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Federated Learning (FL) represents a paradigm shift in machine learning,
enabling collaborative model training on decentralized data while preserving
user privacy. However, the transition from theory to real-world application
is impeded by significant challenges, including high communication costs,
statistical and system heterogeneity and persistent privacy vulnerabilities. These
barriers critically limit the performance, scalability and security of FL systems. This
paper provides a systematic review of the state-of-the-art solutions developed to
address these fundamental obstacles. The review analyzes core methodological
advancements, including advanced model aggregation methods, techniques
to enhance communication efficiency such as model compression and
decentralized training and strategies to combat statistical heterogeneity arising
from non-11D data. Furthermore, it delves into emerging paradigms like Federated
Meta-Learning and Federated Reinforcement Learning, alongside advanced
architectural models such as hierarchical and blockchain-based systems. The
practicalimpact of these advancements is contextualized through a review of key
application domains, including healthcare, vehicular networks and the Internet
of Things. A benchmark analysis is presented to assess the practical efficacy of
these diverse techniques. In conclusion, this work synthesizes the critical trade-
offs inherent in FL systems and highlights key directions for future research,
offering a comprehensive guide for researchers and practitioners in this rapidly
evolving field.

KEYWORDS

federated learning, model aggregation, communication efficiency, statistical
heterogeneity, privacy, meta-learning, reinforcement learning

1 Introduction

During the last decade, machine learning and deep learning related technologies
have gained significant prominence in a variety of disciplines due to their development
and problem-solving capabilities. In addition, these deep learning-based algorithms has
made a huge impact on computational research and real-world applications due to
their ability to reveal hidden patterns of information and non-linearity of data. As a
result, deep learning and machine learning based technologies have started being used
in various domains such as medicine, banking, manufacturing, agriculture etc. Even
though it has contributed to considerable development in the above-mentioned fields,
it has started to raise concerns about ensuring the privacy and security of data that are
generated through millions of devices during the process of distributed deep learning.
This has occurred due to the possibility of having data leakage in distributed systems

01 frontiersin.org


https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1617597
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1617597&domain=pdf&date_stamp=2025-11-04
mailto:lakshan.20221470@iit.ac.lk
https://doi.org/10.3389/fcomp.2025.1617597
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1617597/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Cooray et al.

since traditional machine learning and deep learning based models
are usually trained in centralized data centers (Qi et al., 2024).
Therefore, data generated through local devices has to be sent to
the central servers to train the required models. The availability
and generation of extensive datasets through millions of devices
has made remarkable progress in the context of distributed deep
learning. Nevertheless, when these centralized data centers, which
store vast amounts of data received through local devices, are
attacked, the damage will be limitless. Consequently, sensitive
and confidential data presents significant privacy problems by
limiting efforts to centralize data gathering, model training and the
inferencing process (Zhang et al., 2023).

To address these challenges, edge computing has gained
global attention, driven by the proliferation of edge devices like
smartphones, IoT sensors and wearables that generate enormous
volumes of data daily (Li T. et al, 2020). Federated Learning
(FL), introduced by Google in 2016, has emerged as a promising
solution, enhancing privacy by training models locally on edge
devices (McMahan et al, 2017). FL employs a collaborative
architecture where a central server maintains a global model,
while local devices update their models using device-specific data.
These updated models are periodically sent back to the server
for aggregation, typically by combining parameters like weights
and biases. Decentralized architectures have also been introduced,
enabling direct communication between local devices, alongside
blockchain-based FL systems (Qi et al., 2024). This foundational
client-server process is illustrated in Figure 1, which depicts the
core workflow of federated learning. In this architecture, local
devices first train their models using their own private data. These
locally trained models (specifically, their updated weights) are then
sent to a central server. The server aggregates these weights for
example, by using a weighted average to create a new, improved
global model. This updated global model is then broadcast back to
the devices and the cycle repeats. This iterative process preserves
data privacy, as the raw data never leaves the local device, while
collaboratively improving the global model’s performance.

This distributed learning paradigm ensures data remains on
local devices, mitigating privacy risks. However, FL faces challenges
such as communication efficiency, system heterogeneity due to
varied device capabilities, statistical heterogeneity arising from
non-iid data and transmission delays during model aggregation.
Additionally, concerns persist about data pattern leakage through
shared model parameters, which may lead to the exposure of
information via explainable AI techniques (Saifullah et al., 2024).
Despite these challenges, FL has significantly advanced edge
computing-based deep learning approaches and is widely applied
in medicine, autonomous vehicles, IoT and traffic management.

Existing surveys on Federated Learning have predominantly
addressed isolated aspects, such as privacy preservation or
aggregation algorithms, without offering a comprehensive
integration across multiple dimensions. There remains a critical
need for a holistic overview that synthesizes advancements in
aggregation methodologies, communication efficiency, privacy-
preserving mechanisms and strategies for managing both statistical
and system heterogeneity.

In addition, current research in federated learning is
fragmented. Benchmarking practices are often inconsistent,
and applications remain focused on a limited range of domains.
Emerging directions such as federated meta-learning, federated
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reinforcement learning, and blockchain-based frameworks are still
in their early stages and lack comprehensive study. In addition,
deployment challenges such as client dropout, unreliable networks,
and the balance between privacy and efficiency have not been
systematically addressed. These gaps underline the need for
a systematic review that consolidates technical advances and
examines their interaction under practical constraints.

This study makes the following key contributions:

e Provides a structured and systematic review of Federated
Learning (FL) research from 2018 to 2025, covering core
challenges such as communication efficiency, statistical
heterogeneity, system heterogeneity and privacy preservation.

e Summarizes state-of-the-art model aggregation methods,
communication-efficient techniques (e.g., compression and
pruning) and strategies for mitigating device and data
heterogeneity.

e Examines emerging paradigms including Federated Meta-
Learning and Federated Reinforcement Learning, as well as
advanced architectures such as hierarchical and blockchain-
based FL.

e Reviews robust privacy-preserving mechanisms (e.g.,
differential privacy, secure aggregation and homomorphic
encryption) that are critical for real-world deployment.

e Highlights the practical applications of FL across domains
such as healthcare, IoT, autonomous vehicles and mobile
computing, real-world and

demonstrating its impact

implementation challenges.

In summary, this review synthesizes existing research, identifies
open challenges and outlines future directions for building scalable,
secure and efficient FL systems.

Firstly, Section 2 will introduce the methodology, outlining
the PRISMA framework, search strategy, inclusion and exclusion
criteria and the guiding research questions. Section 3 will provide
a comprehensive review of core methodological advancements
in Federated Learning (FL), beginning with model aggregation
algorithms and continuing with strategies for communication
efficiency, statistical and system heterogeneity and privacy-
preserving mechanisms. The section will further examine emerging
paradigms such as Federated Meta-Learning and Federated
Reinforcement Learning, as well as advanced architectures
including hierarchical and blockchain-based systems. Following
this, Section 4 will review the applications of FL across
diverse domains such as healthcare, vehicular networks and
mobile computing, highlighting real-world implementations and
challenges. Next, Section 5 will present benchmarking and
performance analyses of state-of-the-art methods, consolidating
experimental evidence from past studies. Finally, Section 6 will
conclude the paper by synthesizing the key findings, identifying

current limitations and outlining future research directions.

2 Methodology
2.1 PRISMA diagram

This review follows the PRISMA guidelines to maintain
methodological transparency and reproducibility throughout the
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FIGURE 1

Federated learning basic architecture where devices train local models, send their model weights to a centralized server for aggregation and receive
updated global models. This ensures data privacy while improving the global model iteratively.
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research process. As illustrated in Figure 2, PRISMA provides a
structured and widely accepted framework that strengthens the
reliability and scientific rigor of systematic reviews (Tugwell and
Tovey, 2021).

2.2 Search strategy

The literature search was conducted across multiple databases,
including IEEE Xplore, ACM Digital Library, SpringerLink, arXiv,
Semantic Scholar and Google Scholar. Search queries combined
keywords such as “Federated Learning “Model Aggregation,”
“Statistical
“System Heterogeneity, “Privacy Preservation,” “Differential
“Federated  Meta-

Learning,” “Federated Reinforcement Learning,” “Hierarchical

“Communication  Efficiency, Heterogeneity,”

Privacy;  “Homomorphic  Encryption,”

» «

Federated Learning,” “Blockchain-based Federated Learning,” and
“Applications of Federated Learning.”

To ensure that only relevant and high-quality studies were
included, the following inclusion and exclusion criteria were
applied:

Inclusion criteria:

e Papers that apply or

methods addressing model aggregation, communication

propose Federated Learning
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efficiency, statistical heterogeneity, system heterogeneity,
or privacy.

e Studies that describe or evaluate emerging paradigms such as
Federated Meta-Learning, Federated Reinforcement Learning,
or blockchain/hierarchical FL.

e Research reporting real-world FL applications in domains
such as healthcare, IoT, autonomous vehicles, or mobile
systems.

e Survey or review papers that critically assess existing Federated
Learning approaches.

Exclusion criteria:

e Papers unrelated to Federated Learning or decentralized
training.

e Non-scientific sources (blogs, tutorials, opinion articles)
without verifiable research contributions.

e Duplicate versions of the same paper across multiple
repositories.

The review focused on peer-reviewed journals and conference
proceedings mainly published between 2018 and 2025. The
strategy ensured broad coverage across both academic and preprint
repositories, though it remained subject to limitations such
as subscription access and keyword specificity. A summary
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PRISMA diagram.

of the major federated learning areas and representative
techniques is provided in Table 1 to give a holistic overview
of the field, and these categories will be discussed in detail
in the following sections. Additionally, as illustrated in
Figure 3, the evolution of Federated Learning from 2016 to
2025 reflects a clear trajectory from foundational aggregation
algorithms toward advanced personalization, meta-learning,
and emerging paradigms such as reinforcement learning based
federated frameworks.

2.3 Research questions
To guide the review process, the study specifically addressed the
following research questions (RQ):

1. RQI: How have recent advancements in deep learning-based
model aggregation and compression techniques mitigated the
communication inefficiencies that challenge FL?

Frontiersin Computer Science

2. RQ2: To what extent have the proposed solutions for statistical
heterogeneity improved the performance and generalizability of
FL models across diverse client device datasets?

3. RQ3: What strategies have been developed to address
the challenges posed by system heterogeneity within FL
environments?

4. RQ4: What privacy-preserving techniques have been introduced
to reduce the risk of data leakage through model weights during
the model aggregation process?

3 Methodological advancements

3.1 Model aggregation

This section examines the model aggregation techniques
employed in FL, which serve as a fundamental component of
the FL architecture. As outlined in the introduction, model
aggregation in FL refers to the process of merging the updated
weights of locally trained models with the global model

frontiersin.org
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TABLE 1 Major federated learning areas and techniques discussed.

Category

Paper/technique

Key details/innovations

Aggregation McMahan et al. (2017), Classical averaging of local updates weighted by dataset size. Performs well in IID settings but is less stable under
FedAvg non-IID data distributions.
Sahu et al. (2018), FedProx Adds a proximal term to local objectives, helping to stabilize convergence when clients are heterogeneous.
Wang et al. (2020), FedNova Normalizes client updates based on the number of local steps, reducing objective inconsistency across devices.
Karimireddy et al. (2021), Uses control variates on both server and clients to counter client drift, improving performance under non-IID
SCAFFOLD distributions.
Lietal (2021), MOON Incorporates a model-contrastive loss to align local and global representations, reducing divergence between clients.
Niu and Wei (2023), Hybrid approach combining FedAvg, FedProx, and SCAFFOLD, leveraging averaging, proximal regularization, and
FedHybrid drift correction.
Palihawadana et al. (2022), Aggregation guided by gradient similarity, enabling implicit clustering of clients without data sharing.
FedSim
Kairouz et al. (2021), FedGPA | Prototype-based personalized aggregation that decouples feature extractor and classifier for better personalization.
Ding et al. (2025), Multi-weight aggregation with anomaly detection, down-weighting outlier updates using median similarity
FEDMWAD measures.

Communication Zhang et al. (2024), EdgeFL Fully decentralized, peer-to-peer FL where clients can join asynchronously, reducing reliance on a central server.

Shah and Lau (2023),
Compression

Introduces gradient sparsification and binary masks to lower communication costs while preserving accuracy.

Jiang et al. (2024), FedMp

Employs structured pruning with adaptive ratios based on client capability, improving speed in heterogeneous
systems.

Statistical, system
heterogeneity

Zhao et al. (2018), Data
sharing

Mitigates non-IID effects by sharing a small portion of global data across all clients.

Liu L. et al. (2020),
Hier-FAVG

Introduces a client-edge-cloud hierarchy that reduces communication and energy costs in large-scale deployments.

Sattler et al. (2019), CFL

Groups clients into clusters based on gradient similarity, then trains separate models for each cluster.

Reisizadeh et al. (2020),
FLANP

Allows progressive participation of slower clients to handle stragglers without stalling training.

Luo et al. (2021), Adaptive
sampling

Adjusts client selection probabilities according to gradient utility and computation speed.

Lietal (2024), FedLGA

Approximates missing gradients from resource-limited clients using Taylor expansion techniques.

Menegatti et al. (2023),
Hierarchical FL

Uses intermediate aggregation at edge servers to reduce bandwidth consumption and mitigate stragglers.

Meta-learning

Chen et al. (2019), FedMeta

Adapts meta-learning methods such as MAML and Meta-SGD to FL, enabling faster personalization under non-IID
settings.

Liu X. et al. (2024), Survey on
FedMeta

Reviews extensions including ADMM-based methods, collaborative FL strategies, and wireless-specific
optimizations.

Hierarchical FL

Federated RL Qietal. (2021), FedRL Proposes reward-aware aggregation and knowledge distillation to address challenges in averaging policies across
agents.
Zhuo et al. (2020), VFRL Vertical FL setting for reinforcement learning, enabling secure gradient exchange between agents with
complementary features.
Privacy Wei et al. (2020), DP in FL Applies Gaussian noise to model updates to achieve differential privacy, balancing accuracy with privacy budget.
Zhang et al. (2020), Implements low-bit homomorphic encryption for efficient training with minimal accuracy drop.
BatchCrypt HE
Fang and Qian (2021), Paillier Optimizes homomorphic encryption to reduce the encryption and decryption overhead.
FMLP
Architectures Liu L. et al. (2020), Multi-tier aggregation structure (client, edge, cloud) to alleviate communication bottlenecks.

Briggs et al. (2020), Clustered
HFL

Extends hierarchical FL with clustering for specialized models.

Liu et al. (2024b), FINCH

Uses hierarchical neural architecture search within clustered clients.

Liu et al. (2024a), FedMigr

Introduces reinforcement learning to guide model migration between clients.
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TABLE 1 (Continued)

10.3389/fcomp.2025.1617597

Category Paper/technique Key details/innovations
Qu et al. (2020), Nguyen et al. Combines FL with blockchain frameworks (FLchain, FL-Block, IoV-blockchain) for auditability and
(2021), and Chai et al. (2021), decentralization.
Blockchain FL
Applications Gecer and Garbinato (2024), Demonstrates FL for perception models in autonomous driving, with emphasis on privacy-preserving training.
Autonomous driving
Shaheen et al. (2022), Smart Explores FL applications for transport, governance, and healthcare in smart cities.
cities/IoT
Diba et al. (2025), Examines resource constraints of IoT devices and their impact on FL training.
Deployment challenges
Rjoub et al. (2025), IoT energy | Analyzes energy-aware FL systems under limited device budgets.
constraints
2016 - 2018 2019 - 2020

Foundation & Early Challenges

« Google introduces Federated Learning for privacy-preserving
distributed training

« FedAvg algorithm establishes weighted averaging as baseline
aggregation method

« Statistical heterogeneity identified as major challenge with
non-IID data

« Communication efficiency emerges as critical bottleneck

2018 - 2019

Addressing Heterogeneity

FedProx adds proximal regularization for
system/statistical heterogeneity

FedNova normalizes client updates based on local
steps

Clustered Federated Learning groups similar
clients

Hierarchical FL introduces client-edge-cloud
architecture

2023-2025

Emerging Paradigms

« Green Federated Learning focuses on energy efficiency

» Federated Reinforcement Learning for sequential
decisions

+ Quantum Federated Learning exploration

« Advanced hierarchical neural architecture search (FINCH)

« Standardization efforts and deployment frameworks

FIGURE 3
Federated learning: technological evolution (2016-2025).

Advanced Optimization & Privacy

SCAFFOLD uses control variates for drift correction
Differential Privacy techniques integrated into FL
Homomorphic Encryption methods (BatchCrypt)
developed

Asynchronous FL and adaptive client sampling introduced

2020 - 2021

Communication & Architecture Innovation

+ MOON framework introduces model-contrastive
learning

« Decentralized peer-to-peer training (EdgeFL)
eliminates central server

« Blockchain-based FL (FLchain, FL-Block) for
security

* Model compression and pruning techniques
(FedMp)

2021 - 2023

Personalization & Meta-Learning

« FedGPA develops prototype-based personalized
aggregation

« Federated Meta-Learning (MAML, Meta-SGD) enables rapid
adaptation

» FedHybrid combines multiple strategies

« FedSim uses gradient similarity for aggregation

+« FEDMWAD adds anomaly detection

maintained on a centralized server during each communication
round. This process forms the backbone of the basic FL
architecture. The aggregation is primarily based on the weight
and gradient values generated by models trained on local
devices. This section delves into significant deep learning-based
model aggregation algorithms introduced in prior research,
highlighting the advantages and limitations associated with
each approach.
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3.1.1 Federated averaging (FedAvg)

This primary aggregation method, introduced by McMahan
et al. (2017) when FL was first introduced, uses an aggregation
algorithm to update the weights of the deep neural network stored
on the centralized server by selecting a fraction of clients from the
total devices in each communication round. This approach uses a
weighted averaging technique, considering the dataset size of each
client device, which allows devices with larger datasets to have a

frontiersin.org


https://doi.org/10.3389/fcomp.2025.1617597
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Cooray et al.

greater impact on model updates. Additionally, it allows multiple
local updates on each device before each communication round,
improving communication efficiency by reducing the number of
rounds needed for model convergence.

K
Nk +E
Wit = Z ;WkJr (1)
k=1

The formula above shows how global updates are done in the
FedAvg process. The total weight w;1; in each communication
round is calculated by summing the weighted average of each client
device’s weights for E number of epochs. Here, nj represents the
size of the client dataset, while # is the total dataset size across all
clients. This aggregation method has been tested on the MNIST
and CIFAR-10 datasets, using around 100 client devices with IID
datasets. The MNIST dataset achieved 99.44% accuracy after 300
communication rounds and CIFAR-10 reached over 85% after
2,000 rounds. However, another research done by Zhao et al. (2018)
shows a significant accuracy drop of up to 55% when FedAvg
is applied to non-IID data due to data heterogeneity and model
parameter divergence. They proposed an alternative method where
a small portion (5%) of global data is shared with local devices,
leading to a 30% accuracy improvement over FedAvg when trained
with non-IID data.

3.1.2 FedProx algorithm

Since Fed Average uses a fixed number of epochs (local
updates) for all client devices, which lacks convergence guarantees
in realistic scenarios with non-IID data. Additionally, it can
drop straggler clients (devices that cannot complete local updates
due to processing speed variations), leading to biased global
model updates. Since FedAvg includes multiple local updates per
communication round, there is a risk of prioritizing local model
updates over the globally aggregated model. To address both
statistical and system heterogeneity issues in FedAvg, Sahu et al.
(2018) introduced FedProx algorithm, which adds a proximal term
for local model updates.

min (w5 w') = Fe(w) + 2w — w' | @)

The above function shows that this approach adds a proximal
term to the original loss function based on the clients’ Fj(w).
The proximal term % lw — w'||? calculates the squared Euclidean
distance between the local model parameters (w) and the global
model parameters (w'). The hyperparameter i serves as the
regularization parameter to prevent the local model from deviating
too far from the global model. By adjusting u between 0
and 1, it helps maintain model stability despite deviations in
local device model weights. The proximal function enables local
model updates to bring model parameters closer to those of the
global model without requiring a fixed number of epochs for
local training. It also allows local models to aggregate with the
global model after varying numbers of local updates, maintaining
system heterogeneity. Practical experiments with synthetic and
publicly available datasets (MNIST, FEMNIST, Shakespeare) were
done using about 1,000 devices, with 0%, 50% and 90% of
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devices as stragglers. Straggler devices were created by assigning
varying numbers of epochs and adjusting the p value. Results
showed that the FedProx algorithm achieved significantly lower
loss values in fewer communication rounds than FedAvg, both
with o = 0 and © > 0 conditions. Even though, it
performs well with non-IID data the proximal term parameter
u has to be adjusted to find the optimal g value. While
FedProx effectively mitigates issues from system heterogeneity, its
primary limitation is the introduction of the hyperparameter pu.
This parameter requires careful, problem-specific tuning and an
improper value can either fail to correct for heterogeneity or slow

down convergence.

3.1.3 FedNova algorithm

The FedProx aggregation method was introduced to
address system and statistical heterogeneity issues in FedAvg
by incorporating a proximal term that aligns local model
parameters with the global model. However, the need to calculate
the Euclidean distance between model weights results in slower
convergence and does not fully resolve objective inconsistency. To
overcome this limitation, the “FedNova” approach, introduced by
Wang et al. (2020), mitigates slower convergence by normalizing
client model parameters and weight updates based on the number
of local steps performed. Instead of averaging all local updates,
FedNova averages normalized local gradients, ensuring that
each client’s contribution to the centralized model update is
proportional to the true global objective, regardless of the number
of local updates done before global communication.

m (t)

A4 =50 Y g E ©
i=1 !

The formula above illustrates the normalization process in
the FedNova algorithm. It shows that the global model x(+V
is updated by subtracting a weighted sum of normalized client
gradients from the current global model x¥). Each client’s gradient
glw is normalized by dividing by the total number of local updates
7; and then weighted by p;, representing the client’s relative
importance based on dataset size. The learning rate 7 scales the
overall update. This ensures that each client’s contribution to the
global model is proportional to its actual progress, eliminating
bias from varying local update numbers. Evaluations with synthetic
and real-world data showed significant improvements over FedAvg
and FedProx, achieving 6%-9% higher test accuracy on non-IID
CIFAR-10 dataset with 30 clients. However, the approach does
not fully address client dropout during training and requires
tuning the normalization factor p; for optimized results, raising
concerns about communication efficiency in the aggregation
process. The main cost of FedNova’s improved handling of objective
inconsistency is its implementation complexity. The normalization
step requires tracking local update counts for each client, which
can be difficult in asynchronous settings or when clients frequently
drop out.
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3.1.4 SCAFFOLD algorithm

Traditional federated learning algorithms like FedAvg struggle
with statistical heterogeneity, where data distributions vary
significantly across clients (non-IID data). This leads to a problem
called “client-drift;” where each client’s local model moves toward
its own local optimum, diverging from the true global objective.
This drift makes convergence unstable, slow and can even cause
the model to diverge, especially when clients perform many
local updates before aggregation. To address this fundamental
issue, the Stochastic Controlled Averaging (SCAFFOLD) algorithm
introduces a drift-correction mechanism using control variates, a
technique from variance reduction. The core idea is to estimate
the client-drift and actively correct for it during local training
(Karimireddy et al., 2021).

yi < yi—mgi,) +e—c) (4)

The formula above shows the corrected local update rule for
client i, where the standard local gradient g;(y;) is adjusted by the
term (¢ — ¢;). SCAFFOLD maintains a state variable on the server
(server control variate, c) and one for each client (client control
variate, ¢;). The server’s variate approximates the global update
direction, while the client’s variate approximates its local update
direction. The difference between them represents an estimate of
the client-drift. By subtracting the client’s update direction (¢;) and
adding the server’s global update direction (c), the update is steered
away from the client’s local optimum and back toward the global
optimum, effectively synchronizing the clients’ progress.

SCAFFOLD was evaluated on simulated data designed to
highlight heterogeneity and on the real-world EMNIST dataset.
The results show that SCAFFOLD consistently outperforms
FedAvg and FedProx, especially in highly heterogeneous settings.
Unlike FedAvg, which often performs worse with more local steps
on non-IID data, SCAFFOLD’s performance robustly improves,
confirming its ability to handle client-drift. It achieves the same
accuracy in significantly fewer communication rounds. However,
SCAFFOLD introduces two main trade-offs. Firstly, it requires
stateful clients, as each client must store its control variate c;
between communication rounds. Secondly, it doubles the upload
communication cost because clients must send both the model
update and the control variate update to the server in each
round, which can impact communication efficiency in bandwidth-
constrained environments.

3.1.5 MOON algorithm

As discussed above, traditional aggregation models like Fed Avg
struggle with non-IID data distributions across clients. To address
this with fewer calculations, the Model-Contrastive Federated
Learning (MOON) framework was introduced by Li et al. (2021).
The primary goal of MOON is to reduce the distance between
data representations learned by the local and global models during
training. This framework consists of three components: a base
encoder to extract weight representations as vectors, a projection
head to map these representations into a fixed dimension and an
output layer for predictions.
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sim(z,Zglop,)
exp (7T )

exp (sim(z;zglob)> +exp (sim(z;zprev))

Leon = — 108 (5)

The loss function above aims to bring the local device
model’s vector representation (z) closer to the global model’s
vector representation (zgop), while distancing it from the
previous state (zprey) before updating the local model for
each communication round. This is achieved by maximizing
the numerator exp(sim(z, zgop)/7) relative to the denominator.
As the similarity between the local and global model vector
representations increases, the loss decreases. The temperature
parameter () regulates the alignments intensity. Despite this
alignment, MOON still uses the same weighted averaging
method for local model aggregation as FedAvg. Evaluations on
CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets show that
MOON algorithm demonstrates faster convergence and better
communication efficiency. For example, MOON achieved 69.1%
accuracy on CIFAR-10 dataset in 27 communication rounds,
while FedAvg reached 66.3% accuracy after 100 rounds. Overall,
MOON outperforms FedAvg by 2.6% on average across all
datasets. However, MOON also has drawbacks, including higher
computational costs, sensitivity to hyperparameters and limited
applicability to non-vision tasks. MOON’s performance gains
come at a significant computational cost. The contrastive loss
calculation requires storing previous model representations (zprev)
and performing extra forward passes, increasing both memory and
processing requirements on client devices, making it less suitable
for highly resource-constrained environments.

3.1.6 FedHybrid algorithm

Standard Federated Learning algorithms like FedAvg perform
well on IID data but struggle with convergence and accuracy
in more realistic non-IID settings. While subsequent methods
like FedProx and FedScaffold were developed to address specific
challenges data heterogeneity and client drift, respectively they each
tackle only a part of the problem. This leaves a gap for a more
comprehensive solution that can simultaneously handle multiple
sources of instability in non-IID environments. To bridge this gap,
the FedHybrid algorithm was introduced as a novel aggregation
strategy that unifies the strengths of three foundational FL methods:
FedAvg, FedProx and FedScaffold (Niu and Wei, 2023).

ng) _ Zai[(l — ww; + uwg + (¢ — Cg)] (6)
i=1

The formula above illustrates the FedHybrid aggregation

process, where the global model WgH)

is updated using normalized
accuracy-based weights «; that give more influence to better-
performing clients. The algorithm combines three key components:
the proximal term p that prevents local models from deviating
too far from the global model, the local model weights w; and
control variates (c; — ¢,) that correct for client drift by tracking
the difference between local and global control variables. During
local training, clients incorporate a proximal term %Hw - wg||2

into their loss function to mitigate statistical heterogeneity, while
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control variates reduce variance between local updates and the
global objective.

Evaluations on MNIST and CIFAR-10 datasets with non-IID
distribution across 100 clients showed that FedHybrid significantly
outperformed existing methods, achieving 94.12% accuracy on
MNIST and 93.52% on CIFAR-10 with faster convergence rates.
However, the primary limitation of FedHybrid is the increased
complexity and number of hyperparameters that require careful
tuning, including the proximal term weight @ and learning
rates for control variates. The algorithm’s computational overhead
from managing multiple components simultaneously may impact
communication efficiency and its evaluation was limited to image
classification datasets, raising questions about generalizability to
other domains.

3.1.7 FedSim algorithm

Traditional aggregation algorithms, such as the foundational
FedAvg (McMahan et al, 2017), treat all participating client
models equally during the aggregation process. While methods
like FedProx (Sahu et al, 2018) address heterogeneity by
allowing for variable local updates, they still do not explicitly
account for potential gradient similarities between subsets of
client models. This can result in reduced stability of the global
model in highly heterogeneous settings, leading to significant
performance fluctuations across communication rounds. To
address this issue, researchers have explored methods for clustering
local devices that produce similar data distributions. However,
sharing local device data to train a model that clusters such
devices would violate the data privacy principles inherent in
FL. To bridge this gap, Palihawadana et al. (2022) introduced
the FedSim aggregation method, a similarity-guided model
aggregation strategy that leverages client gradient similarities
without compromising privacy. Firstly, the system will cluster the
client devices into random clusters using an algorithm like k-
means in the first communication round, taking into account the
data sharing constraints of FL. Then the selected clients for a
communication round are clustered based on the local weight
gradients, which are calculated based on the error value between
the existing global model. Subsequently, the respective selected
clients for communication will update their gradients using an
optimizer like stochastic gradient descent (SGD). As the fourth
step, the locally updated model weights are aggregated with
their respective cluster model by using the weighted averaging
technique. The weights are considered based on the sample
data set sizes included in each client device, respective to the
whole cluster size. Finally, the global aggregation has been done
using the updated weights of each specialized cluster model
produced by the selected client devices in each communication
round. FedSim was evaluated using popular datasets such as
MNIST, FEMNIST, Fed-MEX, Fed-Goodreads and synthetic data.
The results demonstrated that FedSim achieved higher accuracy
and required fewer communication rounds compared to both
FedAvg and FedProx algorithms. For example, on the MNIST
dataset, FedSim outperformed FedAvg by 11.69% and FedProx
by 17.25%, with comparatively fewer communication rounds.
However, despite employing Principal Component Analysis (PCA)
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for dimensionality reduction during the clustering process,
FedSim exhibited higher computational costs, resulting in longer
communication round times compared to FedAvg and FedProx,
highlighting the limitations in communication efficiency associated
with this approach.

3.1.8 FedGPA algorithm

As discussed above, traditional Federated Learning approaches
like FedAvg experience significant performance drops when
dealing with non-uniform data, where different clients have
varying data patterns. To address this challenge, Personalized
Federated Learning methods have been developed, but they
typically focus on either improving client-side model adjustments
or server-side combination strategies separately. The FedGPA
(Federated Learning with Global Personalized Aggregation)
algorithm was introduced to create a more comprehensive
framework that simultaneously enhances local training and
employs a sophisticated, personalized combination mechanism on
the server (Kairouz et al., 2021). The core of FedGPA algorithm
lies in separating the model into a feature extractor (for learning
generalizable representations) and a classifier (for personalization)
and applying distinct optimization and combination strategies
to each.

To prevent local models from drifting too far from the global
objective due to local data bias, FedGPA introduces a regularization
term during local training. This term aligns the client’s local data
representations with the global data distribution using prototypes
(the average feature vector for each data class). The local loss
function for client i is modified as:

Li = Ly(wy, we; Di) + Ri(wy; C) )

where Ly is the standard supervised loss and R; is the prototype-
based regularization loss. The regularization term measures the
distance between local and global class prototypes. Local prototypes
are calculated as the average of feature vectors for each class on a
specific client, while global prototypes are computed on the server
by taking a weighted average of all clients’ local prototypes. A
hyperparameter balances the supervised loss and the regularization
term. This alignment encourages the local feature extractor to learn
representations that are consistent with the global data structure.

FedGPA computes unique combination weights for each client,
personalizing both the feature extractor and the classifier. For
the feature extractor, the combination weight (the weight client i
assigns to client j’s model) is calculated based on both prototype
similarity and sample size. The prototype similarity represents the
inverse of the distance between the prototype sets of different
clients, serving as a similarity score. The sample size represents
the number of data samples on each client. A hyperparameter
balances the influence of prototype similarity and sample size. For
the classifier, the combination weights are determined by solving an
optimization problem that considers both client similarity matrix
and the variability of features within each client’s data.

Evaluations on five benchmark datasets (FMNIST, EMNIST,
CIFAR-10, CIFAR-100, and CINIC-10) under three different non-
uniform data scenarios demonstrated that FedGPA consistently
achieved higher test accuracy compared to state-of-the-art
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baselines like FedProx and SCAFFOLD aggregation methods.
However, the primary limitation of FedGPA is its increased
computational and communication overhead. The server needs to
receive prototypes from each client, compute global prototypes and
solve an optimization problem for each client’s classifier in every
round, making each communication round more time-consuming
than simpler algorithms like FedAvg or FedProx, highlighting a
trade-off between model accuracy and system efficiency.

3.1.9 FEDMWAD algorithm

While algorithms like FedProx and FedNova address system
and statistical heterogeneity, they largely operate under the
assumption that all client contributions are benign. This leaves
them vulnerable to performance degradation from outlier clients,
whose model updates may be anomalous due to extreme non-
IID data, system faults, or even malicious intent (e.g., data
poisoning attacks). Such anomalous updates can destabilize the
global model and slow down or prevent convergence. To address
this vulnerability, the Federated Multi-Weighted Aggregation with
Anomaly Detection (FEDMWAD) algorithm was proposed by
Ding et al. (2025). FEDMWAD introduces a server-side validation
mechanism that identifies and down-weights anomalous client
updates before aggregation.

K
Nk .
Wigt = ) kWi ok = fSIm(AW AWiedian))  (8)
k=1

The formula above demonstrates FEDMWAD’s dynamic re-
weighting mechanism, where the global model update w;,; is
computed as a weighted average with an additional anomaly-
based weighting factor o. The server first computes a reference
update using the geometric median of all received client model
updates AWpedian, Which is robust to outliers. It then measures
the similarity between each client’s update Awy and this reference
using metrics such as cosine similarity. The function f maps this
similarity score to the weight c, assigning lower weights to clients
whose updates deviate significantly from the norm and higher
weights to those in consensus. This process effectively filters out or
minimizes the impact of potentially harmful updates, making the
aggregation more robust against anomalous client behavior.

In evaluations on CIFAR-10 and synthetically-generated
datasets with simulated label-flipping attacks, FEDMWAD
demonstrated significant improvements in model stability
and final accuracy. In scenarios with 20% malicious clients,
FEDMWAD achieved final accuracy 8% higher than FedAvg and
5% higher than FedProx, while also showing much lower variance
in accuracy across communication rounds. However, the primary
drawback of FEDMWAD is the increased computational overhead
on the central server, as it must collect all updates before computing
the median and similarity scores, which increases the time per
communication round. Furthermore, the algorithm introduces
new hyperparameters, such as the choice of similarity metric and
the sensitivity of the weighting function f, which require careful
tuning for optimal performance and may impact the algorithm’s
practical deployment in diverse federated learning environments.
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3.2 Federated meta-learning

Federated Meta-Learning (FedMeta) represents an advanced
paradigm within federated learning, specifically designed to address
the inherent challenges of statistical and systemic heterogeneity
across clients. This approach shifts the learning objective from the
direct optimization of a model’s parameters to the optimization of
the learning process itself. Consequently, the framework enables
the distributed system to “learn how to learn” efliciently across
decentralized devices.

The fundamental divergence between FedMeta and traditional
federated learning algorithms, such as Federated Averaging
(FedAvg), lies in their core objective and the nature of the
information exchanged (Chen et al., 2019). Whereas conventional
federated learning aims to train a single, robust global model
through the iterative aggregation of model weight updates,
FedMeta’s objective is to derive an adaptive algorithm, or a “meta-
learner.” Instead of exchanging full model parameters, clients in
the FedMeta framework share this parameterized algorithm, which
they then rapidly adapt to their specific local tasks. This distinction
allows FedMeta to more effectively accommodate non-IID data
distributions, often yielding significant gains in communication
efficiency and convergence speed.

The operational framework of FedMeta, as proposed by Chen
et al. (2019), is predicated on a bi-level optimization structure.
A central server first distributes a parameterized algorithm the
meta-learner to a subset of participating clients. Each client
then utilizes its local dataset to execute a “fast adaptation” step,
which typically involves a limited number of gradient descent
iterations. During this inner update, the client fine-tunes the
meta-learner’s parameters to align with its unique local data
distribution. Following this local adaptation, clients transmit
concise performance feedback, such as the loss incurred on a
local test set or the gradients derived from this loss, rather
than their fully adapted models. The server aggregates this
feedback to perform an outer update, which refines the meta-
learner algorithm. This iterative process is designed to enhance
the meta-learner’s capacity to facilitate rapid and effective model
adaptation for future tasks. The efficacy of FedMeta is significantly
informed by the principles of prominent meta-learning algorithms,
notably Model-Agnostic Meta-Learning (MAML) and Meta-SGD
(Liu X. et al., 2024).

3.2.1 Model-agnostic meta-learning (MAML)

The central objective of MAML is to identify an initial set of
model parameters, denoted as 6, that can be rapidly fine-tuned
for new tasks with a minimal number of gradient descent steps.
The optimization process is structured into two distinct stages: a
client-side inner update for local adaptation and a server-side outer
update for meta-optimization.

For the inner update, each client i partitions its local data into a
support set (DSTi) for training and a query set (Dg) for evaluation.
Beginning with the shared parameters 6 from the server, the client
performs one or more gradient descent steps on its support set. This
local training yields a set of task-specific adapted parameters, ¢;.
The formulation for a single gradient step is:

frontiersin.org


https://doi.org/10.3389/fcomp.2025.1617597
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Cooray et al.

¢, =0 —aVelr (fe,D?) )

In this formulation, fy represents the model parameterized
by 0, and Lr; (f(),D?) is the loss function measuring the model’s
performance on the support set for its local task T;. The term Vj
denotes the gradient of this loss with respect to the parameters
0. The update rule adjusts € in the direction opposite to the
gradient, scaled by a local learning rate «, to produce the adapted
parameters ¢;.

The process then transitions to the server-side outer update.
After deriving their adapted parameters ¢;, clients evaluate the
performance of the adapted model, fs., on their respective query
sets. The resulting performance feedback is transmitted to the
central server, which aggregates it to update the global initial
parameters 6. This meta-optimization step aims to refine 6 such
that future inner updates result in superior performance on the
query sets. The outer update is expressed as:

0 —0-pY> Lr <f¢i,D(T)") (10)

Ti

Here, ) 1. £T,.(f¢,.,D(T)") is the aggregated loss of the adapted
models across the query sets of all participating clients. The
meta-learning rate B scales the update to the initial parameters
0. A critical aspect of this update is that the gradient is taken
with respect to 6. Since ¢; is a function of 6, this calculation
necessitates computing gradients through the inner update step,
thus requiring second-order derivatives (gradients of gradients).
MAML, therefore, learns an initialization that is highly sensitive to
task-specific fine-tuning.

3.2.2 Meta-SGD

Meta-SGD extends the MAML framework by learning not only
an optimal set of initial parameters but also a corresponding per-
parameter learning rate for the inner adaptation process. Instead of
employing a single scalar learning rate o, Meta-SGD learns a vector
of learning rates, ayec, where each element corresponds to a specific
model parameter.

The client-side inner update is modified to incorporate these
adaptive learning rates. Upon receiving both the initial parameters
0 and the learning rate vector ayec from the server, each client
performs a local adaptation on its support set. The update for each
parameter in 0 is now scaled by its unique learning rate from oyec.
The local adaptation is guided by the following formula:

§; =0 — atvec © Vo Ly, (/0. DY) (11)

The symbol © denotes the Hadamard product, signifying an
element-wise multiplication between the learning rate vector and
the gradient vector. This mechanism allows for a more flexible
adaptation, where different parameters can be updated at different
rates according to their learned sensitivity.

Subsequently, the server-side outer update performs a joint
meta-optimization for both the initial parameters 6 and the
learning rate vector ayec. The server aggregates the query set
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performance from clients and computes gradients with respect to
both meta-learned components. The resulting updates are:

0 <60 p1Ved Lr, (f(,,i,Dg") (12)
Ti
Cyec < Qyec — B2 Votvec Z ‘CT,' (fqﬁ,-s DS) (13)

T;

Distinct meta-learning rates, 81 and f8,, are used for updating 6
and ayec, respectively. Similar to MAML, this outer update requires
the computation of second-order derivatives, as the query loss is a
function of the adapted parameters ¢;, which in turn depend on
both 6 and ayec. By learning both an optimal initialization and
individualized learning rates, Meta-SGD provides a more powerful
and flexible meta-learner, often leading to enhanced convergence
and robustness in heterogeneous federated settings.

The theoretical underpinnings of these Federated Meta-
Learning frameworks translate into tangible performance
improvements when empirically evaluated against baseline
federated optimization strategies. The research conducted by
Chen et al. (2019) offers a rigorous comparative analysis against
Federated Averaging (FedAvg), revealing the practical efficacy
of the FedMeta framework in environments characterized by
statistical heterogeneity. A primary and significant finding is
the superior accuracy and accelerated convergence exhibited
by FedMeta. This advantage is clearly quantified in Table 2,
which details the performance on the LEAF benchmark. On
the FEMNIST image classification task, the FedMeta variants
consistently achieve accuracies around 90%, representing a
substantial improvement over the roughly 77% reached by FedAvg.
This trend holds for the natural language processing tasks as well,
with Meta-SGD reaching 80.94% accuracy on Sent140 compared
to FedAvg’s 73.38%. Performance graphs from the study further
illustrate that MAML and Meta-SGD not only converge to this
considerably higher final accuracy plateau but also exhibit a
steeper initial learning curve, indicating that they reach a state of
high performance in significantly fewer communication rounds.
This performance differential is a direct consequence of the two
frameworks’ contrasting approaches to handling non-IID data.
FedAvg aims to learn a single global model by averaging client
updates, a process that inherently seeks a consensus model that
often represents a poor compromise in heterogeneous settings.
In stark contrast, FedMeta learns a meta-model that serves as
an optimized initialization, explicitly trained to be adaptable
and thus providing a far more effective starting point for rapid
personalization on diverse local data.

Furthermore, this accelerated convergence directly addresses
the principal bottleneck in most federated learning applications:
communication overhead. The research highlights that FedMeta
provides a compelling solution for mitigating this challenge,
demonstrating a reduction in the total required communication
cost by a factor of 2.82-4.33 times when compared to FedAvg.
This efficiency stems from the fact that the meta-learner generalizes
more effectively, necessitating less frequent and prolonged
iterative refinement between the server and clients to achieve a
desired performance threshold. This reduction in communication,
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TABLE 2 Comparison of performances of FedAvg and FedMeta learning on LEAF benchmark datasets.

Chen et al. (2019) FedAvg CNN FEMNIST 20% 76.79% 2,000 1,068
50% 75.44%
90% 77.05%
Stacked LSTM Shakespeare 20% 40.76% 400 528
50% 42.01%
90% 40.85%
LSTM Sent140 20% 71.53% 400 3,790
classifier
50% 72.29%
90% 73.38%
Chen et al. (2019) FedMeta CNN FEMNIST 20% 88.46% 2,000 1,068
(MAML)
50% 89.77%
90% 89.31%
Stacked LSTM Shakespeare 20% 46.06% 400 528
50% 46.29%
90% 46.49%
LSTM Sent140 20% 76.37% 400 3,790
classifier
50% 78.63%
90% 79.53%
Chen et al. (2019) FedMeta CNN FEMNIST 20% 89.26% 2,000 1,068
(Meta-
SGD) 50% 90.28%
90% 89.31%
Stacked LSTM Shakespeare 20% 44.72% 400 528
50% 45.24%
90% 46.25%
LSTM Sent140 20% 77.24% 400 3,790
classifier
50% 79.38%
90% 80.94%

however, is accompanied by an increase in local computational
demands. The bi-level optimization at the core of MAML and
Meta-SGD requires the computation of second-order derivatives,
a “meta-gradient” calculation that is more expensive for client
devices than the standard first-order gradient descent in FedAvg.
This presents a critical design trade-off: FedMeta is demonstrably
superior in communication-constrained or high-latency networks,
whereas FedAvg may remain a viable option if client devices have
severely limited computational capacity.

Beyond aggregate metrics, the equity of performance
distribution across the client population which is a concept known
as fairness, is a vital consideration where FedMeta shows a distinct
advantage. The empirical evidence strongly suggests that FedMeta
fosters a more equitable performance distribution, as observed
through kernel density estimations of final client accuracies. The
distributions for MAML and Meta-SGD are significantly more
centered and exhibit lower variance, indicating that a large majority
of clients achieve a similarly high level of accuracy. Conversely,
the distribution for FedAvg is typically wider and flatter, signifying
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high performance variance and the presence of poorly performing
clients. This enhancement in fairness is directly attributable
to the superior generalization capabilities of the meta-learning
objective. The framework is explicitly designed to produce a
meta-learner that is readily adaptable across a diverse set of tasks,
capturing a more fundamental and transferable representation
of the network’s collective knowledge. As a result, FedMeta can
effectively personalize models even for outlier clients with unique
data distributions or limited data, directly addressing a key failure
mode of the single-global-model approach and thereby reducing
performance disparity.

3.2.3 Advancements and applications in wireless
networks

While the MAML and Meta-SGD frameworks form the
bedrock of FedMeta, the research landscape has since expanded
to address more complex optimization challenges and deployment
scenarios, as surveyed by Liu X. et al. (2024). These advancements
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aim to improve computational efficiency and knowledge transfer
within the unique constraints of wireless networks. One notable
evolution is Collaborative FedMeta, which formalizes a platform-
based learning framework where a set of “source” edge nodes
collaboratively trains a meta-model for subsequent transfer and
rapid adaptation at a “target” edge node. To tackle the high
computational cost of bi-level optimization, researchers have
also proposed ADMM-FedMeta, which leverages the Alternating
Direction Method of Multipliers (ADMM) to decompose the
meta-optimization into parallelizable sub-problems, enhancing
scalability for large-scale networks.

The theoretical advantages of FedMeta translate into tangible
solutions for critical operational challenges within wireless
communications. The framework moves beyond general model
training to actively optimize network performance and resource
management. For instance, in a massive wireless network,
FedMeta enables intelligent device selection schemes. By rigorously
analyzing the contribution of each device to the global loss
reduction, the system can prioritize participants whose updates
will most effectively improve the meta-learner, accelerating
convergence while minimizing communication latency and energy
consumption. This is particularly crucial for battery-constrained
devices such as IoT sensors, where energy efficiency is paramount.
Specialized frameworks, such as a “meta-backward” algorithm,
have been developed to learn a meta-model with low computation
and communication energy overhead, making sophisticated on-
device intelligence viable for resource-constrained hardware.

Despite its significant promise, the widespread deployment of
FedMeta faces several open challenges that constitute the future
research frontier. While FedMeta inherits the privacy benefits of FL,
the shared meta-learner may be vulnerable to novel attack vectors,
and further investigation into its specific privacy guarantees is
essential. Moreover, as networks scale to billions of devices, the
overhead of a single meta-learner may become prohibitive. This
has motivated research into Multi-Model FedMeta, where devices
are clustered to train specialized meta-models in a hierarchical
fashion. Perhaps most critically, a research gap exists in the
theoretical analysis of FedMeta under realistic wireless conditions.
Characterizing its convergence properties in the presence of
channel noise, transmission errors, and device dropout is vital
for designing robust algorithms that can perform reliably in the
unpredictable environments of future 6G networks.

3.3 Federated reinforcement learning

Federated Reinforcement Learning (FRL)

paradigm that combines the privacy-preserving architecture of

represents a

Federated Learning (FL) with the sequential decision-making
framework of Reinforcement Learning (RL). This approach enables
multiple agents to collaboratively learn optimal strategies from
their experiences without sharing sensitive raw data.

The fundamental distinction from traditional FL lies in the
learning objective and data characteristics. While conventional FL
focuses on supervised tasks with the goal of minimizing a predictive
loss function over static, labeled datasets, FRL aims to discover
a policy mp parameterized by 6 that maximizes the expected
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cumulative reward J(/) = E [Zfio J/tRz], where Ry represents the
reward at time t and y € [0, 1] is the discount factor. This objective
is learned from dynamic streams of experience tuples rather than
fixed datasets.

The transition from minimizing static prediction errors to
maximizing dynamic behavioral rewards introduces a fundamental
challenge known as the policy-averaging problem (Qi et al,
2021). Traditional Federated Averaging (FedAvg), which computes
weighted parameter averages Ogopa; = Zil %9;, where n; is
the number of samples from client i and n = Zfil n;, can be
detrimental when applied to RL policies. Averaging policies from
agents trained in disparate but valid environments may result in
incoherent global policies.

FRL methodologies are categorized into two primary structures
based on data distribution characteristics. Horizontal FRL (HFRL)
applies when agents share identical state and action spaces but
possess different experiences. Research in this domain focuses
on developing intelligent aggregation mechanisms beyond simple
parameter averaging. Key approaches include performance-based
weighting, where agents with higher reported rewards receive
greater influence in the aggregation process and knowledge
distillation, where a central model learns to emulate successful
agent decisions rather than blending internal parameters.

Vertical FRL (VFRL) addresses scenarios where agents observe
different, complementary features of the same environment
(Zhuo et al, 2020). Since agents operate on distinct feature
spaces, direct policy averaging is not applicable. Instead, VFRL
employs sophisticated protocols involving secure exchange of
intermediate computations, such as encrypted gradients or feature
representations, with a central coordinator.

The synergy between RL and FL extends beyond FRL
applications. RL techniques are increasingly employed to address
operational challenges within traditional FL systems. Central
servers can deploy RL agents to optimize client selection by
observing network states and learning policies that maximize
long-term objectives such as convergence speed or final
model accuracy.

3.4 Communication efficiency

Communication efficiency in cross-device Federated Learning
(FL), which connects millions of devices, poses a significant
challenge. Aggregating model weights becomes complex and
time-consuming, especially with slow or disconnected devices
(stragglers) causing delays (Zhang et al, 2024). To address
this, techniques have been developed to optimize local model
weights and reduce communication rounds, improving efficiency
while maintaining model performance. Additionally, researchers
are exploring decentralized training, model compression and
pruning methods to further reduce communication costs in
federated networks.

3.4.1 Decentralized training
Decentralized model training has emerged as a significant
alternative to centralized FL, particularly in addressing concerns

frontiersin.org


https://doi.org/10.3389/fcomp.2025.1617597
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Cooray et al.

related to communication efficiency. As visually contrasted in
Figure 4, the decentralized approach fundamentally transforms
the traditional FL architecture by removing the central server
bottleneck. In this innovative architecture, client devices are
connected in a peer-to-peer (P2P) network, enabling direct
communication between them and eliminating the need for a
central server. This approach mitigates network bottlenecks and
enhances scalability (Qi et al., 2024).

The
demonstrates how the centralized approach (left) creates a

architectural comparison illustrated in Figure 4
single point of failure and potential bottleneck, where all devices
must communicate through a central server. In contrast, the
decentralized approach (right) allows devices to share model
updates directly with neighboring devices, creating a more
resilient and efficient communication network. This peer-to-peer
communication pattern significantly reduces the communication
overhead and latency associated with traditional centralized
FL systems.

Zhang et al. (2024) proposed EdgeFL, a decentralized FL
framework that facilitates model aggregation without relying on
a centralized server. The implementation of this architecture is
achieved through the integration of a customized function within
the PyTorch framework, which supports asynchronous joining of
new client devices during the training process. Furthermore, the
adoption of an API calling method simplifies the decentralized
training procedure, reducing its complexity. Evaluations conducted
on the CIFAR-10 and MNIST datasets have demonstrated
that EdgeFL significantly reduces weight updating latency and
model evaluation time by approximately 50% compared to
existing decentralized FL methods. Additionally, EdgeFL shows
improvements in accuracy, achieving a 2% increase for CIFAR-10
and a 5% increase for MNIST, when compared to the decentralized
FedAvg approach.

3.4.2 Model compression and model pruning

To reduce communication volumes, three primary model
compression techniques are employed: upstream compression
(reducing client model size before aggregation), downstream
compression (compressing the centralized model before
downloading it to local devices) and local computation reduction
(modifying the training algorithm to create more generalized
models with limited resources). Shah and Lau (2023) introduced a
compression technique combining both downstream and upstream
methods with L1 regularization. They proposed two upstream
compression algorithms, using an auxiliary binary mask and a
sparse subnetwork for CNN models in federated networks, that
effectively reduce model size without compromising accuracy.
Evaluations of this approach on the CIFAR-10, CIFAR-100 and
Fashion-MNIST datasets demonstrated an improvement of 0.75%-
3.9% in accuracy, with fewer communication rounds compared to
existing methods.
model both unstructured and

In addition, pruning,

structured, is applied in FL to enhance communication
efficiency. Unstructured pruning removes individual weights,
while structured pruning eliminates entire layers, including batch

normalizers. The effect of this process transforms a dense neural
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network into a sparser, more computationally efficient model
by selectively removing nodes and connections, as illustrated in
Figure 5. This transformation process demonstrates how pruning
techniques can significantly reduce the model’s complexity while
maintaining its essential functionality. The pruned network
exhibits fewer parameters and connections, resulting in reduced
memory requirements and faster computation times during both
training and inference phases.

Figure 5 visually demonstrates the pruning process, where
some nodes and connections are selectively removed (shown in
lighter colors) from the original dense network (dark green) to
create a sparser, yet functional network. This systematic refinement
of the network architecture eliminates redundant or less important
connections, which not only enhances communication efficiency by
reducing the amount of data that needs to be transmitted between
devices but also improves the overall computational efficiency of
the federated learning process.

Jiang et al. introduced an adaptive pruning method, “FedMp,”
which utilizes structured pruning, allowing the central server to
adjust pruning ratios according to the capabilities of heterogeneous
worker devices. This adaptive approach recognizes that different
devices in a federated network may have varying computational
capabilities and communication constraints. Evaluations of this
method showed up to a 4.1x speed improvement over other
FL methods when trained on datasets like MNIST, CIFAR-10
and Tiny-ImageNet using models such as AlexNet, VGG-19
and ResNet-50 (Jiang et al., 2024). The significant performance
improvements demonstrate the effectiveness of adaptive pruning
in optimizing federated learning systems for diverse device
capabilities while maintaining model accuracy.

3.5 Statistical heterogeneity

Statistical heterogeneity in Federated Learning (FL) refers to the
variation in data distributions across local devices (clients), where
each client collects and processes its own data. Unlike centralized
learning, where data is from a common pool, FL faces non-IID
(independent and identically distributed) data, where feature, label,
or task distributions differ significantly across clients. For example,
in healthcare, hospitals may have patient data with different
demographics and disease distributions, making it challenging to
train a global model that generalizes well across all clients.

To address this fundamental challenge, various strategies have
been developed to reduce the effects of non-IID data. One approach
is data sharing, where a small global dataset is distributed to
clients. Zhao et al. (2018) showed that sharing 5% of global data
increased accuracy by 30% on non-IID data. This method is useful
in applications like mobile phone personalization, where data
distributions vary and privacy concerns prevent data centralization.

Liu L. et al. (2020) proposed a client-edge-cloud hierarchical
FL system with the Hier-FAVG algorithm, which uses edge
servers to partially aggregate client models before sending them
to the cloud. This approach reduces communication overhead and
mitigates the effects of non-IID data. Experiments on MNIST and
CIFAR-10 datasets showed faster convergence and reduced energy
consumption compared to traditional cloud-based FL.
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Sattler et al. (2019) introduced Clustered Federated Learning
(CFL), which groups clients based on similarities in data
distributions using cosine similarity of gradient updates, preserving
privacy. Experiments on MNIST and CIFAR-10 demonstrated that
CFL significantly improved model accuracy, effectively doubling
accuracy on CIFAR-10 under non-IID conditions. A real-life
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application could be in personalized healthcare, where patient
data from different demographics is clustered for more accurate
predictive modeling.

Model Regularization helps maintain a balance between local
and global models during training. By adding regularization
terms to the local optimization objective, this method prevents
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excessive divergence between client models. FedProx, for example,
introduces a proximal term to the local objective, encouraging local
models to stay close to the global model, thus facilitating better
convergence in heterogeneous settings (Sahu et al., 2018).

Further
participation and sampling strategies to jointly manage statistical

advancements have explored adaptive client
and system heterogeneity. Reisizadeh et al. (2020) proposed
Federated Learning with Adaptive Node Participation (FLANP), a
meta-algorithm that initiates training with only the fastest clients
and progressively incorporates slower clients as the model achieves
sufficient accuracy on the existing set. At each stage, the model
from the previous round serves as a warm start, enabling efficient
integration of additional clients. This staged participation allows
the global model to learn from increasingly diverse data while
maintaining efficiency, with experiments demonstrating up to a 6x
reduction in wall-clock training time compared to conventional
FL benchmarks.

Luo et al. (2021) introduced an adaptive client sampling
that

heterogeneity by optimizing client selection probabilities. Instead

algorithm directly addresses statistical and system
of uniform sampling, their method formulates a non-convex
optimization problem based on a convergence bound for FL
with arbitrary sampling. Clients with both faster communication
speeds and statistically valuable data, as measured by local
gradient information, are given higher probabilities of selection.
Experiments on the EMNIST dataset showed that this adaptive
sampling approach reduced the time required to reach a target loss
by 73% compared to uniform sampling.

Li et al. (2024) focused on mitigating the bias introduced by
incomplete local updates due to device heterogeneity. FedLGA
operates at the aggregator side, using a Taylor expansion
to approximate the full local gradient update that resource-
constrained clients would have produced if they had completed all
local training epochs. This ensures that contributions from limited-
capacity clients on non-IID data are not underestimated or biased.
On a non-IID partitioned CIFAR-10 dataset, FedLGA improved
the testing accuracy from 60.91% (FedAvg baseline) to 64.44%,

highlighting its effectiveness in handling heterogeneous updates.

3.6 System heterogeneity

As described by Mang et al., system heterogeneity in FL refers
to variations in computational resources, network connectivity
and energy constraints among distributed devices. These devices,
including smartphones, tablets, drones and edge devices, vary
in processing power, memory capacity and network bandwidth,
creating challenges in coordinating and synchronizing training
for a central model (Ye et al., 2023). For instance, while some
devices may complete computations quickly, others, constrained
by slower processors, limited connectivity, or power shortages,
introduce delays and inefficiencies, potentially biasing the global
aggregation process.

To address system heterogeneity in FL, several techniques have
been developed. Asynchronous FL allows clients to send updates
independently, reducing delays caused by slower devices. Faster
clients send updates to the server as soon as they finish, without
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waiting for slower clients. This prevents delays in training caused
by waiting for slower devices, allowing faster clients to progress.
Federated averaging with partial participation selects a subset
of clients for each training round based on available resources,
ensuring underperforming devices do not hinder overall progress
(McMabhan et al., 2017).

Moreover, Heterogeneity-aware optimization techniques
dynamically adjust learning rates and local updates based on
client constraints. For instance, the FedProx algorithm extends
FedAvg by adding a regularization term to prevent large deviations
in model updates from weaker clients, improving convergence
stability across heterogeneous devices (Sahu et al., 2018). Another
method, hierarchical FL, reduces the communication burden
by introducing a middle layer (e.g., edge servers) to aggregate
updates locally before sending them to the central server, thereby
managing the challenges of network heterogeneity (Menegatti
et al., 2023). The important aspect of system heterogeneity is its
impact on model performance and convergence. Disparities in
device capabilities can lead to imbalanced contributions, where
more powerful devices dominate training, potentially biasing the
global model and reducing its ability to generalize effectively.
Addressing these issues ensures that all clients, regardless of their

limitations, contribute to an unbiased and robust FL system.

3.7 Privacy

Although Federated Learning (FL) was developed to address
privacy concerns in distributed model training, the risk of
data pattern leakage persists due to shared model weights and
parameters with the central server. Data leakage can occur through
inversion attacks, which enable attackers to reconstruct training
data by querying shared model updates. Additionally, membership
inference attacks can determine whether specific data points
were used in training, while property inference techniques can
reveal statistical properties of the training dataset (Zhang et al.,
2023). To mitigate these risks, privacy-preserving methods such as
Differential Privacy (DP) and Homomorphic Encryption (HE) have
been adopted in FL.

Differential Privacy (DP) protects data by adding controlled
noise to model weights during the training process. The privacy
budget parameter (¢) determines the level of noise added, with
smaller € values ensuring higher privacy at the cost of model
accuracy. A study done by Wei et al. (2020), highlights that DP
is computationally efficient compared to traditional encryption
methods like Secure Multiparty Computation (SMC), particularly
for large datasets. Applying Gaussian noise to aggregated updates
effectively prevents data leakage but decreases model accuracy as
noise levels increase. However, DP faces challenges due to the trade-
off between privacy and performance; excessive noise from lower ¢
values can impair model accuracy and delay convergence.

In contrast, Homomorphic Encryption (HE) ensures privacy by
allowing encrypted model weights to undergo operations without
decryption. Unlike Differential Privacy, Homomorphic Encryption
preserves model accuracy since it does not modify weight values
with noise. Zhang et al. (2020) proposed the Batch Crypt system,
which quantizes and encodes gradients into low-bit integers,
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significantly reducing computational costs during aggregation.
Experiments demonstrated a 23 x-93x training speedup with less
than 1% accuracy loss. Additionally, frameworks like the Paillier
Federated Multi-Layer Perceptron, optimized by Fang and Qian
(2021), reduce encryption and decryption times by 25%-28%
compared to traditional HE methods, as shown in experiments
using the MNIST dataset. These advancements underscore the
effectiveness of DP and HE in addressing privacy concerns in FL
systems, balancing security, accuracy and computational efficiency.

3.8 Advanced architectures in federated
learning

While the foundational principles of Federated Learning
(FL) address key privacy concerns, the practical demands of
large-scale, heterogeneous and security-sensitive environments
have necessitated the development of more sophisticated
architectures. Traditional “flat” FL models, which rely on a
single central server to coordinate all clients, often encounter
bottlenecks in communication, scalability and security. In
response, recent research has explored advanced architectural
paradigms, prominently featuring hierarchical structures to
manage complexity and blockchain integration to enhance security
and decentralization. These approaches move beyond the initial
conception of FL to create more robust, efficient and trustworthy
systems suitable for real-world deployment in domains like the

Internet of Things (IoT) and vehicular networks.

3.8.1 Hierarchical structures for scalability and
heterogeneity

Hierarchical Federated Learning introduces multiple levels of
aggregation to create a more scalable and communication-efficient
system. Instead of all clients communicating directly with a single,
often distant, cloud server, a multi-tiered structure is employed.
A common implementation is the client-edge-cloud architecture,
where intermediate edge servers perform partial model aggregation
for clients within their proximity (Liu L. et al, 2020). This
significantly reduces the communication overhead on the core
network, as only the aggregated models from edge servers are
sent to the central cloud. This structure not only accelerates
training time and reduces energy consumption for end-user devices
but also provides a better trade-off between communication and
computation (Liu L. et al., 2020).

Beyond improving efficiency, hierarchical structures offer a
powerful mechanism for managing statistical heterogeneity, a
persistent challenge in FL where client data is non-independent
and identically distributed (non-IID). One innovative approach
involves integrating hierarchical clustering with the FL process. In
this model, instead of training a single global model for all clients,
the system first clusters clients based on the similarity of their local
model updates (Briggs et al., 2020). Once clustered, specialized
models are trained independently and in parallel for each cluster of
similar clients. This method has been shown to achieve convergence
in fewer communication rounds and allows a greater percentage of
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clients to reach a target accuracy, especially in non-IID settings, by
tailoring models to specific data distributions (Briggs et al., 2020).

Further advancing this hierarchical concept, recent frameworks
like Federated Learning with Hierarchical Neural Architecture
Search (FINCH) automate the search for optimal model
architectures within these clustered, hierarchical structures
(Liu et al., 2024b). FINCH first divides clients into clusters based
on their data distribution and then allocates different subnets from
a pre-trained supernet to each cluster for parallel architecture
searching and training. This approach significantly reduces
the completion time and improves accuracy by narrowing the
search space and tailoring architectures to specific data patterns
within each cluster (Liu et al., 2024b). Complementing this, other
strategies such as experience-driven model migration, as seen
in the FedMigr framework, use deep reinforcement learning to
intelligently guide the transfer of local models between clients. This
migration is equivalent to training on more diverse data, which
helps to reduce the parameter divergence caused by non-IID data
and further enhances the performance of the global model (Liu
et al., 2024a).

3.8.2 Blockchain integration for enhanced
security and decentralization

A fundamental limitation of classical FL is its reliance on
a central server, which acts as a single point of failure and
requires clients to place their trust in the coordinating entity.
Blockchain technology offers a transformative solution by enabling
a fully decentralized, secure and auditable FL process. This
integration, often termed “FLchain,” replaces the central server with
a distributed ledger where model updates are managed through a
consensus mechanism among participating nodes (Nguyen et al.,
2021).

In a blockchain-enabled FL system, local model updates from
devices are treated as transactions. These transactions are then
verified, aggregated and recorded in blocks by miners (e.g., edge
servers). The resulting blockchain creates an immutable and
transparent record of the entire training process, which enhances
security against poisoning attacks and provides a clear audit trail
(Qu et al, 2020). The FL-Block framework, for instance, allows
end devices to exchange local learning updates via a blockchain-
based global model, coordinated by a Proof-of-Work consensus
mechanism. This eliminates the need for any centralized authority,
enhances privacy protection and increases resistance to malicious
attacks (Qu et al., 2020).

The synergy between hierarchical structures and blockchain
technology creates even more powerful and scalable frameworks.
For instance, in the context of the Internet of Vehicles (IoVs),
a hierarchical blockchain framework can be designed to manage
knowledge sharing across different geographic regions (Chai et al.,
2021). In such a system, vehicles and roadside units (RSUs) form
local “Ground-Chains” for primary FL, while RSUs and base
stations (BSs) form a “Top-Chain” for higher-level aggregation.
This layered approach not only accommodates the dynamic and
large-scale nature of vehicular networks but also uses a lightweight
Proof-of-Knowledge (PoK) consensus mechanism to ensure the
security and reliability of the shared knowledge without the
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computational burden of traditional consensus algorithms (Chai
et al,, 2021). By integrating these advanced architectures, FL can
overcome many of its practical limitations, paving the way for more
secure, scalable and efficient decentralized intelligence in complex,
real-world systems.

4 Current applications of federated
learning

Federated learning (FL) has been increasingly adopted across
various domains due to its ability to perform decentralized
machine/deep learning while maintaining data privacy and low
communication costs. The scenarios discussed below highlight
the unique applications and benefits of FL in different domains.
As per the review done by Brick et al, in the military sector,
specially for Unmanned Air Vehicles (UAVs), FL provides several
potential benefits. It enhances privacy and security by keeping raw
data on UAVs while sharing only the model updates, reducing
the risk of exposing sensitive information like UAV locations
or identities. By enabling local computations, FL also reduces
communication overhead which is crucial for missions deployed
in bandwidth-constrained territories and time-critical situations
where faster decision making is a must. This approach improves
energy efficiency by conserving resources through reduced data
transmissions. These benefits enhance performance of various
UAV applications such as wireless channel modeling, trajectory
planning, content caching and routing in flying Ad-Hoc Networks
(Brik et al., 2020).

As per the comprehensive survey done by Li et al, FL in
healthcare allows hospitals to collaboratively train models for
disease diagnosis (e.g., cancer and tumor detection or segmentation
in MRI and CT scans, COVID-19 diagnosis etc.) by sharing
model parameter updates instead of electronic health records
(EHRs). This ensures privacy and compliance with regulations
like Health Insurance Portability and Accountability Act (HIPAA).
This approach improves model accuracy by using diverse data
representing diverse demographics and enabling cross institutional
collaboration (Li L. et al., 2020). Figure 6 illustrates a federated
learning architecture in healthcare where multiple healthcare
institutions collaborate to train a global model. The diagram
shows three different healthcare facilities, each with their own
local data sources including patient records, medical imaging
data and diagnostic information. Each institution has a local
model that processes their private data locally, while a centralized
federated server coordinates the training process. The key feature
shown is that patient data remains localized and private within
each institution, while only model updates and parameters
are shared with the federated server, enabling collaborative
learning across institutions while maintaining patient privacy and
regulatory compliance.

Another use of FL in healthcare is for wearable devices and
remote patient monitoring. FL enables training models on data
from wearable devices, such as smartwatches or fitness trackers, to
detect health conditions like arrhythmia, diabetes and heart strokes.
This allows for personalized healthcare recommendations and early
warnings while protecting user privacy (Lim et al., 2020). Further
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extending its utility, FL is applied to drug discovery, where models
can be trained across different pharmaceutical institutions without
sharing proprietary chemical data, and for analyzing functional
MRI (fMRI) data to identify biomarkers for neurological disorders
(Aledhari et al., 2020).

As per the research done by Du et al, in the Vehicular
IoT, FL addresses privacy concerns and optimizes resource
usage by enabling vehicles to collaboratively train machine
learning models without sharing raw data. This is very useful
for applications such as cooperative autonomous driving and
intelligent transport systems (ITS), where vast amounts of
data from vehicle sensors (e.g., LIDAR) are used to make
decisions in real-time. FL reduces communication overhead by
only transmitting model updates instead of raw data, which is
crucial considering the limited bandwidth and dynamic nature
of vehicular networks. It supports the integration of diverse
sets of data from multiple vehicles to enhance decision-making
processes, enabling improved traffic management, law enforcement
and safety measures (Du et al, 2020). Figure7 presents a
comprehensive decentralized Internet of Things (IoT) training
architecture specifically designed for traffic systems. The diagram
illustrates a smart city traffic scenario where multiple vehicles
equipped with LiDAR sensors are distributed across various road
intersections and traffic networks. Each vehicle collects local data
through its LiDAR sensors and other IoT devices, which is then
processed locally to train independent machine learning models.
The architecture shows how these local models can securely
communicate and update a global model while maintaining
privacy, including traffic infrastructure elements such as traffic
lights, road networks and communication towers that facilitate the
federated learning process.

The domain of mobility, which includes autonomous vehicles,
benefits significantly from FLs ability to decouple latency-sensitive
applications. For instance, a self-driving car acting as a learner can
use its local model to react instantly to environmental changes
without waiting for a server response (Gecer and Garbinato, 2024).
This is critical for safety-related tasks such as collision avoidance
and traffic sign classification. Moreover, FL is being applied to
optimize ride-hailing services and predict energy demand for
electric vehicle networks, all while protecting user location and
travel data (Shaheen et al., 2022).

As demonstrated by Google’s Gboard, FL has been effectively
applied in mobile keyboard prediction. This approach allows for
the training of language models directly on user devices, enhancing
next word prediction capabilities while respecting and protecting
user privacy. By utilizing FedAvg algorithm, model updates are
computed locally on client devices and then aggregated on a
central server to improve the global model without transferring
sensitive data (Hard et al,, 2018). This application highlights a
core benefit of FL: personalization. Since training a single global
model on all user data may not be optimal for any individual, FL
provides a natural infrastructure for learning personalized models.
Advanced personalization techniques within FL include user
clustering, data interpolation (combining local and global data),
and model interpolation (combining local and global models)
to create intermediate models that balance generalization with
individual user needs (Mansour et al., 2020).
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A use case illustrating that multiple healthcare institutions can work together to train a global model using a federated server, collecting findings
while protecting patient privacy by preserving patient data localized and private.
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Pandya et al., demonstrates how FL offers significant benefits
for smart city applications by enabling decentralized data
processing and there by preserving privacy and reducing
include smart

communication overhead. Key wuse cases

transportation, healthcare, grid management, governance,
disaster response and industries. FL allows these sectors to process
data locally while sharing model updates for global insights.
Other emerging applications span industrial IoT, for tasks like
visual inspection and anomaly detection (Shaheen et al., 2022),
and finance, for credit card fraud detection and anti-financial
crime processes, where data sharing between institutions is highly
restricted (Li L. et al., 2020). Across all the domains discussed above
and many other domains that weren’t mentioned, FL provides
benefits such as enhanced privacy and compliance with privacy
regulations by keeping raw data local, reduced communication
overhead through local computations, model update sharing,
improved resource efficiency and management by minimizing data

transmission needs.

4.1 Practical implementation challenges in
real-world federated learning systems

While Federated Learning (FL) presents a robust theoretical
framework for privacy-preserving, decentralized machine learning,
its transition from concept to real-world application is filled with
significant practical challenges. These issues often stem from the
inherent characteristics of the environments where FL is most
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needed, such as the Internet of Things (IoT), which involves a
massive number of diverse and resource-constrained devices (Diba
et al, 2025). Overcoming these practical hurdles is crucial for
the successful and widespread deployment of FL systems. Key
implementation challenges identified in recent literature include
limited on-device resources, network bandwidth and connectivity
issues, system and statistical heterogeneity (Zhang et al., 2022) and
the lack of standardization and robust development tools (Wen
etal., 2023).

A primary practical barrier is the limited on-device resources
of the participating clients, especially in IoT networks (Zhang
et al., 2022). Many IoT devices are designed with constraints
on computational power, memory and energy budgets (Rjoub
et al., 2025). Training machine learning models, particularly deep
neural networks, is a computationally intensive task that can be
inefficient and time-consuming on such hardware. Furthermore,
these models require substantial memory not only for storing
model weights and parameters but also for the intermediate results
of computations (Zhang et al., 2022). The limited energy budgets
of embedded processors further restrict hardware performance,
posing a significant challenge to the local training required in FL
(Wen et al., 2023). This resource scarcity severely impedes the
deployment of complex models and can result in low training
efficiency on edge devices (Zhang et al., 2022).

Closely related to on-device limitations is the challenge of
limited network bandwidth and connectivity (Kairouz et al,
2021). Most IoT devices communicate over wireless networks,
which typically have much lower bandwidth compared to wired
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FIGURE 7

A decentralized Internet of Things (loT) training architecture in a traffic system is illustrated in a diagram. Local data is collected by cars equipped with
LiDAR sensors, which then train independent models and securely update a global model while maintaining privacy.
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data center networks (Zhang et al., 2022). This communication
bottleneck can make the transfer of model updates between clients
and the central server inefficient, especially as the number of
participating devices grows (Rjoub et al., 2025). In scenarios like
a smart home, the total network bandwidth is a fixed resource; as
more devices join the system, the available bandwidth per device
decreases, making the communication problem worse (Zhang
etal, 2022). Beyond bandwidth limitations, real-world settings are
characterized by intermittent connectivity and availability (Kairouz
etal., 2021). Devices may drop out of the network in the middle of a
training round due to unstable connections, leading to the problem
of “stragglers” who fail to report their updates in time (Zhang et al.,
2022). This unreliability makes synchronous update protocols,
where the server waits for all selected clients to respond, nearly
impossible to implement effectively in large-scale IoT systems and
can endanger the convergence of the training process (Zhang et al.,
2022).
Another
heterogeneity across the system (Wen et al, 2023). This

significant practical issue is the widespread
heterogeneity manifests in several forms. System heterogeneity

refers to the diversity in hardware, operating systems and software
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APIs across the vast number of client devices (Zhang et al,
2022). Clients may use different deep learning frameworks (e.g.,
TensorFlow, PyTorch), resulting in different model formats that
need to be aggregated. This diversity complicates system design
and exacerbates asynchronous communication challenges (Zhang
et al, 2022). Furthermore, statistical heterogeneity, where the
data on each device is not independent and identically distributed
(non-1ID) (Rjoub et al., 2025), is a defining characteristic of
FL (Kairouz et al, 2021). This challenge goes beyond simple
non-IID distributions to include issues like data imbalance
(where data size varies significantly across clients), local
imbalance (where data distributions differ), and global class
imbalance (Shaheen et al., 2022). The data collected by different
devices can vary significantly in terms of features, dimensions
and temporal patterns, creating discrepancies in local data
structures among participants (Zhang et al., 2022). For instance,
a surveillance camera might record video continuously, while a
smart doorbell generates data intermittently. This non-IID data
distribution can lead to the global model drifting away from the
optimal solution, thereby degrading its performance (Wen et al,
2023).
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Finally, the practical implementation of FL is hindered by
a lack of standardization and system development tools (Zhang
et al, 2022). As an emerging field, FL lacks standardized
protocols for communication, data flow models and network
configurations (Diba et al, 2025). This absence of standards
impedes the widespread deployment of FL systems and makes
it difficult to create an open environment for content sharing
and interoperability (Zhang et al., 2022). From a development
perspective, there is a need for user-friendly, integrated simulation
environments that can help researchers and developers design
and evaluate FL systems at a large scale (Kairouz et al., 2021)
without requiring full implementation in a real-world setting
(Li et al., 2025). Existing tools for edge computing often focus
on model inference rather than the complexities of distributed
training, leaving an under-explored area that is critical for the
FL community (Zhang et al, 2022). Without mature, system-
level frameworks and development tools, accomplishing tasks
such as load balancing, resource management and task scheduling
remains a significant challenge for practitioners (Zhang et al., 2022).
Tackling these multifaceted practical issues is essential to bridge
the gap between theoretical promise and real-world viability for
Federated Learning.

5 Experimental results and
benchmarking

Since this comprehensive analysis discusses the core challenges
and solutions for federated learning based on communication cost,
statistical and system heterogeneity and privacy concerns, we can
evaluate their performance based on different metrics. Table 3
analyzes the performance done by each discussed aggregation
technique study with different neural network architectures and
datasets. As the table illustrates, the foundational FL model,
FedAvg achieved 99.44% accuracy on MNIST and 85% accuracy
on CIFAR-10 with 100 devices, despite requiring 300 and 2,000
communication rounds to achieve these accuracies (McMahan
et al., 2017). However, FedProx has shown a notable improvement
over FedAvg when it was trained with the MNIST Non-IID dataset
by achieving 22% better accuracy with 1,000 devices, while it
has demonstrated a better convergence on the FEMNIST and
Shakespeare datasets (Sahu et al., 2018). However, the FedNova
approach has demonstrated a 69.92% accuracy with only 100
communication rounds and using only 16 devices on the non-
IID CIFAR-10 dataset, showing a higher performance with non-
IID data with a smaller amount of communication rounds (Wang
et al,, 2020). The MOON framework has achieved 69.1% accuracy
on the CIFAR-10 dataset in just 100 communication rounds with
50 devices (Li et al., 2021), while FedSim, which has introduced
weight similarities-based local device clustering, has demonstrated
strong performance across diverse datasets, reaching approximately
85% accuracy on MNIST with 1,000 devices in just 30 rounds
(Palihawadana et al., 2022). Additionally, SCAFFOLD employed
control variates to correct for client drift at both server and client
levels, making it robust to statistical heterogeneity and reaching up
to 84.2% accuracy on nonconvex EMNIST tasks while converging
in fewer communication rounds.
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Advanced personalization techniques have shown remarkable
results in addressing heterogeneous federated environments.
FedGPA, which decomposes models into feature extractors
and classifiers with personalized aggregation weights based on
prototype similarity, achieved state-of-the-art results across five
challenging non-1ID datasets, including 76.73% on CIFAR-10
and 90.04% on FMNIST. Hybrid approaches combining multiple
strategies have demonstrated outstanding performance, with
FedHybrid integrating FedAvg, FedProx and SCAFFOLD by
combining proximal regularization with control variates, achieving
exceptional accuracy of 94.12% on MNIST and 93.52% on CIFAR-
10 using 100 clients (Niu and Wei, 2023). In application-specific
domains, FEDMWAD targeted seizure prediction in healthcare
using hypernetworks to generate module-wise aggregation weights,
achieving 90.6% accuracy and a 0.942 AUC on the non-IID CHB-
MIT EEG dataset (Ding et al., 2025).

Beyond the benchmarked results shown in Table 3, this
paper has discussed experiments focused on privacy preservation
techniques that revealed significant insights on privacy in federated
architectures. Differential Privacy implementations demonstrated
that a privacy budget (added bias) of models ensures privacy
of federated systems, but it will lead to a decrement of
performance accuracy of the models maintained in the federated
architecture (Ouadrhiri and Abdelhadi, 2022). In addition, the
BatchCrypt homomorphic encryption system has achieved a 23 x -
93x speedup in training time with less than 1% accuracy loss
by showing a significant improvement in performance compared
to other traditional encryption methods in federated learning
(Fang and Qian, 2021). Furthermore, the communication efficiency
experiments demonstrated that decentralized communication
architectures have also been able to reduce communication-
based network bottlenecks significantly. The EdgeFL method has
shown a 50% reduction in weight updating latency and model
evaluation time compared to the common centralized architecture
(Zhang et al., 2024). Moreover, the model compression technique
related works have achieved 0.75%-3.9% higher average accuracy
compared to existing compression algorithms while reducing
communication overhead (Shah and Lau, 2023).

The client-edge-cloud hierarchical system has shown a big
boost in the model convergence process speed and training
efficiency on the MNIST and CIFAR-10 datasets when dealing with
non-IID data distributions, especially when the communication
frequency with the edge server is increased (Menegatti et al,
2023). This is because it addresses system heterogeneity-based
concerns in federated learning. In addition, clustered federated
learning has also made a significant stride in handling statistical
heterogeneity by achieving a 2x improvement in accuracy on
the CIFAR-10 dataset under non-IID data conditions by applying
gradient similarity-based clustering (Sattler et al., 2019). Moreover,
in addressing the system heterogeneity concerns in the federated
architecture, asynchronous federated learning methods have shown
improvements in training efficiency by allowing local devices
to contribute updates at different times based on the devices
computational capabilities (Kairouz et al., 2021). The aggregation
method FedProx has also addressed the system heterogeneity
challenge through its regularization approach, while hierarchical
federated learning has reduced the communication overhead by
introducing intermediate aggregation at edge servers. These results
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TABLE 3 Comparison of federated learning methods and performance.
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Paper Method  Model used Evaluated Evaluations Communication Device
used datasets rounds count
McMahan FedAvg CNN MNIST 99.44% Accuracy 300 100
etal. (2017)
CIFAR-10 85% Accuracy 2,000 100
Sahu et al. FedProx Multinomial logistic MNIST (10 classes) Training loss: FedProx converges to 200-400 1,000
(2018) regression (non-IID) ~0.5, FedAvg diverges. +22% better
accuracy than FedAvg with non-IID
data
FEMNIST (62 Training loss: FedProx converges to 200 200
classes) ~1.0, FedAvg reaches ~2.0
Two-layer LSTM (100 | Shakespeare Training loss: FedProx converges to 20 143
hidden units) ~2.0, FedAvg reaches ~3.0
Wang et al. FedNova VGG-11 CIFAR-10 69.92% Accuracy 100 16
(2020) (non-1ID)
Karimireddy SCAFFOLD | Logistic regression, EMNIST, simulated Consistently outperforms FedAvg and 4-286 100
etal. (2021) 2-layer NN, quadratic data SGD, especially on heterogeneous
functions (non-IID) data. Achieved up to 84.2%
accuracy on nonconvex EMNIST task
Lietal. (2021) MOON CNN CIFAR-10 69.1% Accuracy 27 50
ResNet-50 CIFAR-100 67.5% Accuracy 100 50
Niu and Wei FedHybrid CNN (incorporates MNIST, CIFAR-10 MNIST: 94.12% accuracy, CIFAR-10: 100 100
(2023) FedAvg + FedProx + (non-1ID) 93.52% accuracy
FedScaffold
components)
Palihawadana FedSim CNN-2D FEMNIST ~80% Accuracy 500 200
etal. (2022)
MNIST ~85% Accuracy 30 1,000
MLP-3 Fed-MEx ~93% Accuracy 200 30
RNN Fed-GoodReads ~61% Accuracy 250 100
Kairouz et al. FedGPA CNN (2 versions): 2 FMNIST, EMNIST, Data Heterogeneity Setting 1 (o0 = 20): 150 20
(2021) conv +2 FC CIFAR-10, FMNIST: 90.04%, EMNIST: 83.45%,
(FMNIST/EMNIST), CIFAR-100, CIFAR-10: 76.73%, CIFAR-100: 55.79%,
3 conv + 2 FC CINIC-10 CINIC-10: 64.40%
(CIFAR) (non-IID)
Ding et al. FEDMWAD | GRU-based model CHB-MIT (EEG Accuracy: 90.6%, AUC: 0.942 200 13
(2025) with 1D CNN and seizure data,
fully connected layers | non-IID)

suggest that while various approaches have been developed to
address the federated learning based challenges, there is still a need
for implementing more efficient methods.

6 Conclusion

This systematic review analyzed the current state of Deep
Federated Learning, highlighting key advancements and the
methods developed to solve its core challenges. We found
that significant progress has been made in several areas.
Advanced model aggregation methods, ranging from regularization
techniques like FedProx (Sahu et al., 2018) to drift-correction
mechanisms like SCAFFOLD (Karimireddy et al, 2021) and
clustering-based strategies like FedSim (Palihawadana et al., 2022),
have significantly improved model performance. Communication
efficiency has been enhanced by techniques such as model
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compression (Shah and Lau, 2023) and decentralized training
(Zhang et al., 2024). The challenges of varied data and device
capabilities statistical and system heterogeneity are being addressed
by these adaptive algorithms and personalized frameworks like
FedGPA (Han et al., 2025). Privacy has been strengthened using
formal methods like Differential Privacy (Wei et al, 2020) and
Homomorphic Encryption (Zhang et al, 2020). The review
also covered emerging areas like Federated Meta-Learning for
rapid model adaptation, Federated Reinforcement Learning for
distributed decision-making (Qi et al, 2021) and advanced
hierarchical (Menegatti et al., 2023) and blockchain (Nguyen et al.,
2021) architectures. These developments have enabled FL to be
applied in critical domains such as healthcare (Li L. et al., 2020)
and vehicular networks (Du et al., 2020).

While the field is advancing rapidly, important challenges
and limitations remain. Achieving higher
requires complex algorithms that increase computational and

accuracy often
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communication costs. Strong privacy-preserving methods
such as differential privacy and homomorphic encryption can
degrade model performance or impose significant resource
demands, restricting their adoption on resource-constrained
devices. Many studies continue to rely on benchmark datasets or
simulated environments, which may not reflect the complexity
of real-world deployments (Wen et al., 2023). In addition, the
absence of standardized frameworks and evaluation protocols
hinders reproducibility and complicates meaningful cross-study
comparisons. Practical deployment is further constrained by device
heterogeneity, unstable connectivity, limited energy resources, and
interoperability issues across platforms. These barriers highlight
that, despite notable progress, federated learning still faces
significant obstacles before it can achieve consistent, large-scale,
and reliable real-world adoption.

Looking ahead, future research must prioritize solving these
practical deployment challenges. This includes developing hybrid
algorithms that are not only accurate but also resource-
efficient and robust to the network instability common in real-
world environments. Crucial work is needed to create more
efficient implementations of privacy-preserving techniques like
Homomorphic Encryption to reduce their computational burden
on client devices. Furthermore, the development of standardized
frameworks and tools is essential to simplify deployment and
ensure interoperability.

A significant emerging research frontier is Green Federated
Learning (GFL), which emphasizes sustainability by designing
energy-efficient algorithms. Since machine learning is among
the most energy-intensive computational domains, future
research must prioritize developing FL systems with minimal
carbon footprints. Recent work advocates for this paradigm by
proposing energy-aware client selection, model compression,
and standardized metrics to evaluate the environmental impact
of FL (Thakur et al, 2025). This is particularly critical for IoT
applications, where energy-efficient models can deliver practical
benefits. For instance, a hybrid approach applied to intelligent
transportation systems demonstrated notable energy savings
through lightweight optimization and personalized, energy-
aware model aggregation, underscoring the feasibility of GFL in
real-world deployments (Kaleem et al., 2024).

Another important direction involves addressing the distinctive
challenges of cross-silo FL, where a relatively small number
of organizations such as hospitals or banks collaborate. Future
research must move beyond technical optimizations to incorporate
game-theoretic and incentive-based mechanisms that can govern
cooperation and competition among strategic participants. This
includes frameworks for data valuation and fair profit allocation to
ensure long-term, stable collaboration (Huang et al., 2022).

In addition, cybersecurity in IoT represents a promising
opportunity for FL adoption. By enabling privacy-preserving,
(IDSs), FL can

significantly enhance the security of distributed IoT networks

collaborative intrusion detection systems
(Arisdakessian et al., 2023). However, for these security systems
to be trustworthy, they must also be transparent. A critical

future direction is the integration of Explainable AI (XAI) into
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FL, allowing models to remain privacy-preserving while also
interpretable, thereby enhancing expert trust in decision-making
for sensitive IoT environments.

Alongside this focus on practical issues, promising research
directions include exploring the integration of FL with next-
generation technologies, such as leveraging 5G networks to reduce
communication latency (Liu Y. et al, 2020) and developing
Quantum Federated Learning (QFL) for secure quantum tasks
(Chehimi and Saad, 2022). In conclusion, federated learning
is a rapidly advancing field and addressing both its current
practical limitations and future technological opportunities
through continued innovation will be essential to unlocking its
full potential.
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