
TYPE Original Research
PUBLISHED 22 January 2026
DOI 10.3389/fcomp.2025.1639421

OPEN ACCESS

EDITED BY

Giovanna Castellano,
University of Bari Aldo Moro, Italy

REVIEWED BY

Gokhan Altan,
Iskenderun Technical University, Türkiye
Venkata Subbarao Gorantla,
Independent Researcher, Dallas, TX, United
States

*CORRESPONDENCE

Vengai Musanga
vengaimusanga@gmail.com

RECEIVED 02 June 2025
REVISED 01 December 2025
ACCEPTED 23 December 2025
PUBLISHED 22 January 2026

CITATION

Musanga V, Chibaya C and Viriri S (2026)
Using domain adaptation and transfer learning
techniques to enhance performance across
multiple datasets in COVID-19 detection.
Front. Comput. Sci. 7:1639421.
doi: 10.3389/fcomp.2025.1639421

COPYRIGHT

© 2026 Musanga, Chibaya and Viriri. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Using domain adaptation and
transfer learning techniques to
enhance performance across
multiple datasets in COVID-19
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This study presents a hybrid neuro-symbolic framework for COVID-19 detection
in chest CT that combines multiple deep learning architectures with rule-
based reasoning and domain-adversarial adaptation. By aligning features
across four heterogeneous public datasets, the system maintains high, site-
independent performance (average accuracy = 97.7%, AUC-ROC = 0.996)
without retraining. Symbolic rules and Grad-CAM visualizations provide clinician-
level interpretability, achieving near-perfect agreement with board-certified
radiologists (κ = 0.89). Real-time inference (23.4 FPS) and low cloud latency
(1.7 s) meet hospital PACS throughput requirements. Additionally, the framework
predicts key treatment outcomes, such as intensive care unit (ICU) admission
risk and steroid responsiveness, using retrospective EHR data. Together, these
results demonstrate a scalable, explainable solution that addresses cross-
institutional generalization and clinical acceptance challenges in AI-driven
COVID-19 diagnosis.
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1 Introduction

Artificial intelligence (AI) has shown remarkable potential in healthcare, contributing
significantly to disease diagnosis, treatment planning and medical imaging analysis
(Mansour et al., 2021; Salammagari and Srivastava, 2024). One notable application has been
in COVID-19 detection using CT scans (Alsharif and Qurashi, 2021), where models have
been designed to help radiologists identify lung abnormalities associated with the virus
(Shriwas et al., 2025), thereby improving diagnostic speed and accuracy. Among these, deep
learning models, particularly convolutional neural networks (CNN), have demonstrated
exceptional accuracy in identifying infection patterns (Zhao et al., 2021) in annotated
datasets. However, despite such models’ effectiveness, they suffer from poor generalizability
when deployed across different hospitals (Zhang et al., 2022), dissimilar imaging devices (Li
et al., 2023) and diverse patient demographics (Vrudhula et al., 2024), leading to reduced
reliability in real-world applications (Nazir et al., 2024).

Recent studies have proposed alternative methods for COVID-19 detection, further
enriching the body of AI-driven diagnostic research. Contrast-limited adaptive histogram
equalization (CLAHE) enhancement applied to chest-ray images has been shown to
improve CNN-based classification performance (Altan and Narli, 2022). Local histogram
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equalization (LHE) offers another promising preprocessing
strategy; a systematic analysis demonstrated that applying LHE
to segmented right- and left-lung lobes before transfer learning
significantly raised classification accuracy across the VGG16,
AlexNet and inception architectures, with optimal disk factor
tuning markedly increasing the discriminative power of pretrained
CNNs for COVID-19, pneumonia and normal cases (Narli,
2021). Yet another technique, a novel diagnostic approach named
VECTOR, analyses Velcro-like lung sounds to detect COVID-19,
achieving encouraging predictive results without relying on
imaging data (Pancaldi et al., 2022). While each of these methods
presents innovative solutions, they do not integrate symbolic
reasoning or address the generalization challenges caused by
domain shifts across datasets.

To improve interpretability, symbolic AI has been explored
as an alternative or a complement to data-driven methods.
Unlike deep learning, which learns from data patterns, symbolic
AI encodes expert-defined rules and logic, resulting in more
transparent decision-making. For COVID-19 detection, symbolic
AI can encode radiological knowledge and predefined rules
to assist in diagnosing an infection based on established
medical criteria (Fadja et al., 2022), such as the presence
of bilateral ground–glass opacities or the absence of pleural
effusion. However, its dependence on manually defined rules
makes it rigid and less adaptable to new imaging datasets (Lu
et al., 2024), as any change in clinical presentation requires
manual updates to the knowledge base (Najjar, 2023). To
address the limitations of both deep learning and symbolic
AI, a previous study introduced hybrid AI models (Musanga
et al., 2025) that combined deep learning’s feature extraction
capabilities with symbolic AI’s interpretability for COVID-19
detection using CT scans. The hybrid AI model leveraged deep
learning to recognize complex patterns in medical images while
integrating symbolic AI to ensure transparent decision-making
and rule-based validation (Musanga et al., 2025). However,
the model exhibited limited generalizability across multiple
datasets. This gap poses a significant challenge in deploying
robust and fault-tolerant explainable AI systems for real-world
clinical use (Rather et al., 2024), especially during pandemics
such as COVID-19, where data variability is inevitable. The
subject of this study is, therefore, the development of a hybrid
AI model integrated with domain adaptation techniques and
transfer learning to enhance performance, interpretability and
generalizability across multiple clinical datasets for COVID-19
detection using CT scans.

Building on a previously developed hybrid AI framework
that integrated deep learning for feature extraction and symbolic
AI for interpretability in COVID-19 detection using CT scans,
this research extends the model by incorporating domain
adaptation and transfer learning to enhance robustness
and fault tolerance across various clinical datasets. This
integration mitigates the challenges posed by domain shifts
in CT scan datasets, ensuring that the AI model remains
reliable across diverse healthcare environments. By integrating
deep learning, symbolic reasoning, and domain adaptation
techniques, this study aims to develop an interpretable and
generalizable COVID-19 detection framework that is suitable for
real-world deployment.

1.1 Main contributions

The main contributions of this paper are as follows:

• Unified Hybrid Neuro-Symbolic Framework: We propose the
first end-to-end hybrid framework that integrates ResNet-
50 feature extraction, U-Net lung segmentation, deformable
convolutions, and attention mechanisms with an explicit
rule-based reasoning layer. This integration, not previously
reported in COVID-19 CT analysis, simultaneously achieves
high diagnostic accuracy (97.7%) and full interpretability,
providing rule-level transparency for clinical decision support.

• Domain-Adversarial Transfer Learning Module: We design
a novel feature-alignment module that mitigates distribution
shifts across four heterogeneous CT datasets. This component
improves cross-domain F1 scores by up to 8.4% compared
with state-of-the-art baselines, demonstrating robustness and
reliability in diverse clinical environments.

• Clinical-Grade Validation and Real-Time Deployability:
Through multicentre evaluation, the proposed framework
demonstrates near-perfect agreement with board-certified
radiologists (κ = 0.89, 95% CI 0.85–0.92). Furthermore, it
achieves real-time inference (23.4 FPS) and low cloud latency
(1.7 s), satisfying hospital PACS throughput requirements and
supporting seamless clinical integration.

• Outcome-Prediction Extension: Beyond diagnostic
detection, the framework is extended to forecast critical
treatment outcomes such as ICU admission risk and steroid
responsiveness from retrospective EHR data. This highlights
the versatility of the approach and its potential impact on
both diagnosis and patient management.

These advances collectively provide a production-ready,
interpretable AI solution that addresses the dual challenges
of clinical accuracy and cross-institutional generalizability in
medical imaging.

2 Literature review

The use of AI tools in clinical diagnostics, particularly in
medical imaging, is not novel. The assistance of AI tools has been
considered in rapid detection of diseases such as COVID-19 (Chen
and See, 2020).

2.1 Deep learning for COVID-19 detection

Among the dominant AI tools considered, deep learning has
demonstrated exceptional performance in analyzing CT scans
to identify pulmonary infections related to COVID-19 (Lee
et al., 2023). Convolutional neural networks have established
themselves as the primary architecture for automated COVID-19
diagnosis from medical imaging data. Recent ensemble approaches
combining VGG16, DenseNet121, and MobileNetV2 have achieved
exceptional performance, with reported accuracies reaching 98.93%
through sophisticated feature fusion strategies (Bani Baker et al.,
2024). Vision transformers have further advanced the field by
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modeling long-range pixel dependencies through self-attention
mechanisms, with recent implementations achieving over 99%
accuracy on curated CT scan datasets (Gawande et al., 2025).

The development of deep learning architectures for COVID-
19 detection has increasingly incorporated advanced preprocessing
and enhancement techniques. Studies utilizing EfficientNet-
B4 models with transfer learning have demonstrated 97%
accuracy on diverse X-ray imaging datasets, highlighting the
continued relevance of convolutional architectures in medical
image analysis (Khalil et al., 2024). However, these achievements
are often constrained by dataset-specific optimizations that limit
generalizability across diverse clinical environments. Additionally,
despite their effectiveness, deep learning models struggle with
poor generalizability when deployed in varied clinical settings
(Zhang et al., 2022). Domain shifts, such as differences in
imaging protocols, scanner hardware, and patient populations,
cause significant degradation in deep learning model performance
when transitioning from the training environment to deployment
(Singhal et al., 2023). The need for alternative tools is thus apparent.

2.2 Alternative image enhancement
techniques

Image preprocessing-based enhancement techniques have
emerged as powerful alternatives to improve diagnostic
accuracy. Using CLAHE with transfer learning has led to
remarkable results. For instance, Altan and Narli (2022)
introduced a CLAHE preprocessor that preceded transfer
learning on popular CNN backbones. Using 3,615 COVID-
19 and 3,500 normal chest X-rays, the authors performed
a systematic grid search over 71 CLAHE parameter pairs;
the best setting (disk = 56, clip limit = 0.2) increased the
VGG-16 accuracy to 95.9%, outperforming the raw-image
baseline by approximately 3% and demonstrating that a single
well-tuned contrast routine could rival considerably deeper
networks. Furthermore, advanced CLAHE implementations
paired with gamma correction demonstrated even higher
performance, reaching 99.03% accuracy with DenseNet201 on
chest radiograph datasets.

Local histogram equalization has been shown to enhance
subtle texture features in chest-ray images prior to deep
learning classification. In Narli (2021), LHE with varying
disk radii was applied to segmented lung lobes before fine-
tuning VGG-16, AlexNet, and inception networks on a three-
class (COVID-19, pneumonia, and normal) dataset. The study
demonstrated that selecting an appropriate disk radius for LHE
preprocessing significantly improved classification accuracy across
all architectures, underscoring the importance of local contrast
enhancement for pretrained CNN performance in COVID-
19 detection.

While radiological modalities dominate the AI literature,
recent research has explored lung-sound analytics as a radiation-
free adjunct. Pancaldi et al. (2022) proposed VECTOR,
an algorithm that detected “Velcro-like” crackles—acoustic
biomarkers of COVID-19 pneumonia—from digital auscultation

recordings. After a Mel-spectrogram conversion and a handcrafted
feature extraction, the algorithm achieved 85.7% positive
predictive value (PPV) and 64.3% negative predictive value
(NPV) in a 28-patient cohort, with an overall diagnostic
accuracy of 75%. The system demonstrated 70.6% sensitivity
and 81.8% specificity compared with imaging-based ground
truth (lung ultrasound, chest X-ray, and high-resolution
computed tomography). Although the positive predictive
value lagged behind that of high-end CT-based systems,
VECTOR delivered instant bedside screening and could
be used as infrastructure, making it attractive for triage in
resource-limited settings.

Fuzzy logic-based enhancement methods represent another
significant advancement in COVID-19 detection. Fuzzy image
enhancement techniques using fuzzy expected value and fuzzy
histogram equalization have shown substantial improvements
in CT image quality for COVID-19 pneumonia detection.
These methods achieved 94.2% accuracy with 96.7% precision
by enhancing ground-glass opacity (GGO), crazy paving, and
consolidation patterns in CT scans. Fuzzy-based adaptive
convolutional neural networks (FACNN) have further advanced
this approach, reducing false positive rates and achieving
superior performance compared to traditional CNN baselines.
These methods illustrate that judicious preprocessing can
markedly increase baseline CNN accuracy; however, they do
not directly address cross-institutional generalization or provide
rule-level explanations.

2.3 Symbolic AI approaches

Symbolic AI utilizes structured rules, logical inference,
and domain ontologies to guide decision-making (Confalonieri
and Guizzardi, 2025). Systems in this domain have shown
promise in incorporating expert knowledge for COVID-19
diagnosis and improving the transparency of model predictions
(Wang et al., 2025). For example, rule-based reasoning can be
used to mimic radiologists’ diagnostic criteria for identifying
ground-glass opacities and consolidation patterns in CT scans
(Rana et al., 2022). However, symbolic AI systems lack the
flexibility of deep learning models and have limited scalability.
Updating knowledge bases to accommodate novel variants
of disease presentation or changing imaging practices often
requires manual intervention, which restricts such systems’
adaptability in dynamic clinical environments (Chander et al.,
2024).

Recognizing the strengths and limitations of both paradigms,
recent studies have explored hybrid AI models that integrate
deep learning and symbolic reasoning to balance performance
and interpretability. A hybrid framework combining CNN-
based feature extraction and symbolic reasoning for COVID-19
detection using CT scans was proposed earlier (Musanga et al.,
2025). This integration enabled the system to not only achieve
high diagnostic accuracy but also provide interpretable outputs
consistent with clinical reasoning. However, such hybrid models
are often developed and validated on static datasets, which limits
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their capacity to generalize across different healthcare settings with
diverse imaging characteristics.

2.4 Domain adaptation in medical imaging

To overcome the challenge of domain variability, domain
adaptation and transfer learning techniques have emerged as
powerful solutions. Domain adaptation focuses on reducing the
distributional gap between source and target datasets by aligning
feature spaces (Guan and Liu, 2021), often using adversarial
training or statistical distance minimization (Bellitto et al., 2021).
Transfer learning enables models trained on large-scale imaging
datasets to be fine-tuned for specific tasks such as COVID-19
detection, significantly reducing the need for annotated data (Wang
et al., 2025).

More recently, Turnbull and Mutch (2024a) introduced
pseudolabeling with 3D ResNet and Swin Transformer
architectures to address domain shifts; they achieved a best cross-
validation mean F1 score of 93.39% in the Detection challenge and
a mean F1 score of 92.15% in the Domain Adaptation challenge
of the COV19 CT-DB dataset. Bougourzi et al. (2024) combined
lung-infection segmentation (via PDAtt-Unet), three 3D CNN
backbones (Hybrid-DeCoVNet, 3D-ResNet-18, 3D-ResNet-50),
ensemble methods, and test-time augmentation. Their best models
achieved better performance than the baseline approach by
14.33% in terms of F1-score for COVID-19 Detection Challenge
and 14.52% for COVID-19 Domain Adaptation Challenge. Lim
et al. (2024) introduced the KDViT framework, which applies
knowledge distillation to Vision Transformers (ViTs) in order to
transfer the rich contextual representations of large teacher models
into lightweight student networks. This approach combines the
global dependency modeling strength of ViTs with the efficiency of
compact architectures, thereby reducing computational overhead
without sacrificing diagnostic accuracy. KDViT achieved high
accuracy rates of 98.39%, 88.57%, and 99.15% on the SARS-CoV-2-
CT, COVID-CT, and iCTCF datasets, respectively, with precision
and recall consistently near 98%, underscoring the effectiveness
of distillation-based transformer methods for COVID-19
detection. Fouad et al. (2025) advanced interpretability by aligning
volumetric CT models with BSTI radiological reporting categories
and embedding visual heatmaps consistent with radiologists’
reasoning. They obtained 75% overall accuracy for four classes
(“Classic,” “Probable,” “Indeterminate,” “Non-COVID”), which
rose to 90% after excluding the “Indeterminate” category. While
these studies advance performance, domain adaptation and
interpretability are typically pursued in isolation, and integration
with symbolic reasoning frameworks remains rare.

2.5 Research gap

A review of the current literature reveals fragmented
approaches to building robust, interpretable, and adaptive AI
systems for COVID-19 detection. Although deep learning,
symbolic AI, domain adaptation, and transfer learning have
advanced individually, few studies have integrated all four

TABLE 1 Notation and symbol definitions.

Symbol Definition

xεRH×W×C Input CT image tensor with height H, width W, and
channels C

zεRd Feature vector of dimension d extracted by the encoder

θ={θf , θt} Model parameters, where θf are frozen encoder weights
and θt are fine-tuned weights

L CE (y, ŷ) Cross-entropy loss between ground truth y and
prediction ŷ

λ Domain-adversarial weight in DAFA loss term

GRL(·) Gradient reversal layer for adversarial domain
alignment

W εRC×d, bεRC Classification head weights and biases for C output
classes

y′ =softmax (Wz+b) Predicted class-probability vector via softmax activation

α Fusion weight balancing deep-learning and symbolic
outputs in final decision

κ Cohen’s kappa measuring agreement between model
explanations and radiologist annotations

giε {0,1} Ground truth label

pi ε (0,1) Predicted probability of the positive class

components into a unified framework. Most existing models
lack the flexibility to adapt to domain shifts while maintaining
clinical interpretability. Therefore, a significant research gap
exists in the development of a hybrid AI system that not
only combines deep learning and symbolic reasoning but also
incorporates domain adaptation and transfer learning techniques
to enhance generalizability across multiple diverse COVID-19 CT
scan datasets.

3 Materials and methods

To ensure clarity in the mathematical formulations and
algorithms described in this section, all symbols and notation are
summarized in Table 1.

3.1 Design of the hybrid AI model

Building on a previously proposed hybrid AI system that
combined deep learning and symbolic AI for clinical diagnostics
(Musanga et al., 2025), this study extends the framework by
incorporating domain adaptation techniques to improve model
generalizability across diverse medical datasets. Figure 1 presents
the enhanced hybrid neuro-symbolic architecture with integrated
domain adaptation capabilities.

The system processes chest CT scans through multiple
integrated components: (1) Preprocessing pipeline applies intensity
normalization, spatial augmentation (rotation ±15 ◦, scaling), and
standardization to 224 × 224 pixels. (2) U-Net segmentation
isolates lung parenchyma from surrounding anatomical structures
(ribs, mediastinum) for focused analysis. (3) Feature extraction
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FIGURE 1

Overview of the hybrid ai framework with domain adaptation.

backbone combines ResNet-50 (frozen early layers, fine-tuned
final block), adaptive deformable modules (ADM) for irregular
lesion boundaries, and multi-head attention encoders for spatial
feature weighting. (4) DAFA uses gradient reversal layers to
align feature distributions across heterogeneous datasets, ensuring
cross-institutional robustness. (5) Dual reasoning paths process
extracted features through both a neural classifier and symbolic
reasoning engine containing clinical rules (e.g., bilateral ground-
glass opacity detection). (6) Decision fusion combines deep
learning predictions and rule-based outputs using weighted
averaging (α parameter). (7) Interpretability layers provide Grad-
CAM visualizations highlighting relevant anatomical regions and
rule activation traces for clinical transparency.

3.1.1 Input acquisition and preprocessing
The input images are chest CT scans formatted as 3D

tensors xεRH×W×C, where the spatial dimensions (height H,
width W) combine with channel depth C to form the complete
representation. Consistency in preprocessing is critical to ensure
reproducibility and minimize variance caused by scanner types,
imaging parameters, and institutional protocols. All images are
resized to a standard dimension of 224 × 224 pixels to match
the input size of the ResNet-50 network. Following resizing, pixel
intensity values are normalized to the range [0,1], stabilizing the
training process and ensuring numerical uniformity across images.

To enhance model generalizability and simulate real-world
heterogeneity, the training dataset undergoes an augmentation
pipeline consisting of spatial transforms (O = ±15 ◦, H/V–
flip, scale ε[0.9, 1.1], shift ≤ 5%) and intensity perturbations
[contrast ∼u(−0.1, +0.1), brightness ∼u(−0.2, +0.2)]. These

augmentations expose the model to spatial and visual variability,
reducing the risk of overfitting to specific training conditions. A
key enhancement in this stage is the application of a segmentation
model based on U-Net. This model isolates the lung parenchyma
from the surrounding structures such as the rib cage, the
mediastinum and other irrelevant regions. Figure 2 illustrates the
architecture of the U-Net model used for this segmentation task,
showing the encoder–decoder structure with skip connections
that preserve spatial resolution while enabling hierarchical
feature learning.

The network has a U-shape encoder–decoder structure with
symmetric downsampling and upsampling paths. The encoder
(left) uses successive convolutional layers and pooling to capture
context at multiple scales, progressively reducing the spatial
resolution while increasing feature channels. The decoder (right)
performs upsampling (e.g., via a transposed convolution) and
convolution, gradually restoring the resolution and reducing the
channel depth. Crucially, skip connections (horizontal gray arrows
in the figure) copy feature maps from the encoder to the decoder at
the corresponding levels, combining coarse high-level features with
fine-grained low-level features (Ronneberger et al., 2015).

The use of skip connections within U-Net ensures the
preservation of fine-grained spatial details, which is critical for the
identification of pathologies such as ground–glass opacities and
pulmonary consolidations. The output of the U-Net segmentation
is used to create a mask that is applied to the CT image, effectively
removing non-lung regions. This step reduces noise and ensures
that the subsequent feature extraction is focused solely on the
regions of diagnostic relevance. As a result, the model becomes
more robust to irrelevant variations and background interference.
In the final layer, a 1 × 1 convolution reduces the feature maps to
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FIGURE 2

Diagram of the U-Net architecture for lung segmentation, adapted from the original model (Ronneberger et al., 2015).

a single channel representing the lung class. A sigmoid activation
function is applied to generate a pixel-wise probability map:

ŷij = 1
1 + e−aij

(1)

where aijis the raw output (logit) for pixel (i, j), and ŷij is the
predicted probability that the pixel belongs to the lung region.

To train the model, two commonly used loss functions are
the binary cross-entropy (BCE) loss

LBCE = − 1
N

N∑
i=1

[
gi log

(
pi

) + (
1 − gi

)
log

(
1 − pi

)]
(2)

which penalizes the discrepancy between predicted probabilities
and the corresponding ground-truth labels across all N pixels (or
voxels). Complementing this, is the Dice loss, which measures the
overlap between predictions and ground truth, and is given by

LDice = 1 − 2
∑N

i=1 pigi + ε∑N
i=1 pi +

∑N
i=1 gi + ε

(3)

where ε = 10−6 is a small constant, to avoid division by zero. All
symbols are defined in Table 1. The two losses are combined during
training and are especially effective for medical image segmentation
tasks with class imbalance.

U-Net is widely used for lung segmentation due to its ability
to produce accurate, edge-preserving segmentations with limited
training data (Ronneberger et al., 2015). Its skip connections
combine semantic and spatial features, making it ideal for
segmenting complex anatomical structures such as the lungs. U-Net
models have demonstrated Dice similarity coefficients above 0.95
in lung CT applications. Additionally, its fully convolutional design
enables fast inference, making it suitable for clinical deployment.

3.1.2 Deep feature extraction with adaptive
modules

In this stage, a ResNet-50 convolutional neural network
pretrained on ImageNet is fine-tuned on COVID-19 CT scans to
learn robust feature representations of lung tissue. Using pretrained
weights provides a strong initialization, and fine-tuning adapts
the model to medical imaging characteristics (e.g., subtle textures
of ground–glass opacities). The network thus learns a hierarchy
of features (from low-level edges to high-level lung patterns)
tailored to COVID-19 manifestations. To further improve feature
extraction, we integrate two adaptive modules into the ResNet-
50 backbone: an adaptive deformable module (ADM) and an
attention-based encoder. These modules enable the model to
handle the irregular shape of infection areas and focus on critical
regions, respectively, yielding more discriminative features for
COVID-19 detection.

3.1.2.1 Adaptive deformable module (ADM)
The ADM enhances the CNN’s ability to capture lesions of

varying shapes and locations by using deformable convolutional
layers. It is inserted after the third residual block of ResNet-
50, modifying standard 3 × 3 convolutions into deformable
convolutions with learned offsets �pn and modulation scalars
�mnε [0,1]. During training, the offset learning layer generates 18
offset values and 9 modulation scalars per feature map location.
This allows the receptive field to shift dynamically in response to
spatial structures. The deformable convolution at output location
p0 is defined as

y(p0) =
∑

pn∈R
w

(
pn

)
.x

(
p0 + pn + �pn

)
�mn (4)
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where R is the regular sampling grid (e.g., 3 × 3), (pn) are the
filter weights, and x(·) represents the input feature map. The feature
maps at this stage have a spatial resolution of 28 × 28 × 512, and
the ADM adjusts these maps to better align with irregular lesion
boundaries, which often include elongated or peripheral GGOs.
The offsets �pn and modulation values �mn? are predicted by
auxiliary convolutional layers during training, allowing the network
to learn how to “bend” the convolutional receptive field to better
cover irregular lesions. Intuitively, the ADM lets the model stretch
or shrink its sampling region to fit the shape of abnormalities, for
example, wrapping around an elongated opacity or hitting a small
consolidation precisely. Such dynamic adaptation ensures that
spatially irregular COVID-19 lesions (which vary greatly in shape
and size) are captured more effectively than with rigid kernels. By
modeling anatomic deformations, the ADM produces feature maps
that preserve fine-grained lesion details, improving the network’s
robustness in recognizing COVID-19 patterns even if they appear
in atypical forms or locations.

3.1.2.2 Attention-based encoder
Next, the feature map is passed through an attention-based

encoder that highlights salient regions in the lungs, such as bilateral
GGOs, subpleural consolidations, or vascular enlargement, while
suppressing background noise. This encoder learns to assign higher
weights to image regions that are likely indicative of COVID-19,
effectively focusing the model’s “attention” on the most informative
parts of the CT scan. A channel-spatial attention block is applied
to each feature tensor, generating a spatial weight (p) for each
position p, where (p)εR28×28. A simplified formulation of attention
weights is

α(p) = exp(s
(
p
)
)∑

q exp(s
(
q
)
)

(5)

where s(p) is a learned scoring function (such as a 1× 1 convolution
or a dense layer applied to the features) that gauges the importance
of location p. The normalized attention weights (p) emphasize
regions with high scores. These coefficients then modulate the
feature map, for instance, by being involved in the computation of
a weighted aggregation of features

∑
p

α(p)f (p) (6)

where f(p) is the feature vector at position pεRC with C =
2,048, and z is the resulting attention-enhanced representation.
Through this process, features from critical regions (such as
infected lung areas) are amplified, while contributions from less
relevant regions are diminished. The attention-based encoder
effectively acts as a learned spotlight, guiding the model to
concentrate on key pathological patterns such as the hazy
appearance of ground-glass opacities or dense consolidations that
signal COVID-19 pneumonia. This produces a refined, high-level
feature representation of the CT scan that adapts to irregular
lesion geometry and highlights key infection areas, forming a solid
foundation for subsequent classification.

3.1.3 Transfer learning for efficient adaptation
This stage performs transfer learning by adapting a ResNet-

50 model pretrained on ImageNet for COVID-19 detection using
chest CT scans. Transfer learning is particularly effective in medical
imaging, where annotated data is limited (Alzubaidi et al., 2021a).
In our case, only 3,200 labeled CT scans are available, while
the pretrained ResNet-50 model has learned from over 1 million
natural images. This allows the model to reuse low-level visual
features such as edges and textures, accelerating convergence and
reducing overfitting.

To preserve general visual features, the first four residual
blocks of ResNet-50—accounting for approximately 36.2 million
parameters—are frozen (θf ). The final residual block and
classification head—approximately 9.1 million parameters—are
fine-tuned (θt) to specialize in detecting high-level COVID-
19-specific markers, such as bilateral GGOs and subpleural
consolidations. The parameter set is partitioned as θ = {θf, θt}.
Fine-tuning is conducted with a learning rate of 1 × 10−4 using the
Adam optimizer, minimizing the cross-entropy classification loss

Ltask = −
N∑

i=1

yi log ŷi (7)

where yi is the ground truth, and ŷi is the predicted probability.
Only θt is updated:

θ∗t = arg min
θ t

Ltask(θf , θ t) (8)

This fine-tuning procedure updates only a subset of weights
via backpropagation and reduces the risk of overfitting on small
datasets while enabling high-level adaptation to domain-specific
features. This enables efficient adaptation to the COVID-19
detection task even with limited data. Figure 3 illustrates the layer-
wise partitioning of the ResNet-50 backbone, showing which blocks
are frozen and which are fine-tuned during transfer learning. The
early layers, responsible for generic feature extraction, remain fixed,
while the final block and classifier are updated to specialize in
COVID-19-specific features.

Figure 3 below illustrates the architecture-level partitioning
of the ResNet-50 backbone in the proposed framework. This
figure shows the demarcation between the frozen layers (used for
general feature extraction) and the fine-tuned layers (adapted to
COVID-19-specific markers), highlighting the selective updating of
parameters during transfer learning.

3.1.4 Domain-adversarial feature alignment
To mitigate domain shifts caused by differences in scanner

types, imaging protocols, and patient demographics across datasets,
we use domain-adversarial training to align feature representations.
The Kaggle COVID-19 dataset serves as the source domain,
providing labeled data for supervised training. The target domains
include those of COVID-CT-MD, BIMCV COVID-19+, and
MosMedData datasets, which present diverse and heterogeneous
imaging distributions. These domain discrepancies can hinder
generalization, prompting the need to learn representations that
remain discriminative for COVID-19 but invariant across domains.
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FIGURE 3

Architecture overview of ResNet-50 transfer learning in the proposed framework.

FIGURE 4

Domain-adversarial feature alignment in the proposed hybrid AI
framework.

This stage introduces a domain discriminator Dω , trained
to distinguish the domain origin (e.g., Kaggle, BIMCV, or
MosMedData) of a feature vector, while the feature extractor Fθ

learns to generate domain-invariant features. A gradient reversal
layer (GRL) is placed between Fθ and Dω . During forward
propagation, the GRL acts as the identity function, but in
backpropagation, it multiplies the gradient by −1, forcing Fθ to
maximize the domain classification loss, and effectively “fooling”
Dω . The joint objective is defined as min

θφ
max

ω
[Ltask + λLdomain] ,

where Ltask is the cross-entropy classification loss for COVID-
19 diagnosis, and Ldomain is a binary or multiclass cross-
entropy loss, depending on the number of domains. We set λ

= 0.3, selected by grid search to maximize cross-domain F1
(see Supplementary Table 7). In our implementation, the domain

discriminator Dω is a two-layer multilayer perceptron (MLP) with
128 hidden units and ReLU activations. Each sample is labeled
according to its dataset origin (e.g., Kaggle = 0, BIMCV = 1,
etc.), and the model learns from the source domain (Kaggle) and
the target domain (COVID-CT-MD, BIMCV, or MosMedData)
simultaneously. This adversarial training strategy ensures that the
learned features retain COVID-19 discriminative power while
minimizing dataset-specific biases. As a result, the framework
becomes robust to unseen domains, enabling effective and
explainable COVID-19 detection across clinical settings. Figure 4
illustrates the domain-adversarial feature alignment process across
the source and target datasets.

The Kaggle COVID-19 dataset serves as the source domain,
while COVID-CT-MD, BIMCV COVID-19+, and MosMedData
act as target domains. A gradient reversal layer enables the
feature extractor to learn domain-invariant representations by
reversing gradients from the domain discriminator. This process
improves cross-dataset generalization while preserving COVID-
19-specific features.

3.1.5 Deep Learning classification layer
In this final stage, the deep learning classification layer produces

the ultimate diagnosis by processing the consolidated features
through a fully connected neural network classifier. The feature
vector z ε Rd (with d = 512 in our architecture) from the previous
stage is passed into a dense output layer consisting of C = 3
neurons, one per target class (COVID-19, pneumonia, or normal).
Each neuron is associated with a learned weight matrix and a bias
vector, W ε RC×d and b ε RC, respectively.

The logits (unnormalized scores) are given by

s = Wz + b, sε RC

Applying the softmax activation function converts these logits
into a normalized probability distribution over the classes:

y′ = softmax(s), yi
′ = exp(si)∑C

j=1 exp(sj)
, i = 1, . . . , C. (9)
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Here y′ ε RC with
∑C

i=1 yi
′ = 1, and each component yi

′

represents the model’s confidence (the probability) that the input
CT scan belongs to class i. For example, an output y′ = [0.80, 0.15,
0.05] would indicate an 80% probability of COVID-19, 15% chance
of pneumonia, and 5% chance of being normal, with the highest
probability class (COVID-19 in this case) chosen as the prediction.
During training, the classifier parameters W and b are optimized
(e.g., via gradient descent with a learning rate on the order of 10−4)
using a multiclass cross-entropy loss so that the softmax outputs y′

closely match the true labels for each of the three conditions.

3.1.6 Feature discretization for symbolic mapping
To support symbolic reasoning, numerical CNN activations are

mapped into discrete, binary indicators Ikusing clinically inspired
thresholds τk. For example, indicators of the form

Ik =
{

1, if max(Ak) > τk
0, otherwise

may represent features such

as “GGO detected,” “bilateral opacities present,” or “vascular
enlargement seen,” which are consistent with radiological
descriptors in COVID-19 diagnosis.

3.1.7 Symbolic reasoning via rule-based inference
The symbolic component includes a clinical knowledge base

and an inference engine. Rules are crafted from authoritative
guidelines (e.g., of the WHO or RSNA) and expert consensus. An
example rule is

IF (IGGO = 1) ∧ (IBilat = 1) ∧ (IEffusion = 0) ⇒ Diagnosis =
Likely COVID-19

Such rules are validated through expert review and capture
structured, human-readable diagnostic logic.

3.1.8 Hybrid decision fusion with confidence
mediation

To combine data-driven learning and expert reasoning, we
apply a weighted fusion mechanism Dfinal = αŷi + (1 − α) ŷsymb
where yi is the CNN prediction, ysymb is the symbolic inference
result, and α is a tuneable parameter that can be dynamically
adjusted based on model uncertainty or symbolic rule confidence.

3.1.9 Final output and explainability report
The final output includes the predicted class label with its

associated probability, the activated symbolic rules that contributed
to the decision, and plain-text justifications such as “COVID-19
likely due to bilateral GGO, no effusion, peripheral involvement.”

3.1.10 Statistical validation framework
To ensure the robustness of the reported results, we

applied statistical tests appropriate to the nature of each
analysis. Specifically,

(i) Parametric comparisons (e.g., model accuracy and F1 scores
across folds) were evaluated using paired t tests, assuming the
normality of distribution,

(ii) Nonparametric metrics (e.g., the cost per scan and
interpretability ratings) were assessed using the Wilcoxon’s
signed-rank test,

(iii) To control for false discovery in multiple hypothesis testing,
the Benjamini–Hochberg correction was applied, and

(iv) All statistical analyses were performed using SciPy v1.11.0,
with the significance threshold set at α = 0.05.

These rigorous statistical methods ensure reliable validation of
model performance while controlling for multiple comparisons,
following established practices for medical AI evaluation (Aznar-
Gimeno et al., 2022; Vrudhula et al., 2024).

3.2 Database

We conducted our experiments using four publicly accessible,
heterogeneous chest CT datasets: Kaggle COVID-19, COVID-
CT-MD, BIMCV COVID-19+, and MosMedData. Each dataset
was selected to capture a broad range of institutional practices,
imaging protocols, modalities, and population demographics,
thereby supporting a comprehensive evaluation of cross-domain
model robustness and real-world clinical applicability.

Detailed Dataset Specifications:
The Kaggle COVID-19 dataset’s scan images were collected

from the radiology centers of teaching hospitals in Tehran, Iran,
and included 7,644 CT scans of 190 COVID-19 patients and
2,509 CT scans of 59 COVID-19-negative individuals (including
pneumonia patients and healthy subjects). The images were
acquired using multiple-detector computed tomography (MDCT)
systems with heterogeneous acquisition parameters, encompassing
both low-dose and high-resolution protocols representative of
standard clinical conditions.

The COVID-CT-MD dataset contains CT scans of 305 patients
across three diagnostic categories: 169 confirmed COVID-19 cases,
76 healthy individuals, and 60 community-acquired pneumonia
(CAP) patients. This dataset, collected from the Babak Imaging
Center, Tehran, Iran in February–April 2020, features a balanced
gender representation and a wide age distribution, with images
acquired using various scanner models and acquisition settings to
reflect real-world clinical variability.

The BIMCV COVID-19+ dataset is a multicentre dataset
of imaging data from 1,311 patients across multiple institutions
in the Valencia Region, Spain. This dataset includes both
chest X-ray and CT modalities, accompanied by comprehensive
clinical annotations, radiographic findings, pathological data, and
diagnostic test results. The multi-institutional collection ensures
the representation of diverse scanner types, imaging protocols, and
demographic characteristics.

The MosMedData dataset consists of 1,110 anonymized lung
CT scans collected from various medical institutions in Moscow,
Russia in April 2020, categorized into five severity levels based
on the extent of lung involvement. The dataset encompasses
both COVID-19-positive cases and those with negative findings,
and its images were acquired using different scanner models
and protocols, providing valuable diversity for cross-domain
generalization assessment.
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The four datasets employed in this study represent diverse
healthcare environments and imaging protocols across multiple
countries. The comprehensive characteristics of these datasets are
summarized in Table 2.

Acquisition parameters across datasets varied (e.g., slice
thickness 1–5 mm, reconstruction kernels ranging from soft to
sharp, and fields of view between 250 and 400 mm), further
underscoring the need for input standardization.

The inclusion of multiple, independently sourced datasets
ensures diversity in scanner hardware, acquisition protocols,
disease prevalence, patient demographics, and labeling
methodologies. This heterogeneity is essential for developing
and validating models intended for real-world clinical deployment
rather than single-cohort optimization. By evaluating our hybrid
framework across datasets from distinct geographic regions (Iran,
Spain, and Russia) and healthcare systems, we can objectively
assess generalization capabilities across the domain shifts
commonly encountered in clinical practice. This multi-domain
approach provides a rigorous benchmarking foundation and
ensures practical relevance for scalable AI-driven COVID-19
detection systems.

3.3 Preprocessing and standardization

To ensure robust cross-dataset generalizability and
systematically address a significant heterogeneity in imaging
acquisition protocols, scanner characteristics, and label structures
across the datasets described in Section 3.2, we implemented a
comprehensive preprocessing pipeline designed to standardize
inputs while preserving diagnostically relevant features.

3.3.1 Image resampling and spatial normalization
All the CT scans underwent uniform spatial resampling

to achieve consistent voxel spacing and slice thickness across
datasets. Images were resampled to the isotropic 1 mm3 voxel
resolution using trilinear interpolation, effectively eliminating
scanner-specific spatial discrepancies that could confound model
training. This standardization ensured that anatomic structures
maintained consistent spatial relationships regardless of the
original acquisition parameters.

3.3.2 Intensity normalization and standardization
Hounsfield unit (HU) values were normalized per scan using

the z-score standardization: HU_normalized = (HU – μ_scan)
/ σ_scan, where μ_scan and σ_scan represent the mean and
standard deviation of intensity values within each individual scan,
respectively. Compared with global min-max scaling, this approach
demonstrated superior robustness to institutional calibration
variations and biological tissue density differences, ensuring
consistent intensity distributions across diverse scanner types and
acquisition protocols.

3.3.3 Anatomic region segmentation
A pretrained U-Net segmentation model was used to

automatically isolate and extract the lung parenchyma from each
CT scan, effectively masking extraneous anatomic structures and
standardizing the anatomic region of interest. This preprocessing
step ensured that subsequent analysis focused exclusively on
the lung tissue, eliminating potential confounders from cardiac
structures, the chest wall, and mediastinal contents that varied
significantly across datasets and imaging protocols.

3.3.4 Spatial cropping and resizing
Following lung segmentation, tight bounding boxes were

computed from the generated lung masks, and images were
uniformly cropped and resized to 224 × 224 pixels. This
standardization ensured spatial consistency for deep learning input
while maintaining aspect ratios and anatomic proportions. The
fixed input dimensions eliminated variability in the field-of-view
and original scan dimensions across different institutions and
scanner configurations.

3.3.5 Data augmentation strategy
To mitigate dataset-specific biases and enhance model

generalizability, systematic data augmentation was performed
during training:

i. Geometric augmentation: Random horizontal/vertical flips,
rotations (±15 ◦), and scaling transformations (±10%).

ii. Intensity augmentation: Gaussian noise injection (σ = 0.05)
and intensity jittering (±5% of the dynamic range).

iii. Elastic deformations: Subtle elastic transformations to simulate
natural anatomic variations.

Augmentation parameters were empirically optimized
through cross-validation to maximize F1-score convergence while
preventing overfitting to individual dataset characteristics.

3.3.6 Label harmonization and standardization
Diagnostic classifications were standardized to three consistent

labels across all datasets: COVID-19, pneumonia (non-COVID),
and normal. For datasets with multilevel severity classifications
(e.g., MosMedData’s five-level system), appropriate mapping
functions were implemented to ensure a uniform label structure.
This harmonization enabled consistent model training and
evaluation across heterogeneous annotation schemes.

3.3.7 Preprocessing parameter selection and
validation

The critical preprocessing parameters were systematically
optimized through empirical evaluation to ensure robust cross-
domain performance. Each parameter was selected based on
extensive grid search optimization and validated using domain-
specific metrics that reflect the preprocessing component’s
contribution to overall system performance.

For example, isotropic resampling resolutions from 0.5 to
2.0 mm3 were evaluated, with 1.0 mm3 selected as it preserved
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TABLE 2 Dataset specifications and characteristics for multi-domain COVID-19 detection framework.

Dataset Number
of images

Scanner types Patient
demographics

Acquisition
protocols

Annotation
type

Geographic
origin

Kaggle
COVID-19

10,153 CT
scans

Multiple-detector CT
(MDCT) systems with
heterogeneous
parameters

190 COVID-19 patients,
59 COVID-19 negative
individuals (including
pneumonia and healthy)

Low-dose and
high-resolution
protocols representative
of standard clinical
conditions

Manual
(radiologist)

Low-dose and
high-resolution
protocols representative
of standard clinical
conditions

COVID-CT-
MD

305 CT scans Various scanner models
from Babak Imaging
Center

169 COVID-19+, 76
healthy, 60 CAP patients;
balanced gender, wide
age distribution

Various acquisition
settings reflecting
real-world clinical
variability

Manual
(radiologist)

Tehran, Iran (Feb-April
2020)

BIMCV
COVID-19+

1,311 images
(CT+CXR)

Multiple scanner types
across institutions in
Valencia Region

1311 patients across
multiple institutions
with comprehensive
clinical data

Diverse imaging
protocols across
multi-institutional
collection

Radiologist/
clinical

Valencia Region, Spain
(multi-center)

MosMedData 1,110 CT scans Different scanner models
across Moscow
institutions

Mixed COVID-19+ and
negative cases across 5
severity levels

Different protocols
providing cross-domain
generalization diversity

Radiologist Moscow, Russia (April
2020)

anatomic fidelity while minimizing computational overhead (see
Supplementary Table 1). The optimized preprocessing parameters,
including their selected values, optimization ranges, and the
validation metrics used to guide parameter selection, are provided
(see Supplementary Table 1).

3.3.8 Cross-dataset input standardization
The integrated preprocessing pipeline achieves comprehensive

input standardization through the following:

i. Spatial harmonization: Uniform voxel spacing and image
dimensions across all datasets.

ii. Intensity standardization: Consistent HU value distributions
independent of scanner calibration.

iii. Anatomic consistency: Standardized lung region extraction,
eliminating extraneous anatomy.

vi. Label uniformity: Consistent diagnostic classification scheme
across heterogeneous annotation systems.

v. Augmentation consistency: Identical data augmentation
strategies applied uniformly across all datasets.

This systematic approach ensures that, despite substantial
institutional differences in imaging protocols, scanner
characteristics, patient demographics, and annotation practices,
all images entering the hybrid AI model are comparable in terms
of format, intensity distribution, spatial resolution, and anatomic
content. The standardization methodology directly addresses input
heterogeneity challenges while preserving diagnostically relevant
pathologic features essential for accurate COVID-19 detection.

3.3.9 Validation of standardization effectiveness
The preprocessing pipeline’s effectiveness was quantitatively

validated through histogram overlap analysis, domain adaptation
loss minimization, and cross-dataset performance consistency
metrics. Statistical significance testing confirmed that standardized
inputs significantly reduced inter-dataset distributional differences

(p < 0.001, Kolmogorov–Smirnov test) while preserving diagnostic
features (as confirmed through a radiologist’s review of processed
images). In addition, a senior radiologist independently reviewed
a random subset of 200 standardized scans and confirmed that
diagnostically relevant pulmonary features were preserved without
visible artifacts.

3.4 Experimental setup and evaluation
metrics

This section details the experimental protocols and evaluation
metrics used to validate the performance of the proposed hybrid
AI framework.

3.4.1 Implementation details
All the experiments were performed on four NVIDIA A100

GPUs with 40 GB of VRAM in each. Model training was
implemented in PyTorch v2.1.1, leveraging automatic mixed-
precision (AMP) for computational efficiency. Optimization was
performed using the AdamW algorithm with hyperparameters β1
= 0.9 and β2 = 0.999. The initial learning rate was set to 1 × 104

and decayed using a cosine annealing schedule. To accommodate
hardware memory limits, a batch size of 32 was used for CT scans.
Early stopping was applied with the patience of 10 epochs, and the
validation loss was monitored to prevent overfitting.

The implementation choices—including the use of the AdamW
optimizer (Loshchilov and Hutter, 2019), cosine annealing learning
rate schedule (Loshchilov and Hutter, 2017), and early stopping—
follow established best practices for efficient deep learning
model development in medical imaging applications (Alzubaidi
et al., 2021b). These methods have been shown to improve
stability, convergence and generalization performance in clinical
imaging applications.
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3.4.2 Datasets
The model was evaluated on multiple publicly available chest

CT scan datasets, which were preprocessed and segmented as
described in Section 3.1.1. The datasets varied in size, source
domain, scanner settings, and patient demographics, enabling an
assessment of the model’s ability to generalize across domains.

3.4.3 Training protocol
To ensure a rigorous validation, we adopted a five-fold cross-

validation strategy. Each dataset was randomly partitioned into
five subsets. In each fold, four subsets were used for training, and
one was used for testing; the latter role was rotated across folds to
obtain robust performance estimates. This approach mitigated the
influence of data partition bias and enhanced statistical reliability.

Recent studies in multi-center COVID-19 CT classification
highlight the importance of five-fold cross-validation for reducing
sampling bias and ensuring generalizable model performance
across heterogeneous imaging cohorts (Turnbull and Mutch,
2024b; Bougourzi et al., 2024). Our protocol aligns with these
recommended validation standards.

3.4.4 Evaluation metrics
The performance of the hybrid model was assessed using

standard evaluation metrics widely adopted in medical imaging
and clinical AI research. Accuracy, precision, recall, and F1-score
are well-established indicators for classification tasks, especially in
healthcare settings where class imbalance is common (Bani Baker
et al., 2024).

Accuracy measures the overall classification correctness:

Accuracy = TP + TN
TP + TN + FP + FN

(10)

Precision is the proportion of correctly predicted positive cases
among all predicted positives:

Precision = TP
TP + FP

(11)

Recall (Sensitivity) is the proportion of actual positives
correctly predicted:

Recall = TP
TP + FN

(12)

F1 score is the harmonic mean of precision and recall:

F1 − score = 2.
Precision.Recall

Precision + Recall
(13)

The AUC-ROC metric quantifies a model’s discriminative
ability across all classification thresholds, making it a widely
adopted and robust standard for evaluating the overall ranking
performance of binary and multiclass medical diagnostic systems,
particularly in situations with balanced class distributions or where
the cost of false positives and false negatives is considered equal
(Park et al., 2023).

To evaluate cross-domain robustness, we compute a Domain
Adaptation Score (DAS), following established evaluation protocols
in adversarial adaptation studies (Singhal et al., 2023).

The Explainability Score, which measures alignment between
symbolic rules and radiologist-verified findings, is grounded in
recent advances in interpretable neuro-symbolic AI frameworks
(Confalonieri and Guizzardi, 2025; Fouad et al., 2025). These
metrics collectively ensure that the evaluation captures accuracy,
robustness, interpretability and clinical validity, consistent with
best practices for AI-driven medical diagnostic systems.

3.4.5 Clinical validation protocol
We engaged eight board-certified thoracic radiologists (with

the mean experience of 12.7 ± 4.2 years) from three medical
centers for a blind evaluation. Each expert independently reviewed
300 randomly selected CT studies (100 of COVID-19 cases, 100
pneumonia cases, and 100 normal cases) through the RadBench
platform v3.1.5, which concealed model predictions during
the initial assessment. Diagnostic concordance was measured
using Light’s multi-rater κ coefficient with 95% confidence
intervals calculated via bootstrap resampling (1,000 iterations). The
treatment outcome analysis incorporated electronic health record
(EHR) data from 1,472 patients, capturing clinically significant
endpoints such as ICU admission within 14 days (corresponding
to a WHO Clinical Progression Scale score of 6 or above), a
40% reduction in C-reactive protein (CRP) levels following steroid
therapy measured 72 h post-administration, and intubation-free
survival, with outcomes censored at 28 days.

The use of κ-statistics, blind multi-reader evaluation, and
bootstrapped confidence intervals follows established clinical AI
validation guidelines (Aznar-Gimeno et al., 2022). This ensures
that diagnostic performance is rigorously assessed under conditions
comparable to real-world radiological workflows.

3.5 Hyperparameter selection and
optimization

Hyperparameters were determined through systematic grid
search and empirical evaluation rather than arbitrary selection.
The search was applied consistently across all four datasets, and
the chosen values proved stable without dataset-specific tuning.
This ensured that the reported results reflect parameters robust to
cross-dataset variability rather than overfitting to a single source.

To ensure optimal model performance and reproducibility,
all key hyperparameters of the experimental classifiers
and segmentation algorithms are summarized in
Supplementary Table 2, along with their final values, the search
space or the literature defaults explored, and the supporting
references. Hyperparameter tuning was guided by a combination
of prior literature on similar medical imaging tasks, an empirical
grid search, and five-fold cross-validation on the training set. For
parameters with no widely accepted optimal values in the literature,
a range of candidate values was evaluated, and the final values were
selected based on validation accuracy, loss convergence, and model
stability. These settings reflected both empirical optimization and
the established best practices from recent medical imaging studies.

To ensure optimal performance, hyperparameters were tuned
based on empirical evaluation and supported by prior literature.
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For instance, the Adam optimizer was selected due to its proven
stability and widespread application in deep learning for medical
imaging tasks (Kingma and Ba, 2015). The attention encoder
configuration, particularly the number of heads and the dropout
rate, follows the established design principles of transformer-
based models (Vaswani et al., 2017). For the domain-adversarial
component, the gradient reversal strategy and the trade-off
coefficient were adopted from the established practices in the
domain adaptation literature (Ganin et al., 2016).

4 Results and discussion

4.1 Cross-dataset performance with an
enhanced AUC-ROC analysis

A prior study reported an in-domain accuracy of 99.16%
for a model trained and evaluated on a single-source dataset.
While this result was notable, it did not account for variations in
imaging protocol or population diversity. In contrast, the present
study yielded a slightly lower accuracy of 97.7%, reflecting the
increased challenge of generalizing across multiple real-world
datasets. This modest reduction is a direct consequence of the
more challenging evaluation setting but represents a valuable trade-
off for greater robustness and clinical applicability. These training
and validation behaviors are consistent with expected convergence
patterns reported in recent transformer-based and CNN-based
COVID-19 diagnostic models (Gawande et al., 2025; Amuda et al.,
2025).

We evaluated the hybrid model across four independent
datasets—Kaggle COVID-19, COVID-CT-MD, BIMCV COVID-
19+, and MosMedData—to provide a comprehensive performance
analysis including a detailed AUC–ROC evaluation and an
assessment of training dynamics. An analysis of cross-dataset
performance with AUC-ROC is presented in Table 3.

The AUC–ROC values demonstrate statistically significant
performance across all datasets (p < 0.001, DeLong’s test), with
95% confidence intervals consistently exceeding 0.990. The cross-
dataset AUC-ROC variance (σ ² = 0.0000015) indicates exceptional
stability and generalizability.

These results show that although accuracy varies slightly
among datasets due to differences in imaging characteristics and
annotation quality, the model maintains high performance across
domains. This demonstrates effective cross-dataset generalization,
which was not evaluated in our earlier research.

4.1.1 Training performance and overfitting
assessment

The hybrid AI model was trained for 50 epochs with early
stopping (patience = 7) to prevent overfitting. Comprehensive
training curves were monitored across all performance metrics
to ensure robust generalization. The training progression
demonstrated stable convergence with minimal overfitting, as
evidenced by the close alignment between the training and
validation performance metrics throughout the learning process.

4.1.1.1 Training convergence analysis
i. Training Accuracy: Converged from the initial 85.9% to the

final 97.1% over 50 epochs.
ii. Validation Accuracy: Progressed from 82.9% to 97.2%,

maintaining close parity with training accuracy.
iii. Training Loss: Decreased exponentially from 0.476 to 0.022,

indicating effective learning.
iv. Validation Loss: Declined from 0.523 to 0.026 with a minimal

divergence from the training loss.
v. Training AUC-ROC: Achieved a rapid convergence to 0.999

by epoch 15, as AUC-ROC reached 0.997 with a smooth
progression, closely tracking the training performance.

4.1.1.2 Overfitting assessment
The model demonstrated excellent generalization

characteristics with minimal overfitting indicators:

i. Accuracy Gap (Training-Validation): −0.001 (the validation
value being slightly higher, indicating robust generalization)

ii. AUC-ROC Gap (Training-Validation): +0.002 (a minimal
difference well within an acceptable range)

iii. Loss Gap (Validation-Training): +0.004 (a small validation loss
penalty, indicating controlled overfitting)

These metrics confirm that the regularization strategies
(dropout = 0.5, weight decay = 1e-4, and early stopping) effectively
prevented overfitting while maintaining high performance.
Supplementary Table 3 provides a comprehensive comparison of
training vs. validation performance across all evaluation metrics,
demonstrating the effectiveness of our regularization strategies.

4.1.2 Statistical significance and training stability
4.1.2.1 Statistical significance of AUC-ROC performance

The AUC–ROC values demonstrate statistically significant
performance across all datasets (p < 0.001, DeLong’s test), with
95% confidence intervals consistently exceeding 0.990. The cross-
dataset AUC-ROC variance (σ ² = 0.0000015) indicates exceptional
stability and generalizability. The minimum AUC-ROC value
of 0.993 (observed for MosMedData) still represents excellent
discrimination ability that is well above the clinical acceptance
threshold of 0.90. Supplementary Table 4 presents the class-wise
AUC-ROC performance across all four datasets, with macro-
averaged AUC scores ranging from 0.993 to 0.996.

4.1.2.2 Training stability and convergence analysis
i. Learning Rate Optimization: The cosine annealing scheduler

with the initial learning rate of 1e-4 facilitated a smooth
convergence without oscillations. Training was stable
throughout all 50 epochs, with validation metrics consistently
tracking training performance.

ii. Early Stopping Effectiveness: Although early stopping was
configured with patience = 7, the model demonstrated
continued improvement through epoch 50, indicating
the optimal training duration. No overfitting was
observed even during the extended training, validating
our regularization strategy.

iii. Cross-Validation Stability: Five-fold cross-validation revealed
minimal performance variance (the standard deviation of
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TABLE 3 Cross-dataset performance with the AUC–ROC analysis.

Dataset Accuracy
(%)

Precision
(%)

Recall
(%)

F1 score
(%)

AUC-
ROC

95% CI
(AUC)

Sensitivity
(%)

Specificity
(%)

Kaggle COVID-19 97.7 (±0.3) 97.4 (±0.4) 97.9 (±0.4) 97.6 (±0.4) 0.996 0.994–0.998 97.9 (±0.4) 98.1 (±0.3)

COVID-CT-MD 96.9 (±0.5) 96.3 (±0.5) 97.0 (±0.5) 96.6 (±0.6) 0.994 0.991–0.997 97.0 (±0.5) 97.5 (±0.4)

BIMCV COVID-19+ 97.5 (±0.4) 96.8 (±0.5) 97.7 (±0.5) 97.2 (±0.5) 0.996 0.993–0.999 97.7 (±0.5) 97.8 (±0.4)

MosMedData 96.4 (±0.6) 95.9 (±0.6) 96.8 (±0.7) 96.3 (±0.7) 0.993 0.990–0.99 96.8 (±0.6) 96.9 (±0.5)

Average 97.1 (±0.3) 96.6 (±0.4) 97.4 (±0.4) 97.0 (±0.4) 0.995 0.992–0.998 97.4 (±0.3) 97.6 (±0.3)

AUC-ROC being 0.0007), confirming model robustness across
different data splits and supporting the reliability of the
reported performance metrics.

To further validate model consistency and robustness, we
conducted a comprehensive cross-validation analysis across
stratified multi-domain data splits.

4.2 Cross-validation performance across
folds

To evaluate consistency under varied data splits, we performed
five-fold cross-validation using a pooled multi-domain dataset.
The results are summarized in Supplementary Table 5. These
results indicate consistently high performance across all folds,
with minimal variance. This uniformity reinforces the reliability
and robustness of the hybrid model trained and validated
across stratified samples drawn from a heterogeneous multi-
domain dataset.

4.3 Model interpretability and visualization
analysis

To address interpretability requirements and validate the
learned features, we performed a gradient-weighted class activation
mapping (GradCAM) analysis. GradCAM generates visual
explanations by highlighting discriminative regions contributing
to COVID-19 classification decisions, using gradients flowing into
the final convolutional layer. Grad-CAM is recognized as a robust
and widely used interpretability tool for clinical CNN validation,
enabling the visualization of spatial attention patterns consistent
with radiological findings (Rana et al., 2022; Fouad et al., 2025).
Its adoption in this study ensures that model attention aligns with
clinically meaningful lung regions such as GGOs, consolidations
and vascular abnormalities.

4.3.1 Implementation and validation
GradCAM Generation: This process is applied to the final

convolutional layer of ResNet-50 (layer 4 [−1]) to produce class-
specific activation maps for COVID-19, pneumonia, and normal
cases. This technique computes pixel-wise importance weights

defined as

GradCAMc (x) = ReLU

(∑
k

αc
k.Ak (x)

)
(14)

Where αc
k represents gradient-derived importance weights.

Quantitative Validation: GradCAM reliability was validated
against radiologist-annotated regions across all datasets.
Supplementary Table 6 presents the localization accuracy,
Intersection over Union (IoU), and clinical concordance for each
dataset as well as the average performance. Three board-certified
radiologists validated the GradCAM outputs, achieving a 92.7%
diagnostic relevance agreement and the Cohen’s kappa of 0.87
(95% CI: 0.83–0.91).

4.3.2 Feature learning validation
For each diagnostic class (COVID-19, pneumonia, normal),

we generated separate activation maps to validate class-specific
feature learning:

i. COVID-19 patterns: GradCAM consistently highlighted
peripheral ground-glass opacities and bilateral involvement.

ii. Pneumonia patterns: Observations were focused on
consolidated regions with focal distributions.

iii. Normal cases: Minimal parenchymal activation was observed,
and anatomic boundaries were emphasized.

iv. Domain Adaptation Impact: The cross-dataset IoU variance
decreased from 0.0189 to 0.0094 (−50.3%) after domain
adaptation, with the activation pattern similarity improving
from 67.3% to 84.7%, confirming the role of domain-invariant
feature learning rather than dataset-specific artifacts.

Hence, our hybrid model learns clinically meaningful,
discriminative features aligned with radiological expertise,
validating the interpretability and diagnostic validity of the
proposed model.

4.4 Ablation study and hyperparameter
sensitivity

To further validate the robustness of the proposed domain-
adapted hybrid AI framework and maintain continuity with prior
research (Musanga et al., 2025), we conducted an extensive series of
ablation experiments and hyperparameter sensitivity analyses. Our
goal was to quantify the individual contributions of architectural
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modules and to systematically assess how key hyperparameter
settings influenced generalization across heterogeneous COVID-19
CT datasets.

4.4.1 Component ablation analysis
We first evaluated the impact of disabling individual model

components—namely, the adaptive deformable module (ADM),
the attention-based encoder (ABE), domain-adversarial training
(DAT), and the symbolic AI processing unit (SAPU)—on the
overall diagnostic performance. As shown in Table 4, each
component was omitted from the complete hybrid framework in
turn, and results were compared in terms of mean accuracy, the F1
score, and AUC-ROC, with significance tested via paired t tests and
the Benjamini–Hochberg correction.

The removal of domain adaptation resulted in the largest
statistically significant drop in performance (accuracy: 96.1%,
F1 score: 95.8%, AUC: 0.991), emphasizing domain adaptation’s
critical role in handling inter-dataset variability. Significant declines
in accuracy and the F1 score were also observed upon removing
the attention encoder and deformable convolution modules, which
reflected their complementary contributions to spatial focus and
flexible feature extraction. Omission of the symbolic module led to
only a modest, statistically insignificant, decrease, confirming that
this module’s primary benefit entailed model explainability rather
than absolute classification accuracy; this finding was consistent
with prior research.

4.4.2 Hyperparameter sensitivity
To complement architectural ablation, we systematically varied

key hyperparameters to assess their influence on model robustness
and cross-domain performance. For each main training or module-
specific parameter (e.g., the learning rate, the batch size, the loss
function, the domain-adversarial coefficient, dropout rates, the
number of attention heads, deformable module’s sampling points,
and symbolic rule thresholds), we measured the change in the mean
F1 score and AUC-ROC across all four evaluation datasets, holding
all other factors constant.

Supplementary Table 7 summarizes the effect of each
adjustment or ablation relative to the baseline (full) model.
The results show, for example, that increasing the classifier
learning rate to 1e-3 reduced the mean F1 by 2.1 percentage points
(“pp”), and switching the segmentation loss from Dice to cross-
entropy resulted in a 1.9% decrement. Higher domain-adversarial
coefficients (λ > 0.3), reductions in the number of attention
heads, or using fewer deformable sampling points similarly led
to degraded generalizability. These analyses justified the specific
hyperparameter choices reported in Section 3.5, as our grid search
and ablation approach consistently optimized both stability and
cross-domain performance. These quantitative results validated
not only the significance of each principal module but also the
critical importance of rigorous hyperparameter optimization.
The observed performance impacts are directly referenced in
the justification column of our unified hyperparameter table (see
Supplementary Table 2).

4.5 Comparative evaluation with existing
models

To contextualize our results within the broader landscape
of COVID-19 detection using AI, we compared our hybrid
framework to other notable deep learning models reported in
the literature and models from prior studies. While baseline
CNNs such as ResNet-50 and DenseNet-121 demonstrate high
accuracy under controlled conditions, their performance declines
in cases of cross-domain variability. COVID-Net, a model
tailored for COVID-19 detection, also lacks explicit interpretability
mechanisms. In contrast, our model maintains strong cross-
domain performance while incorporating symbolic reasoning
for enhanced explainability. Table 5 presents this comparative
analysis, highlighting key differences in accuracy, cross-domain
generalization and interpretability.

4.6 Symbolic-DL interaction ablation using
the fusion parameter (α)

To explore the impact of balancing symbolic reasoning and
deep learning, we performed an ablation experiment using a
tuneable fusion parameter α. This parameter governs the final
decision fusion:

Dfinal = αŷDL + (1 − α) ŷsymb (15)

where ŷDL and ŷsymb are the predictions from the deep learning
and symbolic reasoning modules, respectively.

As shown in Supplementary Table 8, increasing α (i.e., raising
the reliance on symbolic logic) gradually enhances interpretability
but introduces a slight decline in predictive accuracy and the F1
score. The optimal trade-off is observed at α = 0.5, which balances
a high classification performance and meaningful interpretability.
Notably, if α = 0.0, corresponding to the pure deep learning
output, the model retains its highest accuracy (97.7%), while
the symbolic-only decision (α = 1.0) still maintains strong
(though slightly reduced) performance. This trend illustrates the
complementary nature of symbolic reasoning and data-driven
inference and supports hybrid fusion as a robust approach for
real-world clinical applications.

This analysis underscores the flexibility of our hybrid model
in adapting to clinical needs. If transparency is prioritized (e.g.,
in high-stakes or legally sensitive environments), a higher α may
be used to emphasize symbolic logic. Conversely, in abundant-
data scenarios requiring peak performance, lower values of α are
preferred. The integration of symbolic interpretability with deep
learning predictions offers a dynamic mechanism for adjusting
the model’s output behavior, reinforcing its real-world deployment
potential under varied clinical requirements.

To complement the tabulated metrics, Figure 5 presents a
consolidated visual panel showing the trends of accuracy, precision,
recall, the F1 score, and AUC-ROC across the five validation folds:

As shown in Figure 5, all metrics remain consistently high
across folds, reinforcing the robustness and reproducibility of the
hybrid model under different data splits.
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TABLE 4 Ablation study results comparing component contributions to the overall model performance.

Model configuration Accuracy
(%)

F1 score
(%)

AUC-
ROC

Raw p
value

BH-Adjusted
p value

Statistically Significant?
(α = 0.05)

Full hybrid model 97.7 97.6 0.996 1.000 1.000 No

Without the symbolic module 97.3 97.1 0.994 0.063 0.071 No

Without domain adaptation 96.1 95.8 0.991 0.014 0.025 Yes

Without deformable convolutions 96.5 96.1 0.993 0.037 0.044 Yes

Without an attention encoder 96.3 95.9 0.992 0.031 0.038 Yes

TABLE 5 Comparative evaluation of the proposed hybrid neuro-symbolic framework and existing COVID-19 detection models across key clinical and
performance metrics.

Model Modality DL
architecture

Pre-processing
pipeline

Dataset
(cases)

Explainability Classification
performance

Hybrid Neuro-Symbolic
(Musanga et al., 2025)

CT ResNet-50 + U-Net
+ DAFA +
Deformable
Convolution +
Attention

z-score norm → U-Net
lung segmentation →
224 × 224 crop →
Augment

Multi-CT (10,153) Symbolic rules +
Grad-CAM

Acc 97.7%, AUC
0.996, F1 0.976

COVID-Net CXR-2
(Pavlova et al., 2022)

CXR COVID-Net
(PEPX-CNN)

Min-max norm →
Augment

COVIDx (19,203) Heat-map visualiser Sens 95.5%, PPV
97.0%, AUC 0.931

CovidViT (Yang et al.,
2022)

CXR Vision Transformer 256 → 224 resize →
HistEq

Public CXR
(>15,000)

Self-attention maps Acc 98.0%

Swin Transformer CT
staging (Hamedani et al.,
2025)

CT Swin-Tiny
Transformer

Slice selection →
normalize

∼10,902 CT images
(5 classes)

Attention maps Acc ∼0.95–0.97

COVID-19 detection (El
Houby, 2024)

CXR VGG19,
EfficientNet-B0
(transfer learning)

Enhancement →
segmentation →
normalize

21,165 CXR Not specified Sens 0.96, Spec 0.94,
Acc 0.95

DAM-Net (Ullah et al.,
2023)

CXR Attention CNN CLAHE → Resize →
Normalize

COVIDx (17,342) Attention Maps Acc 97.22%, Sens
96.87%

ViTGNN (Amuda et al.,
2025)

CT ViT + Graph NN CLAHE → Gaussian
blur → Augment

Public CT (2,482) Attention maps Acc 95.98%, AUC
0.987

DeepDSR (Peng et al.,
2022)

CT DenseNet + Swin
Transformer +
RegNet (Ensemble)

Resize → Normalize Integrated CT
(4,500)

Ensemble voting Acc 98.9%, AUC
0.999

CoroNet (Khan et al.,
2020)

CXR Xception Resize (224 × 224) →
Normalize

COVIDx (1,300) Grad-CAM Acc 89.6%, AUC
0.93

4.7 Domain adaptation effectiveness

To evaluate domain adaptation, we present three visualizations
that highlight the alignment of features across different domains.
Figure 6 provides a simulated two-dimensional feature projection
before and after adaptation:

As shown in Figure 6, domain adaptation improves feature
alignment by transforming initially separate source and target
domain features into overlapping clusters in the shared feature
space. Figure 7 illustrates pairwise discrepancy scores between
domains using a heat map:

In Figure 7, lower values on the heat map indicate a reduced
divergence between feature distributions. After adaptation,
the discrepancy between the source and target domains
declines significantly.

Figure 8 shows the spatial distribution of domain-invariant
features using the principal component analysis (PCA).

The PCA visualization shown in Figure 8 illustrates how
domain-invariant embeddings learned by the hybrid model result
in tightly clustered and overlapping feature distributions across
the source and target domains. While source and target features
initially occupy distinct regions, adaptation aligns them closely
in the shared feature space. The green crosses (adapted features)
converge at the center, indicating the effectiveness of domain-
adversarial training in neutralizing dataset-specific biases and
facilitating robust cross-domain generalization.

4.8 Explainability assessment

The symbolic reasoning module successfully matched
radiologist annotations in 89.6% of test cases. The activated
symbolic rules produced results consistent with clinical features
such as bilateral GGOs and the absence of pleural effusion. The
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FIGURE 5

Cross-validation metrics.

FIGURE 6

Domain adaptation feature alignment.

combination of neural and symbolic interpretations can thus
improve clinician trust in the model.

4.9 Error analysis

We evaluated the diagnostic concordance between the hybrid
AI model and eight board-certified radiologists using a blind review
of 300 CT cases. As shown in Table 6, the model achieved a 97.3%
accuracy of COVID-19 detection, closely matching the radiologists’
96.1% performance. The multi-rater Cohen’s κ coefficient was
0.89 (95% CI: 0.85–0.92), indicating a near-perfect agreement.

For severity stratification, the model reached a 90.4% agreement
compared to radiologists’ 89.6%, with κ = 0.84. These results
confirmed the model’s reliability and clinical relevance, reinforcing
its potential for deployment as a diagnostic support tool.

To further contextualize our model within the evolving
landscape of hybrid AI systems, we compared performance
of this model and two recent state-of-the-art models, namely,
DeepCOVID-XR (Wehbe et al., 2021) and CNN-LSTM (Islam
et al., 2020). As shown in Supplementary Table 9, DeepCOVID
achieved a lower raw accuracy, lacked interpretability and
demonstrated poor cross-domain generalization. In contrast,
CNN-LSTM was more transparent but also showed a lower
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FIGURE 7

Domain discrepancy heat map.

FIGURE 8

PCA domain adaptation embedding.

diagnostic performance. Our proposed framework offers the
most balanced performance across accuracy, explainability, cross-
domain robustness and clinical readiness.

4.10 Critical treatment predictions

Going beyond diagnostic classification, we evaluated the
model’s potential in predicting critical treatment outcomes using
retrospective EHR data from 1,472 patients. A binary “High Risk”
label—based on the model’s output probability exceeding 0.85—
was associated with the rate of ICU admissions rising by the factor
of 3.2 (32.1% vs. 10.3%, p < 0.001).

Additionally, the model predicted steroid responsiveness using
symbolic and neural indicators (e.g., CRP levels and bilateral GGO

TABLE 6 Model-radiologist diagnostic agreement.

Metric Model (%) Radiologists (%) κ (95% CI)

COVID-19 detection 97.3 96.1 0.89 (0.85–0.92)

Severity stratification 90.4 84.6 0.84 (0.80–0.88)

FIGURE 9

Time-to-intubation survival curves by model-predicted risk group.

patterns), achieving an AUROC of 0.84. Patients identified as likely
responders demonstrated a 78.3% reduction in C-reactive protein
(CRP) within 72 h, compared to only 22.1% observed for non-
responders.

Figure 9 presents the time-to-intubation survival curves,
stratified by model-predicted risk groups. These curves exhibit
significant separation (log-rank p = 0.002), confirming that the
model’s risk predictions have real clinical implications.

Overall, the concordance of 85.7% was observed between
model predictions and actual CRP responses, highlighting the
model’s value in treatment triage. However, the disagreement rate
of 15.2% in early-stage cases reinforced the need for human-
AI collaboration, particularly in ambiguous scenarios. Future
deployments should include the following:

i. Real-time clinician feedback loops,
ii. Contextual EHR integration (e.g., considering the renal

function for drug dosing), and
iii. Dynamic confidence calibration based on disease stage.

4.11 Domain discrepancy measurement

We quantified domain shifts using the maximum mean
discrepancy (MMD) between the source (Kaggle) and
target datasets:

MMD2 (DS, DT) = 1
n2

n∑
i, j=1

k(xS
i , xS

j )

− 2
nm

n∑
i=1

m∑
j=1

k(xS
i , xT

j ) + 1
m2

m∑
i,j=1

k(xT
i , xT

j ) (16)
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where k is the radial basis function kernel with γ =
0.1. Lower MMD values indicate closer alignment between
feature distributions, while higher values suggest greater domain
shift. Supplementary Table 10 presents the MMD values, the
associated p values, and classification accuracy values after
alignment across three domain pairs. The results confirm a
significant domain discrepancy between the Kaggle dataset
and the target datasets, with the corresponding reductions in
baseline classification accuracy that emphasize the necessity of
domain adaptation.

5 Clinical implementation

To bridge technical validation with clinical utility, we assessed
deployment metrics across real-world hospital settings.

5.1 Clinical implementation metrics

To assess deployment feasibility in real-world settings,
we benchmarked our hybrid framework against two standard
backbones on an NVIDIA V100 GPU and evaluated edge
performance on an NVIDIA Jetson AGX. Integration with
hospital PACS systems was implemented via RESTful APIs. See
Supplementary Table 11 for a summary of training time, peak GPU
memory usage, model size, and inference speed in relation to
clinical viability thresholds.

The hybrid model requires 2.6 h of training and peaks
at 12.3 GB GPU memory—approximately 2.2× longer and
45% more memory than ResNet-50—while maintaining a
model size of 45.3 M parameters. Inference speed remains
clinically acceptable at 23.4 FPS on V100 and 14.7 FPS on
Jetson AGX, surpassing the real-time threshold of 15 FPS
for edge deployments. Additionally, the framework achieved
98.2% compatibility with non-standardized DICOM scans
after voxel-space normalization (resampling from 0.7 to 1.0
mm3), confirming robust operation across diverse clinical
imaging protocols.

5.2 Ethical and interpretability
considerations

Ethical validation focused on explainability, bias mitigation,
and clinical acceptance. A SHAP analysis confirmed that
the model relied primarily on medically relevant features;
specifically, lung regions contributed 73% to the prediction
confidence, while scanner artifacts and background noise
contributed less than 12%. These findings supported the
framework’s transparency and trustworthiness. To evaluate
human-AI synergy, 10 radiologists compared traditional
and AI-assisted interpretations in a pilot study. The AI
system achieved a 94% acceptance rate, with most clinicians
describing symbolic rule outputs as “clinically actionable” and
“easily interpretable.”

5.3 Limitations and deployment caveats

Although our hybrid neuro-symbolic framework demonstrates
strong, site-independent performance, the following limitations
merit attention:

• Despite strong overall performance, several deployment
challenges were noted: accuracy dropped to 89.1% on
early-stage COVID-19 (lung involvement <5%), DICOM
standardization remains a prerequisite for edge environments,
and our symbolic rules require quarterly updates to capture
evolving radiological criteria and emerging variants.

• Differential Diagnosis: Our model was trained to distinguish
COVID-19, non-COVID pneumonia, and normal scans. We
did not evaluate its performance on other conditions with
overlapping features (e.g., ARDS, organizing pneumonia,
interstitial lung disease). Future work should include these
pathologies to assess specificity and refine symbolic rules.

• Cross-Modality Generalization: While focused on chest CT,
our domain-adversarial framework could extend to CXR and
lung ultrasound. Adapting encoders and rule sets for different
image characteristics will be essential before deployment in
settings where CT is unavailable.

• Evolving Disease Patterns: Datasets reflect early pandemic
imaging. Emerging SARS-CoV-2 variants and post-COVID
sequelae may exhibit new radiographic patterns. Continuous
model monitoring and periodic retraining with temporally
diverse cases are required to maintain accuracy.

Addressing these areas will strengthen model robustness,
broaden clinical applicability and ensure long-term generalization.

5.4 Clinical deployment and regulatory
considerations

Successful deployment of AI systems in clinical settings
requires careful attention to regulatory compliance, workflow
integration, and performance sustainability. Our framework
is designed with explainability at its core—leveraging dual
interpretability (symbolic rules and Grad-CAM) to satisfy
regulatory transparency guidelines under frameworks such as
the U.S. FDA’s Software as a Medical Device (SaMD) initiative
and the European Union’s CE-marking requirements under
the Medical Device Regulation (MDR). The symbolic layer
provides rule-based reasoning aligned with radiological standards,
while visual attention maps enable traceability of model focus
during diagnosis.

From a systems integration perspective, the model is
deployable as a containerized inference engine that communicates
with hospital PACS via standard DICOM and HL7 interfaces.
Predictions and explanatory overlays can be rendered in real-
time (23.4 FPS), making the system suitable for integration as
a decision-support layer in routine clinical workflows without
imposing significant latency. Future updates will include audit
trails and model versioning in compliance with evolving regulatory
expectations for adaptive AI systems.
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6 Conclusion and directions for future
research

Observations: The proposed hybrid AI framework has
demonstrated strong potential in the automated detection of
COVID-19 based on chest CT scans. By integrating deep learning,
domain adaptation, and symbolic reasoning, the system achieves
high classification accuracy while maintaining interpretability. The
consistent performance across the validation folds confirms the
reliability of the model, and the visual and quantitative assessments
of domain alignment underscore the success of the domain
adaptation strategy.

Contributions: This study contributes a novel architecture
that combines deep feature extraction and symbolic reasoning,
augmented by domain-adversarial alignment techniques. The
hybrid design not only enhances predictive robustness but also
ensures transparency through clinical rule-based explanations.
In addition, we introduce comprehensive evaluation protocols,
including ablation studies, to empirically validate each architectural
component’s significance.

Future Studies: In future research, we aim to extend the
framework to other imaging modalities (e.g., X-rays or MRIs)
and medical conditions beyond COVID-19. The incorporation
of patient metadata such as age, symptoms, and comorbidities
may enhance diagnostic specificity. Furthermore, exploring
semi-supervised, few-shot, or unsupervised domain adaptation
techniques could further improve generalizability under limited-
label settings. Finally, clinical validation through prospective trials
remains a critical next step for real-world deployment.
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