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Segments-aware universal
adversarial perturbations
purification on 3D point cloud
classifiers

Yang Gao, Xianrui Chang, Haoran Li and Jian Xu*

Software College, Northeastern University, Shenyang, China

Introduction: 3D point cloud classifiers, while powerful for representing real-
world objects and environments, are vulnerable to adversarial perturbations,
particularly Universal Adversarial Perturbations (UAPs). These UAPs pose
significant security threats due to their input-agnostic nature. Current
purification methods exhibit critical limitations: they typically operate
independently of the target classifier and treat perturbations as isolated
points without considering the coherent, structural nature of UAPs in 3D point
clouds (such as outlier-like shapes with continuous curvature). This fundamental
oversight limits their effectiveness, primarily because distinguishing between
genuine geometric features and structured adversarial patterns presents a
significant challenge.

Methods: We propose a novel purification framework that leverages model
interpretability to identify and remove adversarial regions in a holistic manner.
Our approach uniquely identifies influential regions within adversarial samples
that maximally impact the classifier's predictions. Recognizing that UAPs often
manifest as structured segments rather than random points, we employ graph
wavelet transforms to isolate suspicious curvature segments. These identified
segments undergo a transplantation test where they are transferred to clean
samples; segments are classified as adversarial if this transfer consistently induces
misclassification. The identified adversarial regions are then removed to sanitize
the point cloud. This model-guided, structure-aware approach treats UAPs as
coherent structures rather than isolated perturbations.

Results: We conducted extensive experiments on two public 3D point
cloud datasets using four different state-of-the-art classifiers. Our framework
demonstrated remarkable improvements in robustness against various UAP
attacks compared to existing purification methods. The results show significant
accuracy recovery rates after purification, with consistent performance across
different classifier architectures and attack methods. Our method particularly
excels at preserving genuine geometric features while removing adversarial
structures, maintaining high classification accuracy on clean samples while
effectively neutralizing UAP threats.

Discussion: Our findings demonstrate that considering the structural nature
of UAPs and leveraging model interpretability are crucial for effective defense.
Unlike previous point-wise approaches, our framework'’s ability to identify and
process coherent adversarial segments addresses the fundamental limitation
in current purification methods. The transplantation test provides a reliable
mechanism to distinguish between legitimate features and adversarial artifacts.
This work highlights the importance of model-guided purification strategies
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and opens new directions for defending geometric deep learning systems
against structured adversarial attacks. Future work could extend this approach to
other geometric data representations and explore adaptive defense mechanisms
against evolving attack strategies.
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deep learning, computer vision, 3D point cloud, adversarial attack, security and privacy,

defense

1 Introduction

3D point clouds are an ideal format for describing the real
world, which consists of unorganized 3-dimensional coordinates,
providing a direct representation of the surfaces of objects and
environments captured by sensors such as LIDAR, structured light
systems, or depth cameras. Starting from the analysis requirement
of such data, 3D Point Cloud Classifiers has achieved extensive
research attention and also shown outstanding performance on
various applications, such as healthcare (Mozaffari-Kermani et al.,
2014), self-driving cars (Badue et al., 2021), drones (Hassanalian
and Abdelkefi, 2017), robotics (Pierson and Gashler, 2017), and
many other applications (Zhu et al., 2024; Ma et al., 2022).

Among the various types of adversarial perturbations (Szegedy
et al., 2014; Zhang et al,, 2024; Hu et al,, 2023; Khaddaj et al,
2023; Mo et al., 2024; Liu et al., 2023), Universal Adversarial
Perturbations (UAPs) (Zhang et al, 2020) are considered to
be one of the most threatening ones. Since UAPs can be
applied to any input, so that poses a significant threat to the
robustness and reliability of machine learning systems in real-world
applications (Zhang et al., 2021). Basically, UAPs refer to a class
of indistinguishable perturbations applied across an entire inputs.
Unlike traditional adversarial attacks that generate perturbations
specific to individual inputs, UAPs are crafted to be effective across
a diverse range of inputs, making them particularly potent and
challenging to defend against (Mopuri et al., 2019).

In response to this challenge, several notable purification
techniques have been proposed to counteract UAPs in 3D point
clouds. For instance, SOR (i.e., Statistical Outlier Removal)
leverages explicit statistical rules to analyze local point density
distributions, identifying and removing potential outliers that
may contain perturbations. On the other hand, DUP-Net
and IF-Defense exploit the generative capabilities of deep
learning models by feeding suspicious point clouds into pre-
trained networks for resampling, thereby producing refined,
denoised versions.

However, a key limitation of these methods is their
independence from the victim classifier’s information. By relying
solely on the intrinsic patterns of clean data for purification, they
often yield sub-optimal defense performance. More importantly,
in the context of 3D point clouds, UAPs typically manifest
as coherent, outlier-like structures with continuous curvature
and even semantic meaning, such as a ball or stick-shaped
object (Naderi and Baji¢, 2023). This characteristic complicates
the distinction between legitimate geometry and adversarial
perturbation, making it difficult for model owners to determine
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whether such shapes are genuine or malicious. Existing approaches
largely overlook this structural nature of UAPs, instead focusing
on individual points as the primary unit of analysis. As a result,
they fail to fully capture and neutralize the holistic structure of
adversarial perturbations, limiting their effectiveness in achieving
comprehensive sanitization.

In this paper, we propose a novel purification framework that
leverages model interpretability to identify and remove adversarial
regions in 3D point clouds. Our method focuses on detecting
the most influential regions in adversarial samples—those that
significantly affect the model’s prediction—as likely locations of
perturbation. Our defense operates in a white-box scenario, where
the defender has full access to the target model’s architecture and
parameters. Considering that UAPs often are outlier-like structures
with continuous curvature, we apply graph wavelet transforms to
extract suspicious curvature segments and treat these segments as
the primary unit of analysis. Then, given the universal nature of
UAPs, truly adversarial segments should induce misclassification
when transferred to clean samples. We therefore classify a region
as adversarial if its transplantation consistently degrades model
performance. Once identified, these regions are removed to purify
the original point cloud.

Our contributions are summarized as follows:

e Model-guided purification: The method uses the target
model’s own feedback (interpretability) to find the input
regions most responsible for causing misclassifications,
assuming these are the adversarial parts.

e Structural UAP analysis: It treats UAPs as coherent structures
(not just points), using graph wavelets to find suspicious
segments and verifying them with a novel transplantation test.

e Remarkable results: We evaluate our approach on two
public real-world datasets and four 3D point cloud classifiers.
The experimental results demonstrate the efficiency of our
methods.

2 Related works

2.1 Adversarial perturbations on 3D point
clouds

The Adversarial Perturbations was first introduced in Szegedy

et al. (2014), which has demonstrated that the performance of a
well-trained DNN can be significantly weakened by adversarial
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examples, which can be crafted by adding the human-imperceptible
perturbation on the original examples.

Threateningly, the universal adversarial perturbations (UAPs),
was developed. UAP is a fixed perturbation that can be added
directly to various clean examples, resulting in misleading
classification when these victim examples have been fed into a
well-trained target model. UAP was first introduced by Moosavi-
Dezfooli et al. (2017), in which they proposed an algorithm
based on the image-dependent DeepFool attack (Moosavi-Dezfooli
et al, 2016). The core idea is to calculate the minimum
perturbation from each example to the decision boundary and
iteratively accumulate these perturbations to find a universal
perturbation. After that, Mopuri et al. (2017) introduced a method
without access to target training data by maximizing the mean
activations at multiple layers of the network when the input is
the universal perturbation, which can only perform non-targeted
attacks and the results are not as strong as (Moosavi-Dezfooli
et al., 2017). Based on FFE additional prior information about
the data distribution is introduced to improve the fooling ability
(Mopuri et al., 2019).

Moreover, Yang et al. (2019) used the Chamfer distance
(instead of the ¢;-norm) between the original point cloud and
the adversarial counterpart to extend the FGSM to 3D. One of
the most potent attacks on 3D data is the Projected Gradient
Descent (PGD), whose foundation is the pioneering work by Madry
et al. (2017). Ma et al. (2020) proposed the Joint Gradient Based
Attack (JGBA). They added an extra term to the objective function
to defeat statistical outlier removal (SOR), a common defense
against attacks.

Beyond these foundational methods, recent research has
increasingly focused on enhancing the imperceptibility of input-
specific attacks, ensuring the adversarial point clouds remain
visually indistinguishable from their benign counterparts by
preserving complex geometric properties. A significant trend
in this area involves constraining perturbations to the objects
underlying 2-manifold surface, preventing unnatural outliers. For
instance, some work formulates a manifold attack that generates
adversarial examples by learning to stretch a 2D parameter
plane, which then deforms the 3D surface smoothly via a
generative network (Tang et al., 2023b). Following a similar
principle, other researchers have proposed enforcing manifold
constraints through a bijective mapping to a parameter space;
by preserving local properties in this simpler space, manifold-
aware distortion on the 3D object is effectively mitigated
(Tang et al., 2024).

Other innovative approaches tackle imperceptibility from
different geometric perspectives. To address the issue of non-
uniform point distributions caused by perturbations, the FLAT
framework assesses uniformity changes by calculating the flux
of the local perturbation vector field, adjusting perturbation
directions to maintain visual consistency (Tang et al., 2025).
Concurrently, research has also explored the effectiveness of
directional perturbations. The Normal-Tangent Attack (NTA)
framework, for example, moves beyond simple gradient guidance
by creating a hybrid scheme that adaptively chooses perturbation
directions—either along the surface normal or the tangent plane—
based on the local curvature of the point cloud, thereby achieving a
better balance between attack efficacy and imperceptibility (Tang
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et al., 2023a). These methods highlight a clear trajectory in the
field toward creating more sophisticated and stealthy adversarial
attacks.

2.2 Adversarial defense on 3D point clouds

There is no 3D point cloud adversarial defense method
developed specifically for UAP, however, existing 3D point cloud
adversarial defense methods can be used for UAP defense as well
and are the only option from an engineering standpoint (Gao et al.,
2023; Bian et al., 2024).

Zhou et al. (2019) utilized a statistical outlier removal (SOR)
based defense method for point cloud data purification. The
method is implemented as follows: for each point in the adversarial
point cloud, its average distance from its k nearest neighbors is
calculated, and if this distance exceeds a threshold, the point is
judged as an outlier and removed.

DUP-Net (Zhou et al., 2019) is a network architecture for
defense against 3D adversarial point cloud attacks. Its main
principle is to enhance the robustness of point cloud data by
reconstructing the surface smoothness through Statistical Outlier
Removal (SOR) and a data-driven upsampling network. DUP-Net
first uses SOR to remove outliers that exceed a threshold, thereby
reducing the number of noise points introduced by adversarial
attacks. The second step is to reconstruct the surface smoothness
of the point cloud using an upsampling network (Yu et al,
2018), which produces a denser point cloud that fills in critical
points lost due to the attack and further restores the original
structure of the point cloud. The total loss function combines the
reconstruction loss and the rejection loss to ensure the accuracy
of the denoising and up-sampling process.This dual mechanism
of DUP-Net allows it to excel in defending against adversarial
attacks and significantly improves the robustness of the point cloud
classification model.

IF-Defense (Wu et al, 2020) is a 3D adversarial point
cloud defense framework based on implicit function optimization
designed to cope with both point perturbation and surface
distortion attacks. Its core idea is to recover the attacked point
cloud to a clean state through learning. Specifically, IF-Defense
optimizes the coordinates of the input points by means of
geometry-aware and distribution-aware constraints to restore
the surface of the point cloud and remove perturbations in
the point distribution. Its first step is to use SOR to remove
outliers in the input point cloud. Then, two loss functions
are used to optimize the coordinates of the remaining points
to satisfy the geometric and distributional constraints. The
geometry-aware loss function attempts to push points toward
the surface to improve smoothness. To estimate the surface
of an object, the authors trained an independent network of
hidden functions (Peng et al, 2020; Mescheder et al, 2019).
Since the output of the implicit function is continuous, the
predicted surface is locally smooth. This reduces the effect of
residual outliers. The second, distribution-aware loss function,
encourages points to have a uniform distribution by maximizing
the distance between each point and its k nearest neighbors. As
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a result, IF-Defense generates a smooth, uniformly sampled point
cloud.

3 Methodology
3.1 Primary

Before presenting the details of our method, we first define
the notation and formalize the goal of generating a universal
adversarial perturbation (UAP). Specifically, we aim to find a fixed
perturbation § that, when added to most clean point clouds from
the data distribution P, causes the target model to misclassify them.
Mathematically, this can be expressed as:

f(P+68)#f(P) formostP ~ P, (1)

where f(-) denotes the target classification model, and P represents
a point cloud sampled from PP. The predicted label of P is denoted
by 3p = f(P).

To better understand how such perturbations affect the model
behavior, we now briefly describe the structure of the target model
f. A point cloud P = {xi}f\; | consists of N points in R, where each
x; represents the 3D coordinates of a point. The model f typically
comprises multiple layers of neural network operations, which can
be written as a composition of functions:

SO =D (D (2 (M), @

where f(-) denotes the output of the I-th layer given input P. For
simplicity, we use f)(P) to refer to the feature representation at
layer 1.

This hierarchical structure allows us to analyze the propagation
of adversarial effects through different layers of the model, which is
essential for designing effective universal perturbations.

3.2 Threat model

Before detailing our methodology, it is crucial to define the
operational scenario. We address a white-box defense setting. In
this scenario, the defender has complete knowledge of the target
classifier, f, which they aim to protect. This includes full access to
the model’s architecture, parameters (weights), and the ability to
compute internal states and gradients, such as those required for
Grad-CAM.

This assumption is practical for many real-world applications.
For instance, a company deploying a proprietary 3D recognition
model (e.g., in an autonomous vehicle or a quality control system)
would have full access to its own model and would want to
secure it against adversarial inputs from external sources. The
attacker, on the other hand, may have generated the Universal
Adversarial Perturbation (UAP) under black-box, gray-box, or
white-box conditions. Our defense is agnostic to the attack’s
generation process but leverages the defender’s white-box access to
perform the purification.

This distinguishes our approach from model-agnostic (black-
box) defenses like Statistical Outlier Removal (SOR), which do
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FIGURE 1
Thermodynamic representation of the 3D point cloud with UAPs.

not utilize information from the victim classifier. By operating
in a white-box context, our method can create a more tailored
and effective defense by directly probing the model’s response to
identify and neutralize adversarial structures.

3.3 Pre-localization of suspicious areas

Against the fact that perturbations have a significant impact on
the prediction results of the model, and without knowing which
points are in the point cloud, our approach is to quantify the impact
of all the points in the point cloud on the prediction results using
model interpretability techniques, as shown in Figure 1.

Grad-CAM (Selvaraju et al., 2017) is effective in revealing the
model’s decision-making rationale, identifying the data regions that
the model focuses on when making classification decisions and
their impact on the final result Grad-CAM can effectively reveal
the decision basis of the model and identify the data areas that the
model focuses on when making classification decisions and their
influence on the final results. This can help us to initially identify
areas of suspicious perturbation.

Since Grad-CAM was originally designed for 2D image-
related models rather than 3D point cloud-related models, some
modifications are necessary for Grad-CAM. For point cloud
models, the process typically involves two stages: in the first stage,
the model attempts to extract features from each point; in the
second stage, due to the involvement of pooling layers, these
features are further aggregated to extract the overall features of
the point cloud. Considering that some models may include non-
differentiable sampling or other operations in the second stage, we
primarily use the features extracted in the first stage, i.e., per-point
features. In this paper, unless otherwise specified, f) represents
per-point features, i.e., f(l) = {xgl)} € RN*4 where xgl) denotes
the feature of point x; at layer  of the model.
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The attention of model f on point x; in the point cloud is given
by:
dCE;(P,yp)

bl (3)
o)

2

) =

here, CEy represents the cross-entropy loss computed on model f.
For different tasks, the loss function may vary; here we use the most
common point cloud classification task as an example.
The attention of model f on point x; in the point cloud can be
obtained using the following formula:
L a0
S T ?

here, L is the number of layers included in the first stage of the

model. The denominator HVf(Z)CEf(P, yp) HP is a normalization

term, representing the gradient of f( with respect to CEy, and
Frobenius norm is used for normalization.

After obtaining the attention coefficients, a straightforward
approach is to sort all these coeflicients and designate the top k
percent of points as suspicious regions. However, considering the
stealthiness required for adversarial attacks, universal adversarial
perturbations often manifest as collections of points with
continuous curvature (and usually semantic meaning), such as
spherical or rod-like shapes. These shapes make it difficult for
humans to discern whether they are naturally occurring features
or malicious perturbations.

From the perspective of accuracy in removing perturbations,
it is essential at this stage to align with the characteristics of
universal adversarial perturbations by defining suspicious regions
as clusters of high-attention points that exhibit continuous
curvature. Therefore, a simple extractor based on graph wavelet
transform is introduced to identify segments with continuous
curvature, as shown in the following section.

3.4 Extraction of continuous curvature
segments

For a point cloud P = {x;}}¥ |, by calculating the Euclidean
distance between each pair of points, we can construct a K-nearest
neighbor graph, forming an isomorphic, unweighted, undirected
graph Gp = (V,E), where V is the set of vertices corresponding
to the points in the point cloud, and E is the set of edges. The
construction method is as follows:

E:{(x,-,xj)lxieNjorxjeN,-}, (5)
here, N; is defined as:
N; = {Xj | d(xi,xj) < dk} S (6)

where dj is the distance to the k-th nearest neighbor, measured
using the Euclidean distance.

As a preparation of our graph wavelet, we perform farthest
point sampling on the point cloud. The core idea is to start from
a randomly chosen initial point and iteratively select the point
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that is farthest from the already selected points as the new sample
point until the desired number of samples is reached. This method
ensures that the selected points are as evenly distributed as possible
across the entire point cloud space, thereby preserving the spatial
structure information of the original data. Since the farthest points
are always chosen, the final set of selected points maintains good
uniformity throughout the space. Empirically, sampling 32 points
from P using farthest point sampling is sufficient for most needs.
The next task is to construct continuous curvature segments
centered around each sampled point. To achieve this, we first
compute the normalized Laplacian matrix of the graph Gp:

~ _1 _1
Ip=1-D,’ApD,>, 7)

where Ap is the adjacency matrix corresponding to Gp, and Dp is
the degree matrix, which is a diagonal matrix with the degrees of
the corresponding nodes on its diagonal.

The Laplacian matrix Lp is a semi-positive definite real
symmetric matrix, and its eigenvalues lie in the interval [0, 2],
making it easy to perform eigen-decomposition to obtain a set of
mutually orthogonal bases:

Lp = UAUT, (8)

where U represents the orthogonal matrix composed of feature
vectors, and A is a diagonal matrix formed by the eigenvalues.
Therefore, we can establish a filter bank using the eigenvalues as
inputs to obtain wavelet coefficients, i.e.,

¥si = UA(g(W)UTh, )

where g5 is the filter at scale s, and h; € RN is a one-hot encoded
vector that is 1 only at position i and 0 elsewhere, representing
an impulse signal centered at node i on the graph. In wavelet
transforms, to ensure signal recoverability, g is typically a band-
pass filter, ie., g(0) = 0 and limy— o, g(A) — 0. Specifically,
in engineering applications, g is often chosen as the Mexican hat
function, which can be obtained through the second derivative of a
Gaussian function. Additionally, for the simple task of extracting
curvature segments, s can be fixed to a single value, indicating
that only a suitable filter at a specific scale is needed rather than
a multi-scale filter bank.

Specifically, ¥;; € RN can be interpreted as the contribution
of node i to other nodes, or more specifically, the energy diffused
from node i to node j. In terms of the practical significance of point
cloud data, each v; represents the local geometric structure and
semantic context within the neighborhood of node i. Therefore, we
can define the curvature segment P; centered at i using a threshold
&:

Pi = {x | ¥siljl > €} (10)

By extracting the curvature segments corresponding to the
points sampled via farthest point sampling, we proceed to calculate
the attention score for each segment. For each curvature segment,
we sum and average the attention scores a; of all points within the
segment to compute the overall attention score of the segment.
After sorting these scores, we obtain the suspicious curvature
segments and output them as the final suspicious regions.
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3.5 Assessment of regions for UAPs
presence

After obtaining the suspicious regions, the next task is to
determine whether these regions are adversarial perturbations by
leveraging the generalization capability of universal adversarial
samples. To achieve this, we first overlay the suspicious region
(denoted as P) onto multiple normal point clouds, expressed as:

o~

P=P+(POM), (11)

where M is a mask matrix sampled randomly from a Bernoulli
distribution, i.e, M ~ Bernoulli(0.2). The symbol ® denotes
the Hadamard product. Note that from the perspective of matrix
computation, ﬁ, P, and P need to be padded to a uniform size
before this step, typically using 0-padding.

To enhance the accuracy of identifying suspicious regions,
Gaussian noise is also used as an additional control group to further
distinguish between adversarial effects and simple occlusion effects,
ie.:

P=P+R, (12)
where R ~ Gaussian(up, ¥,), and the noise parameters Hp and X,
can be estimated from clean point clouds.

Note that for the same suspicious region PP, multiple samplings
of M are performed to generate diverse classification results.
Experiments show that the probability of correct classification
caused by real universal adversarial perturbations is less than 0.3,
which forms a significant contrast with normal regions.

3.6 Optional steps for purging UAPs

In the previous step, we have initially identified the UAPs,
which makes the removal of UAPs simple and straightforward:
remove the points or set the coordinates of the points to zero.

Specifically, by analyzing the number of point clouds deceived
by the suspicious region P and the changes in confidence on
the correct class, we can determine whether the input P has
adversarial properties. A simple method is to make decisions based
on threshold rules, but this approach makes it difficult to determine
appropriate thresholds and which indicators are more important.

Therefore, a very simple classifier is trained using metrics
collected from the control group and suspicious samples.
Specifically, based on two key indicators—the misclassification rate
(FR) and the confidence drop (Aconf), k-means clustering into 2
classes is performed. Since the control group is known not to be an
adversarial perturbation, this clustering model can actually be used
directly to distinguish adversarial perturbations.

Compared with traditional fixed-threshold methods, this
mechanism can adaptively learn the feature distribution patterns of
normal samples, effectively addressing the challenges of threshold
parameter selection and multi-indicator weight balancing. To
achieve this, first perform min-max normalization on the features
¢ = [ﬁ,ﬁonf] formed by the misclassification rate (FR) and

Frontiersin Computer Science

10.3389/fcomp.2025.1626359

the confidence drop (Aconf). Then, map the features to a high-
dimensional space using a radial basis kernel function:

¢ = exp(—y1p — ;). (13)
where y controls the sensitivity range of the kernel function
and is fixed at 0.5. Next, randomly select 2 samples as initial
cluster centers, denoted as { c(l), c% }. For each sample ¢,, calculate its
distance to each cluster center {c(l’,c%} and assign it to the cluster
corresponding to the nearest cluster center. The distance metric

typically uses Euclidean distance. The probability that sample ¢;
is assigned to the k-th cluster is expressed as:

1 ifk = argmin;||¢ — ¢j||,

ik = (14)

0 else.

For each cluster, update its cluster center to the mean of all
samples in that cluster. The new cluster center is represented as:

_ Z?=1 rikd

= =
D Tik

Repeat the calculation process for rj and ¢ until the cluster

(15)

centers converge or reach the maximum number of iterations.
After obtaining the final cluster centers, for subsequent other
suspicious regions, their normalized features [FR, Acouf] can be
directly extracted, and calculating the distance to the cluster centers
can determine whether the region is an adversarial perturbation.
Once the suspicious region is determined to be an adversarial
perturbation, it can be removed, typically using zero-padding.

4 Experiments
4.1 Settings

4.1.1 Environments

The experiments were conducted on a high-performance
computing server. This server was equipped with an Intel Xeon
Gold 6230R processor featuring 104 logical cores clocked at
4.000GHz, 128GB of RAM, and an NVIDIA A100 graphics
processing unit. The experimental environment utilized the
Ubuntu operating system and leveraged the CUDA 12.2 library for
GPU acceleration. All experiments were implemented and executed
using Python 3.10, based on the PyTorch deep learning framework,
version 2.4.

4.1.2 Dataset

This study evaluates the proposed method using two publicly
available datasets: ModelNet40 and ShapeNet. The ModelNet40
dataset comprises 12,311 CAD models categorized into 40 distinct
object classes. These models are partitioned into a training set
containing 9,843 samples and a test set with 2,468 samples.
Covering a diverse range of domains including furniture, vehicles,
and animals, the dataset provides both raw 3D mesh models and
pre-processed point cloud representations, facilitating their use in
various 3D analysis tasks.
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ShapeNet, a considerably larger and more comprehensive
dataset of 3D CAD models, was jointly published by Stanford
University, Princeton University, and the Toyota Technological
Institute. ShapeNet encompasses over 55 common object classes
and provides detailed annotations for each model, including class
labels, semantic segmentation, functional descriptions, and other
attributes.

4.1.3 Victim model

For experiments requiring a fixed-size input, 1024 points were
uniformly sampled from the original point cloud data. As shown
in Table 1, this study employs four widely-used 3D deep learning
classifiers as victim models: PointNet (Qi et al., 2017a), PointNet++
(Qietal, 2017b), DGCNN (Wang et al., 2019), and PointConv (Wu
etal., 2019).

4.1.4 Attack methods

For evaluating defense performance against universal
adversarial perturbations in 3D point clouds, we selected
PointPBA-I and PointCBA (Zhou et al., 2020) from the existing
literature on point cloud adversarial attacks.

Given the scarcity of publicly available UAP methods for 3D
point clouds, we also developed two universal attack strategies
based on the well-known FGSM (Goodfellow et al., 2014), APGD
(Croce and Hein, 2020), and CW (Carlini and Wagner, 2017)
attack principles. For all attacks, the universal perturbation was
crafted using a randomly selected subset of 1,000 samples from the
training set of the respective dataset (ModelNet40 or ShapeNet).
The perturbation budget (number of adversarial points added) was
set to 102, representing approximately 10% of the 1,024 points in
a standard point cloud, unless specified otherwise in the attack

budget experiments.

e PointPBA-I and PointCBA: These are state-of-the-art black-
box attack methods. PointPBA (Point-based Boundary
Attack) utilizes a simple yet effective binary search over
the decision boundary, while PointCBA (Context-based
Boundary Attack) enhances this by considering the geometric
context of points. For our experiments, we adapted these
input-specific attacks to generate a universal perturbation
by iteratively accumulating the adversarial perturbations
generated for each sample in our training subset and
projecting the result back into the allowed perturbation space.
We used the default hyperparameters from their respective
papers, with an initial perturbation magnitude of 0.1 and 50
query iterations per sample.

TABLE 1 Classification accuracy of the target network on ModelNet40
and ShapeNet.

Dataset PointNet PointNet++ DGCNN PointConv

ModelNet40 ‘ 88.69 ‘ 90.73 ‘ 92.16 ‘ 89.96

ShapeNet ‘ 97.63 ‘ 98.06 ‘ 98.19 ‘ 97.98
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e FGSM-based universal attack: The Fast Gradient Sign
Method (FGSM) generates a perturbation in the direction
of the sign of the gradient of the loss function. To create a
universal perturbation, we employed an iterative version. In
each iteration, a batch of training samples was passed through
the target model, and the average gradient was computed. The
universal perturbation § was then updated by taking a small
step in the direction of the sign of this average gradient. The
process was repeated for 20 epochs over our training subset.
The key parameters were:

- Step size («): 0.007

- Perturbation bound (¢): 0.05 (L-infinity norm for point
coordinates)

- Iterations: 20

e CW-based universal attack: The Carlini & Wagner (CW)
attack is a powerful optimization-based attack that minimizes
the perturbation distance while ensuring misclassification.
We adapted it to generate a universal additive “adversarial
object” (a small cluster of points). The optimization aims
to find a set of points that, when added to any clean
sample, maximizes the untargeted CW loss function. This
optimization was performed iteratively over our training
subset. The key parameters were:

Learning rate: 0.01
- Confidence («): 0 (for untargeted attacks)

Binary search steps: 9
- Max iterations: 100

e Auto-PGD (APGD)-based universal attack: Auto-PGD
(APGD) is an extension of the classic Projected Gradient
Descent (PGD) attack (Madry et al., 2017). Unlike PGD,
APGD does not require a manually specified step size. Here,
we set the Max Iterations to be 100.

4.1.5 Baselines

To provide a comprehensive comparison, we selected
four state-of-the-art 3D point cloud denoising methods as
baselines: PointCleanNet (PCN) (Rachmiel and Bruckstein, 2020),
PointFilterNet (PFN) (Yuan et al., 2020), LPC (Implicit Gradient
Defense) (Pang et al., 2020), and PointDP (Point Diffusion
Purification) (Luo et al., 2021). For conciseness, these methods are
denoted as PCN, PFN, LPC, and PDP, respectively.

e PCN (Rachmiel and Bruckstein, 2020): A data-driven

approach designed to remove outliers and mitigate
perturbations in point clouds. It first identifies and discards
outlier samples, then projects perturbed points onto the
estimated original surface by calculating correction vectors.

e PEN (Yuan et al,, 2020): A filter network integrating filtering
techniques with deep learning for point cloud denoising. PFN
comprises two main components: an outlier recognizer and
a denoiser, which generate distinct filter coefficients. Initially,

the outlier recognizer produces coeflicients to mitigate outlier
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disturbances, after which the denoiser iteratively refines the
point cloud.

e LPC (Pang et al, 2020): Employs an implicit gradient
defense mechanism against perturbations using a two-layer
optimization framework. The outer loop minimizes the
classification loss, while the inner loop introduces a declared
node. This node reconstructs the point cloud via structured
sparse coding, optimizing for the declared node to achieve
purification.

e PDP (Luo et al, 2021): Utilizes a diffusion model for
defending against adversarial attacks in 3D point cloud
recognition. The primary objective is to purify adversarial
perturbations through forward and inverse diffusion processes
to recover the original clean point cloud.

e PointCVAR (Li et al., 2024): PointCVAR is the state-of-the-
art outlier removal method using gradient-based attribution
in deep learning for robust 3D point cloud classification task.
This method can effectively filter out various types of noise
points in point clouds.

4.1.6 Metrics

The primary evaluation metric used in this paper is
classification accuracy (%). This metric quantifies the effectiveness
of the proposed purification method by measuring the classification
performance of victim models on point clouds after being
subjected to universal adversarial perturbations and subsequent
purification. A higher classification accuracy indicates more
effective purification.

4.2 Comparative study

We first present a comparative analysis of the defense
performance of our proposed method against the baselines (PCN,
PFN, LPC, and PDP) under four different universal adversarial
attack methods. The evaluation metric is classification accuracy.
The test results on the ModelNet40 and ShapeNet datasets are
summarized in Tables 2, 3, respectively.

In the majority of cases, our proposed method demonstrates
superior performance in defending against universal adversarial
point clouds. The excellent performance of our method can be
primarily attributed to two factors: (1) its reliance on model
explainability, which enables precise region selection for the
subsequent perturbation removal process. By deeply interpreting
the model’s decision-making and focusing on removing the most
critical perturbations that significantly degrade performance, the
efficiency of perturbation removal is enhanced. (2) the continuous
curvature segment extraction method based on graph wavelet
transforms aligns effectively with the characteristics of universal
adversarial perturbations. Combining wavelet transforms with
farthest point sampling allows for accurate identification and
filtering of universal adversarial perturbations, leading to a more
precise purification process.

As shown in Table2, our method achieves an average
classification accuracy of 76.35% across all ModelNet40 test
scenarios, outperforming all baselines. The largest gains appear
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under the PointPBA-I attack, likely because PointPBA-I more
severely disrupts the hierarchical structure of the original point
clouds, steering model decisions toward adversarial features.
Because our defense is grounded in model explainability, it
more effectively identifies and mitigates such structural shifts.
These results validate the effectiveness of an explainability-based
defense for removing universal perturbations in point-cloud
security. Across both ModelNet40 and ShapeNet, APGD drives
the “No defense” accuracy near zero, while all defenses recover
substantial performance; our method consistently achieves the
highest robustness across PointNet, PointNet++, DGCNN, and
PointConv, with PDP typically the runner-up and PCN/PEN/LPC
trailing. Absolute accuracy under APGD varies by backbone, but
strong defenses still reach roughly 70%-80% top-1 accuracy.

The defense performance of our method varies by attack.
PointPBA-I is the most disruptive, yielding only 2.13% average
accuracy on ModelNet40 without defense, yet our method restores
it to 77.52%. By contrast, PointCBA is highly stealthy, leading to
more limited accuracy improvements across all defenses.

We also present a comprehensive performance comparison
of our proposed method against PointCVAR, with the results
detailed in Table 4. The evaluation spans two prominent datasets,
ModelNet40 and ShapeNet, across four distinct target models.
Our method demonstrates a consistent and marked improvement
over PointCVAR in the majority of test cases. This trend of
superior performance is also evident on the ShapeNet dataset for
models like DGCNN and PointConv. It is, however, noteworthy
that PointCVAR shows stronger performance in specific scenarios,
namely with the PointConv model on ModelNet40 and the
PointNet++ model on ShapeNet. Despite these exceptions, the
overall results strongly indicate that our proposed method provides
amore robust and generally effective solution across a diverse set of
models and datasets.

For specific individual models, the defense performance
Table 3
presents the classification accuracy of our method and the

of our method also surpasses the baselines.
comparison methods under different attacks on the ShapeNet
dataset. Our method highest
success rate under three attack methods when tested on
PointNet, PointNet++, On DGCNN, the

average classification success rate reaches 79.58%, which is

achieves the classification

and PointConv.

superior to the results obtained with other models. These
results clearly indicate that the proposed method exhibits
excellent robustness various

performance and against

universal perturbations.

4.3 Ablation study

To further evaluate the contribution of key components of
our method, we conducted three ablation experiments on the two
datasets (ModelNet40 and ShapeNet). The specific configurations
for the ablation studies are as follows:

e Minus interpretability: In this setting, the suspicious region

localization module, originally based on Grad-CAM model
interpretability, is replaced with a random selection method.
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TABLE 2 Classification accuracy on the ModelNet40 dataset under different models and attack methods.

Target model Attack type No defense PCN PFN LPC PDP Ours
PointNet PointPBA-I 1.74 60.54 65.93 58.87 71.84 74.84
PointCBA 4430 71.64 69.56 67.92 75.34 71.52
FGSM 1.02 68.73 67.94 60.79 70.43 71.34
cw 0.87 68.98 70.85 63.89 72.45 73.46
APGD 0.65 67.12 66.83 59.52 69.53 70.91
PointNet++ PointPBA-I 2.84 68.64 66.64 63.24 70.74 78.43
PointCBA 34.34 71.48 76.78 69.56 78.23 75.38
FGSM 0.42 69.96 73.07 70.59 73.43 76.49
cw 0.16 70.86 69.73 63.87 75.56 77.31
APGD 0.11 68.79 70.21 62.98 72.64 75.13
DGCNN PointPBA-I 0.00 70.85 73.75 67.53 79.95 79.57
PointCBA 42.32 75.87 73.79 68.97 77.23 80.23
FGSM 1.38 75.96 76.67 70.74 78.84 80.56
cw 0.78 72.36 70.65 65.54 76.99 78.75
APGD 0.53 71.58 70.04 64.71 76.15 77.92
PointConv PointPBA-I 3.94 70.74 64.32 53.85 78.83 77.23
PointCBA 39.23 76.95 73.86 68.69 76.17 77.52
FGSM 0.69 72.74 77.96 71.58 77.49 74.93
cw 0.37 69.98 68.53 66.69 74.12 74.15
APGD 031 69.14 67.92 65.80 73.58 73.61

For each model and attack, the highest accuracy is indicated in bold.

The input to the random selection method is simply the 3D
spatial point coordinates, without relying on the suspicious
regions identified through model interpretability.

e Minus Graph-Wavelet-voxel: This setting retains the model
interpretability for suspicious region localization but removes
the continuous curvature segment extraction process based
on graph wavelet transforms. Instead, it is replaced by voxel-
based processing for segment extraction.

e Minus Graph-Wavelet-ball: Similar to the previous setting,
this retains model interpretability for localization and
removes the graph wavelet transform-based segment

extraction. It is replaced by a “Ball Query” method for

segment extraction.

As shown in Tables 5, 6, the results for the control group
(our full method) demonstrate that removing the model’s
interpretability significantly reduces the classification accuracy of
the purified samples. This finding strongly suggests that model
interpretability plays a crucial role in enhancing the defense effect
against universal 3D point cloud perturbations. Additionally, when
the continuous curvature segment extraction module is removed
(using either voxel or Ball Query replacements), the model’s
classification accuracy also decreases, albeit to a lesser extent
than when the model interpretability is removed entirely. The
performance degradation in “Minus Graph-Wavelet-voxel” and
“Minus Graph-Wavelet-ball” settings is less pronounced compared
to “Minus Interpretability”.
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The results highlight that removing the model interpretability
module has a more substantial impact on reducing the defense
effectiveness. The above findings underscore the critical role
of the model interpretability module in our proposed method.
Model interpretability not only provides effective guidance for
identifying perturbation regions but also reveals the internal
attention mechanisms of the model’s decision-making process.
By leveraging this attention information, it enhances the
robustness and generalization ability of the model, thereby
laying a strong foundation for defending against universal
adversarial perturbations.

4.4 Defense on different attack budgets

This section evaluates the impact of varying attack strengths
on our defense approach. Different attack strengths are quantified
by the perturbation budget, which is defined as the number of
points that can be added to the original point cloud, expressed as
a percentage (e.g., 5% or 10%) of the original point cloud size.

Figures 2, 3 present the ablation comparison and robustness
analysis of our method tested on the ModelNet40 and ShapeNet
datasets, respectively, under different attack budgets. The
observations reveal that across all models, performance tends
to decrease as the attack strength increases with the attack
budget. However, our method consistently maintains the highest
accuracy. On both datasets, the DGCNN model exhibits the
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TABLE 3 Classification accuracy on the ShapeNet dataset under different models and attack methods.

Target model Attack type No defense PCN PFN LPC PDP Ours
PointNet PointPBA-I 221 67.43 62.74 65.76 7243 70.45
PointCBA 39.54 68.56 74.64 70.34 76.32 78.86
FGSM 0.98 71.74 72.32 72.56 73.01 74.02
cw 0.65 66.64 69.49 67.86 73.79 76.53
APGD 0.51 65.98 68.72 67.03 72.14 73.28
PointNet++ PointPBA-I 1.92 69.63 70.34 63.48 73.23 76.95
PointCBA 45.68 79.56 76.46 69.63 78.95 76.84
FGSM 1.63 76.74 74.91 72.07 75.21 77.08
cw 1.05 72.73 73.49 68.32 74.97 75.43
APGD 0.88 71.95 72.81 67.64 74.03 74.89
DGCNN PointPBA-I 0.00 71.53 78.98 67.82 79.32 78.02
PointCBA 43.89 77.56 79.63 70.53 77.27 78.65
FGSM 1.23 76.84 77.96 75.56 78.32 80.73
cw 0.76 73.57 72.93 71.32 77.59 80.93
APGD 0.61 72.89 72.15 70.84 76.83 79.51
PointConv PointPBA-I 232 72.54 70.72 67.68 78.43 76.17
PointCBA 4332 75.63 77.43 74.31 77.43 79.27
FGSM 0.81 74.43 73.38 73.13 79.21 79.83
cw 0.39 70.74 78.03 65.78 76.43 78.12
APGD 033 70.15 72.64 65.11 75.81 77.34

For each model and attack, the highest accuracy is indicated in bold.

TABLE 4 Comparison of PointCVAR and our method on different datasets
and models.

‘Dataset Target model PointCVAR Ours ‘

ModelNet40 PointNet 70.57 73.46
PointNet++ 75.60 77.31
DGCNN 74.77 78.75
PointConv 81.20 74.15

ShapeNet PointNet 75.60 76.53
PointNet++ 76.92 75.43
DGCNN 78.61 80.93
PointConv 79.21 78.12

The attack method is CW. For each model and attack, the highest accuracy is indicated in
bold.

best performance under our defense, achieving classification
accuracies of 79.57% and 78.02% at a 2% attack budget,
and 71.38% 71.75%
attack budget.

Further testing against the PointNet model on ModelNet40, as

and classification accuracies at a 10%

shown in Figure 4, demonstrates that increasing the attack budget
leads to increased perturbation strength, making the samples more
vulnerable to attacks. Consequently, the effectiveness of the defense
method decreases as the attack budget increases.
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4.5 Hyper-parameter study

This section investigates the influence of the number
of farthest points sampled during the continuous curvature
segment extraction process on the performance of our method’s
defense, evaluated by the classification accuracy of the target
model.

As illustrated in Figure 5, the experimental results on the
ModelNet40 dataset indicate that increasing the number of
sampling points does not significantly enhance the defense effect
of our method, even though more continuous curvature segments
are extracted. Conversely, the defense effect at slightly smaller
sampling points is not considerably less effective. A possible
explanation for this phenomenon is that when the number
of sampling points reaches a certain threshold, it is sufficient
to cover the key points on the surface of the point cloud
data.

Due to the strong ability of our proposed defense
strategy to remove generic perturbations, remarkable defense
results can still be achieved even when fewer points (e.g.,
32 points) are used for extracting continuous curvature
segments.

A visual representation of the continuous curvature fragments
obtained by sampling the 32 farthest points is shown in Figure 6.
It is observed that the selection of these farthest points effectively
captures the generic perturbation. If the number of sampled
points exceeds 32, the capture of the final generic perturbation is
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TABLE 5 Ablation experiments on the ModelNet40.

10.3389/fcomp.2025.1626359

‘ Model Minus interpretability Minus Graph-Wavelet-voxel Minus Graph-Wavelet-ball Full ‘
PointNet 13.12 71.47 72.78 74.84
PointNet++ 16.43 68.05 66.43 78.43
DGCNN 15.12 70.68 72.73 79.57
PointConv 16.29 69.62 69.53 77.23

TABLE 6 Ablation experiments on the ShapeNet.

‘ Model Minus interpretability Minus Graph-Wavelet-voxel Minus Graph-Wavelet-ball Full ‘
PointNet 12.34 64.23 61.34 70.45
PointNet++ 14.23 68.26 70.37 76.95
DGCNN 13.74 73.36 72.41 78.02
PointConv 16.36 68.41 70.12 76.17
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PointNet PointNet++ DGCNN PointConv 2% 5% 10%
Target Models Attack Budget
FIGURE 2
Ablation comparison and robustness analysis on the ModelNet40 with different attack budgets.

essentially equivalent to sampling 32 points. Therefore, 32 farthest
points is considered an appropriate setting for the experiments.

A visual representation of all the continuous curvature
fragments obtained by sampling the 32 farthest points is
shown in Figure 6. It is observed that the existence of two
farthest points perfectly captures the generic perturbation. If
the number of sampled points reaches above 32, the final
generic perturbation capture is essentially equal to sampling 32
points. Therefore, 32 farthest points is an appropriate setting in
the experiment.

4.6 Defense on transfer-based attacks

The efficacy of our proposed defense mechanism against black-
box transfer-based attacks is comprehensively illustrated in the
provided Figure 7.
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The left heatmap demonstrates the severe vulnerability of
undefended models, where transfer attacks prove highly effective.
The remaining classification accuracies are drastically reduced,
consistently falling below 23% and often dropping to below 1%
when the source and target model architectures are identical
(e.g., 0.16% for PointNet++). This establishes a critical baseline,
highlighting the insecurity of standard models. In stark contrast,
the right heatmap reveals a dramatic improvement in model
resilience upon applying our defense. The defended models
consistently maintain high accuracy, with the lowest post-attack
accuracy being 63.85%. Notably, accuracies on the diagonal, such as
78.75% for DGCNN and 77.31% for PointNet++, are significantly
restored, showcasing the defense’s strength even when the adversary
has implicit knowledge of the model’s architecture. This substantial
elevation in performance across all source-target pairs confirms
that our method provides robust protection, effectively neutralizing
the threat of transfer-based attacks in a black-box setting.
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5 Discussion

Our work has introduced a novel purification framework
against Universal Adversarial Perturbations (UAPs), demonstrating
that leveraging model interpretability is a highly effective defense
strategy. This section discusses the method’s specificity, its broader
implications, and future research directions.

Our framework is intentionally designed for UAPs. The
core assessment module, which validates a suspicious region
by transplanting it onto multiple clean samples, fundamentally
relies on the universal nature of the perturbation. This design
is inherently less effective against input-specific attacks (e.g.,
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PGD), as their perturbations are not crafted to be transferable.
However, our methods utility is not strictly confined to
UAPs. The successful defense against black-box transfer-based
attacks, as shown in Figure 7, demonstrates that our model-
guided approach can effectively identify and neutralize malicious
geometric structures even without precise knowledge of the
attack. This indicates a valuable degree of robustness in
practical scenarios.

While we posit that a high-efficacy, specialized defense against a
significant threat like UAPs is a valuable contribution, we recognize
the limitations of our approach and propose the following future
directions:
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e Generalizing to input-specific attacks: Future work could
focus on adapting the validation module to work for per-
sample perturbations, perhaps by developing a learned metric
for adversarial potential that does not rely on transplantation,
or by creating a hybrid defense model.

Frontiersin Computer Science

13

e Reducing white-box reliance: Our method currently assumes
full model access. Investigating its adaptation to gray-
box or black-box scenarios, possibly by using surrogate
models to approximate saliency, would greatly enhance its
practical applicability.
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e Broader task application: Extending this purification
framework to more complex 3D tasks, such as object
detection and semantic segmentation, remains a promising
avenue for future research.

In summary, while specialized, our work provides a robust
defense against a critical threat and offers a solid foundation for
future advancements in 3D adversarial security.

6 Conclusion

In this paper, we introduced a 3D point cloud universal
adversarial perturbation removal method based on model
interpretability. The method involves calculating attention
coefficients and locating suspicious regions using a Grad-
CAM-based approach. It then extracts continuous curvature
segments by combining graph wavelet transforms with attention
coefficients to identify problematic regions. Leveraging the
robust and generalization properties of universal adversarial
these identified perturbations
with benign samples through superposition. Finally, a binary

perturbations, are combined
classification model is employed to classify and remove these
suspicious superposed samples, achieving the recognition and
removal of universal adversarial perturbations. The experimental
section applied this method to mainstream deep learning models
for processing point cloud data and conducted comparative studies,
ablation experiments, and hyper-parameter studies to validate
its effectiveness. By analyzing samples with universal adversarial
perturbations within the context of universal perturbation
removal, the defense capability of this point cloud purification
method was verified.
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