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Introduction: The integration of deep learning models into Network Intrusion
Detection Systems (NIDS) has shown promising advancements in distinguishing
normal network traffic from cyber-attacks due to their capability to learn
complex non-linear patterns. These approaches typically rely on both benign
and malicious network traffic during training. However, in many organizations,
collecting malicious traffic is challenging due to privacy restrictions, high costs
of manual labeling, and requirement for advanced security expertise.

Methods: In this study, we introduce a deep one-class classification model
that is trained exclusively on flow-based benign network traffic data, with the
goal of identifying attacks during inference. The proposed anomaly detection
model consists of two steps, a One-Class Support Vector Machine (OC-SVM)
and a deep AutoEncoder (AE). While autoencoders have shown great potential in
anomaly detection, their effectiveness can be undermined by spurious network
activity located on the boundaries of their discriminating capabilities, thus failing
to identify malicious behavior. Our model leverages the topological structure
of the OC-SVM to generate decision scores for each traffic flow, which are
subsequently incorporated into an autoencoder as part of the input feature
space.

Results: This approach enhances the ability of the autoencoder to detect
incidents that deviate from normal patterns. Furthermore, we propose a heuristic
method for tuning the trade-off parameter of the OC-SVM, based only on
one-class data, achieving comparable performance to grid-based methods
that require both benign and malicious labeled data. Experimental results on a
benchmark network intrusion data set, the UNSW-NB15, suggest that OCSVM-
AE performs well on unseen attacks and is more effective than traditional and
deep-learning based one-class classifiers.

Discussion: The method makes no specific assumptions about the data
distribution, making it broadly applicable and suitable as a complementary tool
to signature-based intrusion detection systems.

KEYWORDS

anomaly detection, autoencoders, network intrusion detection, one-class support
vector machine, one-class classification, semi-supervised learning

1 Introduction

Network Intrusion Detection Systems (NIDS) play a crucial role in the defense strategy
of modern cybersecurity infrastructure, tasked with the identification of malicious traffic
at the edge of a network. This protective layer ensures the security of network-connected
devices, such as personal computers, mobile units, and server infrastructures, against
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unauthorized intrusions and security breaches (Tidjon et al,
2019). Signature-based NIDS have been widely adopted for their
superior effectiveness in identifying threats when compared to
other network security methodologies. These systems operate by
comparing network traffic against a database of known attack
signatures, which are indicative of malicious activity.

As networks grow more complex and interconnected,
particularly with the rise of the Internet of Things (IoT), traditional
signature-based NIDS approaches often struggle with high false
positive rates and poor generalization to novel attacks (Thakkar
and Lohiya, 2022). In addition, obtaining labeled anomalous data
becomes a major challenge due to several factors, including data
sensitivity, the need for expert annotation, and high labeling costs
(Nicolau et al., 2018). Network administrators often avoid sharing
intrusion-related data, as it may expose system vulnerabilities
or compromise user privacy. At the same time, the increased
volume of network data, especially in IoT environments, along
with the surge of sophisticated cyber threats make it extremely
difficult to reliably detect, extract, and annotate malicious activity.
This process demands significant time, domain expertise, and
computational resources, which are often limited in real-world
networks. To address these challenges, recent research increasingly
turns to anomaly detection methods, which offer promising
capabilities in identifying previously unseen threats without
relying on extensive labeled anomalous data. Anomaly-based NIDS
aim to effectively learn the patterns of normal (benign) network
traffic and classify as an anomaly (malicious activity) any behavior
that deviates from this distribution, independently of its type
(Ahmed et al,, 2016). This is based on the assumption that patterns
of previously unknown malicious activity are more similar to past
attacks than to normal incidents. This type of intrusion detection
systems is a common case in deployed network environments
where often only labeled normal activity is available for training
a model.

Anomaly detection approaches that are based solely on labeled
instances from normal activity during the learning process,
operate in a semi-supervised mode and are known as one-class
classification techniques (Chandola et al., 2009). A model, called
classifier, learns from a set of normal labeled data instances
(training phase) and then, classifies a test instance as benign or
malicious (testing phase). The main assumption is that the model
can learn to distinguish between benign and malicious activity
based on the feature space of the normal training data set. An
advantage of the one-class classifiers is that they can be easily
trained on any environment, without the need of a security expert
collecting and labeling both benign and malicious network traffic
or relying on a benchmark data set for training the model.

A surge of machine learning (ML) and deep learning (DL)
techniques has emerged in recent years within the scope of
anomaly detection, to enhance the effectiveness of NIDS (Ahmad
et al., 2021). One well-suited model for this type of anomaly
detection problem is the class of Autoencoders (AEs) (Rumelhart
et al, 1985), a neural network used for handling non-linear,
high-dimensional data sets. Its architecture consists of two parts:
an encoder that refines the input data into a lower-dimensional
latent representation and a decoder that attempts to reconstruct
the original input from this compressed form. This latent space,
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known as the bottleneck layer, forces the AE to map the
characteristics of the input data into a lower-dimensional space.
When applied to the one-class classification setting, AEs are trained
exclusively on normal data, learning to minimize reconstruction
errors for instances similar to their training set. Consequently,
in the testing phase anomalies are identified through significantly
higher reconstruction errors, as these samples deviate from the
distribution of the normal training data. In this type of networks,
we assume that similar input patterns can be mapped to similar
output ones, making the reconstruction error a reliable metric for
spotting outliers.

However, the assumption that anomalies produce higher
reconstruction errors might not always hold true. In particular,
Gong et al. (2019) observed that some anomalies might share
similar patterns with normal training incidents—a common
scenario when anomalies correspond to malicious activity, which
by design often mimics normal behavior—thus leading to small
reconstruction errors when they are given as input to an AE.
Another issue is that AEs could generalize so “well” that anomaly
inputs will be mapped to latent representations similar to the
normal ones, resulting to small reconstruction errors as well (Zong
etal., 2018).

One-Class Support Vector Machine (OC-SVM) represents
another widely used one-class classification method for anomaly
detection (Scholkopf et al., 2001). OC-SVM main objective during
the training phase is to find a half-space, that encloses most of the
normal incidents under the constraint of maximum distance from
an origin point. During the testing phase if a data point falls within
this half-space it is classified as normal, otherwise it is considered
an anomaly. Along with the label, the model outputs a decision
value, i.e, the distance of the testing incident from the boundary
of the half-space.

A challenge during the optimization of the OC-SVM is the
selection of the hyper-parameter, n,, that controls the trade-
off between the proportion of data points that are allowed to
be on the negative (anomalies) and positive (normal incidents)
side of the fitted hyperplane, respectively. Although, we assume
a training set that consists of normal activity, outliers or missed
malicious incidents might exist, thus the choice of the trade-off
parameter is crucial (Wang et al.,, 2018). Commonly used fine-
tuning approaches for choosing this hyper-parameter, such as
grid-space methods require information of both labels, essentially
rendering it a supervised approach. Furthermore, the default
value provided by standard software packages, like scikit-learn
(Pedregosa et al., 2011), is not tailored to the specific data set
characteristics, potentially leading to sub-optimal performance.
As a result, hyper-parameter selection of OC-SVM remains a
challenging open problem and many attempts have been made to
tackle this problem, which will be reviewed in

For this reason, we propose a heuristic method that exploits
the inherent characteristics of the one-label data set (normal
incidents) instead of relying on information from both classes,
making it particularly suited for real-world tasks. We introduce
an index that indicates the optimal trade-off parameter based
on the assumption that an effective separation of the outliers
(e.g., missed anomalies merged with normal incidents) from high-
density areas within the normal labeled data during the training
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phase, is crucial for enhancing the model’s ability to distinguish
between normal and anomalous incidents in the testing phase. We
validated this hypothesis on a benchmark data set, demonstrating
that our approach yields metrics that are comparable with those
obtained by supervised grid-search methods. The results reveal the
significant gain of our tuning strategy over default configurations,
illustrating the potential of the approach as a hyper-parameter
tuning strategy in OC-SVMs.

In this work, we propose a two-step deep classifier for anomaly-
based network intrusion detection, within a learning framework
where the training and optimization of the model is performed
solely on benign network traffic. The first stage of the proposed two-
tier framework, involves the OC-SVM, whose output, the decision
values, are subsequently fed into an AE as part of the input feature
space (second-stage). The decision values can be interpreted as a
measure of similarity/dissimilarity relative to the learned normal
patterns of the OC-SVM, thus providing additional information
that enhances the discriminating capabilities of the AE.

The main contributions of our work can be summarized
as follows:

e We propose a two-step deep classifier for network anomaly
detection that augments the performance of AE by taking
into account the topological properties of the OC-SVM. The
additional information that is incorporated to the feature
space enhances the detection capabilities of the AE.

e We propose a semi-supervised heuristic method to tune the
trade-oftf parameter of OC-SVM. In this way, the proposed
model can be optimized in the setting where only normal data
is available during training and validation.

e We evaluate the proposed approach on a subset of the
benchmark network data set UNSW-NB15v2 (Sarhan et al.,
2022). We show that a power-law relation exists between
data set size and performance (generalization error), which
allows us to compare models using smaller training sets,
as performance is expected to scale proportionally across
different models.

e We conduct a performance comparison between the
proposed model, OCSVM-AE, and traditional as well as deep
anomaly detection models. Our method performs well on
detecting malicious activity and is more effective that the
competing baselines.

This paper is organized as follows. In Section 2, we present
some key related works of one-class classification approaches for
NIDS, whereas in Section 3 we introduce the proposed OCSVM-
AE method along with the new heuristic approach for OC-SVM
parameter tuning. The data set information and the results on the
performance of our method are presented in Section 4. Finally,
discussion and concluding remarks are provided in Sections 5 and
6, respectively.

2 Related work

One of the major challenges in designing effective NIDS
is the limited availability of labeled anomalous data. This
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scarcity makes it difficult to train traditional supervised models,
especially for identifying novel or evolving threats. To address
this, anomaly detection approaches that leverage semi-supervised
learning have become increasingly prominent. These methods
rely solely on normal data during the training phase and aim
to identify deviations from learned normal behavior at testing
phase. Representative approaches in this category include OC-SVM
(Zhang et al., 2015), Local Outlier Factor (LOF), and Isolation
Forest (IF) (Zhang et al., 2017).

state-of-the-art NIDS
incorporated deep learning models such as AEs. Kitsune (Mirsky

Several approaches have also
et al., 2018) employs an ensemble of AEs for online intrusion
detection, offering real-time protection without the need for
manual supervision. Meidan et al. (2018) applied deep AEs to
detect IoT botnets attacks, evaluating their performance on
real network traffic data, originating from nine IoT devices
infected by authentic botnets. This paper focuses on a network
intrusion detection system designed to spot Distributed Denial of
Service (DDoS) attacks in industrial control systems using deep
autoencoders. Ortega-Fernandez et al. (2024) focused on a network
intrusion detection system aimed at detecting DDoS attacks in
industrial control systems using deep AEs. Their AE was trained
on network flow-based traffic and tested primarily against DDoS
attacks. The model demonstrated low false positive rates and near
real-time performance.

Zavrak and Iskefiyeli (2020) proposed a similar strategy
using Variational Autoencoders (VAE) to detect anomalies in
the CICIDS2017 flow-based data set. Their findings suggest
that VAE outperform both AE and OC-SVM in most cases.
However, their study lacks a systematic optimization procedure.
OC-SVM was evaluated using default parameters, and a fixed
network architecture was adopted, limiting insights into the models
full potential.

Many studies have introduced hybrid methods to combine
AEs with an additional layer. Mhamdi et al. (2020) firstly trained
an AE to represent the patterns of normal traffic obtained
from the CICIDS2017 NIDS data set and subsequently fed the
compressed data that is extracted from the bottleneck layer as
an additional feature to the OC-SVM. However, the evaluation
lacks diversity in attack types, and it is unclear whether the
optimization was conducted in a semi-supervised setting. Gong
et al. (2019) introduced the concept of memory-augmented
autoencoder, MemAE, to improve anomaly detection by learning
prototypical elements of normal data, based on the observation
that many anomaly inputs might be reconstructed well from
the autoencoder, due to similar feature patterns. During the
reconstruction process, the memory module retrieves the most
relevant memory items based on the input query generated by
the encoder. This retrieval mechanism allows MemAE to access
important information stored in memory for reconstruction (Zong
et al, 2018). A deep one-class learning technique known as
Deep Support Vector Data Description (Ruff et al., 2018) is used
by Sarhan et al. (2023) to map input features to an enhanced
low-dimensional embedding, which is subsequently used by a
Histogram-Based Outlier Score for anomaly detection. Their model
is evaluated on two flow-based NIDS data sets, the NF-UNSW-
NB15-v2 and NF-CSE-CIC-IDS2018-v2.
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TABLE 1 Prior studies conducted on the detection of flow-based malicious activity using one-class classification methods.

Meidan et al. (2018) Autoencoders Real traffic data from 9 Effective for botnet attacks launched by compromised IoT device (+) Lack of testing
commercial IoT devices on other type of attacks and comparison with other deep models (-)
(IoT-based botnets)
Ortega-Fernandez et al. Autoencoders Modbus ICS dataset The AE-based NIDS effectively detects DoS attacks (4) Lack of testing on other type
(2024) (flow-based) of attacks and comparison with other deep models (-)
Zavrak and Iskefiyeli Variational AE CICIDS2017 (flow-based) VAE performs better than AE and OC-SVM (+) Lacks robust optimization procedure.
(2020) Default parameters of OC-SVM and fixed neural network architecture were used (-)
Mir et al. (2025) DynKDD: GNN NSL-KDD Captures correlations between network connections, well suited for detecting dynamic
network attacks (4) No explicitly specified whether the training is conducted with
benign data (-)
Mhamdi et al. (2020) Stack Autoencoder CICIDS2017 (flow-based) Effective for DDoS attacks (+) Lack of semi-supervised optimization and testing on
with OC-SVM different types of attack (-)
Our approach OCSVM-AE NF-UNSW-NB15v2 Robust semi-supervised optimization strategy (only benign traffic flows), broad
(flow-based) spectrum of attack types, potential for real-time NIDS, better performance against
traditional and state-of-the art baselines

Graph Neural Networks (GNNs) have emerged as powerful
tools for anomaly detection by modeling structures between the
data. A representative approach for semi-supervised anomaly
detection is LUNAR (Goodge et al., 2022). This work proposes
a framework which integrates classical local outlier detection
techniques, such as LOF and DBSCAN, with graph-based learning.
Data instances are represented as nodes within a graph, with
edges linking each node to its k-nearest neighbors. However,
determining an appropriate value for k becomes challenging in
high-dimensional spaces, where traditional distance metrics often
lose their discriminative power. Despite the growing use of GNNs
in anomaly detection tasks, their adoption within the anomaly-
based NIDS domain has been limited. DynKDD (Mir et al., 2025), is
arecent effort to incorporate a series of time-based graph snapshots
of the NSL-KDD dataset to capture how network behavior evolves
over time. However, DynKDD is inherently designed for sequential
data and temporal graph modeling, whereas our approach is
tailored to static flow-based features. Table I summarizes key
approaches in recent literature, highlighting the novelty of the
proposed OCSVM-AE method.

A major challenge for one-class classification approaches lies
in selecting appropriate hyper-parameter optimization strategies.
Although many studies are labeled as semi-supervised, they often
rely on labeled benign and malicious data for tuning, which limits
their generalizability in real-world scenarios where such labels are
typically unavailable. AEs, on one hand, can be fine-tuned by
evaluating their ability to reconstruct patterns of normal data on
a hold-out validation set, typically using metrics such as Mean
Squared Error (MSE). In contrast, hyper-parameter tuning for
OC-SVMs is less straightforward. For OC-SVMs, two key hyper-
parameters need to be be determined: (1) the kernel function K(),
which maps the input data to a higher-dimensional feature space
to handle non-linearity, and (2) the trade-off parameter n,, which
controls the fraction of training data to be included in the negative
side of the decision boundary (i.e., potential outliers).

Xiao et al. (2014) showed that when a Gaussian kernel is
adopted, the normalized distances from sample mappings to
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the OC-SVM hyper-plane effectively reflect the distance to the
enclosing surfaces. Thus, using the geometric locations of edge and
interior sample mappings in the feature space, they proposed a
measure that provided a suitable Gaussian kernel width.

For the trade-off parameter, 71, there are few heuristic strategies
available. Some studies set n, = 0 under the assumption that
all training data consists of normal incidents (Ruff et al., 2018);
however, this might not be an appropriate choice when the training
set contains noisy or mislabeled instances. Ratsch et al. (2002)
proposed a heuristic based on the assumption that outliers are
sufficiently distant from normal samples; therefore, by increasing
ny, we reach a point that maximizes the separation between normal
and rejected incidents. However, in case of no clear boundaries
between the samples, this proposed heuristic will give trivial
outputs, i.e., n, =0ormn, = 1.

An unsupervised heuristic method proposed by Ghafoori et al.
(2016) uses a variation of the elbow method to optimize both the
scaling parameter of the kernel function and #,,. The scaling factor
is increased until the occurrence of a break on the structure of
normal incidents, which is expressed through their k-neighbors
density. This break point is subsequently used to estimate #, and
divide the training samples into three groups: outliers, border, and
normal points.

In our work, we propose a simple tuning strategy to estimate r,,.
Specifically, we define an index based on the distribution of decision
scores that captures the alignment of high-density regions and
potential outliers. The optimal value of 1, is identified as the point
at which this alignment begins to break, revealing the boundary
between normal and anomalous behavior.

To summarize, contrary to previous studies, in our approach we
focus on enhancing the information incorporated into the feature
space though the use of an OC-SVM, rather than taking advantage
of the latent representations derived by the AEs. Additionally,
we provide a clear semi-supervised optimization strategy (use of
benign traffic flows during training and validation), and evaluate
the model on a broad spectrum of attack types against traditional
and state-of-the art baselines.
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3 Methodology

In this section, we introduce OCSVM-AE, a method for
network intrusion detection based on one-class classification.
We present the two-tier anomaly detection framework designed
to identify malicious activity in network environments. The
architecture of our approach integrates two main components: (1)
a OC-SVM which learns to enclose all the benign traffic flows
within a tight boundary producing decision scores that indicate
how confidently a sample belongs to the normal class. and (2) a
deep AE, which receives as input an augmented feature vector that
includes both the original feature space and the decision scores
produced by OC-SVM. This architecture is designed to leverage
the strengths of both models. Specifically, the OC-SVM is well-
suited for learning a compact representation of benign behavior
without requiring anomalous data. The extracted decision scores
are especially valuable when clear class boundaries are difficult to
establish from original features alone. Meanwhile, the AE is capable
of learning compressed representations of the input and detecting
deviations from normal patterns via reconstruction errors. Figure 1
illustrates the structure of the proposed system.

3.1 One-class support vector machine

OC-SVM can be considered an extension of the support vector
machine algorithm to the case of one-class classification. The

10.3389/fcomp.2025.1646679

goal is to find a decision function, f(x), which returns positive
values for samples, x, that lie within a target (normal) region and
negative values, elsewhere. In the context of a NIDS, positive values
correspond to benign activity, whereas negative values indicate
potential malicious behavior. This makes OC-SVM particularly
suitable for network intrusion detection settings, where training
data often consists almost exclusively of benign traffic, while
malicious incidents are rare, diverse, or even entirely unknown
during the training of the model.

The OC-SVM is a kernel-based binary classifier that maps
the non-linear high-dimensional data space, x € RY, through
a mapping function ®:x — F into a feature space F where
a hyperplane can separate the normal instances from outliers.
The objective of the OC-SVM during the training phase is to
maximize the margin between the hyperplane and the origin point
under the constraint that normal incidents lie in the positive
side. The solution to this problem is based on a quadratic
equation (Scholkopf et al., 2001) that maximizes the distance of
the hyperplane from the origin and is given through the following
optimization formula

1 1

min = [|w|* + — X/, & — p

w,0,E; nym

subject to (w, ®(x;)) = p — &, w
%-i >0,i=1,...,m,

\\\\\\\
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FIGURE 1

by the authors, inspired by the visualization in Gong et al. (2019).

A schematic diagram of the proposed anomaly detection framework. Original, x, and augmented, x,. feature vectors—appended with the decision

scores from the OC-SVM- are passed as inputs to the AE. The augmented feature vectors force the encodings (latent representation) either closer to
the normal latent space (light blue cloud) for a normal sample, x;, or further away for an anomaly, xJ.. This leads to a smaller reconstruction error for
the normal sample relative to the original feature vector (RE;. — RE~ < 0), and a higher one for the anomaly (RE}. — RE* > 0). The figure was created
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where w corresponds to the normal vector of the hyperplane, m is
the number of training samples, x;, and #,, is the trade-off hyper-
parameter of the model that determines the fraction of samples
that can be considered outliers (works as an upper-bound). The
selection of its value will be discussed later. The &; are non-negative
slack variables that allow some samples to fall outside the boundary,
getting however penalized, and p is the distance between the origin
and the hyperplane. The decision function takes the following form,
f(x) = (w- ®(x;)) — p, and is expected to be positive for most
samples x; contained in the training set.

Instead of solving the initial quadratic problem, we obtain the
dual problem of OC-SVM based on the Lagrangian method

1
1 m . . . .
mami Ei’jzlula]K(xl,xj)

subject to 0 < a; <
nym

E,‘ai =1
where K(xj,x;)) = (®(x;,%;)) is a kernel function and «;
are Lagrange coefficients computed for the optimization of the
quadratic equation. Training examples x; with o; # 0 are called
support vectors (SV) and are located either on the boundaries
of the hyperplane or on the negative side (outliers). The kernel
trick is used to map the data to a linear feature space and we
use the Gaussian function K(x,x') = eV”x_"/”%, which essentially
expresses the similarity among any two samples. Based on this
transformation, the decision function takes the following form:

f(x) = Z"a;K(x;,x) — p, (3)

whose value we call decision score, representing the signed distance
of each input from the learned boundary. During the testing phase,
if f(x) > 0, then x is considered a benign incident; otherwise, it is
labeled as malicious. In network environments, the decision score
serves as a soft anomaly signal, reflecting how confidently a flow
conforms to the learned profile of normal traffic. This makes it
particularly valuable for use as an additional feature to models like
the AEs, to enhance their ability to discriminate between benign
and malicious samples.

3.2 Deep autoencoders

Autoencoders are a class of neural network models designed
to learn compressed representations of input data through a
process known as dimensionality reduction and to subsequently
reconstruct the compressed vectors back into the original input.
The architecture of the model consists of two main groups of layers:
the encoder and the decoder.

The encoder E maps an input vector x € RY to a latent
representation z € RP, where typically p < d, compressing
the input into a lower-dimensional space. This mapping can be
represented as z = E(x), where E : RY — RP.The decoder D, on the
other hand, reconstructs the input from the latent representation,
denoted as = D(z), where D: R? — R4,

The training objective for the AE is to minimize the difference
between the original input x and its reconstruction ¥, typically using
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the mean squared error (MSE) loss function: L(x, %) = [lx — &||%. By
minimizing the reconstruction error (RE) over a data set consisting
of normal incidents, the AE learns to capture the characteristic
patterns of the one-label training set. In the context of network
intrusion detection, deep AEs are particularly effective in capturing
underlying patterns of normal traffic, even when such patterns are
complex and non-linear. Their semi-supervised training setting
aligns well with real-world NIDS settings, where malicious data is
either sparse or unavailable during training.

During inference, the trained AE acts as an discriminator
between benign and malicious incidents. It is expected to
reconstruct normal instances with low error, whereas anomalies -
that deviate from the normal patterns will result in higher
reconstruction errors, as the AE has not learned their structure
during the training phase. Thus, the reconstruction error serves as
an anomaly indicator: samples with an error exceeding a predefined
threshold are classified as anomalies. However, when used alone,
AEs may struggle to distinguish anomalies that closely resemble
benign patterns in structure. To address this limitation, we propose
incorporating OC-SVM derived decision scores into the AE’s input.

3.3 Proposed architecture

The proposed OCSVM-AE model consists of two main
components: an OC-SVM for the derivation of the decision scores
and an AE that plays the role of the anomaly detector.

A key component of our approach involves the computation of
decision scores by the OC-SVM, whose values reflect the relative
position of each sample from the estimated hyperplane and can
be used as a metric for the degree of anomaly for each instance.
In particular, the larger a positive value is, the more confidently
a sample can be considered normal, and vice versa. In this work,
these decision scores are utilized to enhance the original feature set,
creating an augmented data set that captures not only the inherent
characteristics of the network data but also its anomaly level as
determined by the OC-SVM. This data set is then given as an input
vector to the AEs.

The main idea of the two-step anomaly detection process
proposed in this work is illustrated in Figure 1. Specifically, after
training the model on normal incidents (blue symbols in Figure 1),
an anomaly sample, xT, and a normal sample, x~, are fed into
the trained AE. These samples are also provided in an augmented
form, appended with the decision scores from the OC-SVM, and
denoted as x7.

sc?
original inputs are located close to the boundaries of the normal

X, respectively. Figure 1 shows a case where the

latent space learned by the model, leading to similar reconstruction
errors (RET ~ RE™) and, consequently to poor discrimination
between them. By incorporating as additional input features
the corresponding decision scores (yellow hexagons in Figure 1)
derived from the OC-SVM, the encodings (latent representations)
are forced either closer to the normal latent space for the normal
sample (x;;) or further away for the anomaly (x7). This leads to a
smaller reconstruction error for the normal sample (RE; — RE™ <
0), and a higher one, REL — REt > 0, for the anomaly, thus
improving their separation. Essentially, the decision scores provide
additional information regarding the degree of separation between
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the normal incidents and the malicious activity, enhancing the
model’s discriminative capacity.
In general, let us denote as

c 0= 1f6)
I(y, — 0) > anom

Iyi=1)

Snorm =

> (4)

the mean scores of the normal incidents and the anomalies,
respectively. N is the total number of samples and y; € {0, 1} for
i =1,...,N, the corresponding labels with 0 and 1 corresponding
to normal incidents and anomalies, respectively. Our assumption is
that a sufficient large M > 0 exists with [S,orm — Sanom| > M so that

REf —RE" >0, RE_—RE <0,

where RET, RE™ correspond to the average reconstruction
errors of the normal samples and the anomalies, respectively,

whereas RES.

T, RE_, to the reconstruction errors of the enhanced

feature vectors.

The overall structure of the proposed framework is outlined
in the pseudocode of Figure 2. Algorithm 1 describes the training
process, including the integration of OC-SVM decision scores with
the AE input, while Algorithm 2 details the inference phase used for
intrusion detection.

3.4 Heuristics for OC-SVM

As discussed in Section 3.1, the OC-SVM model has two hyper-
parameters, the kernel function, K(), used for mapping the non-
linear high-dimensional data into a linear space, and the trade-off
parameter 7, that corresponds to the probability a training sample
to be found outside the boundaries of the half-space, reflecting the
robustness of the fitted hyperplane. Very small values of n,, lead to
an extended hyperplane, forcing all samples to be on the positive

10.3389/fcomp.2025.1646679

side of the half-space including outliers. By increasing its value the
boundary is tightened around the majority of the data.

The choice of the kernel function is usually trivial, with the non-
linear Radial Basis Function (RBF) kernel, K(x,x') = e"’”"_x/”%,
with x, ¥ € RP, being generally acceptable and highly effective.
We have decided to keep it fixed for the rest of the study.
However, the choice of the trade-off parameter #,, which is crucial
in one-class classification problems, lacks commonly accepted
procedures for its determination. This makes optimization more
abstract and dependent on the specific characteristics of the data
set and the problem at hand. For this reason, we will focus on the
optimization of n, by proposing a method based on the use of the
decision function.

The decision function, f(x), given by Equation 3, corresponds
to the distance of each new sample x from the separating
hyperplane. However, distance in the feature space induced by the
RBF kernel is expressed in terms of similarity of each new sample, x,
to the supporting vectors, x;. In particular, in high-density regions,
which are located close to the support vectors, we will observe
large values due to the exponential function in the RBF kernel
K(x;, x) (|| — x;]|? is small). This reflects the strong alignment with
the learned "normal" pattern by the model. On the contrary, large
negative values are indicators that the samples are well outside the
normal target region defined by the fitted hyperplane of the OC-
SVM, i.e., the sample’s similarity to all support vectors is very low,
insufficient to outweigh the model’s threshold, p, for considering a
point as normal.

Let first define the average decision score for each n,,

2 ri(xi), 5)

f (ny,) =
over all the normal incidents. Our idea is based on the existence
of three distinct phases for the average decision score, which is
illustrated as a schematic diagram in Figure 3. In particular, for
very small n, values, the hyperplane will be forced to extend in

Algorithm 1: OCSVM-AE training algori-
thm

Algorithm 2: OCSVM-AE inference algori-
thm

Input :Tyqn €R d (benign traffic flows of size
N with feature dimension d)

Qutput : 1. Trained OC-SVM, 2. trained
Autoencoder, 3. threshold s,

Oocsvm < {kernel, gamma,n,} Set OC-SVM
hyper-parameters )
OC-SVM,; < Train model with {x*

ocsvm

for i < 1to N do

Xi — Ttrain . .
Compute ‘dCCISIOI‘1 score s; = f(x")
Update x’,, < [x*, s;] augmented vector
Set 0 4 and initialize wq Weights
AE,p: < Train model with {xi,}Y, and 045
fori < TtoNdo
L )h(éc — AEopt(X,lgc)

o iz .
ri w reconstruction error
Sp — percentile(r,c) the c-th percentile of
reconstruction errors r = {ry,..., 7N}
return OC-SVM,¢, AEopt, Sin,

N

ieq and

FIGURE 2
Training and inference procedures for the proposed OCSVM-AE method.

Input :T. €R @ (unlabeled traffic flows of
size N), OC-SVM,pt, AEopt, 5ih
Output : Binary classification: 0-Benign or
1-Malicious
for i <+ 1to N do
Xi — Ttest .
Compute decision score s; = f(x*) from
OC-SVM,,¢
Update x&, < [x?, s;]
)A(fsc « AEUPt(Xéc)
ri w reconstruction error
if r; > sy, then
| Yi=1 — Clasify Malicious
else
| Yi=0 — Clasify Benign

return Y, = {0,1}, n=1,...,N
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FIGURE 3

Schematic diagram for OC-SVM heuristic strategy. Points below the line are considered anomalies (minus index), whereas above the line lie the
normal samples (plus index). Upper left panel: Fitted hyperplane for small n,, where outliers are considered normal samples (phase-one). Upper
middle panel: Fitted hyperplane for n, that tightens the boundary with dense clusters of normal samples (phase-two). Upper right panel: Fitted
hyperplane for large n,, here the structure of normal samples breaks from the hyperplane. Negative scores are dominant (phase-three). Lower panel:

The behavior of the average decision score as a function of n,,.

\ 4

Ny

order to include every sample within its boundaries. Due to the
existence of outliers, this will lead to many small positive decision
function scores, as dense areas of normal samples will be far
from the frontier (see Figure 3 upper left panel for nl ~ 0). As
n, increases, the robustness of the hyperplane is also increased.
In particular, the boundary tightens, bringing closer more dense
clusters of normal samples, yielding higher decision function scores
due to their relative position and density (see Figure 3 upper
middle panel for nﬁ > 0). We call this phase one (PH-1), shown
in Figure 3 lower panel. However, this behavior will hold until
a certain critical point, phase two (PH-2), where a more stable
behavior of f(nu) will be observed. Increasing n, even more, we
force the hyperplane to break the strong alignment of the normal
samples, leading to more negative decision scores, phase three
(see Figure 3 upper right panel for nJ ~ 1) and consequently
to the decrease of the average score ]_‘(nu) (PH-3 in Figure 3
lower panel).

Essentially, our assumption is that increasing the compactness
of the decision boundary, whose effect is governed by
the trade-off parameter n,, we will minimize the binary
This point
transition from PH-1 to PH-2 (Figure3), ie., an abrupt

misclassification. critical corresponds to the
change in the slope of f(nu), and can be used as an index
for the selection of the hyper-parameter n,, free from any
assumption on the distribution of the anomalies. Intuitively,
a good separation is achieved if there is a good separation
between outliers and high density areas of normal incidents. In
Section 4.7, we perform experiments for the evaluation of the

strategy.
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4 Experiments

In this section, the evaluation of the proposed OCSVM-AE
model for anomaly detection is performed on a modern network
traffic data set that includes a variety of attacks. The details of the
data set along with the experimental setup and the performance
measures are provided in the following subsections. The results are
compared with several baseline models including different versions.

4.1 Environment configuration

All experiments in this study were conducted in a controlled
computational environment. The hardware configuration included
an Intel(R) Xeon(R) Gold 5218R CPU 2.10GHz and 62 GB of
RAM. The software environment consisted of Ubuntu 20.04.6
LTS as the operating system, with Python 3.10.16 as the primary
programming language. Code development was performed using
Visual Studio Code. The implementation utilized standard Python
libraries, including PyOD 2.0.5, Pandas 2.2.3, NumPy 1.26.4, Keras
2.11.0, TensorFlow 2.11.0, scikit-learn 1.5.1, and Matplotlib 3.9.2.
(Hunter, 2007).

4.2 Data set

The proposed model framework is evaluated on the version 2
of the NetFlow-based (Claise, 2004) UNSW-NBI15 data set. This is
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a standard representation format of network flows, each defined
as a sequence of packets that share common source/destination
IP address, port numbers, or L4 protocol. The UNSW-NBI15 data
set (Moustafa and Slay, 2015) represents a significant advancement
in the field of NIDS, designed to overcome limitations of older
benchmark data sets, such as KDD-Cup99 (Tavallace et al., 2009),
by incorporating a broader range of modern network behaviors and
sophisticated cyber-attacks. This data set is a product of a simulated
environment, released by the cyber range lab of the Australian
Centre for Cyber Security, involving a traffic generator capable of
producing a wide variety of both normal and malicious network
activities. The data set contains 2,295,222 (96.02%) benign
and 95,053 (3.98%) malicious samples, respectively, resulting to,
2,390,275 traffic flows in total, covering a range of attack types,
including, backdoors, denial of service (DoS), exploits, generic,
reconnaissance, shellcode, and worms (see Table 2). The diverse
nature of the traffic generated ensures that the data set reflects
real-world network scenarios, providing a robust benchmark data
set for the testing of NIDS solutions. For the purposes of our
proposed NIDS framework, which is focused on distinguishing
between benign and malicious traffic regardless of the attack type,
we reclassified each flow into one of two categories: benign and
malicious, encompassing all types of attack-related flows.

The version 2 of the NetFlow format (Sarhan et al., 2022)
provides an extended set of the UNSW-NBI15 feature vector, with
43 features, originally comprised of 12 flow-based features (Sarhan
etal., 2021). This extensive feature set enables a detailed analysis of
network traffic, facilitating the identification of subtle patterns and
characteristics indicative of malicious activity.

4.3 Data pre-processing

Network traffic data comprises various types of variables,
including categorical (e.g., protocol types, port numbers),
continuous (e.g., duration), and discrete (e.g., packet counts)
variables. As a first step, we proceed to the extraction of categorical
features from the data, such as source and destination IP addresses,
port numbers, and protocols, keeping only numerical-type features,

TABLE 2 Specification of UNSW-NB15v2 data set and class distribution.

Data specs Class Count (%)
Release year Benign 2,295,222 (96.02%)
2021 Fuzzers 22,310 (0.93%)
# Features Analysis 2,299 (0.09%)
43 Backdoor 2,169 (0.09%)

Benign to attack ratio | DoS 5,794 (0.24%)

9.6t0 0.4 Exploits 31,551 (1.31%)
Generic 16,560 (0.69%)
Reconnaissance 12,779 (0.53%)
Shellcode 1,427 (0.05%)
Worms 164 (0.006%)
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such as the number of bytes or packets per traffic flow. Although
techniques for incorporating information such as IP addresses and
port numbers exist (Lopez-Martin et al., 2021), our main focus lies
on evaluating the performance of our proposed model, rather than
optimizing the selection of features for the context of NIDS.

Next, we remove samples with NaN and infinite values, and
finally, we drop constant and quasi-constant features that hold the
same value for at least ¢ = 90% of the data, which we deem to
be a reasonable value. These features are characterized by minimal
variability, resulting in low or even zero predictive power for any
model. Moreover, by removing these features, we simplify the
model’s structure, decreasing the computational complexity and the
risk of over-fitting.

Next, the traffic flows are normalized based on the min-max
scaling procedure, to avoid large ranges in the feature values due
to the existence of outliers. The performance of machine learning
models increases on normalized data sets, reducing the potential
bias in the results as an effect of dominance of large-scale features
in the optimization procedure.

Moreover, the Mutual Information (MI) method is used to
select important features in terms of the contribution of each one
to the target labels. MI output is a non-negative value, which
quantifies the dependency between two variables. A value equal to
zero indicates independence, whereas higher values mean higher
dependency, so the score obtained between each feature and the
class label enables selecting the most relevant ones. After computing
the importance of each feature, we perform a ranking based
on their normalized values, selecting them in descending order.
The selection continuous until the cumulative importance of the
selected features surpasses a correlation threshold of corry, =
0.95, aiming to retain features that account for at least 95% of the
information relevant to the class labels. Given the volume of our
data set, we prioritize on the inclusion of as much information as
possible to enhance the predictive power of the model. At the end
of this process, irrelevant features are discarded. The final number
of selected features is 18. Figure 4 illustrates the pre-processing
steps applied to the network traffic data set, as described in
the section.

4.4 Evaluation measures

The traffic flows are assigned either label -1 (benign) or
1 (malicious). After the implementation of the classifier, we
can compute the number of correctly classified malicious (true
positives—-TP) and benign (true negatives-TN) flows, and the
number of flows wrongly classified as benign (false negatives—FN)
or malicious (false positives-FP), respectively. The data set is
characterized by class imbalance, so we choose additional metrics
that provide a more accurate representation of the model’s
performance by accounting equally for the contribution of each
class. In particular, we employ five well-known metrics for the
evaluation of the models: the F; score, the Detection-Rate (DR),
the False-Positive Ratio (FPR), the Geometric Mean (GM), and the
Balanced Accuracy (BA).

The Detection Rate is defined as the percentage of malicious
activity that the anomaly detector correctly identifies. A
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FIGURE 4
Schematic of the complete setup for the proposed two-step anomaly detection process. The original data set is first passed through a
pre-processing layer (step 1), after which it is split into training and testing sets. During the optimization phase (step 2), the OC-SVM is trained and the
decision scores for each training sample are appended as a new feature to the original feature vector. The augmented data is then used to train the
AE. In the inference process (step 3), the optimized OC-SVM and the weights of the fine-tuned AE are passed. The testing samples are given as input
to the optimized OC-SVM, which are again appended with the decision scores before being fed into the AE. Finally, the reconstruction errors from
the AE are compared against a pre-defined threshold to classify each sample as benign or malicious.

high detection rate means that the model effectively detects
real attacks, while a low rate indicates missed threats. It is
given by
TP
R= —— (6)
TP + FN
The false positive rate on the other hand is defined as the
percentage of benign activity incorrectly categorized as malicious
(false positives) and is given by

FP

FPR = ———.
FP+ TN

%
F) score is a harmonic mean of precision (TP/(TP + FP))
and detection rate, which balances the two metrics equally and is
given by
DR x Precision

Fi =2x —_— .
DR + Precision

(8)
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It is useful when you want to avoid both false positives and
false negatives, as precision measures the proportion of inferred
positives that are correctly identified as true positives, whereas
recall measures the proportion of actual positives that are identified
correctly, i.e., the detection rate.

The geometric mean measures the ability of the model to
correctly identify both the positive and negative samples, which is
particularly useful when you want to account for the imbalance of
the labels. It is given by

GM = /DR x Specificity, 9

where specificity measures the proportion of true negative samples
correctly identified by a classifier; in other words it evaluates the
ability of the model to avoid false alarms. A high GM means that
the detector avoids unnecessary alerts, while maintaining a good
detection rate.
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An alternative to accuracy for imbalanced data sets is balanced
accuracy, which is defined as the average of detection rate and
specificity. The formula for balanced accuracy is

_ DR+ Specificity
i —

BA (10)

Finally, we also consider the Area Under Receiver Operating
Characteristic the Curve (AUC-ROC), which evaluates the model’s
ability to discriminate between the positive and negative classes
across all possible classification thresholds. One of the main
advantages of the AUC score is that it is threshold-independent,
meaning it evaluates the model’s ranking quality regardless of
any particular decision threshold. AUC values range from 0
to 1, with scores below 0.5 indicating performance worse than
random guessing.

4.5 Evaluation setup

Following Figure 4, the pre-processed data are segmented into
a training and testing set (T'ses). The benign traffic flows are split in
a 80% to 20% ratio, whereas all the malicious instances are included
to the testing set in accordance with the one-class classification
framework. Moreover, we hold out a 20% of the training set for
the fine-tuning of the models, resulting in the training, Ty, and
validation set, V, respectively.

During the optimization process, the hyperplane of OC-SVM is
found by optimizing (Equation 1) on the training set, T4in, while
the validation set, V, serves to fine-tune the n, parameter, using the
proposed heuristic strategy presented in Section 3.4.

The AE is also trained on the Ty, data set that comprise
solely benign traffic flows. For the AE setup, we use encoding
layers of stable decreasing size, equal to 2, and we consider
a symmetric architecture so that the decoding layers increase
inversely to the encoding ones. A grid-based procedure is
followed for the fine-tuning of the hyper-parameters listed in
Table 3. All the models are trained for 40 epochs; however,
we also included an early stopping rule to avoid over-fitting.
In particular, we assume that an increase in ten consecutive
epochs for the validation loss is a sign of over-fitting and the
training procedure should stop. The parameter set corresponding
to the smallest generalization error, ie., the minimum value
of the validation loss function, O = arg minokL(Ok /V),
considering the average of a 3-fold procedure, is stored for
training the final model and provide predictions for the
testing set.

During the inference process, the testing data is passed to
the fitted OC-SVM extracting for each sample the decision score
that is subsequently incorporated as an additional feature to the
original feature space. The trained AE considers as input the
enhanced feature vector and is used to discriminate malicious from
benign flows based on how well can reconstruct every instance.
We expect the model to reconstruct benign flows more accurately
than malicious activity. The final training and testing procedure
of the AE is repeated for 30 iterations, to take into account
the stochastic part of the optimization algorithm, such as the
initialization of the weight vectors. Figure 4 illustrates the structure
of the proposed system.
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TABLE 3 Hyper-parameter grid for AE fine-tuning.

Batch size Optimizer Learning rate
(64, 128,256] [adam, RMSprop] [0.01,0.001, 0.0001]
Encoded layers Initial units Activation function
(1,2,3] (6,8,10,12] RELU

TABLE 4 Details on the data subsets.
Data set Fraction (%) # Samples
D, 0.1 2,391
D, 0.5 11,952
D 1.0 23,903
Dy 5.0 119,514
Ds 10.0 239,028
Ds 25.0 597,569

Finally, a threshold needs to be determined for discriminating
the testing traffic data into benign and malicious. The threshold
is set using the 95% percentile of the reconstruction errors
over the validation set, V. In this way, we align with

the one-class classification assumption, where no prior

knowledge on the anomalies should be considered for

model optimization.

4.6 Power-law scaling of data set size

We perform the experiments on a subset of the initial
benchmark dataset to reduce computational cost while preserving
a wide range of attack scenarios. Generally, the implementation
of a one-class anomaly detector requires a large volume of data
during training in order to capture the diverse patterns of normal
traffic and to achieve high classification performance during testing.
However, in real-world scenarios where an IDS is deployed,
computational resources may be limited, increasing the processing
time, particularly for hyper-parameter tuning.

Although the relation between model depth and training
size is not straightforward, empirical evidence shows that model
performance improves with growing data set size, up to an
irreducible error, following a power-law distribution (Hestness
et al., 2017). Following this, we consider six subsets of the original
data set, D, as shown in Table 4. These subsets span approximately
three orders of magnitude in size, and the class distribution is
preserved using stratified random sampling (see Table 2 for the
different classes).

We prepare each subset for training and testing an AE, which
we use as a reference model. The choice of the optimal subset size
is based on two performance criteria for the reference model: (i)
its ability to generalize to unseen data, quantified by the MSE on
benign flows in the testing set, and (ii) its classification performance
on both benign and malicious traffic, measured using the F;, GM,
BA, and DR metrics.
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Left panel: Scoring metrics for each data set. Right panel: Training (red) and testing (green) error for each data set
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Figure 5 illustrates the performance of the AEs across all
subsets, following the evaluation setup described in Section 4.5.
The left panel shows the average classification metrics from 30
testing trials for the best model per data set, while the right
panel presents the average generalization error (green) and training
error (red). When plotted in log-log scale, the generalization error
demonstrates a power-law relation with data set size, modeled as
axP, with an exponent = —0.55 (blue line in right panel of
Figure 5). This predictable pattern indicates that model comparison
is feasible using smaller data sets. Since this power-law behavior is
consistent across different domains and models in hand (Hestness
et al,, 2017; Bahri et al., 2024), we expect that relative performance
metrics among models will remain stable as data set size increases.

Additionally, the classification metrics in Figure 5 left panel
show quasi-stable behavior for data sets of size Dy and larger. A
slight decrease in the F; score is observed for D,, D5 and D, likely
due to the increased complexity of attack patterns compared to
smaller data sets.

Based on these observations,
Dy, containing 119,515 samples, is sufficient to capture the

we conclude that subset

distribution of benign traffic while achieving good classification
performance. Therefore, we use Dy as the reference data set in the
following experiments.

4.7 Evaluation on OC-SVM heuiristics

We performed an evaluation of the heuristic strategy presented
in Section 3.4 on the benchmark data set Dy, considering multiple
values for the trade-off parameter n,, while keeping the kernel
function (RBF) fixed. We ran the same experiments for five
different y (kernel parameter) values in order to investigate
whether our approach is robust across different parameters of the
kernel function.

First, the OC-SVM is fitted on the training set, Tirain, and
subsequently, we compute the decision scores on the hold-out
set, V, both containing solely benign traffic flows. We recall that
high values of f(nu) (Equation 5) indicate, with high confidence,
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the proximity of the samples to the positive side of the decision
boundary. Thus, we expect high positive scores for good n,
choices; otherwise, many samples are classified as anomalies
and are associated with negative decision scores. Finally, for
each parameter setting, its effectiveness in binary classification
is evaluated on the testing set, Tiesr, which contains data from
both classes.

Figure 6 upper panels shows the values of f(nu) (pink)
for five scalar parameters of the kernel function, y €
{auto, scale,0.01,0.1, 1.0}, with y = auto and scale being the default
values in the scikit-learn library (Pedregosa et al., 2011), and for
ny € [0.01, 0.5]. In all cases, we observe the same behavior: an
increasing function for small n, values (PH-1, see Section 3.4),
which changes abruptly at a certain point and then follows a more
stable pattern (PH-2), until it begins to decrease again for large n,
values (PH-3).

Increasing n, means that the model is forced to identify a
higher number of outliers in the training set. One would expect a
decrease or, at the very least, a more stable behavior in the decision
scores. On the contrary, we observe an increasing trend for f(1,),
up to a certain point in all cases. As previously discussed, this is
due to the presence of outliers: for small 1, values, these outliers
are incorrectly included on the positive side of the hyperplane,
resulting in an extended decision boundary and larger margins
with respect to the normal samples. As n,, increases to a certain
threshold, this constraint is relaxed, allowing many of these points
to be excluded from the target half-space. This leads to a more
compact decision boundary and increased decision scores for
the remaining inliers (since their distance from the boundary is
minimized). However, beyond a certain point, the upward trend
in decision scores stops. This “corner” point serves as an indicator
of the optimal n, value, beyond which high-density regions begin
to break.

To highlight this behavior, we also compute the derivative of
this function, which we refer to as the Stability Index (SI), df /dn,
(purple curve in Figure 6 upper panels). The abrupt change in ST is
used by our method to identify the optimal n,, value (indicated by a
star in Figure 6).
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FIGURE 6
Evaluation of OC-SVM across varying values of the n, parameter for different kernel settings () and its correlation to the stability index. Upper
panels: Average decision scores, f(n,), with pink color, stability index, df /dn,, with purple color. Each subplot corresponds to a different scalar
parameter, y. Three distinct phases as a function of n, are visible for the average decision score (pink color) in all five subplots. Each subplot is
divided into three color-shaded regions representing the distinct phases of behavior: PH-1 (light yellow), PH-2 (light green), and PH-3 (light blue).
The star symbol corresponds to the optimal value. Lower panels: Classification metrics for each scalar, y, and n, parameter.

Figure 6 lower panels shows the performance of the OC-SVM
on the testing set for each parameter configuration. We observe that
in almost all cases, the optimal n, value (purple star in the upper
panels) lies within a region of high classification performance,
independently of the scalar parameter y. For instance, when y =
auto, ie., 1/n; ~ 0.05, where ny is the number of features in
the data set, the difference between the best classification metrics
(CM), argmax,, F; = 0.05, and the metrics corresponding to the
optimal value n,, = 0.09 based on the SI, is negligible. Specifically:
GM = 0.831 (CM), 0.827 (SI); F; = 0.703 (CM), 0.690 (SI);
BA = 0.829 (CM), 0.831 (SI); DR = 0.727 (CM), 0.750 (SI). For the
rest of the experiments we consider y = scale and n,, = 0.15 (SI)
as the baseline case.

4.8 Comparison with baseline models

We evaluate the proposed model, OCSVM-AE, against
a collection of both traditional and state-of-the-art anomaly
detectors. All models are trained using the same benign
subset of the UNSW-NBI15v2 dataset to ensure a fair and
consistent comparison.

The LOF model is a density-based anomaly detection method
utilized in scenarios where training data comprises solely benign
instances. By measuring the local density deviation of a given data
point with respect to its neighbors, LOF identifies instances that
significantly diverge from the distribution of the normal samples,
classifying them as anomalies. This approach is based on the
assumption that anomalies will be located in lower density regions
compared to normal instances. The LOF algorithm needs two
hyper-parameters as input: the number of nearest neighbors, k,
to consider for the computation of the local density around a
data point and the contamination factor, ¢, that represents the
proportion of outliers present in the data set. Essentially, ¢ is a
sensitivity parameter that adjusts the balance between missing true
anomalies and considering too many normal points as outliers.
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We implemented two model versions for LOE, one based on a
supervised fine-tuning grid search with ¢ € [0.001 — 0.5] and
k € [10 — 35], which we denote as LOF-CM, and the other
on a semi-supervised setting considering the default parameters
from the scikit-learn library (k = 20) denoted as LOF-DF. In the
first version the malicious flows are splitted 50-50 between the
validation and testing data.

For OC-SVM, we consider three model versions, the first based
on the proposed semi-supervised heuristic strategy, OC-SVM-SI
(see Section 4.7), with y = scale and n, = 0.15(SI), the second
considering the best case scenario after a supervised grid-search,
OC-SVM-CM, with y = scale and n, = 0.07 and the third
considering the default parameters from scikit-learn library, OC-
SVM-DE, with n,, = 0.5.

Additionally, we compare our model with the traditional AEs
and the Variational AEs, which is a probabilistic extension (Kingma
et al.,, 2013). The latter learns both the latent representation and
its underlying distribution. It optimizes a variational lower bound
to reconstruct input data while regularizing the latent space to
follow a prior distribution, typically Gaussian. This regularization
facilitates better generalization and anomaly detection. In NIDS,
VAE:s are used to model normal traffic distributions, with higher
reconstruction errors indicating potential attacks.

Another deep baseline model is the Deep Support Vector
Data Description (Deep-SVDD), a deep learning-based one-class
classification approach designed for anomaly detection (Ruff et al.,
2018). It maps input data into a feature space using a fully
connected neural network and minimizes the volume of a hyper-
sphere that encloses the representations of normal data. The
assumption is that anomalous samples will lie outside this hyper-
sphere. In the context of NIDS, Deep-SVDD has shown promise
in modeling normal network behavior and detecting deviations
indicative of intrusions (Sarhan et al., 2023).

Finally, we chose the LUNAR(Local Unified Neighborhood-
based Anomaly Ranker) as a deep baseline, which is a graph-based
neural network framework that unifies various local outlier
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detection methods. It constructs a graph from input data and
uses GNN layers to learn context-aware anomaly scores, effectively
capturing local structure and feature interactions. LUNAR has
been shown to outperform traditional one-class detection methods,
particularly in high-dimensional and structured data environments
(Goodge et al., 2022).

The OCSVM-AE and the simple AE are implemented using the
Tensorflow library (Abadi et al., 2015) and fine-tuned using a grid-
search with hyper-parameter ranges shown in Table 3, following the
evaluation setup described in Section 4.5. The best model consists
of a single encoding layer with 12 initial units and learning rate
equal to 0.001 using the adam optimizer. For the VAE, Deep-SVDD
and LUNAR models, the experiments are implemented in Python
library PyOD (Chen et al., 2024; Zhao et al., 2019) with the default
hyper-parameters adopted in designing the models.

The UNSW-NB15v2 data set contains nine distinct attack types
(see Table 2). We create ten one-class classification experiments,
one with all attacks grouped as one anomaly class and nine
specific to each attack class. In all experiments, models are trained
exclusively on the same benign flows and tested on a mixed
(imbalanced) test set comprising both benign and malicious flows.

Regarding the first experiment, as expected the supervised
settings of both LOF and OC-SVM achieve higher metrics
than the corresponding semi-supervised settings. Specifically,
the F; score of LOF-CM increased by approximately 81.1%
relative to the LOF-DF value, FPR decrease
by 60%. Similar differences observed for the other metrics
as well (see Table5). Table5 highlighting the benefit of
supervised fine-tuning.

Similar are the results for the OC-SVM-CM and OC-SVM-
DF version, respectively. For the supervised setting we achieve a

whereas the

41% increase in the F; score, and a 410% decrease in the FPR.
Intriguingly, the optimized version of the OC-SVM based on our
proposed semi-supervised strategy, OC-SVM-SI, gives comparable
results to the supervised setting (Table 5), with GM = 0.829 (OC-
SVM-CM), 0.829 (OC-SVM-SI); F; = 0.681 (OC-SVM-CM), 0.676
(OC-SVM-SI); BA = 0.832 (OC-SVM-CM), 0.832 (OC-SVM-SI);
DR = 0.762 (OC-SVM-CM), 0.768 (OC-SVM-CM) and FPR =
0.098 (OC-SVM-CM), FPR = 0.104 (OC-SVM-SI). This shows
that without any prior information on the anomalous patterns we
can achieve comparable detection rates to supervised methods.

Table 5 presents the classification metrics of all evaluated
models. For the deep learning-based models, AE, VAE, Deep-
SVDD, LUNAR, and the proposed OCSVM-AE, we report the
average scores over 30 runs along with standard deviations, using
different random seeds to account for the stochastic variability due
to batch sampling and weight initialization.

Among all models, LUNAR achieves the highest F;-score
(0.872), geometric mean (GM = 0.959), balanced accuracy (BA =
0.961), and detection rate (DR = 0.974). These results highlight
the strength of graph-based architectures in capturing complex
structural dependencies in the input space.

However, the proposed OCSVM-AE achieves the lowest false
positive rate (FPR = 0.046) and the highest AUC score (AUC =
0.974), outperforming all other baselines and achieving consistent
results across all metrics. Compared to classical baselines, OCSVM-
AE outperforms even the supervised versions of OC-SVM-CM
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and LOF-CM, which benefit from access to labeled data from
both classes during validation. Notably, OCSVM-AE surpasses
Deep-SVDD and standard AE/VAE models, indicating that the
enhanced feature representation introduced by the two-step
approach yield gains in anomaly detection performance. In
Supplementary material, we provide an analysis of the contribution
of the OC-SVM scores to the latent space of the AE.

In the other nine experiments we evaluate model performance
using as testing data the normal flows along with only one type
of malicious flow. For instance, when evaluating the detection of
“Exploits” attacks, the testing set includes “22,953” benign flows
and “1,578” malicious flows.

Table 6 presents the AUC scores across all models for each
of the nine attack categories. This metric was selected due to
its threshold-independent nature, which allows for a fair and
robust comparison between models, regardless of the threshold
optimization strategy.

As shown in Table 6, the proposed OCSVM-AE model
consistently achieves competitive or superior AUC scores across
most attack types, showcasing the effectiveness of incorporating
OC-SVM decision scores as an additional feature in the input
vector. In particular, OCSVM-AE ranks among the top-performing
models in nearly every category, often exceeding the performance
of deep learning-based baselines such as Deep-SVDD, VAE, and
even LUNAR.

In Exploits, Fuzzers, and DoS, attack types where traditional
detectors (OC-SVM-DF or LOF-DF) tend to underperform,
OCSVM-AE demonstrates marked improvements, achieving
AUC values above 0.97. These attacks may exhibit greater
overlap with normal traffic, making detection more challenging;
however, the enhanced representation appears to improve
class separability. Moreover, the semi-supervised OC-SVM
(SI) configuration, which uses our heuristic for tuning the n,
parameter, also performs well and outperforms the default OC-
SVM in almost all cases. The OCSVM-AE model remains robust
even on low-frequency attack types such as Shellcode, Backdoor,
and Worms, despite the class imbalance issues, suggesting
improved generalization.

Opverall, the results indicate that the proposed model maintains
high detection capability across a diverse range of attack types,
both frequent and rare, supporting its applicability in realistic and
evolving threat scenarios.

In addition to classification performance, inference efficiency
is a critical factor for the practical deployment of intrusion
detection systems, particularly in real-time or high-throughput
environments. To this end, we evaluated the testing time
per network flow (in milliseconds) for all models under
consideration. Table 7 summarizes the average per-flow testing
time across models.

As shown in Table7, the proposed OCSVM-AE model
shows moderate computational overhead relative to the baselines.
Specifically, it requires approximately 1.13 milliseconds per flow,
which is notably higher than lightweight models such as AE (0.08
ms) or VAE (0.01 ms). This increase is primarily attributed to the
additional OC-SVM scoring step during inference. Nonetheless,
the testing time remains well within acceptable limits for
practical scenarios.
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TABLE 5 Evaluation results with UNSW-NB15 data set (subset Dy).

10.3389/fcomp.2025.1646679

Model F1 GM BA FPR DR AUC
AE 0.786 (0.14) 0.873 (0.12) 0.884 (0.09) 0.047 (0.004) 0.815 (0.19) 0.963 (0.04)
VAE 0.798 (0.07) 0.883 (0.06) 0.890 (0.06) 0.048 (0.001) 0.824 (0.12) 0.965 (0.01)
OC-SVM-SI 0.676 0.829 0.832 0.104 0.768 0.854
0OC-SVM-CM 0.681 0.829 0.832 0.098 0.762 0.852
OC-SVM-DF 0.423 0.677 0.708 0.500 0916 0.884
LOF-CM 0.611 0.905 0.905 0.115 0.925 0.859
LOF-DF 0.412 0579 0.640 0.085 0.366 0.799
OCSVM-AE (SI) 0.841 (0.05) 0.922 (0.04) 0.923 (0.05) 0.046 (0.002) 0.8940.09) 0.974 (0.02)
Deep-SVDD 0.721 (0.15) 0.813 (0.13) 0.832 (0.09) 0.046 (0.002) 0.711 (0.17) 0.905 (0.074)
LUNAR 0.872 (0.05) 0.959 (0.05) 0.961 (0.04) 0.053 (0.005) 0.974 (0.09) 0.966 (0.08)

Three versions for OC-SVM and two for LOF are considered. For AE, OCSVM-AE, Deep-SVDD, VAE and LUNAR the metrics correspond to the average over 30 runs (standard deviation

within the parenthesis). The best scoring metrics are marked in bold.

TABLE 6 The AUC results of the methods for nine different attack types.

Model AUC
Anomaly type # Flows LOF (DF) AE OC-SVM OC-SVM  OCSVM-AE Deep-SVDD
(DF) ()]

Exploits 1,578 0.876 0.966 0.729 0.634 0.977 0.796 0.943 0.987
Fuzzers 1,116 0.633 0.962 0.991 0.995 0.974 0.971 0.978 0.978
Generic 828 0.836 0.975 0.964 0.955 0.985 0.951 0.980 0.978
Reconnaissance 639 0.826 0.956 0.988 0.993 0.969 0.971 0.974 0.976
Do$ 290 0.832 0.970 0.803 0.802 0.977 0.888 0.964 0.988
Analysis 115 0.854 0.975 0.855 0.889 0.978 0.924 0.968 0.974
Backdoor 108 0.837 0.971 0.984 0.991 0.978 0.972 0.976 0.975
Shellcode 71 0.749 0.961 0.992 0.996 0.972 0.973 0.975 0.987
Worms 8 0.702 0.981 0.994 0.996 0.988 0.971 0.986 0.992

TABLE 7 Comparison of inference (testing) time per network flow for all
models.

Model Testing time per network flow (ms)

AE 0.08
OC-SVM 1.10
LOF 0.06
OCSVM-AE 1.13
Deep-SVDD 0.0002
VAE 0.01
LUNAR 0.11

Results are averaged over the testing set of the UNSW-NB15v2 data set.

5 Discussion

Our contribution lies in two parts: (i) the integration of
a geometric modeling signal derived by an OC-SVM into the
anomaly detection pipeline of an AE for identifying novel
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cyber-attacks, and (ii) the semi-supervised optimization of the
OCSVM hyper-parameter, n,, using only benign network traffic
during training and validation.

Regarding the first aspect, while our method may not introduce
architectural innovations to either OCSVMs or AEs, it presents
an important insight for anomaly-based NIDS. Specifically,
incorporating the geometric alignment of data samples relative
to the OCSVM decision boundary, expressed via the decision
function, as an additional input feature enhances the AE’s ability to
learn meaningful patterns of normal traffic. This hybrid approach
enables the AE to discriminate between benign and malicious
patterns with greater precision (Tables5, 6). Our experimental
results support this, especially when the OCSVM’s n,, parameter is
fine-tuned using our proposed index, as shown in Table 5, where
OCSVM-AE (SI) outperforms both AE and OC-SVM baselines
with default settings.

This methodology can be generalized as a modular framework
applicable to other state-of-the-art anomaly detection models
within NIDS. The enhanced feature vector, augmented with
OCSVM decision scores, can be fed into any detection architecture,
not only AEs. For instance, it can be seamlessly integrated with
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more advanced AE variants such as Variational AEs (Kingma et al.,
2013), which model the latent space as a probability distribution
and are capable of capturing more complex patterns. Additionally,
the framework could enhance architectures that directly target
latent space optimization, such as the Shrink AE (Nicolau et al.,
2018), which promotes compact representations by shrinking the
latent distribution into an origin point, or the Memory-Augmented
AE (Gong et al., 2019), which maintains a learnable memory
module to better reconstruct normal patterns while isolating
anomalous behaviors. These directions highlight the flexibility of
the proposed augmentation and its potential to serve as a plug-in
module for a broad class of one-class NIDS models.

Recent advancements in unsupervised clustering provide
promising avenues for further improving anomaly-based NIDS.
For instance, Yang et al. (2024) combine fuzzy clustering with graph
convolutional networks (GCNs) to uncover latent community
structures in attributed graphs, which can help identify coordinated
or stealthy intrusion attempts. Meanwhile, Yang et al. (2025)
introduce a generative Bayesian framework that models graph
topologies and node attributes simultaneously, enabling nuanced
detection of complex attack patterns. Such techniques may
complement our approach, particularly in detecting topological or
behaviorally irregular intrusions.

Additionally, the index proposed for selecting n, serves as a
practical alternative to heuristics that rely on labeled malicious
samples, which are rarely available in operational environments.
Along with the semi-supervised modeling setting assumed in this
study can provide a proposal for realistic deployment scenarios,
where only normal (benign) traffic is available for training due to
the scarcity or sensitivity of labeled attack data. In this context,
our model supports a proactive security system, in which an one-
class anomaly detector flags suspicious activity that can be further
analyzed or validated by a secondary, supervised model or human
analyst. We acknowledge that real-world deployment would
involve additional operational constraints, including scalability,
response latency, and noise in traffic. However, the objective
of this work is to introduce and validate a detection-enhancing
modeling approach, rather than to deliver a production-ready
NIDS prototype. While our model demonstrates promising
performance across diverse attack types, we acknowledge that
the additional computational overhead introduced by combining
OC-SVM and AE stages could present challenges for high-
throughput, low-latency applications. As shown in Table 7, the
average inference time remains under 1.2 ms per flow, which is
reasonable for many use cases (Mhamdi et al., 2020) but may
require further optimization for real-time deployment. However,
since this work is not focused on a real-world deployment scenario,
detailed exploring of hardware-specific memory usage or latency is
considered beyond the current scope and assessing its feasibility for
online-detection remains for future work.

Another critical area for future work involves optimizing the
detection threshold used in AE-based anomaly scoring. While we
used a fixed percentile-based strategy, alternative approaches, such
as extreme value theory (Yang et al., 2021), have shown promise
in the literature for capturing tail Behavior in reconstruction error
distributions. Incorporating such techniques could further refine
the model’s detection capabilities.
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Finally, the benchmark data set used in this study includes
a broad spectrum of attack types (see Table2), in contrast
to works focused on specific threat categories such as DDoS
(Ortega-Fernandez et al., 2024) or botnets (Meidan et al., 2018).
Furthermore, while our model operates on flow-based features,
it could be extended to process packet, level data or temporal
sequences, e.g., via recurrent neural networks or attention-based
models, to capture deeper protocol behaviors and long-term
dependencies in traffic.

6 Conclusions

In this work, we presented a two-step anomaly-based NIDS
that combines a one-class anomaly detection model, OC-SVM,
with deep AEs for classifying network traffic flows as benign
or malicious. The proposed framework takes advantage of the
topological structure of the OC-SVM, expressed through its
decision scores, which are subsequently fed as an additional
feature dimension to the AEs. This integration enhances the
AE’s performance by incorporating valuable information. Our
two-tier approach leverages the strengths of both models: the AE
ability to learn complex data representations and the OC-SVM
effectiveness in isolating anomalies. Experimental evaluation
demonstrates significant performance gains over baseline
models, offering a promising solution for detecting unknown
cyber threats.

All  experiments were conducted on a subset of a
benchmark network data set selected to meet two critical
conditions: (1) ensuring good model performance, and (2)
maintaining a low generalization error. Through empirical
validation, we found that the generalization error of the
AE decreases with data set size, following a power-law with
exponent § = —0.55.

As part of the model selection process, we proposed an effective
semi-supervised heuristic strategy for tuning the OC-SVM trade-
off parameter, n,, which achieved performance comparable to
that of supervised settings. The use of semi-supervised strategies
like this is essential for enabling efficient deployment of one-class
anomaly detection models.

Additionally, we evaluated the model using a benchmark
data set with NetFlow format features, which offers broader
generalization potential. Since this format is standard across
various NIDS datasets and attack types, our results are more
transferable to diverse network environments, facilitating the
deployment in practical settings.

Finally, the model is well-suited for real-world use, as it does
not rely on a predefined set of attack types for training. Instead,
it learns from normal network activity alone, allowing for easier

implementation in real-world cases.
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