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The rapid growth of autonomous and Connected Vehicles (CVs) has led to a
massive increase in Vehicular Big Data (VBD). While this data is transforming
the Intelligent Transportation System (ITS), it also poses significant challenges
in processing, communication, and resource scalability. Existing cloud solutions
offer scalable resources; however, incur long delays and costs due to distant data
communication. Conversely, edge computing reduces latency by processing
data closer to the source; however, struggles to scale with the high volume
and velocity of VBD. This paper introduces a novel Regional Computing (RC)
paradigm for VBD offloading, with a key focus on adapting to traffic variations
during peak and off-peak hours. Situated between edge and cloud layers, the
RC layer enables near-source processing while maintaining higher capacity
than edge or fog nodes. We propose a dynamic offloading algorithm that
continuously monitors workload intensity, network utilization, and temporal
traffic patterns to smartly offload tasks to the optimal tier (vehicle, regional,
or cloud). This strategy ensures responsiveness across fluctuating conditions
while minimizing delay, congestion, and energy consumption. To validate
the proposed architecture, we develop a custom Python-based simulator,
RegionalEdgeSimPy, specifically designed for VBD scenarios. Simulation results
demonstrate that the proposed framework significantly reduces processing
latency, energy usage, and operational costs compared to traditional models,
offering a scalable and effective alternative for next-generation vehicular
networks.

KEYWORDS

vehicular big data, regional computing, network optimization, intelligent transportation
systems, edge computing

1 Introduction

The rapid evolution of autonomous and CVs technologies has led to a substantial
increase in data generation. This proliferation is driven by the deployment of high-
resolution video cameras for visual scene analysis, LiDAR for 3D environmental mapping,
radar for long-range object detection, ultrasonic sensors for short-distance awareness, and
GPS modules for precise localization (Lee et al., 2023). The resulting data surge, widely
recognized as VBD, shown in Figure 1, forms the backbone of modern ITS. While VBD
offers transformative benefits for vehicular safety, automation, and decision, it also presents
serious challenges in terms of delay, communication bandwidth, and system scalability.
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FIGURE 1

Classification of vehicular big data.

Autonomous Vehicles (AVs) are forecasted to reach widespread
adoption by 2030 (Statista, 2024), with each vehicle generating
as much as 4 TB of data per day (Mordorintelligence, 2024).
This data supports crucial operations such as real-time sensing,
perception, planning, and inter-vehicular coordination (Padmaja
et al., 2023; Khan et al., 2024). As Figure 2 illustrates, the market
growth for AVs is accelerating rapidly. Industry leaders, including
Tesla,1 Waymo,2 Motional,3 and Ford4 are actively pushing
forward developments in autonomous driving, supported by
integrated sensing, onboard intelligence, and data-driven strategies.
For clarity, Table 1 summarizes the acronyms used throughout
this paper.

Cloud Computing (CC) provides the necessary scalability
and computational capacity for big data storage, analysis, and
collaborative learning (Badshah et al., 2022a, 2021; Alharbey
et al., 2024). However, its reliance on distant servers incurs high
latency and substantial communication overhead (Kumer et al.,
2021; Waqas et al., 2024), limiting its effectiveness for safety-
critical AVs applications. In contrast, Edge Computing (EC) brings
processing closer to data sources, reducing transmission time
and response latency (Garg et al., 2019). However, EC suffers
from limited computational power and scalability, making it
insufficient for handling continuous VBD workloads, particularly
under peak-hours conditions (Ometov et al., 2022). To further
address latency concerns, Mobile Edge Computing (MEC) has

1 https://www.tesla.com/

2 https://waymo.com/

3 https://motional.com/

4 https://ford.com/

been introduced as an enhancement to EC, deploying compute
resources at base stations within the radio access network. While
MEC offers improved responsiveness for time-sensitive vehicular
tasks, it still faces challenges such as narrow geographic coverage,
high deployment costs per site, and the lack of coordination across
broader regions (Zhang et al., 2024). These shortcomings in both
EC and MEC necessitate the introduction of a more balanced
architectural solution (Badshah et al., 2024).

To overcome these limitations, we propose a RC framework
that integrates an intermediate computing tier between EC and
CC. While fog computing is a middle-tier approach, it is deployed
within or near edge facilities, sharing the same premises and
constrained in resources. In contrast, RC servers are deployed
regionally, spanning city or national scales, and possess enhanced
storage and processing capabilities. This makes RC more suitable
for managing the scale and dynamics of VBD in next-generation
vehicular networks. As illustrated in Figure 3, the RC layer
facilitates near-source processing during peak hours and enables
delayed offloading of non-critical data to the cloud during
offpeak hours, thereby improving bandwidth usage and minimizing
congestion (Badshah et al., 2022b).

At the core of this framework is a dynamic, traffic-
aware offloading strategy that adapts in real-time to workload
characteristics, task urgency, network congestion, and usage
patterns. This approach ensures time-sensitive processing is
prioritized close to the vehicle, while deferrable data is transmitted
during periods of reduced network activity.

To validate the proposed approach, we present
RegionalEdgeSimPy, a Python-based simulator specifically
designed for vehicular big data environments. Unlike existing tools
such as EdgeCloudSim (Sim, 2024), our simulator models vehicular
mobility, dynamic workload generation, congestion levels, and
time-sensitive offloading behavior, enabling detailed performance
analysis for delay, energy consumption, and cost efficiency.

The key contributions of this paper are as follows:

• We propose a novel RC framework for next-generation
vehicular networks, bridging the performance gaps between
traditional EC and CC systems.

• We design a dynamic offloading strategy that responds to
temporal traffic patterns such as peak and off-peak hours, task
characteristics, and system conditions to optimize workload
placement.

• We develop and utilize RegionalEdgeSimPy, a customized
simulator for evaluating vehicular big data offloading across
multi-tier architectures.

The rest of this paper is organized as follows: Section 2
reviews related work. Section 3 presents the proposed framework
and methodologies. Section 4 provides simulation setup and
evaluation results. Section 5 discusses implementation challenges,
and Section 6 concludes the paper with directions for future work.

2 Related work

The rise of connected and autonomous vehicles has led to an
exponential increase in VBD, intensifying challenges related to
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TABLE 1 Acronyms, notations, and symbols used in this article.

Symbol Representation Symbol Representation

CC Cloud computing EC Edge computing

RC Regional computing DC Data center

ITS Intelligent transport system AV Autonomous vehicle

VBD Vehicular big data ADAS Advanced driving assistant system

GPS Global positioning system BS Base station

RSU Roadside unit IoV Internet of vehicles

VANET Vehicular ad hoc network DCC Decentralized congestion control

VM Virtual machine MIPS Million instructions per second

SINR Signal-to-interference-plus-noise ratio Dnet Networking delay (Dtran + Dprop + Dhovr)

Dt End-to-end delay Dprop Propagation delay

Dtran Transmission delay Dque Queuing delay

Dproc Processing delay Dhovr Handover delay

ConProb Congestion probability θ Congestion threshold

W Measurement window (100 ms) busy(W) Busy time in window W

Ws Stability window ε Utilization variance threshold

δnet Delay budget threshold Bavail Available bandwidth

Creg Regional server capacity RTi Resource demand of task Ti

Ltotal Total load in window Pi Power at stage i

Ti,i+1 Transmission time between stages i and i + 1 Di,i+1 Distance between stages i and i + 1

Etran(i, i + 1) Transmission energy between stages i and i + 1 Etran Total transmission energy

R Acceptable signal quality V Vehicle velocity

FIGURE 2

Autonomous vehicle statistics (Statista, 2024). (a) Autonomous vehicles market size. (b) Autonomous vehicle forecast.

its real-time transmission, processing, and storage. While many
existing studies focus on big data analytics, comparatively fewer
address the infrastructural burden of offloading and managing
this massive data (Ramirez-Robles et al., 2024; Amin et al.,
2024). With vehicles generating as much as 4 TB of data per
day (Lee et al., 2023), including sensor feeds, telemetry, and
environment perception data, this information must be processed
onboard, shared with Roadside Units (RSUs), and transmitted to

the cloud for advanced analysis and navigation support (Amin
et al., 2024).

Recent studies explore the role of the Internet of Vehicles
(IoV) in managing VBD by enabling scalable data collection,
adaptive protocol design, and traffic-aware resource utilization. For
instance, Xu et al. (2018) highlights how IoV enhances performance
optimization through real-time data exchange. Authors in Daniel
et al. (2017) emphasize the classification and prioritization of
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FIGURE 3

Regional computing for Vehicular Big Data (VBD).

vehicular data streams to ensure low-latency responsiveness in
safety-critical scenarios.

Vehicular communication often depends on Vehicular Ad
Hoc Networks (VANETs), which, despite their low-latency design,
face challenges when scaling to dense traffic or data-intensive
use cases. To address this, machine learning analysis is used in
Manikandan et al. (2025) to detect unfavorable communication
scenarios. Alternatively, Murk et al. (2019) explores a vehicle-
assisted model for data offloading that reduces dependence on
network infrastructure and lowers environmental impact.

To address network bottlenecks and reduce transmission
delays, distributed and edge computing models have been
investigated. The work in Alexakis et al. (2022) proposes a layered
architecture supporting distributed processing and cloud analytics
for vehicular data. Similarly, Garg et al. (2019) utilizes edge
nodes deployed alongside road infrastructure, using 5G networks
to minimize cloud latency. Similarly, authors in Rajput et al.
(2023) explore utilizing idle or parked vehicles as temporary edge
processors to decentralize computing tasks.

Distributed computing frameworks have also emerged as viable
strategies for scaling vehicular data operations. For example,
Sivakumar et al. (2025) proposes a hybrid edge and cloud
model that adaptively distributes computational load based
on network congestion and data proximity. Similarly, Chen
et al. (2021) introduces interconnected systems for dynamic
resource sharing among vehicles to reduce service latency and
enhance responsiveness.

MEC extends CC capabilities to the edge of mobile networks by
placing resources at the base stations. In vehicular settings, MEC
supports low-latency offloading by enabling vehicles to connect
with nearby servers through the radio access network However,
MEC’s limited coverage and high deployment cost per site constrain
its scalability (Santos et al., 2025). Recent studies propose online

MEC offloading for Vehicle to Vehicle (V2V) systems to improve
responsiveness under dynamic traffic. These limitations underscore
the need for a broader layer like RC, which enables coordinated
processing across regions and facilitates off-peak cloud transfer
while maintaining responsiveness (Santos et al., 2025).

Despite these advancements, researchers increasingly
acknowledge the limitations of relying solely on edge or cloud
paradigms. For example, Prehofer and Mehmood (2020) observes
that high vehicle mobility often causes vehicles to move beyond the
communication range of edge servers, disrupting data continuity.
In response, Rajput et al. (2023) proposes a cooperative approach
using parked vehicles as relay units or temporary RSUs to process
data locally. While effective to some extent, such approaches still
lack the scalability and coordination of a centralized system. This
further reinforces the need for a robust intermediary layer like
regional computing.

Emerging wireless technologies offer new possibilities for real-
time Vehicle to Everything (V2X) communication. In particular,
5G and future 6G networks are seen as essential for latency-
sensitive applications, such as those in Cellular Vehicle-to-
Everything (C-V2X) environments (He et al., 2020). While 5G
currently enables improved responsiveness through enhanced
bandwidth and network slicing, 6G is expected to introduce
unprecedented capabilities, including ultra-reliable low-latency
communication (URLLC), intelligent resource orchestration, and
integration with AI-driven decision-making. These features will
further strengthen the effectiveness of regional computing by
enabling faster task distribution, optimized network utilization,
and seamless coordination across edge, regional, and cloud
layers. Similarly, Liang et al. (2025) explores the use of THz
communication bands to handle high-throughput data sharing
between vehicles, while Du et al. (2020) examines the role of
millimeter waves in boosting transmission capacity.
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Security and privacy concerns also feature prominently in
recent research. Study Liu et al. (2024) outlines security protocols
for IoV big data exchange, while Guo et al. (2017) suggests a cloud
model that authenticates vehicles before allowing data exchange.
Additionally, Nan et al. (2023) proposes a regional cloud system
in which computing resources are registered in a centralized index
to ensure optimal access across the vehicular network.

Despite these contributions, existing literature seldom
considers the temporal dynamics of data offloading, such as the
distinction between peak and off-peak traffic periods. There is
limited exploration of systems that adaptively shift workload
placement based on real-time congestion and task criticality.
Furthermore, simulation tools like EdgeCloudSim (Sim, 2024)
lack capabilities to model vehicular mobility and time-sensitive
task distribution, limiting their applicability for next-generation
vehicular networks. To fill these gaps, this work introduces a novel
RC framework paired with a dynamic, traffic-aware offloading
algorithm. To support experimentation and benchmarking, a
custom simulation environment, RegionalEdgeSimPy, has also
been developed. Unlike prior tools, this simulator captures the
temporal, spatial, and workload variability inherent in vehicular
big data systems, offering a scalable foundation for evaluating
offloading strategies under realistic operating conditions.

3 Proposed model

The ITS becomes smarter as data from each vehicle is added
to the joint system. Uploading every vehicle’s data to the cloud
servers is necessary. However, every vehicle may generate one
Terabyte (TB) of data per day, which is impossible for the existing
system to transport, process, and store (Badshah et al., 2023). As
shown in Figure 4, the proposed system aims to handle the VBD
near the road infrastructure to minimize the delay and cost, and
subsequently transfer this data to the cloud in off-peak hours. This
will cause a minimum load on the network, as we usually see that
the network gets congested in peak hours and underutilized in
off-peak hours.

The proposed method works on three layers: the vehicular Edge
Computing Layer, the Regional Computing Layer, and the Cloud
Computing Layer.

The edge computing layer is the vehicle’s server processing
the sensor data in real-time. Regional computing layer processes
and stores the VBD before transferring it to the cloud. The
cloud computing layer stores this big data and coordinates among
all vehicles.

3.1 Vehicular edge layer

The vehicle Layer includes the vehicle’s sensors, processing,
actuators, and storage system. It also includes the local edge
servers and vehicle communication to surrounding vehicles, RSUs,
pedestrians, etc. This internal system is utilized during driving for
tasks such as obstacle detection and avoidance. The sensors, e.g.,
Lidar, Radar, Sonar, cameras, and navigation system, give input
to the system. Along with the internal system, the surrounding
vehicles and RSUs also assist in the vehicle’s navigation. The internal

computers process the data with powerful algorithms using the
already-built data and Artificial Intelligence (AI) and direct the
actuators that keep the vehicle on the road.

AVs need 5G internet connections to upload their internal
data to the cloud or regional servers, or receive the navigation
information, road status, and other particular spots and congestion
data from the cloud servers. The vehicle is connected to the base
station, communicating its data to the regional layer.

Dt = Dtran + Dprop + Dproc + Dque + Dhovr (1)

Where Dtran represents the transmission delay, Dprop stands
for the propagation delay, Dproc signifies the data processing delay,
Dque denotes the queuing delay, and Dhovr corresponds to the
handover delay.

The transmission delay (Dtran) accounts for the time taken
to transmit data to the transmission medium. It is influenced by
factors such as workload (W), channel bandwidth capacity (B),
signal-to-noise ratio (SNR), modulation efficiency (ME), and error
rate (ER). The calculation is given by:

Dtran = W × SNR × ME
B × ER

(2)

The propagation delay (Dprop) represents the time for data to
travel on the transmission medium from source to destination.
It depends on distance (Dis) and transmission speed (trs), and is
calculated as:

Dprop = Dis
trs

(3)

Data processing delay (Dproc) reflects the time taken for the
system to process the data. It is determined by the size of the data
(S) and the processing rate of the machine (Pr). The formula is:

Dproc = S
Pr

(4)

Queuing delay (Dque) indicates the time data spends waiting
in a queue for processing. This delay depends on packet length
(L), arrival rate of packets (a), and packet processing rate (R). The
equation is given by:

Dque = L × a
R

(5)

Handover delay (Dhovr) represents the delay in connecting
to the next base station due to signal strength. It is influenced
by acceptable signal quality level (R), vehicle velocity (V), and
Signal-to-Interference-plus-Noise Ratio (SINR). The calculation is
expressed as:

Dhovr =
R

V × SINR
(6)

These individual components collectively contribute to the
overall delay (Dt) experienced by the data during its journey to the
edge server.
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FIGURE 4

Illustration of the communication delay faced by the VBD across the tiers.

Similarly, data communication cost increases as either the
transmission distance or the data size grows;

Ct = Ctran + Cprop (7)

The equation represents the total cost (Ct) experienced by data
to reach the edge server, which is the sum of transmission cost
(Ctran) and propagation cost (Cprop).

3.2 Regional layer

Regional servers within a specific region process and store
vehicle data. They act as local hubs for collecting information
from vehicles in their vicinity. Each vehicle within the region
sends its data to the regional servers. This data may include
parameters such as GPS location, speed, acceleration, sensor
readings, video, and other relevant information about the vehicle’s
status and surroundings.

The regional servers process the received vehicle data to extract
useful information. This can involve analyzing traffic patterns, road
conditions, and congestion levels and identifying potential road
issues or hazards. The regional service can provide guidance and
information to other regional vehicles based on the processed data.
This can include real-time updates about road conditions, traffic
congestion, accidents, or any relevant information to help drivers
make informed decisions.

The VBD is temporarily stored on this server in peak hours
and sent to the cloud in off-peak hours to minimize the congestion
on a public network. Furthermore, as we can see from equation 1,
the overall delay depends on the distance (Dis) and workload (W).

So, if this big data is processed and stored locally in peak hours,
this minimizes the total delay, and the vehicle will get a real-time
response. Similarly, the public network is not overburdened.

3.3 Cloud layer

The regional layer plays an active role in autonomous driving
and real-time operations, while the cloud layer operates passively.
The regional layer depends on the cloud for computing resources
and transfers its data to the cloud during off-peak hours to leverage
the cloud’s capabilities for processing and analysis.

Compared to the regional layer, the cloud possesses a vast
amount of VBD from AVs worldwide. It serves as a repository for
processing and storing this extensive dataset.

Tcloud = W
R

(8)

Equation 8 represents the processing time (Tcloud) for
collectively processing all vehicular workload at cloud servers. The
variables are defined as follows: Tcloud is the processing time, W is
the total amount of vehicular workload to be processed, and R is the
processing rate of the cloud servers, indicating the amount of data
processed per unit of time.

The total vehicular workload (W) is calculated as the
summation of the amount of data produced by each vehicle (Wi)
from 1 to n, as shown in Equation 9:

W =
n∑

i=1

Wi (9)
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Examining equation number 1 reveals that the roundtrip to the
cloud will incur more delay than anticipated. The increased delay
is attributed to the cloud having to process a substantial volume
of vehicular big data (W). Additionally, the propagation delay and
queuing delay experience escalation in tandem with the growing
workload and distance.

We can see that cloud analyzes the data to gain insights into
traffic patterns, congestion, and road conditions. This information
can be used to optimize traffic flow and provide real-time updates
to autonomous vehicles regarding alternative routes or potential
hazards. The cloud employs machine learning and artificial
intelligence algorithms to extract valuable information from the
data. This enables development and improvement of autonomous
driving algorithms, predictive maintenance models, and other
intelligent systems.

The cloud leverages the vehicular data to enhance safety and
security measures. It can identify and mitigate potential risks,
detect anomalies or malicious activities, and provide early warnings
to vehicles and authorities. By analyzing the data, the cloud can
identify areas for improvement in Advanced Driving Assistance
System (ADAS), such as fuel efficiency, route planning, and vehicle
performance. This optimization can lead to cost savings and
enhanced overall performance. The cloud’s vast dataset is a valuable
resource for researchers, engineers, and developers to study and
innovate in autonomous driving. It enables the exploration of
new algorithms, technologies, and applications to advance the
capabilities of autonomous vehicles. This data may also be used to
train autonomous driving models and algorithms.

3.4 Energy calculation

Similar to delay, energy consumption is directly proportional
to distance, impacting operational costs for data transfer. The
energy consumption in the autonomous vehicles’ communication
environment is computed as follows:

Etran =
n∑

i=1

Etran(i, i + 1) (10)

Here, Etran(i, i+ 1) represents the power consumption between
consecutive stages, with power consumption increasing as the
stages progress.

Where

Etran(i, i + 1) = Pi · Ti,i+1 (11)

Where Di,i+1 is the distance, Pi is the power and Ti,i+1 is the
time. The above equations show that as the distance increases
the energy consumption increases, which is directly proportional
to cost.

Eother = Epro + Estor + Ecol + k (12)

Similarly, Eother represents energy consumption in other
activities, including processing (Epro), storing (Estor), and cooling
the data centers (Ecol).

Therefore, the total energy consumption of communication is
calculated as follows:

Etotal = Etran + Eother (13)

Here, Etotal indicates the total power usage, while Etran denotes
the total power consumption on data transfer, encompassing wires,
switches, routers, and other devices.

It is also acknowledged that,

Costoper ∝ E (14)

The power consumption (E) is directly proportional to the
operational cost (Costoper); hence, operational costs increase with
rising power consumption.

1 Input: Vehicular big data D from region’s
vehicles; network & regional state

2 Output: Optimal offloading decision (RC, CC)
3 foreach task Ti ∈ D do

4 if Ti is required for cross-regional
training/model sharing then

5 Route Ti to cloud;
6 end

7 else

8 Compute Dnet ← Dtran + Dprop + Dhovr;
9 Estimate ConProb ← busy(W)/W;

10 Compute util and Var(util) over Ws; let
stable ← (

Var(util) ≤ ε
)
;

11 if (ConProb ≤ θ) and (Dnet ≤ δnet) then

12 if Creg ≥ RTi and stable then

13 Process Ti at RC;
14 end

15 else if Task arrival time ∈ off-peak hours
and Creg ≥ RTi then

16 Process Ti at RC;
17 end

18 else

19 Offload Ti to cloud;
20 end

21 end

22 else

23 Offload Ti to cloud;
24 end

25 end

26 end

Algorithm 1. Vehicular big data offloading algorithm.

3.5 Algorithm

Algorithm 1 is developed to smartly offload VBD by evaluating
delay, congestion, network utilization, and task arrival time. It
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operates on data collected from diverse onboard sensors, including
video feeds, LiDAR, radar, SONAR, and GPS, generated by
autonomous vehicles within a specific region. For each incoming
task, the algorithm first calculates the total expected delay Dt , using
a composite delay model that integrates transmission, propagation,
processing, queuing, and handover delays. In parallel, it estimates
the network’s congestion probability ConProb to assess the current
infrastructure load.

We used delay budget and a congestion thresholds. Consistent
with vehicular V2X latency guidance, the delay budget is enforced
on the networking component of latency, Dnet = Dtran +
Dprop + Dhovr, rather than the full end-to-end time. Unless
stated otherwise, we use a single budget δnet = 200 ms. For
congestion, we estimate ConProb over a short window (e.g.,
W = 100 ms) using channel-busy-ratio/utilization and set θ =
0.7, a commonly adopted operating boundary that avoids the
response-time knee near ∼ 70% utilization and aligns with
cooperative ITS congestion-control practice (Balador et al., 2022;
ETSI, 2011). These literature-backed settings are implemented and
validated in our RegionalEdgeSimPy experiments: decreasing δnet
triggers premature cloud offloading, whereas increasing it admits
unnecessary local delay and degrades responsiveness.

If both the delay and congestion levels remain below these
thresholds, the algorithm checks the network utilization and
the time of day. When network utilization is high but stable
and conditions are normal, data is processed locally at the RC
server to avoid the high latency associated with cloud processing.
During off-peak hours, the algorithm also prefers to process
data at the RC layer, assuming there is sufficient processing
capacity. If regional servers are overloaded, the algorithm then
offloads the task to the cloud. Additionally, when specific data is
needed for training or collaborative learning in another geographic
region, the algorithm routes it to the cloud. This ensures model
sharing and optimization across distributed regions. Overall, this
adaptive offloading strategy minimizes delay, balances workload
distribution, and enables scalable, real-time processing in next-
generation vehicular networks.

4 Evaluation

To assess the effectiveness of the proposed regional
offloading framework, we used a custom-developed simulation
environment, RegionalEdgeSimPy. Unlike general-purpose
tools such as EdgeCloudSim (Sim, 2024), RegionalEdgeSimPy
is specifically designed to model big data offloading across
multi-tier computing architectures. This simulator enables
dynamic evaluation of performance under varying network
conditions, particularly focusing on peak and off-peak
hour scenarios.

The evaluation recorded key performance metrics, including
processing delay, service time, network congestion, operational
cost, and server utilization. By simulating realistic vehicular
workloads and data flows, the simulator provided fine-grained
insights into how the proposed regional computing model
performs in terms of latency reduction, resource allocation, and
communication overhead.

4.1 Experimental setup

The experimental setup involved two distinct scenarios
designed to compare cloud and regional computing servers.
In the first scenario, we calculated the delay, cost, service
time, processing time, and server utilization associated
with transferring, storing, and processing data on cloud
servers. In the second scenario, these parameters were
evaluated on regional computing servers to provide a
comparative analysis.

For cloud-based processing, a centralized Data Center (DC)
was configured, simulating a realistic cloud environment where
AV data is transmitted, stored, and processed. The DC was
equipped with 204,800 MB RAM, 100 TB storage, 1,000 Mbps
uplink bandwidth, four CPUs, and a processing speed of
10,000 MIPS. Similarly, the Regional Computing (RC) tier was
provisioned with 40,960 MB RAM, 10 TB storage, 500 Mbps
bandwidth, and a processing speed of 3,000 MIPS. These profiles
emulate commercially deployed configurations for micro-edge data
centers and core cloud backends. The hardware parameters were
calibrated to align with the compute and network configurations
commonly used in established simulation frameworks and prior
deployment studies (Gupta et al., 2017; Sim, 2024; Calheiros et al.,
2011).

To observe server performance under varying loads, two
operational periods were defined: peak hours from 01:00 PM
to 09:00 PM, during which 1,000 AVs sent simultaneous
requests to the server, and off-peak hours from 01:00 AM to
09:00 AM, where 100 AVs requested resources concurrently.
Each request was processed through the cloud and regional
server setups, allowing for comparative analysis across peak and
off-peak periods.

The parameters measured across both scenarios
included service time, representing the total time taken
to serve each data request; processing time, or the time
taken by the server to process the data; network delay,
indicating latency during data transfer; server utilization,
reflecting the percentage of server resources used; and cost,
denoting the overall expense associated with data transfer
and processing.

To ensure the reliability of results, each experimental run was
repeated ten times for each scenario, with average values calculated
for each parameter. This approach provided a robust basis for
evaluating the comparative effectiveness of cloud versus regional
servers, as presented in the results section.

4.2 Service time

As shown in Figure 5, the average service time for regional
computing is significantly lower than for cloud computing. In
cloud computing, service times fluctuate between 8.005 and 8.283
s as task loads increase from 119,357 to 257,252 tasks. Regional
computing, however, starts at just 1.7669 s for 119,357 tasks,
increasing only slightly to 2.7696 s at the highest task load of
257,252 tasks. This considerable reduction in service time for
regional computing highlights its ability to process tasks more
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FIGURE 5

Service time comparison of cloud and regional computing.

FIGURE 6

Processing time comparison of cloud and regional computing.

efficiently by minimizing delays that are typically introduced in
cloud environments.

4.3 Processing time

Figure 6 illustrates the average processing time comparisons.
Cloud computing exhibits significantly shorter processing times,
ranging from 0.0733 to 0.0786 s, owing to its higher computational
capacity. In contrast, regional computing shows longer processing
times, starting at approximately 1.6110 s for 119,357 tasks and
rising to 2.5716 s for 257,252 tasks. While regional computing has
higher raw processing times, it compensates for this by reducing
overall service times (as shown in Figure 5) through minimized
network delays and queuing overhead.

4.4 Network delay

Figure 7 compares the average network delay across cloud and
regional computing. Cloud network delays range from 7.927 to
8.205 s, whereas regional network delays are consistently much
lower, ranging from 0.1559 to 0.1979 s as task counts increase from
119,357 to 257,252. This substantial difference underscores the
reduced latency in regional computing due to its proximity to the
data source, thus improving the overall speed and responsiveness.

4.5 Server utilization

Figure 8 displays the server utilization metrics for both cloud
and regional computing environments. Cloud server utilization
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FIGURE 7

Network delay comparison of cloud and regional computing.

FIGURE 8

Server utilization comparison of cloud and regional computing.

shows a slight fluctuation between 0.958 and 1.081% as the task
load increases. In contrast, regional server utilization begins at
8.8877% for 119,357 tasks and increases to 29.2775% as the
load reaches 257,252 tasks. Despite higher utilization percentages,
regional computing maintains optimal performance, showcasing its
resilience and effective resource allocation.

4.6 Cost

Figure 9 illustrates the cost metrics associated with both cloud
and regional computing scenarios. The cost for regional computing
starts at 0.065$ and incrementally rises to 0.075$ as the number
of tasks increases from 119,357 to 257,252. This gradual increase

reflects a stable cost structure that aligns well with the growing
task load. In contrast, the cloud computing scenario experiences
a more significant rise in cost, starting at 0.065$ and escalating
to 0.175$ with the increasing number of tasks. This steeper
increase highlights the financial implications of utilizing cloud
resources, indicating that while cloud computing can handle larger
workloads, it incurs substantially higher costs in comparison to
regional computing.

In conclusion, regional computing consistently outperforms
cloud computing across all tested metrics, with notably lower
service times, processing times, and network delays, as well as an
efficient server utilization rate, even at higher task loads. These
results suggest that regional computing is a more effective solution
for high-performance needs in distributed systems.
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FIGURE 9

Cost comparison of cloud and regional computing.

TABLE 2 Comparison of vehicular regional computing and cloud
computing.

Parameters Regional computing Cloud
computing

Vehicles Regional coverage Vehicles around the
world

Area Covers a specific region or
locality

Global coverage

Delay Medium-level latency High-level latency

Data Aggregated data from
regional vehicles

Data from vehicles
worldwide

Computation Power Moderate computational
capabilities

High computational
capabilities

Storage Moderate storage capacity High storage capacity

Server mobility Immovable (fixed location) Immovable (fixed
location)

Resource scalability Medium scalability High scalability

5 Discussion

The findings from our study underscore the significant
differences in performance between cloud computing and regional
computing for AVs. As shown in Figure 5, the analysis reveals that
cloud computing typically incurs higher levels of delay compared to
regional computing. While cloud solutions can handle substantial
workloads, they often introduce latency due to the distance data
must travel to and from centralized servers. In contrast, regional
computing minimizes these delays by processing data closer to
the AVs, enhancing overall performance. This observation aligns
with existing literature, which suggests that leveraging regional
computing resources can significantly improve efficiency for AV
applications (Badshah et al., 2022b).

Additionally, Figure 6 shows that although cloud
computing demonstrates lower raw processing times due
to its higher computational power, regional computing
compensates by achieving better end-to-end performance
because it reduces network queuing and propagation
delays. Figure 7 further confirms that regional computing
experiences significantly lower network delays than cloud
computing, reinforcing its suitability for latency-sensitive
vehicular applications.

Moreover, Figure 8 indicates that regional servers
operate at higher utilization levels yet still maintain
optimal performance under heavy workloads.
Figure 9 highlights that regional computing also
provides a more stable and lower-cost structure than
cloud computing, where costs increase sharply as
workloads grow.

RC can be effectively deployed in real-world ITS through
a variety of use cases. For instance, RC servers can be
installed at major traffic control centers or regional highway
authorities to support autonomous vehicle fleets in urban
and semi-urban areas. These servers can process VBD from
local roads in real time, provide congestion insights, and
coordinate map updates across vehicles operating in the
region. In another scenario, RC can be integrated with
regional logistics hubs, enabling real-time tracking and route
optimization for autonomous delivery. These deployments reduce
dependency on distant cloud servers, enhance responsiveness,
and support location-specific learning and compliance with local
traffic policies.

Overall, our results, supported by Figures 5–9, underscore
the importance of considering regional computing as
a viable alternative to centralized cloud computing for
AVs. By utilizing RC resources, AVs can experience
improved performance in terms of delay and cost,
thereby enhancing their reliability and attractiveness as a
computing option.
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However, specific challenges must be addressed to ensure that
the proposed framework positively impacts delay and cost. The
leading challenges are:

• Firstly, the ownership cost presents a challenge as the
Vehicular industry must invest significant capital in deploying
and operating regional computing servers (Martens et al.,
2012).

• Secondly, regional servers’ data processing at the terminal level
raises security and privacy concerns that must be addressed
(Ometov et al., 2022).

• A third challenge is the variation of cyber rules across
different regions, requiring the implementation of region-
specific management strategies for these issues (Dayanand Lal
et al., 2023).

Based on the experimentation above and the literature,
we comprehensively compared regional computing and cloud
computing for VBD across various parameters such as delay, area,
vehicles, data, servers’ mobility, computational power, and capacity.
The detailed comparison is presented in Table 2.

6 Conclusion

In this article, we introduced the concept of RC as a strategic
solution for managing VBD, particularly during peak hours.
By shifting processing tasks from distant cloud servers to
regionally deployed infrastructure, the proposed architecture
effectively reduces latency, mitigates network congestion,
and improves the responsiveness of time-sensitive vehicular
applications. To evaluate this framework, we developed a custom
Python-based simulator, RegionalEdgeSimPy, tailored to model
vehicular data offloading across multi-tier architectures. The
simulation outcomes confirm that RC significantly enhances
processing efficiency and resource utilization, offering a
scalable alternative to traditional cloud or edge paradigms. In
future work, we plan to integrate AI-based decision-making
mechanisms into the offloading strategy, with a particular
focus on reinforcement learning techniques such as Proximal
Policy Optimization (PPO). To support this, we are developing
a specialized simulator named DrivNetSim, which models
mobility-aware vehicular environments involving vehicular edge,
base station edge, and cloud layers. This platform will enable
experimentation with varying traffic loads, server congestion, and
communication delays.
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