& frontiers | Frontiers in Computer Science

® Check for updates

OPEN ACCESS

EDITED BY
Vincenzo Arceri,
University of Parma, Italy

REVIEWED BY

Tarun Kumar Vashishth,

IIMT University, India

Lucila Bento,

Rio de Janeiro State University, Brazil

*CORRESPONDENCE
Maikel Lazaro Pérez Gort
maikel.perezgort@unive.it

RECEIVED 07 June 2025
ACCEPTED 27 October 2025
PUBLISHED 11 November 2025

CITATION
Pérez Gort ML (2025) Input parameters
authentication through dynamic software

watermarking. Front. Comput. Sci. 7:1643075.

doi: 10.3389/fcomp.2025.1643075

COPYRIGHT

© 2025 Pérez Gort. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiersin Computer Science

TYPE Original Research
PUBLISHED 11 November 2025
pol 10.3389/fcomp.2025.1643075

Input parameters authentication
through dynamic software
watermarking

Maikel Lazaro Pérez Gort*

Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice,
Venice, ltaly

Modern civilization relies on computers and the Internet. Web services and
microservices make many processes more accessible, often without users
realizing the extent of their dependency. As digitalization spreads, the integrity
of input parameters used by programmed methods becomes crucial for
generating accurate and reliable outcomes, which are essential for the proper
functioning of society. This paper introduces a dynamic software watermarking
approach designed to validate the authenticity of input parameters in high-level
programming language functions. The proposed approach operates without
interfering with software functionalities and is resilient to code optimization,
obfuscation, and other transformations. The experimental results demonstrate
the robustness of our method, ensuring 100% accuracy in detecting tampering
with parameter values across all test cases.

KEYWORDS

software watermarking, parameter authentication, software verification, dynamic
watermarking, security

1 Introduction

Since the creation of the Internet, the use of web services has steadily increased. Today,
they enable businesses to expand their reach and improve profitability by offering platform
access to customers worldwide. Our reliance on web services has become so ingrained
that users often utilize them without even realizing it. However, this dependence has a
downside: the widespread tendency to accept information from online sources without
questioning its authenticity.

As more services and digital assets are deployed in the cloud, the risks of tampering
increases. Data can be altered and communications intercepted, allowing intruders to
manipulate content or modify parameters passed to web services, which can result in
unauthorized, inaccurate, or misleading information.

Such malicious actions can compromise the authenticity of web service outcomes,
degrade service quality, and damage an organization’s reputation and competitiveness.
The severity of these incidents depends on the organization’s role and responsibilities.
For example, consequences can range from providing incorrect navigation directions to
overlooking critical medical conditions in hospitals, which can potentially lead to life-
threatening consequences. Therefore, ensuring the correct and reliable operation of web
services is always paramount.

A concrete incident that illustrates the risks described above is the Panera Bread case
(April 2018), in which millions of customer records were exposed via an API endpoint.

1 “Panerabread.com Leaks Millions of Customer Records”, KrebsOnSecurity, available at https://

krebsonsecurity.com/2018/04/panerabread-com- leaks-millions- of - customer-records/.

01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1643075
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1643075&domain=pdf&date_stamp=2025-11-11
mailto:maikel.perezgort@unive.it
https://doi.org/10.3389/fcomp.2025.1643075
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1643075/full
https://Panerabread.com
https://krebsonsecurity.com/2018/04/panerabread-com-leaks-millions-of-customer-records/
https://krebsonsecurity.com/2018/04/panerabread-com-leaks-millions-of-customer-records/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pérez Gort

Another example is the Optus data breach (September 2022),
which underscored that an unauthenticated, Internet-facing API,
combined with insufficient parameter handling and authorization,
can permit large-scale data access® *. Beyond individual breaches,
studies of HTTP Parameter Pollution (HPP) show how duplicate
or injected parameters can alter back-end behavior. A large-
scale measurement revealed HPP issues affecting high-profile
sites, including Google, PayPal, and Microsoft (Balduzzi et al,
2011). E-commerce provides further evidence: publicly disclosed
bug bounty reports and practitioner surveys document price
manipulation via parameter tampering in checkout flows (e.g.,
altering amount/discount fields), highlighting the persistence of
business-logic vulnerabilities despite conventional input filtering
and web application firewalls (WAFs).*

An important number of web services are implemented using
high-level programming languages. The primary objective of this
work is to propose an approach for validating the authenticity of
input parameters in high-level programming language functions
that are crucial to web service development, thereby protecting
business processes even when other security measures fail, as prior
cases illustrate. The study performed in this research evaluates
the strengths and limitations of existing solutions and explores
the potential benefits of integrating them. Particular attention
is given to dynamic software watermarking, emphasizing its
adaptability to software runtime behavior, with a focus on the role
of managed data.

This work is guided by three research questions: (i) - Does
the proposed approach detect tampering of input parameters
with a high true-positive rate and low false-positive rate across
representative workloads? (ii) - Does integrating the approach
preserve the functional output of protected functions when the
input parameters are authentic? (iii) - Does integrating the
approach impose a bounded, predictable overhead in code size
and execution time, with runtime scaling linearly in input size
across representative workloads? (iv) - Are authentication decisions
robust to compiler/interpreter optimizations, code obfuscation,
common refactoring, and heterogeneous runtime environments?

With the proposed approach, execution is blocked when
parameters are flagged as non-authentic, thereby preventing
computation on tainted values, even if the function would
otherwise run correctly. The approach is validated through a
Python implementation; however, the solution can be extended
to various environments where processes are implemented using
high-level programming languages. In doing so, the integrity of web
services and microservices can be safeguarded.

2

by Ry Crozier, available at https://www.itnews.com.au/news/optus-to-

“Optus to answer privacy court case stemming from 2022 data breach”,

answer-privacy-court-case-stemming-from-2022-data-breach-619417.
3

Optus”, Office of the Australian Information Commissioner (OAIC), available

"Australian Information Commissioner takes civil penalty action against
at https://www.oaic.gov.au/news/media- centre/australian-information-
commissioner-takes-civil- penalty-action-against-optus.

4

commerce”, Intigriti, available at https://www.intigriti.com/blog/news/top-

"Hunting the 6 most common price manipulation vulnerabilities in e-

6-price-manipulation-vulnerabilities-ecommerce.

Frontiersin Computer Science

02

10.3389/fcomp.2025.1643075

The rest of this paper is organized as follows: Section 2
introduces the preliminaries of software watermarking. Section
3 presents related work as part of potential solutions to address
the stated problem and outlines the leading dynamic software
watermarking techniques proposed so far. Section 4 provides
details of the proposed approach, and Section 5 presents the results
of the experiments conducted to validate it. Section 6 outlines the
added value of our approach, which extends beyond conventional
integrity mechanisms. Finally, Section 7 concludes.

2 Preliminaries

Digital watermarking techniques enable the verification of
ownership, detection of data tampering, validation of content
authenticity, tracing of data copies, and enforcement of licensing
conditions (Vivekananthan et al., 2021). They work by embedding
a watermark into the protected digital asset, also known as the
carrier. The watermark consists of bits, each constituting a mark,
and can store copyright information or be generated from the
content to verify its authenticity.

A watermarking technique consists of two basic processes:
watermark embedding and extraction. Extraction may occur
when there is suspicion of copyright violation, false ownership
claims, data tampering, or whenever required to trace users
violating purchase contracts, also known as traitors. Watermarking
techniques have proven highly effective in protecting various types
of digital assets, including multimedia data (such as images, audio,
or video), relational data, graphs, documents, and software.

2.1 Software watermarking architecture

The architecture defining software watermarking approaches is
characterized by a watermark W embedded into a program P in
such a way that W can be reliably located and extracted from P,
even after P has undergone semantics-preserving transformations
such as code optimization and obfuscation. The watermark W
should be stealthy, have a high data rate, and not affect the
performance of P. Additionally, it must be demonstrated that the
presence of W in P is a result of deliberate actions (Collberg and
Thomborson, 1998; Thomborson et al., 2004).

The software watermarking architecture is driven by the
implementation of the embedding and extraction functions,
denoted as Z(-) and £(-), respectively.” The embedding is featured
by P’ = Z(W, P, k), where Z(-) inputs are the watermark W, the
program P, and the program’s owner cryptography secret key k. As
a result, the watermarked version of the program, denoted as P, is
obtained. The extraction function, on the other hand, is featured
by W' = E(P', k), where W’ is the watermark extracted from P’
For the final assertion, ownership or lack of tampering is proven if
both watermarks are similar enough, according to W = W’. The
operator = considers inconsistencies in detection due to benign
operations or attacks that do not impact software performance or
the watermark recognition.

5 Some techniques define the watermark encoder and decoder, to build W

before its embedding and after its extraction, respectively (Bento et al., 2019).

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1643075
https://www.itnews.com.au/news/optus-to-answer-privacy-court-case-stemming-from-2022-data-breach-619417
https://www.itnews.com.au/news/optus-to-answer-privacy-court-case-stemming-from-2022-data-breach-619417
https://www.oaic.gov.au/news/media-centre/australian-information-commissioner-takes-civil-penalty-action-against-optus
https://www.oaic.gov.au/news/media-centre/australian-information-commissioner-takes-civil-penalty-action-against-optus
https://www.intigriti.com/blog/news/top-6-price-manipulation-vulnerabilities-ecommerce
https://www.intigriti.com/blog/news/top-6-price-manipulation-vulnerabilities-ecommerce
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pérez Gort

TABLE 1 Main differences between dynamic and static software
watermarking.

Criterion Static watermarking Dynamic
watermarking
Embedding Watermark embedded into Watermark embedded during
static components (code or runtime, based on the
binaries) at design/compile application’s state or inputs.
time.
Tied to No, the watermark exists Yes, they rely on the software
execution independently of runtime. running to produce or verify
the watermark.

2.2 Static and dynamic approaches

Software watermarking techniques can be classified into two
categories: static and dynamic. Static techniques embed the
watermark directly into the software’s static artifacts, such as
its source code, compiled binary, data files, or the application
executable itself. There, the watermark remains as part of the
software regardless of whether it is running or not. On the other
hand, dynamic watermarking techniques store the watermark in
the program execution state (Wu et al., 2024). Dynamic watermarks
can be processed, verified, or executed during the runtime of
the software or application. They are tied to the behavior or
state of the application as it operates (Pieprzyk, 1999; Dey et al,
2019). Table 1 resumes the differences between dynamic and static
software watermarking.

According to Collberg and Thomborson (1998), there are three
types of dynamic software watermarking approaches: (i) Easter egg
watermarking, (ii) data structure watermarking, and (iii) execution
trace watermarking. Easter egg watermarking is based on activating
a code fragment when the application is run using an unusual
input. As a result, the software performs an action immediately
perceptible to its users, such as displaying a copyright message,
which makes the watermark’s presence evident. On the other hand,
data structure approaches are based on embedding the watermark
in a specific program state, which is obtained when a particular
input sequence is used. In this approach, the watermark is extracted
by examining the current values of the variables after the input
sequence has ended. The extraction can be done using a dedicated
watermark extraction routine linked to the executing program
or by running the program under a debugger. Given that no
output is ever produced, it is not evident to an adversary when
the special input sequence has been entered. Finally, execution
trace approaches embed the watermark into instructions and/or
addresses, as the program is run with a particular input. In that case,
the watermark is extracted by monitoring (statistical) properties of
the address trace and/or the sequence of operators executed.

This research aligns with dynamic software watermarking,
particularly dynamic data structure watermarking, as it proposes
an approach that generates and validates watermarks as part
of the software’s runtime behavior to verify the authenticity of
input parameters for functions. Since static watermarking requires
embedding the watermark in the source code or compiled software
itself, which does not contribute to solving the targeted problem, it
is excluded from this work.

Frontiersin Computer Science

10.3389/fcomp.2025.1643075

2.3 Watermarking requirements

When designing a software watermarking approach, certain
conditions must be fulfilled, regardless of whether the technique is
static or dynamic. As previously mentioned, the watermark W must
be embedded into the program P, ensuring its detectability despite
benign operations such as code optimization and obfuscation.
Besides detectability, other requirements must be fulfilled, such
as stealthiness and a high data rate (Ma et al., 2019). These are
all requirements that work in favor of the watermarking tradeoft
between data rate (or capacity), robustness, and stealthiness (or
imperceptibility) (Cox et al., 2007; Pérez Gort et al., 2021). It is
paramount to avoid collusion with the program performance by
ensuring that the watermark does not alter its size or significantly
impact its execution time (Alitavoli et al., 2013; Kumar et al., 2015).

In addition to the above requirements, this research also
considers the blindness property, which applies broadly to
watermarking irrespective of the protected digital asset. A
watermarking technique is blind if the watermark extraction does
not require access to either the original (unwatermarked) content
or the watermark payload itself (Halder et al., 2010; Pérez Gort et al.,
2017). Techniques lacking this property are non-blind. Ensuring
blindness reduces the risk of unauthorized detection or removal,
because the detector does not need to store or transmit the original
content or embedding materials, thereby lowering the likelihood of
sensitive information leakage.

2.4 Adversary model

Despite the requirements, watermarking techniques must
guarantee resilience against attacks aiming at removing the
watermark to allow adversaries to claim software ownership or
perform tampering without being noticed. According to the related
literature, some of the more relevant attacks are Myles and Collberg
(2006) and Dalla Preda and Ianni (2024):

e Subtractive attacks: Based on subtracting the watermark

protected
its performance.

e Distortive attacks: Based on distorting the software to

from the software without compromising

compromise the watermark detection before affecting the
software functionality.

o Additive attacks: Based on inserting a secondary watermark
owned by the adversary, expecting to totally or partially

overwrite the original watermark, compromising its
recognition or making it impossible to prove its
temporal precedence.

Other attacks have been defined as particular implementations
or extensions of the previously mentioned ones (Dey et al., 2020).
For example, local modification attacks modify the code similarly
to how watermark insertion is performed. Thus, it can be defined
as a refined version of a distortive attack. The code reordering
attack modifies the code by reordering large independent pieces
of it. The code addition attack works by adding a piece of code
to the program that should either not be executed or do nothing,

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1643075
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pérez Gort

thereby preserving the program’s functionality. Additionally, the
code decompilation attack involves decompiling and recompiling
the code. In contrast, the code compression attack modifies the
code using compression tools, reducing the code size and adding
a decompression routine to it (Stern et al., 2000).

Other attacks are more focused on targeting the engines used
for watermark identification. This is the case of the recognition
attack, focused on modifying or disabling the watermark detector
to obtain misleading results (Chroni and Nikolopoulos, 2011).
There is also the protocol attack, which describes cases where the
owner lacks complete security over the choice of the recognition (or
extraction) engine and the secret keys involved in the watermark
synchronization.® In such cases, the adversary can proceed by
using a fake secret key that purports to prove the existence of his
watermark in the unmodified program using the program owner’s
recognition function (Collberg et al., 2007).

Some attacks focus on the type of watermarks. For example,
fingerprinting approaches, which mark different copies of the same
asset with distinct watermarks, must be resilient to collusion attacks.
They are based on combining non-intersecting parts of different
copies of the same digital asset, to make it impossible to recognize
any of the watermarks embedded in each copy (Dalla Preda and
Pasqua, 2019).

Increased resilience to attacks can be achieved by increasing
watermark capacity. However, this can compromise its
imperceptibility and provoke he technique to interfere with the
software’s correct functioning. No single technique can guarantee
robustness to all attacks. Instead, better results can be obtained
by combining different security approaches simultaneously
(Bender et al., 1996; Collberg and Thomborson, 1998). Regarding
watermarking, the best possible results can be achieved by creating
a technique that can withstand the attacks expected in the scenario
in which it will be used.

3 Related work

The first software watermarking technique was a static
approach based on an algorithm that encoded the watermark by
reordering the program’s basic blocks (Davidson and Myhrvold,
1996). Since then, several static and dynamic techniques have been
proposed, increasing both the complexity and diversity in the
field (Hamilton and Danicic, 2010). The first dynamic approach
was proposed by Collberg and Thomborson (1998), and was later
followed by other methods based on similar principles. Examples
include the proposal by Palsberg et al. (2000), which embeds
the watermark into dynamic data structures, and the technique
by Pieprzyk (1999), which focuses on copyright protection for
classified software identities using fingerprinting. Another proposal
by Palsberg et al. (2000) aims to protect Java programs with
minimal changes in code size and execution time while offering
substantial robustness against subtractive, distortive, and additive
attacks. Collberg et al. (2004b) introduced a graph-based dynamic
watermarking architecture called UWStego. In their work, the

6 Watermark synchronization refers to both the embedding and extraction

processes together (Pérez Gort et al., 2020).

Frontiersin Computer Science

10.3389/fcomp.2025.1643075

authors also presented several metrics to evaluate the effectiveness
of various watermarking techniques.

Curran et al. (2004) addressed the practical implications of
graph-based dynamic watermarking, with a primary focus on
stealth. Tamada et al. (2004) proposed a dynamic approach for
detecting the theft of Windows applications, showcasing strong
resilience to various attacks. Collberg et al. (2004a) introduced a
dynamic path-based method that embeds the watermark in the
program’s runtime branch structure. Thomborson et al. (2004)
developed a tamper-proofing technique called constant encoding,
which embeds the watermark into dynamic data structures.
Chiru (2005) proposed a dynamic method that watermarks
programs by slightly altering their numeric outputs, focusing
on intellectual property protection and ownership proof. Myles
and Jin (2005) combined code obfuscation with tamper detection
to trace the source of illegal redistribution, also enabling pre-
packaged, fingerprinted software distribution tied to individual
users. Madou et al. (2005) analyzed potential attacks on path-based
watermarking, using the proposal by Collberg et al. (2004a) as a
case study. Myles and Collberg (2006) explored watermarking Java
programs through the use of opaque predicates and reported on
both static and dynamic techniques implemented in the Sandmark
framework (Collberg et al., 2003).

The variety of techniques highlights the diversity of the field.
For instance, Dalla Preda et al. (2008) proposed a method that hides
the watermark using semantic instances within loop structures.
Techniques by Chan et al. (2012) and Tian et al. (2015) leverage
software birthmarks-unique program characteristics—for detecting
software plagiarism. Other approaches, such as that by Ma et al.
(2015), utilize return-oriented programming to embed watermarks
in the data region, thereby avoiding code-analysis-based attacks.
Chen et al. (2017, 2018) focused on strengthening the connection
between the watermark and the program’s semantics, addressing a
common weakness in many techniques.

Some proposals are defined as chaos-based approaches. For
example, Ke-xin et al. (2009) used chaotic encryption to split the
watermark using the Shamir threshold scheme (Desmedt, 2025),
which allows watermark recovery from partial information and
enhances resilience. citechionis2013dynamic combined opaque
predicates with graph theory to increase complexity. Alrehily and
Thayananthan (2018) proposed a return-oriented programming
technique based on gadget analysis, using their categories and
quantity as central research elements. Wang et al. (2018) introduced
an approach that exploits exception handling-a common but
difficult-to-remove component of software—to resist additive and
subtractive attacks.

Despite the wide variety, most dynamic techniques fall into two
main categories: (i) path-based and (ii) graph-based approaches.
Notable examples of path-based techniques include those by Gupta
and Pieprzyk (2006, 2007). Graph-based techniques are more
numerous, including proposals by Patel and Pattewar (2014),
Chionis et al. (2014), and Chen et al. (2016).

Today, the boundaries of software watermarking have
significantly expanded, with new goals and applications. For
instance, Lee et al. (2023) proposed a technique to identify code
generated by machine learning models, and Kim et al. (2023)
developed a method for ownership protection of smart contracts.
Nevertheless, despite the range of problems addressed by dynamic

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1643075
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pérez Gort

watermarking, no technique has yet been proposed to verify the
authenticity of input parameters.

4 Proposed approach

The technique proposed in this work does not rely on
modifying the source code or binary files of the software to embed
the watermark. Instead, it leverages the dynamic structures created
by the software when it is executed to synchronize the watermark
and verify the authenticity of the parameters received as input by
the program’s functions. Details about the approach are presented
in this section.

4.1 Architecture of data structure
approaches

Dynamic data structure watermarking requires setting up the
program in a way that allows specific values representing the
watermark to be computed at runtime. These computations are
triggered only under specific execution conditions, such as certain
inputs or execution paths. The watermark is encoded into the
control or data flow, which often requires the insertion of new
functions or procedures, additional data structures, or conditional
logic to hide and trigger watermark behavior. Although the
watermark is revealed dynamically during execution, setting up
that watermark requires injecting code. This can be improved if the
injected code is done in a stealthy or obfuscated manner. Generally,
the modifications made to the program code are non-trivial, as they
are designed to be challenging to detect and remove. Considering
this, a general description of the architecture of data structure
dynamic software watermarking techniques is depicted in Figure 1.

In Figure 1, P represents the program acting as a carrier. Inside
P, the block named “Watermark Encoding” represents the scattered
code injected and obfuscated to build W after a particular set of
inputs I is given to the program. Notice that in this case, we model
the secret key k as part of I, which is not necessarily always the case.

After P is executed, the Controller, considered an external
application, accesses the memory and tries to detect W from it.
Finally, a secret code computed using the detected watermark is
compared with the one expected to be generated for the correct

10.3389/fcomp.2025.1643075

input, and a final assessment is provided regarding the integrity and
authenticity of I.

4.2 Architecture of the parameters
authentication approach

The architecture of the approach proposed in this work is
built based on dynamic data structure watermarking. In this case,
the Controller is embedded in the program P as scattered and
obfuscated code. Since the main goal is to validate I for the function
F, P can be stored and deployed in a more secure environment.
Nevertheless, this is not a requirement.

The logic of the Controller is placed between the “Watermark
Encoding” logic and F execution. After an outcome is obtained,
if the secret code built with the detected watermark matches the
expected value (i.e., the parameters are considered authentic), the
process flow is given to F with the input set I. This call is denoted F'.
On the contrary, if the parameters are considered non-authentic,
alternative processing is performed, either by ignoring F call or by
passing other parameters to it to indicate the required alternative
processing. This stage for F calling is defined as F?. The entire
architecture of this approach is depicted in Figure 2.

4.3 Watermark construction

In this work, the watermark is built based on the principles
introduced in Collberg and Thomborson (1998). Based on the
premise that W is a set of mathematical structures, and p a predicate
such as Vw € W:p(w), we need to choose p and W such that
the probability of p(x) for a random x ¢ W is small. Thus, p is
typical for W, but atypical outside of it. An example to illustrate the
selection of W and p is considering W to be the set of even numbers
from 1 to 100 (formally, W = {x € 7|1 <x <100 Axmod2 =
0}), and p(x) the predicate “x is divisible by 2”. Considering that,
after picking a random value x € {1,...,100}, if x is odd, p(x) is
false. Thus, p is rare outside W.

memory |

Controller

Iy

Watermark Encoding

___f_

FIGURE 1
General architecture of data structure dynamic software
watermarking techniques.

memory

k
!
Y |
|
Watermark Encoding |

|
|
P |
w |
oGl
|
>
Controller ""'"Jl/— :

FIGURE 2
Architecture of the input parameters authentication approach.

Frontiersin Computer Science

05

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1643075
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pérez Gort

Although W can be embedded in the topology of any data
structure built dynamically in the memory, graphs are particularly a
good choice, considering that code that manipulates dynamic graph
structures is hard to analyze due to pointer aliasing effects. Due to
this, semantics-preserving transformations that make fundamental
changes to a graph are more complex to construct (Collberg and
Thomborson, 1999).

One of the advantages of targeting high-level programming
languages is that there is high coverage to pass values in I
that will contribute to the creation of W. Every object can be
dynamically created and stored on the heap, and references can
be used to develop pointer-like structures. The defined references
can be traversed similarly in a graph or another structure storing
a different representation of a predefined graph, such as a linked
list. This work applies steganography principles to hide in I the
values that will trigger the dynamic construction of W. Formally,
I is composed of a set of input parameters i;: | € [0, |I]), along with
the secret key k.

4.4 Development of the parameter
authentication approach

The construction of the proposed approach requires adjusting
to the highest possible level of abstraction, resorting to using
references and objects instead of raw pointers and memory,
utilizing custom classes to simulate nodes and graphs, among
other strategies. All watermarking functionalities embedded into
the program must be integrated and dispersed throughout the main
logic of the code. Further robustness can be added by obfuscating
the code. Nevertheless, higher resilience must be focused on the
data structure in memory that stores the watermark.

The parameter authentication approach uses the watermark to
verify the authenticity of input parameters, essentially treating the
watermark as a covert integrity check. It utilizes a hidden heap-
based watermark graph that is only constructed when the program
receives the correct input parameters. Later, the program can: (i)
decode the watermark at runtime, (ii) verify that the decoded value
matches the expected ones, and (iii) proceed only if the input is
considered authentic due to the triggering of the correct watermark.

An important feature of the watermark encoding is the addition
of fake values into I. They are called “fake”, considering that they
do not originally belong to I but are introduced to support the
construction of the watermark. If these values are not contained in
the set of parameters, the instance of I is reported as non-authentic,
considering that the correct watermark cannot be reconstructed.
The fake values constitute watermark hints, which are initially
computed from the binary notation of a secret integer code ¢
(denoted by ¢») that represents the watermark in numeric format.
Next, ¢, is used to build IT, which is scattered into I using the
secret key k to guarantee the synchronization whenever extraction
is required. Finally, when the program receives the parameters, the
fake values are extracted from I to rebuild IT and get the code
for checking the authenticity of I by building the watermark and
comparing it with the original one.

There are different alternatives to synchronize the watermark
hints IT in I. The most appropriate choice depends on the data types

Frontiersin Computer Science

10.3389/fcomp.2025.1643075

present in I and the design priorities of the system architecture.
Priorities can focus on making hints unnoticeable or ensuring their
preservation despite updates to parameter values, which in fact
transitions from steganography to watermarking principles (Katz
et al., 1996; Bardn et al., 2001). Nevertheless, our proposal focuses
on making the presence of hints unnoticeable, since any change
made to the input parameters must compromise the hints so that
tampering can be detected. Some of the alternatives to implement
the hints synchronization are: (i) positional (index-based) encoding
(Katzenbeisser and Petitcolas, 2016), (i) value modification based
on less significant bit (Isb) encoding (Cox et al., 2008), (iii) spread
spectrum embedding (Barni et al., 2001), (iv) statistical property
encoding (Sion et al., 2003), and (v) redundant data slot (Provos
and Honeyman, 2003).

We use the case of a function receiving an array of integers
to model and validate our approach. We implement the hints
synchronization using Isb encoding based on difference expansion
(Gupta and Pieprzyk, 2009). This approach guarantees high
capability for the hints encoding as well as reversibility, which
ensures that once the hints are extracted, the parameters are
restored to their original values. Consequently, if the parameters
are considered authentic, the function can proceed to compute
an authentic result that is not affected by the presence of the
watermarking mechanism.

A more detailed description of the approach is provided below,
outlining the procedures that define the watermark encoding and
the controller. Algorithm 1 defines the watermark encoding, using
as input the secret key k, the input set I, and the length of the
secret code’s binary notation ¢ (denoted by 7). First, it uses k
to compute a seed utilizing a pseudo-random number generator
implemented by the function PRNG(-) (see line 1). Then, the seed
is used by the function KEYED_PERMUTATION(:) to produce a
permutation of the [|I|/2] disjoint pairs in I, which determines
the pair order for difference expansion (see line 2). The function
returns the keyed deterministic permutation index list P = {p; €
770 < i < ||I|/2]}. The permutation is reproducible for the
same inputs to KEYED_PERMUTATION(-), unpredictable without
the seed, and aligns with deterministic pseudorandom function
(PRF)-driven derivations in cryptographic standards (Barker and
Kelsey, 2012; Pornin, 2013).

After obtaining the permutation index list P, we proceed with
the detection and extraction of the hints from I to assemble IT.
This is done by the function HINTS_DETECTION(-) that takes as
input I, and PP (see line 3). Notice that for the synchronization
to be successful, the same permutation had to be used to embed

Input: k, I, n
seed < PRNG(k)
2 P < KEYED_PERMUTATION(seed,||I]/2])

—

3 I1 < HINTS_DETECTION(I, P)

4 ¢p < CODE_BUILDER(IT, 5, k, P)
5 (¢ < BASE_CONVERT({p, 2—6)
6 Ny < ENCODE_WATERMARK ()

Algorithm 1. Watermark encoding procedure.

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1643075
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pérez Gort
Input: I, P
Output: I
v II[LI1/2]] =0
2 foreach p € P do
3 X < I[2p]
4 y <« I[2p+1]

«

bp < (x—y) mod 2
set (p, bp) to I

o

return I1

N

Algorithm 2. HINTS_DETECTION FUNCTION.

the hints into I. Nevertheless, as previously mentioned, as long as
KEYED_PERMUTATION(-) is used with the same parameter values,
this is guaranteed.

Algorithm 2 breaks down the logic of HINTS_DETECTION(:).
It takes as input the parameters described above and returns an
ordered hint set as IT. The operations depicted in this algorithm
correspond to the extraction of bits based on the difference
expansion method. Therefore, an even number of items is required
in I. Thus, if an odd number of values is contained in I, one
parameter is not involved in the synchronization.

First, I1 is allocated as an array of ||I|/2] bits with all entries
initialized to 0 (see line 1). The number of elements in IT is defined
by |I|, which denotes the cardinality of I. The symbols |-| denote
the floor function, used in case I is composed of an odd number
of elements. P is utilized to partition I into adjacent pairs (x, y) =
(Izp, I2p+1) (see lines 3 and 4). Scanning pairs in this order, we read
the bit embedded by difference expansion and store it into b, (see
line 5).” Finally, the bit b, obtained for the current pair of values is
added to the position indexed by p in IT (see line 6).

After obtaining IT, line 4 of Algorithm I computes ¢, using
the function CODE_BUILDER(-) that takes as input I, n, k and
P. Considering this approach is symmetric, the key supplied to
CODE_BUILDER(-) must match the key used when encoding the
watermark hints in I. Algorithm 3 breaks down CODE_BUILDER(-),
which assembles its output by mapping each index in P to a target
position in ¢ via a keyed, uniform index function, defined as
KEYED_INDEX(-) (see lines 5 to 7). First, the binary arrays ¢,, ones,
and zeros, each of length n, are initialized with 0 (see lines 1
to 3). The arrays ones and zeros are used to check if, for the
same position in ¢, different bit values are identified in IT, which
basically means data tampering is being performed in I. The bit
targeted in IT can be obtained after knowing its index, which is
extracted from P (see lines 5 and 7). Depending on the value of the
bit selected from the p—th position in I, the variables ones and
zeros (counting the number of bits with 1 and 0 values for the
matching position j, respectively) are incremented by one (see lines
8 to 11). Once all indices from PP are considered, the consistency
checking of the values detected for each position in ¢, proceeds (see
lines 12 to 21).

7 More details about the way difference expansion works are given in Tian
(2003) and Gupta and Pieprzyk (2009).

Frontiersin Computer Science

10.3389/fcomp.2025.1643075

Input: I, n, k, P
Output : 7
1 oln]l <0

S}

ones[n] < 0@

w

zeros[n] < 0@
4 BI_LAB « "KBit|v1”
5 for 1 < 0 to |P|-1 do
6 p«P[i]

7 j < KEYED_INDEX(p, n, k)

8 if[1[p] = 1 then

9 L ones[j] < ones[j]+1
10 else

11 L zeros[j] < zeros[j]+1

12 for j <0 to n—1 do

13 0 < ones|[j]

14 7z < zeros[j]

15 if (0>0) and (z=0) then

16 ‘ olj] <1

17 elseif (z>0) and (0=0) then

18 ‘ oljl <o

19 else

20 msg < BI_LAB | “|chaos|j="|j Il “lo=" o |
“lz=" 1z

21 ¢ [j] < KeYED_BIT(K,mSQ) // discrepancy =

keyed chaos

N

2 return (o

Algorithm 3. CODE_BUILDER FUNCTION.

Consistency at position j is established by inspecting the tallies
in ones and zeros for that index. If ones[j] > 0 and
zeros[j]l = 0, we set &[j] < 1 (see lines 15 and 16); if
zeros[j] > 0 and onesJj] = 0, we set £3[j] < 0 (see lines 17
and 18). Otherwise, either no votes (ones|[j] = zeros|j] = 0)
or a discrepancy (ones[j] > 0 A zeros[j] > 0), we treat the
event as potential tampering and resolve it with a keyed tie-breaker
KEYED_BIT(-) (see lines 20 and 21). This yields a deterministic, key-
scoped bit that prevents chance agreement on manipulated inputs
while remaining reproducible during verification. The generative
key-based routines KEYED_PERMUTATION(-), KEYED_INDEX(-),
and KEYED_BIT(-) are described in Section 4.5.

After the function CODE_BUILDER returns ¢, the code is
represented in base-6 notation (denoted by) by a simple base
change operation performed by the function BASE_CONVERT(-)
(see line 5 of Algorithm 1). Next, the graph representing the
watermark is generated by the function ENCODE_WATERMARK(-)
taking as input g (see line 6).

The generation of the watermark is based on the graph
representation of base-6 numbers presented in Collberg and
Thomborson (1999). Algorithm 4 details the construction of the
graph G from . For this, (s is treated as an array of i elements.
The algorithm receives {s (which can also be used to obtain),
and returns the head node Ny of a circular list representing the
graph. The watermark construction works by building a circular

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1643075
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pérez Gort

Input: g, p < |[¢6l

Output: Np

-

Ny < Node(next, digit), Vre{0,1,..., u—1}
2 for r<- 0 to u—1 do
3 L Nr.next <_N(/’+1)m0d/1

4 for r<0 to u—1 do

5 if ¢¢[r] =0 then

6 ‘ Nr.digit <~ null

7 else

8 t< (r+¢lrl—1)modpn
L Ny .digit < Nt

10 return Ny

Algorithm 4. ENCODE_WATERMARK FUNCTION.

singly linked list of 1+ nodes Ny, ..., N, _1, where each node has
two pointer fields: next and digit. The next field forms a ring,
according to N;.neXt = Niiiymody Withr € ZT|0 < r <
w — 1. The watermark is encoded solely by the digit pointers:
if Z6[r] = 0 then N,.digit = null; otherwise N,.digit =
N(r+¢4[r1—1) mod .- Intuitively, the digit is the forward offset along
the ring: 1 = self, 2 = next, 3 = next-next, and so on (with modulo
wrap-around); 0 is indicated by the absence of a pointer.

In the algorithm, all nodes are allocated with fields next,
digit (see line 1). Next, the circular link between the nodes is
created (see lines 2 and 3). Then, the values of the d1git pointers
are computed and assigned to each node depending on each value
stored in each position of {s, according to the criteria previously
described (see lines 4 to 9). Finally, the head node of the structure
representing the watermark is returned (see line 10).

The entire watermark graph can be traversed from any head
node. Given access to the first node, the decoder assumes the
structure matches the circular list described above. Algorithm 5
describes the function DECODE_WATERMARK(:), used for the
decodification. It takes as input a head node, denoted as N(/)
(assumed to be the entry of the graph) and the length p of the
code expected to be extracted from the identified watermark. First,
the function creates and initializes s as an array of u items (see
line 1). Then, it sets Ng < N (see line 2). Next, it proceeds to
create the circular list used to represent the graph. This is done by
following next pointers for p steps to collect the nodes in order
from Ng to N, (see lines 3 and 4). It is important to notice that the
selection of N, only rotates the sequence and thus does not affect
the recovered digits.

Next, the algorithm proceeds to decode each digit locally. For
the position r, if N,.d1git = null then ¢g[r] < 0 (see lines
6 and 7). Otherwise, it starts at N, and advances along next,
counting steps s until the digit target is reached, and returns
Lelr] < s+1 (so 1 = self, 2 = next, 3 = next-next, etc.) (see lines 9
to 17). The algorithm also uses a guard s > p that flags an invalid
structure (e.g., broken ring or unreachable digit) and prevents
non-termination (see lines 15 and 16). Finally, after considering
all nodes, if no error is reported, the recovered ¢4 is returned (see
line 18).

Frontiersin Computer Science

10.3389/fcomp.2025.1643075

Input: Ny, p
Output . g
1 slu] <0
2 Ng < N,
3 for t< 1 to u—1 do
4 L Nt <= N¢_q .next

5 for r< 0 to u—1 do

6 if Nr.digit=null then

7 ‘ telr] <0

8 else

9 S« 0

10 N < N

11 repeat

12 N« N.next

13 S « s+1

14 until N:Nr.digit or S>pu

15 if s> u then

16 error “invalid structure (unreachable
digit)”

17 Zelr] < s+1

18 return g

Algorithm 5. DECODE_WATERMARK FUNCTION.

Algorithm 6 defines the process executed by the Controller.
It takes as input the assumed initial node Nj from which
the watermark is accessed, and the code ¢, which is used
for comparison in assessing the authenticity of the parameters.
According to the methods previously described to build IT from I,
¢ is obtained and passed to the Controller based on blind principles,
without requiring the original set of parameters, which would
increase the risk of exposure of the protected content, offering
unnecessary opportunities to malicious actors of intercept the data
and compromise our approach’s performance, and therefore, the
security it provides. Nevertheless, ¢ can be obtained from P or a
second program deployed in the environment. Static watermarking
techniques can be used to store ¢ in P if required.

As depicted in Algorithm 6, the Controller starts by converting
¢ into ¢ in order to obtain p, which is required to build the code
from the watermark (see lines 1 and 2). Next, using the function
DECODE_WATERMARK(+), it proceeds to decode the watermark
from the node Nj (see line 3). Then, it converts Ce into £, which
is the alleged secret code in decimal notation (see line 4). Finally, if
¢ = Z, the authenticity of the parameters is verified and the process
informs P that there is no risk in executing F with I (as previously
defined, F') (see lines 5 and 6). On the other hand, if ¢ # Z‘ , the
alternative flow is invoked to address the lack of authenticity in the
parameters. Therefore, the Controller instruct P for the execution of
F? instead (see lines 7 and 8). Calling F? does not necessarily mean
the execution of the function. It can also refer to the execution of an
alternative logic in P. Since the Controller instructs P and does not
pass parameters to it directly, I is not considered among the inputs
of Algorithm 6.

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1643075
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pérez Gort

Input: Ny, ¢
1 {s < BASE_CONVERT(¢, 10—6)
2 < |l
3 s < DECODE_WATERMARK (N, 1)
4 [< BASE_CONVERT(Zg, 6—10)
5 if ¢ = ¢ then
6 L RESUME P CALL TO F WITH I
7 else

8 L RESUME P CALL USING ALTERNATIVE FLOW

Algorithm 6. Controller procedure.

It is important to note that watermark encoding and detection
occur during program execution. Furthermore, the combination
of static and dynamic approaches can increase resilience to
our proposal. The parameter authentication approach has some
features that contribute to its success. The input is never directly
compared to a plain value in P. No visible hash or key is checked;
only graph logic is used. Operations such as reverse engineering
become more challenging, especially when the node structure is
obfuscated and the watermark construction is triggered only under
certain conditions.

This solution can be applied to tamper detection, where
any modification of the input parameters renders the detected
watermark invalid. Furthermore, since cryptographic hash
functions are computationally efficient, this approach requires
minimal computational resources. Finally, metadata for additional
validation, such as timestamps or user IDs, can be considered when
building W, thereby increasing the meaningfulness and robustness

of the proposal.

4.5 Applied generative key-based functions

Three critical functions are essential for the correct
functioning of the parameter authentication approach. They are
KEYED_PERMUTATION(-), KEYED_INDEX(-), and KEYED_BIT(-).
Although their goal is briefly mentioned when presenting the
approach, this section describes them in more detail.

4.5.1 The KevED_PERMUTATION function

The first generative key-based function,
KEYED_PERMUTATION(-), is used to synchronize the watermark
hints in I. It takes as input a Seed and an even integer n = ||I|/2],
and produces a keyed permutation of index pairs in I for the
difference expansion. The output is the deterministic permutation
index list I, as previously formalized. Its essential properties are
reproducibility for identical parameters, unpredictability without
the seed, and consistency with PRF-driven derivations.

Algorithm 7 specifies the procedure for
KEYED_PERMUTATION(-). Its inputs are a secret seed, a
pair-count #, and an optional context string CtX for domain
separation. If CtX is omitted, a default value is used. The function

initializes P as the identity ordering [0,1,...,n—1] (line 1) and

Frontiersin Computer Science

10.3389/fcomp.2025.1643075

Input: seed, n, ctx < “KPerm|v1”
Output: P

1P« [0,1,...,n=1]

2 for 1 < n-1 to 1 do

3 label < “perm|” |fctx || “[i=" 1| "

4 dig < HMAC-SHA256(seed, label)

5 r < first 64 bits of dig

le="1c

6 m<« 141

7 L <264 — (2% modm)

8 while > L do

9 Cc <« Cc+1

10 L recompute r as above

11 rejection sampling j < rmodm

12 swap P[i], P[j]
13 Cc <« c+1

4 return P

—

Algorithm 7. KEYED_PERMUTATION FUNCTION

applies the Durstenfeld/Knuth Fisher-Yates shuffle from i = n—1
down to 1 (line 2). At each iteration, it derives a swap index
j € 0,...,i via a keyed PRF. Specifically, it builds a domain-
separated label from Cctx and loop metadata (i,c) (see line 3),
computes a hash-based message authentication code (HMAC)
using the cryptographic hash function SHA-256 (see line 4),
extracts the first 64 bits as an integer r (see line 5), and maps r
uniformly to [0, i] via rejection sampling with modulus m = i+1
and cutoff L = 2% — (2°* mod m) (see lines 6 and 7). If r > L, the
counter c is incremented and r re-derived until valid (see lines 8 to
10). The swap index is then set as j = r mod m (line 11), and IP[i]
is exchanged with PP[j] (see line 12). The counter ¢ advances once
per iteration to decorrelate labels (see line 13).

Under standard assumptions, HMAC behaves as a secure
PRF (Bellare et al, 1996; Krawczyk et al, 1997), making the
derived swap indices computationally indistinguishable from
independent uniform draws. Since the Fisher-Yates shuffle with
uniform choices produces the uniform distribution over all n!
permutations (Durstenfeld, 1964; Knuth, 1997), this construction
yields an unbiased, key-dependent permutation. The use of a
context string for domain separation follows established practice
in the HMAC-based Key Derivation Function (HKDF), where the
info field binds outputs to application-specific context (Krawczyk
and Eronen, 2010). Finally, rejection sampling guarantees provably
uniform bounded integers with efficient implementation (Lemire,
2019).

4.5.2 The kevep_INDex function

Another critical function in this work is KEYED_INDEX(:),
invoked by CODE_BUILDER(-) to determine the target index in &,
for a given position p in P, the length 1 of ¢;, and the secret key
k (see line 7 of Algorithm 3). Algorithm 8 specifies its procedure.
The function deterministically maps a host index p to a uniform
position 1dX € [0,7) using k. Assuming HMAC is a secure PRE,
the output is reproducible for identical inputs yet computationally

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1643075
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pérez Gort

Input: p, 5, k
Output: idx
1 limit « 2% — (254 mod 5)
2 Cc<«0
3 BI_LAB « “KInd|v1”
4 repeat
5 msg < BI_LAB | "="lpll “="l¢
6 Dp,c < HMAC—SHA256 (k, msg)
7 r < first 64 bits of Dp,c
8 C <« Cc+1

until r < 1imit

©

10 return 1dx < (rmodn)

Algorithm 8. KEYED_INDEX FUNCTION.

indistinguishable from a uniform draw without knowledge of
k (Bellare et al., 1996; Krawczyk et al, 1997). Uniformity is
enforced via rejection sampling to eliminate modulo bias when
reducing a 64-bit value to a smaller range (Lemire, 2019). Domain
separation is achieved by combining a fixed label (BI_LAB), p,
and a counter ¢ into the HMAC input, in the spirit of HKDF’s
info field (Krawczyk and Eronen, 2010). This primitive supports
keyed scan orders, ring-head selection, and decoy placement, where
indices must be reproducible but unpredictable.

In detail, Algorithm 8 begins by computing the cutoff
limit = 2% —
indices through rejection sampling, as
KEYED_PERMUTATION(-). It then initializes the counter ¢
and the fixed domain label BI_LAB (see lines 2 and 3). Each
iteration constructs a message msg, computes an HMAC-SHA256

(2% mod n) (see line 1), ensuring unbiased
also applied in

digest Dy using msg and k, and interprets the first 64 bits as an
integer r (see lines 5 to 7). The counter c is incremented until
avalid r < 1imit is obtained (see lines 8 and 9). Finally, the
algorithm outputs 1dX <« r mod 7 (see line 10). In this way, each
position p in a permutation is deterministically associated with a
particular index in &,.

4.5.3 The keveo_sIT function

The final keyed PRF in this work is KEYED_BIT(-), which
{0,1} from
a domain-separated label. For any fixed pair of parameters

produces a deterministic pseudorandom bit b €

(k, Label) this function always returns the same bit, ensuring
reproducibility. On the other hand, to any party without k, the
output is computationally indistinguishable from random under
the standard assumption that HMAC is a secure PRF (Bellare et al.,
1996; Krawczyk et al., 1997). The use of a structured label (e.g.,
ctx|purpose| .. .) achieves domain separation, analogous to
the info field in HKDF (Krawczyk and Eronen, 2010), so bits used
in different roles do not collide. This primitive is well-suited for
keyed tie-breaking, chaos-inducing decisions, or any context where
a minimal yet reproducible source of unpredictability is needed.

In this work, this function is responsible for adding chaos to the
reconstructed code ¢, when the slightest inconsistency is detected
in IT when executing CODE_BUILDER(-) (see lines 19 to 21 of

Frontiersin Computer Science

10.3389/fcomp.2025.1643075

Input: k, label
Output: b e ({0, 1}

—

msg < UTF8(1label)
dig < HMAC—SHA256 (k, msg)
3 r« first 8 bytes of dig

S}

interpreted as a
64-bit unsigned integer
b < rmod 2

'S

return b

w

Algorithm 9. KEYED_BIT FUNCTION

Algorithm 3). This ensures that ¢, diverges from its authentic value,
preventing accidental reconstruction by sheer chance and thereby
enabling reliable detection of parameter tampering.

Algorithm 9 specifies the implementation of KEYED_BIT(-). It
first encodes the domain-separated label into bytes (UTE-8) (see
line 1) and computes an HMAC-SHA256 digest with k over that
byte string (see line 2). Then, it interprets the first 64 bits of the
digest as an unsigned integer r (see line 3) and outputs b <«
r mod 2 (see line 4). Since 2 divides 2%4 evenly, this reduction is
unbiased and requires no rejection sampling. Finally, the algorithm
returns b (see line 5). For generating wider indices in [0, m) with
arbitrary m, a companion routine employing rejection sampling
must be used to avoid modulo bias.

5 Experimental results

This section presents the results that validate the applicability
of the proposed solution. The evaluation focuses on performance
in detecting tampered input parameters and on preserving
function outcomes when parameter authenticity is confirmed. The
experiments also assess the proposal’s impact on the protected
code, considering both the modifications required for integration
and their effect on performance. Specifically, results are reported
for code size and execution time, showing effective detection
of tampered inputs across different values of I. Moreover, the
approach requires neither significant resources nor a complex
environment for development and execution.

5.1 Experimental setup

We start from the basis that dynamic watermarking techniques
have not been applied for this goal before. We selected Python
3.12.7 for implementing our approach, considering its extensive use
in developing solutions that address the challenges we mentioned
earlier. The development environment was Spyder 5.5.1 Integrated
Development Environment (IDE) from the Anaconda Navigator
2.6.4 Python distribution. The runtime environment consisted of a
PC equipped with an Intel i7-7700K processor, clocked at 4.20 GHz,
32.0 GB of RAM, and running Windows 10 (AMD64) Pro OS.

We selected five Python functions implementing different
functionalities to validate our approach. Each function takes an
array of integers as input, but the acceptable range of values

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1643075
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pérez Gort

depends on the specific logic implemented. A brief description of
each function is provided below:

e Fy: Function defined as total_revenue_cents(-)
which takes a list of transaction amounts expressed in cents
and sums them. It returns a single integer, which is the total
revenue in cents, with 0 for an empty list. Negative values (e.g.,
refunds) are naturally included in the sum, so the result reflects
net revenue.

e Fp: Function defined as median_basket_size(-) which
receives a list of item counts per order and returns the median
basket size as an integer. For an even number of orders, it uses
the floor of the average of the two middle values; for an empty
list, it returns 0. It is useful for tracking typical cart size while
being robust to extreme outliers.

e Fc:Function definedas sla_breach_rate(-) which takes
response times in milliseconds and returns the fraction of
requests that exceed the Service Level Agreement (SLA)
threshold. By default, the threshold is 2000 ms (tunable),
and an empty list yields 0.0. The result is a float in [0, 1],
representing the share of breaches.

e Fp: Function defined as churn_flags(-) which takes, for
each customer, the number of days since last activity and
returns a boolean list flagging likely churners. Any value
greater than or equal to the inactivity window (default 30 days)
is flagged true. The output length matches the input. An
empty input returns an empty output.

e Fg: Function defined as staffing_alert_levels(-)
which takes a time-ordered list of tickets per hour and
classifies each hour as “normal”, “high”, or “critical”. By
default: < 15 — normal, 16 to 30 — high, > 30 — critical;
the thresholds are easy to adjust. It returns a list of labels
aligned 1:1 with the input hours.

For each function, we use five different sets of parameters, each
consisting of an array of 32 integers. Each parameter is identified
by a name that links it to the function on which it is used. The
structure of the set name is Ir_p where F € {A, B, C, D, E} identifies
the function and D € {1,2,3} denotes the parameter set for that
function. According to this, I3 denotes the third set of parameters
for the function F (a.k.a total_revenue_cents(:).

Table 2 summarizes the characteristics of each dataset used
as input for each function. It contributes to understanding the
range of values that each function handles and the differences
across the cases analyzed. Specifically, for each array, the table
reports the maximum value (column MAX), the minimum value
(column MIN), the average (column AVG), and the standard
deviation (column STD_DEYV). These statistics provide insight into
the variability and distribution of values within each dataset.

5.2 Detection of data tampering

The validation of the proposed approach is guided by the
research questions introduced earlier. This section presents the
results that address the first question: “Does the proposed approach
detect tampering of input parameters with a high true-positive rate

Frontiersin Computer Science

10.3389/fcomp.2025.1643075

and low false-positive rate across representative workloads?” To
answer this, it is first necessary to define: (i) how to compute the
true-positive rate (TPR) and what qualifies as a high value, (ii) how
to compute the false-positive rate (FPR) and what qualifies as a
low value, and (iii) which representative workloads are suitable for
validating the proposal.

The true-positive rate (TPR) measures the proportion of
tampered inputs that are correctly detected as tampered. In this
work, it is computed according to Equation 1, where TP denotes
the number of tampered cases correctly identified and FN the
number of tampered cases missed (Fawcett, 2006; Sokolova and
Lapalme, 2009). In our context, a high TPR indicates near-
exhaustive detection of tampering and should be defined a priori.
We formally adopt TPR > 0.99 as the threshold for a high TPR,
given the importance of ensuring the proper functioning of the
proposed approach.

TP

TPR = ——
TP + FN

1

The false-positive rate (FPR) measures the proportion of
authentic inputs that are incorrectly flagged as tampered. In this
work, it is computed according to Equation 2, where FP denotes
the number of authentic inputs incorrectly classified as tampered
and TN the number of authentic inputs correctly classified as not
tampered (Fawcett, 2006; Sokolova and Lapalme, 2009). In our
context, alow FPR indicates rare false alarms and should be defined
a priori. We formally adopt FPR < 0.01 as the threshold for a
low FPR.

Fp

FPR = ————
FP + TN

o)

Finally, we define a representative workload as a curated set of
inputs and execution conditions that faithfully reflect the system’s
intended use. Such a workload should preserve the statistical
properties of the data, the shape and scale of inputs, and the
mix of operations exercised by the application. It should also
include both benign variations (e.g., reordering, padding) and
adversarial perturbations consistent with the threat model, all
under reproducible settings.

In our evaluation, the five previously introduced functions
constitute the representative workload. Together they span order-
insensitive aggregation (as in Fy), a robust order statistic (as in
Fg), rate/threshold computation near decision boundaries (as in
as in Fc), vectorized boolean flagging (as in Fp), and multi-
level classification on time series (as in Fg). This set covers
both order-insensitive and order-sensitive behaviors, single-output
and vector outputs, and varying sensitivities to bit-level edits
and structured tampering, while also admitting benign controls
(e.g., pure reordering) to estimate the FPR. Instantiated across
multiple scales and data distributions, these functions provide a
realistic and reproducible proxy for the target application domain,
thereby satistying the representativeness required by the first
research question.

To evaluate the performance of our proposal in detecting
data tampering, we conducted 15 experiments per function. Each
function was tested with its corresponding datasets, applying five

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1643075
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pérez Gort

TABLE 2 Datasets used for the validation of the approach.

10.3389/fcomp.2025.1643075

F I Description MAX MIN AVG STD_DEV
Fa I Subscriptions with occasional refunds (negatives) 4999 —999 1217.94 1131.15
Ip-2 Enterprise invoices (large amounts in cents) 210000 76000 133421.88 36019.77
I3 Microtransactions + freebies (zeros) 199 0 111.69 69.29
Fg Ig-1 Even-sized sample with typical small baskets 4 1 2.19 0.88
Ig-» Many zeros (browsers/no-purchase) mixed with small buys 2 0 0.5 0.75
Ig-3 Wholesale / large carts 22 8 14.22 3.81
Fc Icq Mixed near-threshold with some spikes 4000 1600 2189.84 529.07
Ic-o All fast (no breaches) 1500 120 764.69 321.62
Ic-3 All slow (incident/major degradation) 6100 2800 4589.06 924.47
Fp Ip-1 Mixed recency across users 90 0 24.63 20.01
Ip-> Mostly active users (all below threshold) 20 1 8.38 4.68
Ip-3 Dormant population (all flagged) 120 30 58.81 23.17
Fe Ieq Two-day hourly pattern, steady with small bumps 15 5 9.16 297
It o Midday surge then cool-down over two days 30 4 15.38 7.54
Ig-3 Incident window with sustained critical load 50 7 23.88 13.08

different degrees of data modification. We deliberately selected
the smallest possible number of elements and applied minimal
changes to stress-test our approach, assessing whether tampering
could still be detected even when the modifications were so slight
that they sometimes did not alter the function’s output. Tampering
was introduced by pseudo-randomly selecting between one and five
input values and modifying the least significant bit (Isb) of each
chosen value.

The results are presented in Table 3 for each function (column
F) and its associated dataset (column I). They are organized into
four groups of columns: Tampering Detected, TPR, FPR, and
Output Modified. Binary outcomes are denoted as [(yks) and []
(no). Within each group, five columns correspond to the number
of array items pseudo-randomly selected for Isb modification. The
Output Modified column illustrates that tampering does not always
lead to changes in the function result. Nevertheless, detecting such
tampering remains essential to uncover potential vulnerabilities,
prevent unauthorized access or data leaks, and mitigate the risk
of future output changes if function logic is modified under
approved requirements.

As shown in the table, tampering was successfully detected in
every case, thereby fulfilling the requirement established by the
first research question: demonstrating that the approach achieves
TPR = 1 and FPR = 0. Detection was achieved even in cases
where the modifications did not affect the output that the function
would have produced on untampered data. This highlights another
strength of our approach. Nevertheless, it is important to note
that this behavior depends heavily on the function’s requirements
and implementation. For example, the output of Fa was always
different, since it performs a summation of all input values. By
contrast, Fg, which computes the average of the input values
and returns a rounded result, is less likely to change under
small modifications. Finally, changes in the outputs of Fp and Fg
were rarely detected, as their results only vary when tampering

Frontiersin Computer Science 12

affects values close to the classification boundaries defined by
the functions.

5.3 Output accuracy variations

The results presented in this section correspond to the
experiments conducted to address the second research question:
“Does integrating the approach preserve the functional output of
protected functions when the input parameters are authentic?” To
answer this, we obtained the outputs of each function using the
various datasets and compared them with the outputs obtained
after confirming that no tampering occurred and the input
parameters were restored. Success is defined as confirming that the
outputs remain unchanged. Additionally, we provide the outputs
that each function would produce if the input parameters were not
restored after decoding the watermark, allowing a comparison of
the distortion introduced by retaining the watermark hints.

Table 4 shows the outcomes of functions Fp, Fg, and Fc,
for each input set, both before and after applying our approach.
The group labeled After contains two columns: Encoded, which
refers to parameters still containing the watermark hints (not
restored to their original state), and Restored, which contains
the data after extracting the hints, restoring the parameters,
and verifying the authenticity of the watermark. Values in the
Encoded column include a number in parentheses representing
the difference from the output obtained before embedding the
watermark hints.

The table shows how distortion can result in different outputs.
However, in some cases, no distortion occurs because increases in
certain values are compensated by decreases in others during the
embedding of the hints or due to the way the function processes
the input. This behavior is observed in all cases of function Fg, for
example. Additionally, the results from these experiments confirm

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1643075
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pérez Gort

10.3389/fcomp.2025.1643075

TABLE 3 Results of data tampering detection using the input parameters authentication approach (¢, = 1011, k = "K82Sec”).

Tampering detected

Output modified

3 4
Fa | Ing Y e Y e Y s Y s (R 1 1 1 1 0 0 0 0 0 1 1 1 1 1
Ino 1 1 3 31 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1
Ins Y e Y e Y e Y s (R 1 1 1 1 0 0 0 0 0 1 1 1 1 1
Fo | Iss 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 | |]) &
sz] 1 3 31 1 1 1 1 1 1 0 0 0 0 0 = &]] @
Ins 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 | @ @) @
Fo | Ica 1 1 3 31 1 1 1 1 1 1 0 0 0 0 0 = @ @l) @
Ics e Y e Y e Y e Y s (R 1 1 1 1 0 0 0 0 0 = |]] @
Ics] 1 3 31 1 1 1 1 1 1 0 0 0 0 0 = @ @l) @
Fo | Ipa] 1 1 31 1 1 1 1 1 1 0 0 0 0 0 | 4 1 1 1
Ipp | [1 1 [1 1 1 1 1 1 0 0 0 0 0 | @ @) @
Ibs | [CJ 31 C31 31 1 1 1 1 1 1 0 0 0 0 0 = @ @ @l @
Fe | I] 31 3 31 11 1 1 1 1 0 0 0 0 0 —| @]] @
Iea] 1 1 1 1 1 1 1 1 1 0 0 0 0 0 | |]] &
I3] 1 3 31 1 1 1 1 1 1 0 0 0 0 0 | 4 1 1 3

TABLE 4 Comparison of the outputs of functions Fx, Fg, and Fc before
and after applying the input parameter authentication approach
(¢2 = 1011, k = "K82Sec”).

TABLE 5 Comparison of the outputs of the function Fp before and after
applying the input parameter authentication approach (¢ = 1011, k =
“K82Sec”).

After
Encoded Restored Restored
Fa Int 38,974 38,986 (+12) 38,974 T F
In2 4,269,500 | 4,269,512 (+12) 4,269,500 In 14 18 15(+1) | 17(=1) 14 18
Ins 3,574 3,580 (+6) 3,574 Ip-2 0 32 0(0) 32(0) 0 32
Fg Tg-1 2 2(0) 2 Io-s 32 0 25(=7) | 7(+7) 32 0
Ig-2 0 0(0) 0
Ig-3 14 14 (0) 14
Fc Ict 0.53125 0.53125 (0) 0.53125)) o, o
does not interfere with the function’s accuracy is evident from the
fez 0 0(0) 0 matching values in the Before and Restore columns.
Ics 1 0.96875 (-+0.03125) 1 Table 6 shows the results of the experiments performed for Fg

that our approach does not interfere with the outputs of the
functions, as evidenced by the comparison between the Before and
Restored columns.

Table 5 shows the results obtained when applying our approach
to the function Fp with its corresponding inputs. Each output
is presented in two columns, T and F, containing the number
of true and false values in the boolean list returned by
the function. Notice that in the Encoded column, the function’s
outputs sometimes remain unchanged. Additionally, because the
output consists of a group of values, any distortion introduced by
embedding the watermark hints is compensated across the different
elements of the group (for example, under the Encoded column,
values in T offset those in F). Finally, the fact that our approach

Frontiersin Computer Science

with its corresponding inputs. In this case, the function returns
three integers, shown in columns N, H, and C, which stand for
“normal”, “high”, and “critical”, respectively. We can see that
sometimes the encoding does not alter certain outputs (e.g., under
the Encoded category, column C for dataset I¢.q, and column H
for dataset Ir-p). Additionally, also in this case, it is clear that
the distortion introduced by embedding the watermark hints is
compensated across the different elements in each output. Finally,
we can see that once the hints are extracted from I, the restored
parameters allow the computation of the same results as those
obtained with the original set of inputs.

As shown in the previous tables, we can confirm that our
approach does not interfere with the outputs of the functions.
This is ensured by the reversibility provided through difference
expansion. When obtaining ¢, the set of input parameters is
restored to its original state. If ¢ does not match the expected

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1643075
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pérez Gort

value, the watermark is not recognized, and an alternative flow is
triggered, allowing P to take control and manage the process in a
customized manner. Conversely, if the parameters are considered
authentic, F is executed with authentic inputs, producing accurate
results. This conclusion is supported by the fact that none of the
experiments resulted in variations in the functions’ outputs when
the parameter authentication approach was applied.

5.4 Performance and overhead evaluation

This section addresses the third research question: “Does
integrating the approach impose a bounded, predictable overhead in
code size and execution time, with runtime scaling linearly in input
size across representative workloads?” Here, we present the results of
a set of experiments that evaluate the impact of our approach on the
protected software. We report the effects on software size and how
processing time is affected. These experiments allow us to quantify
the overhead introduced by the watermarking mechanism and
assess its practicality in real-world applications. By analyzing both
memory footprint and execution time, we provide a comprehensive
view of the trade-offs involved in applying our method.

5.4.1 Impact on code size

The measured overhead of our approach is small and
predictable. Table 7 reports, for each program P wrapping a
workload function, the source footprint before and after integrating
the parameters authentication proposal. Columns Sizep and Sizew
contains the total source size (in KiB) of the base program
and its version with the watermarking engine integrated, ASize
contains the absolute difference between them (which denotes a size

TABLE 6 Comparison of the outputs of the function Fr before and after
applying the input parameter authentication approach (¢, = 1,001, k =
"K82Sec”).

Before After
Encoded Restored
H N H
et |32 0 | 0 | 29(=3) | 3(+3) 0(0) 320 0
Ieo 18 | 14 | 0 | 16(-2) | 14(0) | 2(+2) | 18 14 | 0
I3 128 | 12 | 13(+1) | 9(+1) | 10(=2) | 12 8 | 12

10.3389/fcomp.2025.1643075

increment), and Overhead is the percentage of the relative growth
obtained according to Equation 3.

Sizew — Sizep

Overhead = x 100

3)

Sizep

The following columns, SLOCg and SLOCw, contain the
number of lines of each source code, A SLOC presents their
difference, and Hook sites count explicit instrumentation call sites
(embed/verify) added in the program. The final record, Total /
Weighted avg., aggregates sizes and SLOC, and reports the size-
weighted overhead percentage.

Across all five programs, integrating our approach produces
a consistent and bounded footprint: code size rises by about
6 KiB per program, and SLOC increases are similarly stable
(median ASLOC = 101, range 86-112). The largest percentage
overhead is in sla_app.py (144.90%) and the smallest in
staffing_app.py (111.65%), a pattern explained by fixed
scaffolding added via two hook sites (embed/verify) per program.
These results indicate a modular, predictable integration cost and
support a positive deployment outlook, the parameters are restored
losslessly prior to business logic, so authentic inputs preserve
baseline outputs. Notice that the seemingly large percentages
mainly reflect very small baselines, making the absolute increment
negligible in typical services.

5.4.2 Execution time variations

The solution proposed in this work does not have a significant
impact on the execution time of each program P. Two main aspects
of our approach may result in processing time changes for the tasks
implemented in P: the size of the graph G used to represent the
watermark and the number of elements in I containing watermark
hints. We performed a set of experiments, noticing that these are
the only two aspects that produce variations in P over time, but not
in the same manner.

For the first experiments, we measured the time required to
encode and decode the watermark hints from I while increasing
the number of values in the input (denoted by |I|). For each input
length, we randomly generated the values within the input domain
and performed 300 trials per setting using the same watermark
hints. This was done to reduce the standard deviation of the
reported results. Figure 3 shows the results, which consists on the
average execution time in microseconds.

We also conducted experiments to measure the time required
to build and decode G while varying . Recall that u denotes

TABLE 7 Source footprint per program before/after integrating the parameter authentication approach.

Program (F contained) Sizep Sizey A Size Overhead SLOCg SLOCy A SLOC Hook sites
revenue_app.py (Fa) 5.083008 11097656 6.014648 118.33% 82 168 86 2
basket_app.py (Fs) 5.504883 11.929688 6.424805 116.71% 93 205 112 2
sla_app.py (Fc) 4491211 10.999023 6507812 144.90% 68 177 109 2
churn_app.py (Fp) 4.944336 11014648 6.070312 122.77% 68 169 101 2
staffing_app.py (Fs) 5381836 11.390625 6.008789 111.65% 83 183 100 2
Total / Weighted avg. 25.405274 56.431640 31.026366 122.13% 394 902 508 10

Frontiersin Computer Science 14

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1643075
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pérez Gort
800
700 NO, . |
600 =
m
2 500 — A
3 400 -
& 300 o A
200 - —
-,,, # Encoding
100 A
—A— Decoding
0
32 64 96 128 160
[1]
FIGURE 3
Encoding/decoding time variations of watermark hints as |/|
increases.
30
—#— Encoding
25 -
A Decoding P =
20 ——
7 "
2
£ -
= -
10 o w
5 A A
A &
A
0
5 10 15 20 25 30
y2
FIGURE 4
Build/decoding time of G as as u increases

the length of ¢s (see Algorithms 4, 5). For each selected value
of u, we generated a random instance of ¢, which was then
used for encoding and decoding the watermark. For each setting,
we performed 300 trials and reported the average time in
microseconds. The results are shown in Figure 4.

As shown in Figure 3, reported times increase linearly with
the length of I, confirming the expected O(|I|) behavior of the
approach for the engine responsible for encoding and decoding the
watermark hints from I. We can see that decoding is consistently
faster than encoding, because it performs a read-restore pass and
a small, fixed rebuild, while encoding also allocates and writes
modified pairs. The near-constant pus/element slopes and the
stable encode-decode gap indicate predictable performance and
straightforward capacity planning. Overall, the results support the
practicality of the approach for runtime parameter authentication:
complexity is linear in input size, overhead is stable, and the
implementation scales smoothly to large arrays without surprises.

In terms of the time required for encoding and decoding the
watermark, Figure 4 depicts how both times grow linearly with u,
confirming the expected behavior. Decoding is consistently faster
because it performs one ring traversal to list nodes plus a constant-
step local check per node, whereas encoding allocates the graph
nodes and writes two pointers per node. The slight increase in
the encoding slope is plausibly due to object allocation, garbage

Frontiersin Computer Science

10.3389/fcomp.2025.1643075

collection, and cache effects; decoding remains near ~ 0.24-
0.26 us/node. Overall, the timing profile indicates that watermark
graph construction and recovery are fast (sub-millisecond to a few
milliseconds for thousands of nodes) and scale predictably, making
the approach practical for runtime parameter authentication.

5.4.3 Memory overhead analysis

Although the proposed approach relies on the dynamic
construction of data structures to encode and verify the watermark
during execution, the additional memory footprint introduced by
these operations was found to be negligible across all evaluated
scenarios. In our experiments, each function received an input
array of 32 integers, resulting in watermark structures with a
size proportional to the binary representation of the secret code
and the number of embedded hints. Even under these conditions,
peak memory usage increased by less than 1.5% compared with
baseline executions without watermarking. Moreover, because the
watermark graph is created only during the parameter verification
phase and is released immediately afterward, its lifetime in memory
is short and its space complexity scales linearly with the size of
the input parameter set. These results confirm that the proposed
technique introduces no significant memory overhead and remains
suitable for deployment in resource-constrained environments.

5.5 Approach robustness to code
transformations

We evaluated the robustness of our approach to code
transformations by considering the last research question:
“Are authentication decisions robust to compiler/interpreter
optimizations, code obfuscation, common refactoring, and
heterogeneous runtime environments?” First, we checked whether
the proposed approach is invariant under a simple interpreter
optimization pass by running each program in three modes:
default (python), optimized (python -0), and docstring-
-00). For each mode, and for

each workload program, we execute the pipeline with identical

stripping optimized (python

inputs, comparing the results on tampering detection, and
encoding/decoding times. The expectation is functional invariance
(identical decisions and recovered codes) and only minor timing
drift due to bytecode differences.

Figures 5-8 show that, under all three interpreter modes, the
encoding and decoding curves retain the expected linear trend
in the input size (|I| for encoding the watermark hints, and
wu for the watermark graph G). Optimization mostly produces
modest timing shifts without changing qualitative behavior.
The small deviations shown in the figures are consistent with
bytecode changes, allocation and cache effects, and the removal of
assertions/docstrings.

Crucially, optimization does not alter security outcomes.
The tampering decisions are identical across all all three
interpreter modes. Thus, the approach is robust to common
compiler/interpreter optimizations. Its scalability (O(]I])/O(u)),
encode > decode gap, and correctness are preserved, while
performance differences remain bounded and predictable. This

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1643075
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pérez Gort

10.3389/fcomp.2025.1643075

900
800 @® python
700 B python -0
600 A—python -00
g 500 =
& 400 = e
& 300 P =
200 .//,««
100
0
32 64 96 128 160
[1]
FIGURE 5

Consequences of code optimization in the time required for
encoding the watermark hints as |/| increases.

8
7 @® python
6 @ python -0
A—python -00
= 5
3
o 4
£
=3
2
1
0
5 10 15 20 25 30
n
FIGURE 8
Consequences of code optimization in the time required for
decoding G as p increases.

600
@ python /,/z
500 —m—python -0 /,/:///
T
400 —A—python -00 ////
g _
= 300
E
= v
200 =
//"J/
100 L 8
0
32 64 96 128 160
[1]
FIGURE 6

Consequences of code optimization in the time required for
decoding the watermark hints as |/| increases

30
® python
25 # python -0 > /!
A thon -00 y
20 »y ./
2
S
o 15
£
= 10 l/
5
0
5 10 15 20 25 30
u
FIGURE 7

Consequences of code optimization in the time required for
encoding G as u increases.

supports deployability in optimized production configurations
without weakening authentication guarantees.

We further assessed robustness to code-level transformations
by applying: (i) lexical/minification changes (identifier renaming,
removal of whitespace and docstrings), (ii) bytecode wrapping and

Frontiersin Computer Science

encryption via a runtime loader, and (iii) native compilation
and packaging to an executable. In parallel, we enacted
common refactorings that preserve semantics, including function
extraction/inlining, module reorganization, dead-code removal,
and reorderings that do not affect data or control dependencies. For
each transformed artifact, we ran the full pipeline with identical
inputs, keys, and PRNG seeds, verifying tampering detection
results, effects on the workload functions, and timing profiles.
Across all obfuscation levels and refactorings, authentication
decisions and recovered tags remained identical to the baseline,
and the encode/decode time curves preserved the same linear
trend with only bounded drift, mirroring the behavior observed
under the -0/-00 optimization experiment.

5.6 Analysis of attack resilience and
detection capabilities

In terms of robustness against the major categories of attacks
described in Section 2.4, specifically subtractive, distortive, and
additive, it is important to emphasize that the proposed approach
follows the principles of a fragile watermarking technique. Its
primary objective is not to remain undetectable under all possible
modifications but rather to act as a sensitive safeguard against
unauthorized operations. By detecting even minimal alterations
to input parameters, the technique ensures that users are
alerted whenever data authenticity may be compromised. Table 8
summarizes the overall resilience of the approach against these
classical attack types.

Our solution demonstrates strong resistance to subtractive
attacks because the correct watermark cannot be identified or
reconstructed unless the precise input parameter values are
used to achieve synchronization. Any attempt to remove or
bypass the watermarking logic without providing the expected
parameters will therefore fail, preventing the protected function
from executing successfully.

This same principle underlies the approach’s resilience to
distortive attacks. Any modification to the software code or

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1643075
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pérez Gort

TABLE 8 Effectiveness of the proposed approach against classical
software watermarking attacks.

Attack Resilience Justification

Subtractive | High Watermark reconstruction depends on correct
parameter values; removal without

synchronization is highly unlikely.

Code or data modifications cause incorrect
watermark generation, triggering authenticity
alerts.

Distortive High

Additive High Reconstruction requires an exact bit match; any
alteration leads to chaotic output and detection

of tampering.

data aimed at undermining watermark detection will lead to the
construction of an incorrect watermark, automatically triggering a
suspicion of tampering. This behavior aligns with the core purpose
of fragile watermarking, which is to flag even subtle unauthorized
distortions as potential integrity violations.

Finally, the approach also provides strong protection
against additive attacks. The reconstruction of the watermark
code is only possible when all bits derived from the secret
integer code match precisely. As demonstrated in our
experiments, altering even a single bit results in a chaotic
producing that no

corresponds to the original. Consequently, any attempt to

reconstruction, a watermark longer
embed an additional watermark is treated as tampering and is

reliably detected.

6 Added value of watermarking

Traditional integrity verification mechanisms, such as HMAC,
play a fundamental role in ensuring that data remains authentic and
unaltered during transmission or storage. These techniques operate
by generating a cryptographic digest of a message combined with
a secret key, enabling recipients to verify both the source and
integrity of the data. However, while highly effective at this level,
their protective scope is generally limited to external verification
and does not extend into the internal execution behavior of a
software system.

The watermarking-based approach presented in this work
introduces an additional layer of protection that complements,
rather than replaces, conventional integrity checks. Its distinctive
advantage lies in the way watermark reconstruction is semantically
bound to the program’s execution. Rather than verifying data
as a static entity, the watermark is reconstructed dynamically
based on runtime conditions, input parameter relationships,
and control-flow behavior. This tight coupling ensures that
even subtle modifications, such as changes to internal variables,
manipulation of control structures, or tampering with parameter
values, disrupt the reconstruction process and reveal the presence
of unauthorized alterations.

Another important benefit of watermarking is its capacity
for fine-grained detection. Whereas cryptographic mechanisms
typically produce a binary outcome indicating whether data
is authentic, watermark-based detection provides insight into

Frontiersin Computer Science

10.3389/fcomp.2025.1643075

how and where the system has been tampered with. Because
the watermark is embedded across multiple execution points
and depends on consistent computational behavior, even
small deviations lead to incorrect reconstruction, signaling
potential compromise.

Moreover, watermarking offers resilience against forms of
manipulation that conventional mechanisms may fail to detect.
Operations such as semantic-preserving code transformations,
aggressive compiler optimizations, or runtime reordering of
computations do not generally affect cryptographic verification
results. Yet, because these transformations often disrupt the
conditions required for watermark reconstruction, they are readily
detected by the proposed approach. This capability extends
integrity protection deeper into the software’s execution layer,
addressing threats that occur beyond the boundaries of data
transmission and storage.

In this way, watermarking provides a complementary defense
mechanism that strengthens overall system security. Used alongside
traditional cryptographic methods, it establishes a multi-layered
protection strategy: one layer ensuring the authenticity of data at
the communication level, and another safeguarding the integrity
of the computation itself. This combination significantly increases
resilience against sophisticated tampering attempts and enhances
the trustworthiness of the software environment.

7 Conclusions

In this work, a watermarking-based solution was proposed
for checking the authenticity of input parameters in high-
level programming languages. The approach is built on an
extension of the traditional architecture of data structure dynamic
software watermarking techniques. Its validation was carried out
in Python, demonstrating that the method can detect violations
of input authenticity without requiring significant modifications
to the protected software or impacting its performance. Future
extensions of the proposed architecture could further increase
robustness and security by combining dynamic and static
watermarking principles.

The applicability of the proposal presented in this work
extends beyond verifying the authenticity of input parameters.
It can also enhance security in other contexts by checking the
validity of exchanged values. For example, it can be used to
verify software licenses, ensuring that only the correct keys can
assemble the proper watermark and allow the software’s use.
Additionally, it can support malware analysis by constructing
execution graphs in real-world environments outside of sandboxes.
Finally, watermarking based on hardware IDs, environments, or
configurations further expands the options for tamper detection.
Overall, this approach enables indirect and stealthy verification of
input authenticity.

As future work, we plan to enhance the stealthiness and
blindness of the proposed approach by addressing issues
highlighted in this paper, such as integrating static and dynamic
techniques and embedding critical parameters within the
protected code.

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1643075
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pérez Gort

Data availability statement

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

Author contributions

MP: Writing - original draft, Writing - review & editing,
Conceptualization, Methodology, Software, Validation.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This study was
partially funded by the European Union - NextGenerationEU, in
the framework of the iNEST - Interconnected Nord-Est Innovation
Ecosystem (iNEST ECS_00000043 - CUP H43C22000540006),
SERICS (PE00000014 - CUP H73C2200089001), and PADS4Health
(PRIN PNRR 2022 P2022MSMAW - CUP N. H53D23010880001).

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

References

Alitavoli, M., Joafshani, M., and Erfanian, A. (2013). “A novel watermarking method
for java programs,” in Proceedings of the 28th Annual ACM Symposium on Applied
Computing (New York: ACM), 1013-1018.

Alrehily, A., and Thayananthan, V. (2018). Computer security and software
watermarking based on return-oriented programming. Int. J. Comput. Netw. Inf. Secur.
10, 28-36. doi: 10.5815/ijcnis.2018.05.04

Balduzzi, M., Gimenez, C. T., Balzarotti, D., and Kirda, E. (2011). “Automated
discovery of parameter pollution vulnerabilities in web applications,” in Network and
Distributed System Security Symposium (NDSS) (San Diego, CA, USA: NDSS).

Barédn, B., Gémez, S., and Bogarin, V. (2001). “Steganographic watermarking for
documents,” in Proceedings of the 34th Annual Hawaii International Conference on
System Sciences (Maui, HI: IEEE).

Barker, E., and Kelsey, J. (2012). “Recommendation for random number generation
using deterministic random bit generators,” in Technical Report (Gaithersburg, MD:
NIST).

Barni, M., Bartolini, F., and Piva, A. (2001). Improved wavelet-based
watermarking through pixel-wise masking. IEEE Trans. Image Proc. 10, 783-791.
doi: 10.1109/83.918570

Bellare, M., Canetti, R., and Krawczyk, H. (1996). “Keying hash functions for
message authentication,” in Advances in Cryptology - CRYPTO 96 (Cham: Springer),
1-15.

Bender, W., Gruhl, D., Morimoto, N., and Lu, A. (1996). Techniques for data hiding.
IBM Syst. J. 35, 313-336. doi: 10.1147/sj.353.0313

Bento, L. M., Boccardo, D. R., Machado, R. C., Pereira de S, V. G., and Szwarcfiter, J.
L. (2019). Full characterization of a class of graphs tailored for software watermarking.
Algorithmica 81, 2899-2916. doi: 10.1007/s00453-019-00557-w

Chan, P. P, Hui, L. C, and Yiu, S-M. (2012). Heap graph based
software theft detection. IEEE Trans. Inform. Forens. Security 8, 101-110.
doi: 10.1109/TTFS.2012.2223685

Frontiersin Computer Science

10.3389/fcomp.2025.1643075

Generative Al statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Any alternative text (alt text) provided alongside figures
in this article has been generated by Frontiers with the
support of artificial intelligence and reasonable efforts have
been made to ensure accuracy, including review by the
authors wherever possible. If you identify any issues, please
contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Author disclaimer

The views and opinions expressed are solely those of the
authors and do not necessarily reflect those of the European
Union, nor can the European Union be held responsible for
them.

Chen, J., Dai, S., and Chen, J. (2016). “An improved software watermarking scheme
based on ppct encoding” in 2016 9th International Symposium on Computational
Intelligence and Design (ISCID) (Hangzhou: IEEE).

Chen, Z., Jia, C, and Xu, D. (2017). “Hidden path: dynamic software
watermarking based on control flow obfuscation,” in 2017 IEEE International
Conference on Computational Science and Engineering (CSE) and IEEE International
Conference on Embedded and Ubiquitous Computing (EUC) (Guangzhou: IEEE),
443-450.

Chen, Z., Wang, Z, and Jia, C. (2018). Semantic-integrated software
watermarking with tamper-proofing. Multimed. Tools Appl. 77, 11159-11178.
doi: 10.1007/s11042-017-5373-7

Chionis, I, Chroni, M., and Nikolopoulos, S. D. (2014). Waterrpg: a graph-
based dynamic watermarking model for software protection. arXiv [preprint]
arXiv:1403.6658. doi: 10.48550/arXiv.1403.6658

Chiru, C. (2005). “Dynamic software watermarking by altering the numeric results
of the program,” in Proceedings of the 11th International Conference on System Theory
and Control (SINTES 11) (Craiova: Spiru Haret University).

Chroni, M., and Nikolopoulos, S. D. (2011). Efficient encoding of watermark
numbers as reducible permutation graphs. arXiv [preprint] arXiv:1110.1194.
doi: 10.1145/2383276.2383295

Collberg, C., Carter, E., Debray, S., Huntwork, A., Kececioglu, J., Linn, C,, et al.
(2004a). “Dynamic path-based software watermarking,” in Proceedings of the ACM
SIGPLAN 2004 Conference on Programming Language Design and Implementation
(New York: ACM), 107-118.

Collberg, C., Jha, S., Tomko, D., and Wang, H. (2004b). UWStego: A General
Architecture for Software Watermarking.

Collberg, C., Myles, G,
tool for software protection
doi: 10.1109/MSECP.2003.1219058

Sandmark-a
1, 40-49.

and Huntwork, A. (2003).
research. IEEE Security Privacy

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1643075
https://doi.org/10.5815/ijcnis.2018.05.04
https://doi.org/10.1109/83.918570
https://doi.org/10.1147/sj.353.0313
https://doi.org/10.1007/s00453-019-00557-w
https://doi.org/10.1109/TIFS.2012.2223685
https://doi.org/10.1007/s11042-017-5373-7
https://doi.org/10.48550/arXiv.1403.6658
https://doi.org/10.1145/2383276.2383295
https://doi.org/10.1109/MSECP.2003.1219058
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pérez Gort

Collberg, C., and Thomborson, C. (1998). “On the limits of software watermarking,”
in Technical Report (Auckland: Department of Computer Science, The University of
Auckland).

Collberg, C., and Thomborson, C. (1999). “Software watermarking: Models and
dynamic embeddings,” in Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 311-324.

Collberg, C. S., Thomborson, C., and Townsend, G. M. (2007). Dynamic
graph-based software fingerprinting. ACM Trans. Program. Lang. Syst. 29:35-es.
doi: 10.1145/1286821.1286826

Cox, I, Miller, M., Bloom, J., Fridrich, J., and Kalker, T. (2007). Digital
Watermarking and Steganography. San Francisco, CA: Morgan Kaufmann Publishers
Inc.

Cox, L J., Miller, M. L., Bloom, J. A., Fridrich, J., and Kalker, T. (2008). Digital
Watermarking. Burlington, MA: Morgan Kaufmann Publishers, 56-59.

Curran, D., Cinneide, M., Hurley, N., and Silvestre, G. (2004). “Dependency in
software watermarking,” in Proceedings. 2004 International Conference on Information
and Communication Technologies: From Theory to Applications (Damascus: IEEE),
569-570.

Dalla Preda, M., Giacobazzi, R., and Visentini, E. (2008). “Hiding software
watermarks in loop structures,” in Static Analysis: 15th International Symposium, SAS
2008 (Valencia, Spain: Springer), 174-188.

Dalla Preda, M., and Ianni, M. (2024). Exploiting number theory for
dynamic software watermarking. J. Comp. Virol. Hack. Tech. 20, 41-51.
doi: 10.1007/s11416-023-00489-8

Dalla Preda, M., and Pasqua, M. (2019). Semantics-based software
watermarking by abstract interpretation. Mathem. Struct. Comp. Sci. 29, 339-388.
doi: 10.1017/S0960129518000038

Davidson, R. I, and Myhrvold, N. (1996). Method and System for Generating and
Auditing a Signature for a Computer Program.

Desmedt, Y. (2025). “Secret sharing and shamir threshold scheme,” in Encyclopedia
of Cryptography, Security and Privacy (Cham: Springer), 2212-2216.

Dey, A., Bhattacharya, S., and Chaki, N. (2019). Software watermarking: progress
and challenges. INAE Letters 4, 65-75. doi: 10.1007/s41403-018-0058-8

Dey, A., Ghosh, S., Bhattacharya, S., and Chaki, N. (2020). A robust software
watermarking framework using shellcode. Multimed. Tools Appl. 79, 2555-2576.
doi: 10.1007/s11042-019-08372-9

Durstenfeld, R. (1964). Algorithm 235: Random permutation. Commun. ACM
7:420. doi: 10.1145/364520.364540

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognit. Lett. 27,
861-874. doi: 10.1016/j.patrec.2005.10.010

Gupta, G., and Pieprzyk, J. (2006). “A low-cost attack on branch-based software
watermarking schemes,” in Digital Watermarking: 5th International Workshop, INDW
2006 (Jeju Island, Korea: Springer), 282-293.

Gupta, G., and Pieprzyk, J. (2007). Software watermarking resilient to debugging
attacks. J. Multimed. 2, 10-16. doi: 10.4304/jmm.2.2.10-16

Gupta, G., and Pieprzyk, J. (2009). Reversible and blind database watermarking
using difference expansion. Int. J. Digital Crime Forensics (IIDCF) 1, 42-54.
doi: 10.4018/jdcf.2009040104

Halder, R,, Pal, S., and Cortesi, A. (2010). Watermarking techniques for relational
databases: Survey, classification and comparison. J. Univer. Comp. Sci. 16, 3164-3190.

Hamilton, J., and Danicic, S. (2010). “An evaluation of static java bytecode
watermarking,” in Proceedings of the International Conference on Computer Science and
Applications (ICCSA’10), The World Congress on Engineering and Computer Science
(WCECS’10) (San Francisco: ICCSA).

Katz, J., Menezes, A. J., Van Oorschot, P. C., and Vanstone, S. A. (1996). Handbook
of Applied Cryptography. Boca Raton, FL: CRC Press.

Katzenbeisser, S., and Petitcolas, F. (2016). Information Hiding. Norwood: Artech
House.

Ke-xin, Y., Ke, Y., and Jian-gi, Z. (2009). “A robust dynamic software
watermarking,” in 2009 International Conference on Information Technology and
Computer Science (Kiev: IEEE), 15-18.

Kim, T., Jang, Y., Lee, C., Koo, H., and Kim, H. (2023). “SmartMark: software
watermarking scheme for smart contracts,” in 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE) (Melbourne: IEEE), 283-294.

Knuth, D. E. (1997). The Art of Computer Programming, Volume 2: Seminumerical
Algorithms. Boston, MA: Addison-Wesley.

Krawczyk, H., Bellare, M., and Canetti, R. (1997). “Hmac: Keyed-hashing for
message authentication,” in RFC 2104, Internet Engineering Task Force.

Krawczyk, H., and Eronen, P. (2010). “HMAC-based extract-and-expand key
derivation function (HKDF),” in RFC 5869, IETF.

Kumar, K., Kehar, V., and Kaur, P. (2015). A comparative analysis of static java
bytecode software watermarking algorithms. Afric.] Comput ICT 8, 201-208.

Frontiersin Computer Science

19

10.3389/fcomp.2025.1643075

Lee, T., Hong, S., Ahn, J., Hong, I, Lee, H,, Yun, S, et al. (2023). Who wrote
this code? watermarking for code generation. arXiv [preprint] arXiv:2305.15060.
doi: 10.18653/v1/2024.acl-long.268

Lemire, D. (2019). Fast random integer generation in an interval. ACM Trans.
Model. Comp. Simulat. (TOMACS) 29, 3:1-3:12. doi: 10.1145/3230636

Ma, H,, Jia, C, Li, S., Zheng, W., and Wu, D. (2019). Xmark: dynamic software
watermarking using collatz conjecture. IEEE Trans. Inform. Forens. Secur. 14,
2859-2874. doi: 10.1109/TIFS.2019.2908071

Ma, H,, Lu, K, Ma, X,, Zhang, H.,, Jia, C,, and Gao, D. (2015). “Software
watermarking using return-oriented programming,” in Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security, 369-380.

Madou, M., Anckaert, B., De Sutter, B., and De Bosschere, K. (2005). “Hybrid static-
dynamic attacks against software protection mechanisms,” in Proceedings of the 5th
ACM Workshop on Digital Rights Management, 75-82.

Myles, G., and Collberg, C. (2006). Software watermarking via opaque predicates:
Implementation, analysis, and attacks. Electronic Commerce Res. 6, 155-171.
doi: 10.1007/s10660-006-6955-z

Myles, G., and Jin, H. (2005). “Self-validating branch-based software watermarking,”
in International Workshop on Information Hiding (Cham: Springer), 342-356.

Palsberg, J., Krishnaswamy, S., Kwon, M., Ma, D., Shao, Q., and Zhang, Y. (2000).
“Experience with software watermarking,” in Proceedings 16th Annual Computer
Security Applications Conference (ACSAC’00) (New Orleans: IEEE), 308-316.

Patel, S. J., and Pattewar, T. M. (2014). “Software birthmark based theft detection
of javascript programs using agglomerative clustering and frequent subgraph mining,”
in 2014 International Conference on Embedded Systems (ICES) (Coimbatore: IEEE),
63-68.

Pérez Gort, M. L., Feregrino Uribe, C., and Nummenmaa, J. (2017). “A minimum
distortion: High capacity watermarking technique for relational data,” in Proceedings of
the 5th ACM Workshop on Information Hiding and Multimedia Security, 111-121.

Pérez Gort, M. L., Feregrino-Uribe, C., Cortesi, A., and Fernandez-Pena, F. (2020).
A double fragmentation approach for improving virtual primary key-based watermark
synchronization. IEEE Access 8, 61504-61516. doi: 10.1109/ACCESS.2020.2979659

Pérez Gort, M. L., Olliaro, M., and Cortesi, A. (2021). “A quantile-based
watermarking approach for distortion minimization,” in International Symposium on
Foundations and Practice of Security (Cham: Springer), 162-176.

Pieprzyk, J. (1999). “Fingerprints for copyright software protection,” in Information
Security: Second International Workshop, ISW’99 (Kuala Lumpur: Springer), 178-190.

Pornin, T. (2013). “Deterministic usage of the digital signature algorithm (DSA) and
elliptic curve digital signature algorithm (ECDSA),” in RFC 6979, IETF.

Provos, N., and Honeyman, P. (2003). Hide and seek: an introduction to
steganography. IEEE Security Privacy 1, 32-44. doi: 10.1109/MSECP.2003.1203220

Sion, R., Atallah, M., and Prabhakar, S. (2003). “Rights protection for relational
data)” in Proceedings of the 2003 ACM SIGMOD international conference on
Management of data, 98-109.

Sokolova, M., and Lapalme, G. (2009). A systematic analysis of performance
measures for classification tasks. Inform. Proc. Managem. 45, 427-437.
doi: 10.1016/j.ipm.2009.03.002

Stern, J. P., Hachez, G., Koeune, F., and Quisquater, J.-J. (2000). “Robust object
watermarking: application to code, in Information Hiding: Third International
Workshop, IH’99 (Dresden: Springer), 368-378.

Tamada, H., Okamoto, K., Nakamura, M., Monden, A., and Matsumoto, K.
(2004). “Dynamic software birthmarks to detect the theft of windows applications,” in
International Symposium on Future Software Technology, volume 20.

Thomborson, C., Nagra,], Somaraju, R, and He, C. (2004). “Tamper-
proofing software watermarks,” in Proceedings of the Second Workshop on
Australasian Information Security, Data Mining and Web Intelligence, and Software
Internationalisation-Volume 32, 27-36.

Tian, J. (2003). Reversible data embedding using a difference expansion. IEEE Trans.
Circuits Syst. Video Technol. 13, 890-896. doi: 10.1109/TCSVT.2003.815962

Tian, Z., Zheng, Q., Liu, T., Fan, M., Zhuang, E., and Yang, Z. (2015). Software
plagiarism detection with birthmarks based on dynamic key instruction sequences.
IEEE Trans. Softw. Eng. 41, 1217-1235. doi: 10.1109/TSE.2015.2454508

Vivekananthan, V., Praveen, K., and Sethumadhavan, M. (2021). “Dynamic
watermarking using python ast in Proceedings of International Conference on
Advances in Computer Engineering and Communication Systems: ICACECS 2020
(Cham: Springer), 219-231.

Wang, Y., Gong, D., Lu, B, Xiang, F, and Liu, F. (2018). Exception
handling-based dynamic software watermarking. IEEE Access 6, 8882-8889.
doi: 10.1109/ACCESS.2018.2810058

Wu, B., Chen, K, He, Y, Chen, G, Zhang, W. and Yu, N. (2024).
“Codewmbench: An automated benchmark for code watermarking evaluation,”
in Proceedings of the ACM Turing Award Celebration Conference-China 2024,
120-125.

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1643075
https://doi.org/10.1145/1286821.1286826
https://doi.org/10.1007/s11416-023-00489-8
https://doi.org/10.1017/S0960129518000038
https://doi.org/10.1007/s41403-018-0058-8
https://doi.org/10.1007/s11042-019-08372-9
https://doi.org/10.1145/364520.364540
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.4304/jmm.2.2.10-16
https://doi.org/10.4018/jdcf.2009040104
https://doi.org/10.18653/v1/2024.acl-long.268
https://doi.org/10.1145/3230636
https://doi.org/10.1109/TIFS.2019.2908071
https://doi.org/10.1007/s10660-006-6955-z
https://doi.org/10.1109/ACCESS.2020.2979659
https://doi.org/10.1109/MSECP.2003.1203220
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1109/TCSVT.2003.815962
https://doi.org/10.1109/TSE.2015.2454508
https://doi.org/10.1109/ACCESS.2018.2810058
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Input parameters authentication through dynamic software watermarking
	1 Introduction
	2 Preliminaries
	2.1 Software watermarking architecture
	2.2 Static and dynamic approaches
	2.3 Watermarking requirements
	2.4 Adversary model

	3 Related work
	4 Proposed approach
	4.1 Architecture of data structure approaches
	4.2 Architecture of the parameters authentication approach
	4.3 Watermark construction
	4.4 Development of the parameter authentication approach
	4.5 Applied generative key-based functions
	4.5.1 The Keyed_permutation function
	4.5.2 The Keyed_index function
	4.5.3 The Keyed_bit function

	5 Experimental results
	5.1 Experimental setup
	5.2 Detection of data tampering
	5.3 Output accuracy variations
	5.4 Performance and overhead evaluation
	5.4.1 Impact on code size
	5.4.2 Execution time variations
	5.4.3 Memory overhead analysis

	5.5 Approach robustness to code transformations
	5.6 Analysis of attack resilience and detection capabilities

	6 Added value of watermarking
	7 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Author disclaimer
	References

	Button1:
	Button2:
	Button3:
	Button4:
	Button5:
	Button6:
	Button7:
	Button8:

