actively filter
insecure patterns to reduce the replication of systemic weaknesses.

6 Cross-cutting aspects

6.1 RQ8: Open-source reliance in
LLM-based software verification

Of the 50 analyzed papers, 49 released reproducibility packages,
with the only exception of Wen et al. (2024b). All 50 use open-
source datasets and benchmarks, but 10 use proprietary models.

Overall, there is a high reliance on open-source components,
including datasets, benchmarks, tools, and some LLMs, as also
shown in Appendix Figure 5, even though a recurring theme is the
use of proprietary LLMs like GPT-3.5 and GPT-4.

To further analyze this aspect, we studied the available datasets
that are used or mentioned in the papers we analyzed, and we
show the results in Table 4, which highlights how open source
benchmarks are a key component in this field.
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6.1.1 Discussion

Open-source code, datasets, and benchmarks are widely used
in LLM research for software verification, with 49 out of 50
reviewed papers releasing reproducibility packages and all using
open-source datasets or benchmarks. While some studies rely on
proprietary models like GPT-3.5 or GPT-4, open-source LLMs (e.g.,
CodeBERT, CodeT5, LLaMA) are frequently adopted as baselines,
supporting transparency and reproducibility. Public datasets are
central to this field, though specialized tasks may still require
more tailored datasets. However, while the wide variety of datasets
and benchmarks can be advantageous, the proliferation of custom
datasets risks undermining the ability to evaluate and compare
approaches within a unified framework. In particular, existing open
datasets and benchmarks vary considerably in their vulnerability
taxonomies (whether based on CWEs, alternative schemes, or
undisclosed classifications), level of granularity, and programming
language coverage. Future research directions should address
the generalization and standardization of these benchmarks to
guarantee comprehensive reproducibility.

6.2 D1: Code security awareness with LLMs

Of the 50 analyzed papers, only 5 show insight into this research
question, i.e., 10% of the database.

The most relevant proposal for this question is AIBugHunter by
Fu et al. (2024b), which shows that LLMs can classify vulnerability
types (CWE-ID and CWE-Type) and estimate their severity,
providing developers with a clearer understanding of security
breaches. Moreover, it is able to integrate real-time security alerts
during coding, helping developers immediately identify potential
vulnerabilities as they write code. Another useful feature is to
explain suggested repairs and safe alternatives: VulRepair (Fu
et al,, 2022), integrated into AIBugHunter, suggests repair patches.
Similarly, DLAP (Yang et al., 2025) and MSIVD, proposed in
Yang et al. (2024), can educate developers on how to repair code,
providing the underlying causes for its detection results, thus
making vulnerabilities and their implications more comprehensible
to developers. Ding et al. (2024) suggest exploring ways to teach
code LLMs about security concepts inspired by how human
developers learn secure coding practices. For example, pre-
training methods focused on security awareness or hybrid systems
combining LLMs with traditional program analysis tools could be
promising directions.

6.3 D2: Ethical considerations and
potential risks

Of the 50 analyzed papers, 19 show insight into this research
question, i.e., 38% of the database.

The integration of LLMs into security workflows introduces a
critical set of ethical considerations and potential risks that warrant
careful attention. However, these topics are not broadly discussed
in all the examined works.

The most relevant discussions about potential risks could
be found in Tihanyi et al. (2025) and Fu et al. (2024a), where
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TABLE 4 Vulnerability datasets overview.

10.3389/fcomp.2025.1655469

Name Year Vulnerabilities Granularity Language

Big-Vul 2020 91 CWE types Function level C/C++

CodeXGLUE (Devign) 2021 Memory leaks, buffer overflows, memory Function level C/C++
corruption, crashes

CPATMiner 2019 / Function level Java

Cross-project Vulnerability Patch 2023 More than 100 different CWE Function level Java

Dataset (CVPD)

CrossVul 2021 168 CWEs File level More than 40 languages

CVEFixes 2021 272 CWEs File and function level 27 programming

languages

CWE-Bench-Java 2024 120 CVEs spanning 4 CWEs Repository Java

D2A 2021 Infer warnings (buffer overflow, integer overflow, Function level C/C++
memory leak, etc.)

Defects4] 2014 854 real bugs Method level Java

Devign 2019 ~23k vulnerabilities, mostly memory-related Function level C/C++

DiverseVul 2023 150 CWE Function level C/C++

Draper 2018 149 CWE (Buffer Overflow, NULL Ptr Deref.) Function level C/C++

EvalPlus 2023 Not disclosed Function level Python

ExploitDB 2022 Not disclosed Unspecified Multi-language

FormAI-v2 dataset 2023 41 unique CWEs Single file C/C++

GitHub Advisory Database 2022 CVE/CWE-mapped advisories Repository Multi-language

Juliet C/C++ Test Suite 2017 118 CWEs Single file C/C++

LLMSecEval 2023 18 of Top 25 CWE scenarios Single file Multi-language

MBPP 2021 Not disclosed Function level Python

MBPP-san-DFY 2024 Not disclosed Function level Python

National Vulnerability Database (NVD) 2005 >250k CWE vulnerabilities Different level Multi-language

OOPSLA-13 2013 Not disclosed Function level C

PreciseBugs 2023 Many CWEs, CVEs, OOB read/write Project level Multi-language

PRIMEVUL 2024 140 CWEs Function level C/C++

RealVul 2024 Many CWE:s (e.g., CWE-495, 256, 94, 20) Function level C++

Recoder 2023 Not disclosed Function level Java

Reveal 2020 Not disclosed Function level C/C++

SARD 2018 Over 150 classes of weaknesses File level Multi-language

SATE IV Juliet 2013 Many CVEs, not exactly disclosed File level Multi-language

SecBench.js 2023 12 CVEs File level JavaScript

SecurityEval 2022 75 CWEs Function level Python

Semantics-based Vulnerability 2021 126 CWEs Function level C/C++

Candidate (SeVC) dataset

SequenceR 2021 Not disclosed Line level Java

SmartBugs 2021 208 vulnerabilities Contract level Solidity

SolidiFI benchmark 2020 7 different bug types Smart contract Solidity

SV-COMP 2021 Not disclosed File level C

SVEN 2023 9 CWEs Function level Python, C/C++

SVulD 2023 Not disclosed Function level C/C++
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TABLE 4 (Continued)

10.3389/fcomp.2025.1655469

Name Year Vulnerabilities Granularity Language

TaintBench Suite 2022 CWESs, not fully disclosed File level Android

TFix 2021 Not disclosed File level JavaScript

VJBench 2023 42 vulnerabilities, 23 CWE types File level Java

Vul4] 2022 25 CWE types File level Java

Vuldeepecker 2018 2CWE Snippet of code C/C++

VulnPatchPairs 2024 Not disclosed Function level C

VulRepair 2022 >25 types of CWEs Function level 8 Programming
Languages

authors warn against deploying LLM-generated code directly into
production environments without human oversight, due to its high
vulnerability rates. In particular, Fu et al. (2024a) discusses potential
risks through a user study with software practitioners regarding
Al-generated vulnerability repairs. Participants highlighted that AT
algorithms, while suggesting fixes, “may not always produce the
most effective or secure solutions” and emphasize that “human
expertise is still necessary to validate and test the proposed
repairs, ensuring that they do not introduce new vulnerabilities
or have unintended consequences.” The suggestion is to integrate
AT repair systems in a broader security strategy that includes
human expertise. The paper (Fu et al, 2024a) also identifies
threats to external validity, noting that the Vulnerability Repair
Through Vulnerability Query and Mask (VQM) approach might
not generalize to other vulnerabilities, projects, or programming
languages outside of the studied dataset, indicating a risk of
limited applicability in diverse real-world scenarios. Moreover,
Tihanyi et al. (2025) further observes that, when relying on code
generated by LLMs, there is a risk of replicating insecure coding
patterns, which can foster a false sense of security while potentially
allowing code completion to silently inject security bugs into
the software.

The authors of PromSec (Nazzal et al., 2024) warn about
risks such as inherent vulnerabilities in LLM-generated code due
to insecure training data from open-source repositories. They
emphasize the need for caution when relying on these outputs
without verification or optimization processes. This perspective is
also supported by Alrashedy et al. (2023) and Liu P. et al. (2024),
which briefly conclude that LLMs do not produce code that is free
from vulnerabilities, and there are also difficulties in ensuring the
correctness of generated snippets. Also, Pearce et al. (2023) briefly
mentions risks such as alignment failure, where generated outputs
may not align with user intentions, potentially introducing new
vulnerabilities or incorrect fixes.

Wang et al. (2024) findings indicate that using LLMs for code-
reasoning tasks can entail specific risks, including potential source
code leakage within private organizations and the possibility of
incurring substantial token-related expenses.

In vulnerability detection, Ullah et al. (2024) highlights risks
such as high FPR and incorrect reasoning leading to wasted
developer time and potential security misjudgments if deployed
prematurely. Ding et al. (2024) found that existing benchmarks
significantly overestimate the performance of code LMs for
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vulnerability detection, which can lead to a false sense of security
among developers.

In datasets, DiverseVul (Chen et al., 2023) warn about label
noise that can introduce inaccuracies into model evaluation metrics
and potentially mislead developers or security analysts relying
on these models for vulnerability detection tasks. The authors
highlight the need for deeper investigation into label accuracy issues
to mitigate these risks.

He and Vechev (2023) observes that an attacker could use
their proposed SVEN, and the adversarial testing of SVEN_vul, to
intentionally degrade an LLM’s security performance by guiding it
to generate insecure code. On the topic of security attacks, Nazzal
et al. (2024), Liu et al. (2024a), and Chen et al. (2025) also noted
that LLMs can be used for both defensive (security hardening) and
offensive (vulnerability creation) purposes.

Chen et al. (2025) highlight risks such as false positives
caused by biases (e.g., Protected Mechanism Bias and Development
Intent Bias) and susceptibility to attacks like code poisoning
or obfuscation attacks that can exploit ChatGPT’s limitations.
These issues could lead to overlooking real vulnerabilities or
misidentifying secure code as flawed. The problem of biases in data
was also discussed in Yu et al. (2024).

Regarding ethical considerations, a common remark is the
inherent lack of interpretability of these models, due to their black-
box nature (Endres et al., 2024; Pearce et al., 2023; Yang et al., 2025;
Fu et al,, 2024a). As a consequence, future deprecations of models
could undermine the reproducibility of experiments, as discussed
by Wen et al. (2024a) about their proposed LLM4SA, and by Endres
et al. (2024). Similar warnings come from authors of GRACE (Lu
et al., 2024). To this extent, Hanif and Maffeis (2022) emphasizes
the need for explainability techniques to address false positives
when applied to real-world projects.

7 Conclusions

LLMs have rapidly transformed the landscape of software
verification and secure code generation, offering both substantial
opportunities and notable challenges. This review mapped the dual
role of LLMs: as tools for code verification (LLM4Verification) and
as generators of code requiring verification (Verification4LLM),
analyzing 50 high-quality, recent studies in the field.
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TABLE 5 Summary of answers for each research question.

10.3389/fcomp.2025.1655469

RQ1 Scientific literature is divided on this question, recognizing the high potential of LLMs in software verification, especially compared to previous ML or DL

approaches, but also pointing out critical weaknesses (such as high FPR), from which even big models, considered state-of-the-art, like OpenAI models are not
exempt. However, careful training, integration with other tools, and system design produced robust and powerful LLM-based frameworks.

RQ2 Main techniques for program verification with LLMs include fine-tuning, prompt engineering, integration with SA tools giving external feedback, RAG, and agentic

frameworks are promising approaches, but not yet fully explored.

frameworks. Fine-tuning is overall the most effective, especially in combination with SA tools, but also the most costly, and it may suffer from catastrophic
forgetting. External feedback, tool integration, and RAG offer valid alternatives that could be leveraged to make more useful prompts (e.g., ICL), and combined with
prompt engineering techniques, proved to be effective. However, prompt engineering remains limited and less controllable compared to fine-tuning. Agentic

RQ3 | Multiple strategies show promise for enhancing LLM security in code generation, including prompt engineering, tool integration with static analyzers and formal

verification, iterative refinement processes, and model-specific hardening techniques. These approaches can achieve significant improvements. However,
fundamental limitations persist: LLMs inherently generate insecure code at unacceptable rates, prompt engineering alone is insufficient, and complex vulnerabilities
remain challenging. Success requires careful integration of multiple techniques rather than relying on any single approach.

RQ4 | LLM-security tool integration employs diverse strategies, including feedback loops with static analyzers, LLM-generated inputs for formal verification,

scalability and accuracy challenges inherent in standalone approaches.

post-processing of tool outputs, direct tool invocation by agents, and hybrid frameworks combining multiple data sources. These integrations demonstrate
significant effectiveness: vulnerability refinement improvements. The synergistic approach overcomes individual tool limitations by leveraging LLMs’ semantic
understanding alongside formal tools logical reasoning, creating robust hybrid systems enhance both detection capabilities and code quality while addressing

RQ5 | Integrating LLMs with static analyzers and formal verification tools enables more robust code generation by combining LLMs’ generative strengths with the

precision of automated analysis. Two main approaches are iterative feedback loops—where LLM-generated code is repeatedly checked and refined using tools like
Bandit, CodeQL, and formal verifiers—and automated validations. These approaches are reported to improve the validity and security of generated code.

RQ6 | LLMs frequently introduce vulnerabilities such as injection flaws (e.g., SQL and OS command injection), improper input validation, hard-coded credentials,

resource management issues, and memory errors—mirroring the most common weaknesses in human-written code. These issues arise because LLMs learn from
large code corpora that include insecure patterns, so the vulnerabilities they generate largely reflect those found in their training data.

RQ7 | LLMs are highly effective at repairing code vulnerabilities, often outperforming traditional and earlier learning-based techniques, especially when combined with

iterative feedback from static analyzers or enhanced with retrieval-augmented and knowledge-based methods. However, they still struggle with complex or rare
vulnerabilities, may introduce new bugs, and their reliability depends on task complexity, training data quality, and integration with external tools. Overall,
LLM-based repair is a major advance but not yet a complete replacement for traditional approaches or human oversight.

RQ8 | Overall, there is a strong reliance on open-source resources, which enhances scientific rigor and enables broader community participation in LLM-driven software

security research. However, issues regarding generalization and standardization still pose significant challenges, constraining the comparability of findings, limit
both the reproducibility and the development of unified benchmarking methodologies.

D1 Some LLM-based frameworks show promising potential to enhance the security development process by combining detailed vulnerability explanations, real-time

unexplored in literature about LLMs and secure coding.

contextual alerts, comprehensive repair guidance, cause-effect comprehension, and improved code review efficiency. However, these capabilities are yet largely

D2 The integration of LLMs into security workflows presents significant ethical considerations and practical risks that require careful management. Key ethical

We formulated eight research questions to guide our analysis.
Table 5 presents detailed responses that also serve as a summary of
the key insights and findings.

LLMs demonstrate strong potential in vulnerability detection,
often surpassing traditional machine learning and static analysis
tools when carefully fine-tuned or integrated with external
analyzers. However, high false positive rates, limited robustness in
complex scenarios, and a dependency on high-quality, balanced
datasets remain persistent issues. Prompt engineering, retrieval-
augmented generation, and agentic frameworks have emerged as
effective strategies to enhance LLM performance, but each brings
its own set of trade-offs in terms of scalability, generalizability,
and resource requirements. Recent developments show a shift
toward hybrid pipelines that combine LLMs with static analysis and
domain-specific heuristics, aiming to mitigate these limitations and
improve reliability. Yet, the lack of standardized benchmarks and
evaluation protocols continues to hinder meaningful comparison
across approaches.

Hybrid systems that combine LLMs with static analyzers,
formal verification tools, and iterative feedback loops have
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imperatives include maintaining human oversight and ensuring explainability and transparency. Critical risks encompass the introduction of new vulnerabilities,
over-reliance leading to false security confidence, reproducibility challenges, data leakage concerns, performance gaps with high false-positive rates, potential
adversarial exploitation, and limited generalizability across diverse contexts. Success requires balancing Al capabilities with human expertise, robust validation
processes, and comprehensive risk mitigation strategies rather than blind adoption of LLM technologies.

proven especially effective. These integrations not only improve
detection and repair rates but also help mitigate some inherent
weaknesses of LLMs, such as their tendency to introduce
common vulnerabilities—including injection flaws, improper input
validation, and memory errors—mirroring those found in human-
written code.

In program repair, LLM-based approaches have achieved
impressive results, particularly when guided by vulnerability-
specific information and validated through multi-round feedback.
Nonetheless, challenges persist in handling complex or rare
vulnerabilities, ensuring functional correctness, and preventing
the introduction of new bugs. Their effective integration into
practical workflows requires the development of comprehensive
and systematic frameworks that incorporate complementary
methodologies, such as static analysis, prompt engineering, and
symbolic reasoning, in order to fully exploit their capabilities.

The field is characterized by a strong reliance on open-
source datasets, benchmarks, and, increasingly, open-source
LLMs, which have fostered transparency and reproducibility. Yet,
the use of proprietary models and the limitations of current
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benchmarks highlight the need for continued development of
robust, representative evaluation frameworks.

Finally, ethical considerations and practical risks—such as
over-reliance on automated tools, lack of explainability, and the
propagation of insecure coding patterns—underscore the necessity
of maintaining human oversight and comprehensive validation
processes. Although the diversity of datasets and benchmarks
can foster innovation, the widespread use of custom resources
poses a challenge to consistent evaluation across approaches.
To advance the field, future research should prioritize the
generalization and standardization of vulnerability benchmarks,
ensuring reproducibility and enabling meaningful comparison
within unified frameworks.

In summary, while LLMs are reshaping software verification
and secure code generation, realizing their full potential will
require ongoing advances in model robustness, hybrid verification
frameworks, dataset quality, and ethical deployment practices.
Collaboration between Al researchers, software engineers, and the
broader security community remains essential to ensure that these
powerful tools contribute to the development of secure, reliable
software systems.
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