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RWAFormer: a lightweight road
LIDAR point cloud segmentation
network based on transformer

Zirui Li, Lei Chen*, Ying Liu, Shuang Zhao and Qinghe Guan

Changchun University of Science and Technology, Changchun, China

Point cloud semantic segmentation technology for road scenes plays an important
role in the field of autonomous driving. However, accurate semantic segmentation
of large-scale and non-uniformly dense LiDAR road point clouds still faces severe
challenges. To this end, this paper proposes a road point cloud semantic segmentation
algorithm called RWAFormer. First, a sparse tensor feature encoding module
(STFE) is introduced to enhance the network’s ability to extract local features of
point clouds. Secondly, a radial window attention module (RWA) is designed to
dynamically select the neighborhood window size according to the distance of
the point cloud data from the center point, effectively aggregating the information
of long-distance sparse point clouds to the adjacent dense areas, significantly
improving the segmentation effect of long-distance point clouds. Experimental
results show that our method achieves an average intersection over union (mloU)
of 75.3 and 82.0% on the Semantickitti and Nuscenes datasets, and an accuracy
(Acc) of 94.5 and 9747%. These results validate the effectiveness and superiority
of RWAFormer in road point cloud semantic segmentation.

KEYWORDS
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1 Introduction

In recent years, the rapid advancement of 3D sensing technology (Song, 2014) has
significantly improved the quality of 3D point cloud data. Point cloud data, with its ability to
preserve rich spatial information, has led to notable achievements in 3D computer vision tasks,
further driving its application in various 3D scenarios, large-scale road point clouds are
increasingly utilized in fields such as autonomous driving, intelligent transportation systems,
and urban planning. Studies Poulose et al. (2022) demonstrate that 3D LiDAR point cloud
maps enable centimeter-accurate vehicle positioning via NDT matching, though this requires
precise semantic scene understanding. In road scenes, road point cloud semantic segmentation
(Zhang et al., 2020) serves as a foundational task for perceiving and understanding the
environment, aiming to assign a specific semantic label to each point in the cloud. For example,
in autonomous driving, objects such as pedestrians, vehicles, and traffic lights must
be accurately identified and understood to guide subsequent decision-making processes.
However, LiDAR-based road point clouds are characterized by their large scale and uneven
density, as illustrated in Figure 1, posing significant challenges to achieving both accurate and
efficient semantic segmentation.

In recent years, deep learning techniques have been widely applied to road point cloud
segmentation in traffic scenarios. PointNet, proposed by Qi et al. (2017), utilizes a single-branch
architecture that deepens the network and generates a score for each point by combining global and
local features. This method’s capability to directly process unordered point clouds lays the groundwork
for subsequent research. However, its deficiency in lacking local feature interactions leads to limited
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FIGURE 1

arxiv.org/abs/1904.01416 under CC BY-NC-SA 4.0.

Large-scale and uneven density characteristics of LiIDAR-based road point clouds. Image reproduced with permission from Behley et al. (2019): https://

representation ability of sparse points at long distances. Recent studies (Liu
et al, 2019) have shown that PointNets global max-pooling operation
discards fine-grained spatial relationships, making it unsuitable for complex
road scenes where small objects (e.g., traffic signs) require precise
localization. Since the introduction of PointNet++ (Qi et al., 2017) and
D-PointNet++ (Xu et al., 2024), which employ farthest point sampling
(EPS) to aggregate local features in point clouds, incorporating local feature
aggregation modules has become a dominant trend for hierarchically
extracting local features. FPS ensures a uniform distribution of points by
sampling, facilitating the aggregation of local features. However, the
computational complexity introduced by the hierarchical structure limits
its application in large-scale scenarios. Empirical evidence (Hu et al., 2020)
suggests that FPS-based methods suffer from up to 30% performance
degradation on distant objects (>50 m) due to excessive point sparsity.
DGCNN (Wang et al., 2019) leverages k-nearest neighbors (k-NN) to
construct a local neighborhood graph and dynamically updates the graph
to expand the receptive field as much as possible, approaching the diameter
of the point cloud. In LiDAR road scenes, dynamic changes in traffic
elements (such as moving vehicles) lead to frequent changes in the
neighborhood graph structure, causing a decrease in the computational
efficiency of DGCNN in real-time segmentation tasks. A recent benchmark
(Tang et al., 2020) reported that DGCNN’s graph update module consumes
over 40% of inference time on nuScenes dataset, highlighting its inefficiency
for dynamic environments. PointMLP (Choy et al., 2019) introduces a
geometric affine module that enables local point features to be effectively
extracted both before and after the aggregation process. However, the
inherent uneven density characteristic of road point clouds (such as dense
near points and sparse distant points) diminishes the feature representation
capability of the geometric affine module, particularly resulting in poor
performance in the segmentation of distant small targets (like traffic signs).
Comparative experiments (Zhang et al., 2021) reveal that PointMLP’s
accuracy drops by 22.5% on SemanticKITTTs “traffic-sign” class compared
to close-range objects, underscoring its density sensitivity.

Frontiers in Computer Science

Beyond these methods, voxel-based approaches like VoxelNet
(Zhou and Tuzel, 2018) partition point clouds into 3D grids to enable
efficient convolution operations. While they achieve real-time
processing, their fixed grid resolution causes quantization errors that
misclassify thin structures (e.g., poles). On SemanticKITTI,
voxelization artifacts reduce pole segmentation accuracy by 15%
(Thomas et al., 2019).

In addition, Transformer-based architectures (Liu et al., 2021)
have achieved notable success in visual tasks, the core advantage lies
in establishing long-range dependencies through the dot-product self-
attention mechanism (Touvron et al., 2021), which enables the
dynamic modeling of spatial correlations between any two points in
the point cloud. To further capture spatial characteristics in higher-
order feature interactions, HorNet introduces a recursive structure
called gnConv (Rao et al., 2022). While the networks proposed in the
aforementioned research have demonstrated strong performance in
point cloud semantic segmentation, they have yet to fully address the
inherent challenges of road point cloud data, such as its natural
disorder, large volume, and irregular scene distribution.

In the field of point cloud semantic segmentation, early works
focused on improving segmentation accuracy and efficiency through
innovative network architectures and attention mechanisms. As early
as 2020, Varney et al. (2020) constructed the large-scale aerial LIDAR
dataset DALES, which laid an important data foundation for
subsequent research in this field, though it did not involve specific
network architecture innovations. In 2022, Zhao et al. (2022) proposed
SVASeg, which captures contextual information through hash table
lookup of non-empty neighboring voxels, local region multi-head
attention, and sparse voxel-based multi-head attention (SMHA), but
it neglects the modeling of fine-grained spatial relationships among
local points. Later that year, Cen et al. (2022) put forward the REAL
framework to address open-world segmentation, handling unknown
categories and incremental learning through redundancy classifiers,
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while its focus lies in category recognition rather than spatial
feature extraction.

In 2023, Wang et al. (2023) designed 3D-ARSS to optimize real-
time segmentation on edge devices via spatial and channel attention
modules, with sparse tensor implementation for efficient computation,
yet it does not involve high-dimensional spatial encoding of each
point. Meanwhile, Jhaldiyal and Chaudhary (2023) reviewed
projection-based methods, emphasizing their advantages in reducing
computational overhead, though such methods generally suffer from
the loss of 3D topological information during projection. In 2024,
Feng et al. (2024) proposed LSK3DNet, optimizing 3D perception
through dynamic sparse kernels and channel selection, but it relies on
convolutional operations and does not explicitly model spatial
relationships of local points. Around the same time, Wu et al. (2024)
presented Point Transformer V3, achieving efficient attention
mechanisms via point cloud serialization, yet its serialization strategy
may lose local geometric correlations.

In contrast, our method effectively fills the gaps in existing
research through a sparse tensor feature extraction module to preserve
spatial position information of points, a radial window attention
module to explicitly model spatial relationships of local points, and a
skip self-attention mechanism to enhance computational efficiency.

This article investigates the LiDAR road point cloud dataset in
traffic scenarios and introduces a novel U-Net-based (Ronneberger
et al., 2015) architecture to address the semantic segmentation of
large-scale LiDAR road point clouds by leveraging the unique
characteristics of this data. The main contributions of this work are
as follows:

(1) We design a lightweight semantic segmentation algorithm for

road point clouds, called RWAFormer, based on

Transformer architecture.
(2) We propose a sparse tensor feature extraction module that
encodes each point into a high-dimensional vector through
sparse tensor encoding while preserving its spatial position.
The encoded point cloud is then processed through multiple
continuous convolutional layers. Additionally, a radial window
attention module is introduced to incorporate spatial
perception into the multi-head attention mechanism by
modeling the spatial relationships of local neighborhood
points. A skip self-attention mechanism is used to reduce
Transformer computations and improve the efficiency of the
attention mechanism, faster

enabling road point

cloud segmentation.

10.3389/fcomp.2025.1542813

(3) We demonstrate the effectiveness of the proposed RWAFormer
on the SemanticKITTI and nuScenes datasets, outperforming

state-of-the-art

segmentation methods.

several point  cloud  semantic

The subsequent sections of this paper are organized as follows: In
Chapter 2, we elaborate on the proposed sparse tensor extraction
module and the radial window attention module; Chapter 3 verifies
the effectiveness of the proposed method through extensive
experiments; finally, Chapter 4 summarizes the full text and discusses
potential future research directions.

2 Our method

The network is implemented in three stages: (1) The sparse tensor
feature extraction module captures key geometric and spatial features
from the input point cloud data. (2) The radial window attention
module aggregates local features and global contextual information
across different levels. (3) We design a codec with a structure similar
to U-Net, incorporating skip connections between different levels to
facilitate feature fusion.

2.1 Overall network architecture

Road point cloud data contains rich semantic information,
represented by numerous three-dimensional coordinate points that
detail the road and its surrounding environment. Each data point
typically includes multiple dimensions of information, such as point
coordinates (x, y, z), normal vectors, and colors. The Transformer
network utilizes the self-attention mechanism to achieve global
perception, effectively capturing the global relationships between
points in the point cloud and enhancing the understanding of the
structure and semantic information of the entire point cloud.
Additionally, the Transformer network employs positional encoding
to process the positional information of points, helping the network
better grasp the relative positional relationships of points in space.
This positional information aids the Transformer in classifying data
points more accurately. Hence, we selected the Transformer network
structure for this task.

The overall network architecture of the model is shown in
Figure 2. We integrate the vector attention mechanism with the U-Net
encoder-decoder framework, which comprises 5 encoders and 5

Input

Output

STFE |

FIGURE 2

40.

RAWFormer network architecture. Images reproduced with permission from Behley et al. (2019): https://arxiv.org/abs/1904.01416 under CC BY-NC-SA
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decoders. The encoder includes a downsampling module, a sparse
tensor feature extraction module (STFE), and the radial window
attention module (RWA) proposed in this paper to capture features.
The decoder includes an upsampling module, STFE, and RWA to map
features. The RWA, based on radial window self-attention, effectively
extracts feature information from distant points in dense point areas,
addresses the issue of sparse distant point disconnection, and expands
the effective receptive field.

RWAFormer adopts an encoder-decoder structure, connecting
fine-grained features from the encoder to the decoder through skip
connections. This design allows the network to effectively integrate
features at various levels and achieve precise segmentation at the pixel
level. The RWA module is stacked at the end of each encoding stage.

2.2 Sparse tensor feature extraction
module

Road scenes often contain a large number of scattered points,
necessitating efficient processing for road point cloud segmentation
to meet practical application requirements. The sparse tensor feature
extraction module processes the original point cloud directly through
continuous convolution operations, avoiding conversion to a dense
voxel grid. This approach preserves the sparsity of the point cloud and
reduces computational resource consumption. As illustrated in
Figure 3, its network architecture design is shown.

The input point cloud data undergoes sparse tensor encoding,
converting each point into a high-dimensional vector while preserving
its spatial position information. These encoded point clouds are then
processed through 8 consecutive Minkowski convolutional layers,
effectively extracting both local and global features while maintaining
data sparsity. Activation functions and regularization layers are
interspersed between these convolutional layers to enhance the
network’s ability to fit nonlinearities and prevent overfitting.

Sparse tensor encoding is the first and central step in the sparse
tensor feature extraction module for processing point cloud data. It
represents each point as a high-dimensional vector while recording its
spatial position information. This encoding method not only preserves

10.3389/fcomp.2025.1542813

the geometric characteristics of point clouds but also provides an
appropriate input format for subsequent continuous convolution
operations. The specific encoding method is as follows:

The module employs sparse tensors to represent point cloud data,
dividing it into two components: the coordinate matrix C and the
feature matrix F, as defined in Equation 1.

o oz b

C= ,F

XN YN 2N by i

In this representation, (x;, y;, z;) contains the coordinates of the
point cloud, b; indicates which point cloud belongs to the batch, N
represents the total number of points in a batch, and f,-T represents the
feature of the i-th point. This method effectively saves space and
boosts computational efficiency.

In the LiDAR point cloud data of this paper, the feature fiT
represents intensity information, which is used to describe the
strength of the LiDAR return signal. Intensity information can reflect
the surface properties of the objects corresponding to the point cloud;
for example, objects with higher reflectivity (such as metals) usually
have higher intensity values, while those with lower reflectivity (like
vegetation) typically have lower intensity values. By incorporating
intensity information into the feature matrix F, the network can better
capture the semantic information of the point cloud, thereby
improving segmentation accuracy.

The coordinate matrix C has a shape of N x 4, storing the spatial
location (x, y, z) and batch index b of each point; the feature matrix F
has a shape of N x 1, storing only the intensity information of each
point. This representation method avoids information loss and
computational redundancy inherent in traditional
voxelization methods.

Another core component of the sparse tensor feature extraction
module is the continuous convolutional layer. Unlike traditional
convolution, it operates directly on the original point cloud data
without relying on any grid structure. The continuous convolutional

layers use a differentiable nearest neighbor search algorithm (NNS) to

Input
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FIGURE 3
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Sparse tensor feature extraction module. The yellow blocks represent Minkowski convolutional layers. NNS, nearest neighbor search; BN, batch
normalization; ReLU, activation function. Image reproduced with permission from Behley et al. (2019): https://arxiv.org/abs/1904.01416 under CC BY-
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locate points within the local neighborhood of each point, after which
the Minkowski convolution operations are applied within these local
neighborhoods to generate local feature maps. Minkowski convolution
preserves the inherent sparsity of the point cloud data while efficiently
capturing local features.

The Sparse Tensor Feature Extraction (STFE) module establishes
a feature extraction mechanism that adapts to the unordered and
sparse nature of point clouds. This module achieves multi-level feature
learning based on stacked Minkowski sparse convolutions, specifically
divided into three stages: Shallow Feature Extraction (Layers 1-3)
employs asymmetric convolution kernels (3 x 3 x 1), densely sampling
neighborhood points in the horizontal direction (x-y plane) to capture
local geometric structures such as road surfaces, vehicles, and
pedestrians. Meanwhile, it compresses the convolution range in the
vertical direction (z-axis) to suppress sparse noise interference;
Mid-Level Feature Extraction (Layers 4-6) further extracts global
semantic information from the point cloud. By using strided
convolutions (stride = 2), it gradually expands the receptive field to
capture large-scale objects in road scenes (such as buildings and
vegetation) and their spatial distribution; Deep Feature Extraction
(Layers 7-8) optimizes feature representation capabilities. Through
deep convolution modeling of long-range dependencies, it enhances
adaptability to complex scenes (like intersections and dense
traffic flows).

This hierarchical feature extraction mechanism effectively retains
the local geometric details and global semantic information of point
clouds. Additionally, by leveraging the sparse computation
characteristics of Minkowski convolutions, it significantly improves
computational efficiency and ensures the network’s robustness to the
unordered nature of point clouds.

As aresult, the STFE module better maintains the spatial structure
of point cloud data, which is essential for accurately identifying and
segmenting objects with non-uniform distributions, such as roads
and vehicles.

2.3 Radial window attention module

Due to the sparsity of LIDAR point cloud distribution, the lack
of neighboring points near sparse distant points causes a
disconnection in feature information, which hinders the expansion
of the receptive field and results in poor segmentation performance
for distant points. The RWA module proposed in this article
effectively captures both global and local information in point
clouds, aggregating long-distance feature information into a single
operator to adapt to the sparse distribution of point clouds. The
overall network structure is highly modular, as shown in Figure 4,
allowing for flexible integration into existing point cloud
processing networks.

The input is an N x C local feature matrix extracted by the
sparse tensor feature extraction module. We first dynamically
select the local features of the input based on the radius of the
center point using a radial window mechanism to determine the
size of the local neighborhood. Next, we apply spherical
convolution to the input features. By designing a convolution
kernel that adapts to the spherical surface, spherical convolution
can more accurately extract the local geometric features of the
point cloud while preserving the spatial information. This method
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FIGURE 4
Radial window attention module.

is particularly suited for processing point cloud data with irregular
distribution characteristics. After spherical convolution, RWA
employs a multi-head attention mechanism, allowing the model to
learn information from multiple different feature subspaces
simultaneously, which helps capture complex dependencies
between various features. Following a series of spherical
convolutions and multi-head attention processing, RWA integrates
the extracted features.

The radial window partitioning mechanism enhances the
efficiency and accuracy of feature extraction by dynamically adjusting
the neighborhood range to adapt to the sparse distribution
characteristics of point clouds. The core idea of this mechanism is to
dynamically adjust the neighborhood range based on the radius
distance between points and a center point. For each center point p;,
its neighborhood range Neighborhood (p;) is determined by the radius
r;. This relationship is formulated in Equation 2:

Neighborhood(pi):{pj |||pj—Pi [I< rz} )

Here, p; represents the center point, p j represents a neighboring
point, p; — p; denotes the Euclidean distance between point p; and the
center point p;, and 7; is the radius dynamically adjusted based on the
sparsity of the point cloud.

To dynamically adjust the radius ;, this paper proposes calculating
it based on the local density characteristics of the point cloud. The
local density p; around a center point p; represents the number of

frontiersin.org
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FIGURE 5
Comparison between cube window and radial window.

points within a unit volume surrounding. The radius #; is dynamically
adjusted using the following Equation 3:

i =Thase Pref (3)
i

Where 1, is the base radius, used to control the minimum value of
the neighborhood range; py.r is the reference density, used to normalize
the impact of local density; and pj; is the local density around the center
point p;. The local density p; is calculated using Equation 4:

12l pj = pi ll< Finit {
p,-={1 . 3 i (4)
g”rinit

Here, 1t is the initial radius used for calculating the local density;
\{ pillpi—pills rinit}l reprisents the number of points within the
initial radius 7 and ~aryy is the volume of the sphere
corresponding to the initial radius 7;,;.. Based on the aforementioned
formula, the neighborhood range Neighborhood( pi) is dynamically
adjusted according to the changes in the local density p;.

Unlike the cubic window partition mechanism, a radial window
mechanism determines the size of the local neighborhood based on
the radius from the center point. Figure 5 compares the cube window
mechanism with the radial window mechanism. The cube window is
shown in (Figure 5a), while the radial window is presented in
(Figure 5b). This radial window partitioning mechanism forms the
core of RWA. By utilizing this approach, RWA effectively handles
point cloud data with uneven density, enhancing both the adaptability
and robustness of feature extraction.

The core idea of spherical convolution is to map the local
neighborhood of point clouds to a spherical coordinate system and
design convolution kernels in this coordinate system to extract
geometric features. For each central point p;, its neighboring points p;
are mapped to the spherical coordinate system. Figure 6 illustrates the

Frontiers in Computer Science

r-cosd-sind

FIGURE 6
The construction process of the spherical coordinate system.

construction process of the spherical coordinate system, where the
central point p; serves as the origin O (x,y,z). The spherical
coordinates are represented by radius r, polar angle 6, and azimuthal
angle ¢, with the formulas given by Equations 5-7:

r=lpj—pil ®)
=
6 =arccos (6)
r
¢ =arctan [u] (7)
xJ — X
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where (x,- ,y,-,zi) and (x Yz j) are the Cartesian coordinates of
the central point p; and neighboring point p; respectively.

In the spherical coordinate system, the convolution kernel
K (r, 9,¢) is designed as a function adapted to the spherical geometric
structure. The kernel weights W(r,0,¢) are generated by a neural
network, which takes the spherical coordinates (r,9,¢) as input and
outputs the kernel weights W(r, 0,¢). The weights for the convolution
kernel are generated by a multilayer perceptron (MLP), as described
by Equation 8:

W(r,0,¢)=MLP(r,0,4) (8)

In the spherical coordinate system, the convolution operation is
performed to extract local geometric features from the point cloud.
The specific convolution operation is formulated in Equation 9:

> W(rno)Fa(p))

p;eNeighborhood( p; )

Fout (Pi): )

RWA also incorporates the multi-head attention mechanism, a
core component of the Transformer model, to capture both global
and local features. The multi-head attention mechanism efficiently
processes sequential data and captures long-range dependencies by
splitting the input sequence into multiple “heads” Each head learns
different representations of the input, and these representations are

10.3389/fcomp.2025.1542813

merged to capture diverse aspects of the data. In complex road
point cloud segmentation scenarios, this mechanism significantly
enhances model performance by extracting multi-scale features
and improving the ability to detect features of various scales
and positions.

Each layer of the Transformer consists of a Multi-head Self-
Attention (MSA) module and a Multi-Layer Perceptron (MLP)
module. The conventional MSA module in Transformers suffers
from high computational complexity, making it difficult to adapt
to large-scale point cloud data. Research findings reveal high
correlations between the output representations ZM$* across
different layers. Building upon this discovery, we propose an
approach that reuses ZM$* from previous layers as input to a
SKIPAT parametric function, skips the MSA operations in one or
more subsequent Transformer layers, and then feeds the features
output by the SKIPAT parametric function into the MLP module,
as illustrated in Figure 7.

The output feature representation at layer / can be computed as
Equation 10:

Z < q)(szf")u,_l

(10)
Z1«MLP(Z)+2

To ensure that cross-layer reuse of self-attention blocks
maintains performance, we introduce a simple parameter
function, SKIPAT, which not only accelerates the process but also

y y
545 dXels d X el X e o
= = A = ) Q= A=
Skip Skip Skip
ZMSA A MSA
- " A _
> i r ¢i+1 > ¢i+2
FIGURE 7
Transformer network framework with SKIPAT.
FC .

VSA spatial DwC flatten FC& . Ms4
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FIGURE 8
SKIPAT parameter function computation flow.
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enhances performance. Figure 8 shows the specific
implementation of the SKIPAT parameter function. SKIPAT
consists of two linear layers (Fully Connected, FC) and a
Depthwise Convolution (DwC) (Chollet, 2017). We first feed the
point cloud block embedding vectors into the initial linear layer,
R™ 5 R™ Then, DwC
extracts relational features between point cloud elements using a
yxy R nx\?xzd%R Jnx n><2d.

applying the depthwise convolution, we reshape the matrix into

FC, to expand the channel dimension:

convolution kernel: Before
a feature tensor. Afterward, we reshape the output of DwC back
into a matrix and pass it through the final fully connected layer,
FC: R R"Xd, reducing the channel dimension back to the
initial dimension d. Finally,we apply an Efficient Channel
Attention (ECA) module after FC to strengthen cross-channel
dependencies, producing the output ZZI\ASA. The corresponding
computation is expressed in Equation 11:

ZMSA, ECA(FCZ(DWC(FCI(ZMSA)))) (11)

Therefore, to reduce the computational burden on the Transformer’s
core computational component within the RWA module, we propose
utilizing a skip self-attention mechanism. This mechanism improves the
Transformer’s computational efficiency by reducing redundant operations
in attention calculation. Specifically, it enables the model to “jump” between
layers, allowing lower layers to directly interact with higher layers without
passing information through each intermediate layer.

The radial window attention module designed in this study
opens new possibilities for point cloud processing. By enhancing
processing efficiency and strengthening the model’s ability to
analyze and interpret complex point cloud data through precise
feature extraction and dependency capture, RWA has the
potential for broad application across fields such as autonomous
driving, robotic perception, and virtual reality.

10.3389/fcomp.2025.1542813

3 Experimental results and analysis
3.1 Dataset description

To evaluate the effectiveness of the proposed RWAFormer
method, we conducted experiments using two publicly available large-
scale LiDAR point cloud datasets: SemanticKITTI (Behley et al., 2019)
and NuScenes (Caesar et al., 2020) both datasets were collected in real
road environments, providing highly realistic and authentic point
cloud data. These characteristics make them ideal for research in fields
like autonomous driving and robotics.

3.1.1 SemanticKITTI

This dataset extends the KITTI Vision Benchmark Suite (Geiger
etal,, 2012) by providing semantic annotations that assign a category
label to each point, such as buildings, vehicles, and pedestrians. These
labels offer rich semantic information, making the dataset ideal for tasks
like semantic segmentation and object detection. Figure 9 illustrates the
SemanticKITTI dataset, showing how point cloud distribution becomes
sparser as the distance from the LiDAR sensor increases, with points
further away appearing more dispersed than those closer to the sensor.

Semantickitti contains a large amount of point cloud sequence
data, the total includes point cloud sequences 00-21, each sequence
corresponds to a scene or a section of the road video recordings, a
total of more than 45,000 point cloud frames, a total of 22 categories,
of which there are 19 categories that can be frequently seen in the
driving scene, this study for the semantic segmentation of these 19
categories, and the sequence 08 as an independent test set.

3.1.2 NuScenes

The NuScenes dataset consists of 1,000 driving scenes from Boston and
Singapore, where each LIDAR point in the keyframes is annotated with one
of 32 semantic labels. For the LIDAR point cloud semantic segmentation
tasks, it focuses on 16 primary semantic classes. This dataset contains 1.4
billion annotated points, covering 40,000 point clouds across 1,000 scenes,

FIGURE 9

under CC BY-NC-SA 4.0.

Visualization example of the SemanticKITTI dataset. Images reproduced with permission from Behley et al. (2019): https://arxiv.org/abs/1904.01416
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with 850 scenes designated for training and validation, and 150 for testing.
The scenes are scanned by a 32-line LiDAR, resulting in a sparser point
cloud compared to the Semantichitti dataset. Figure 10 highlights this,
where densely-packed nearby cars are encircled in green, while sparsely-
distributed distant bicycles are marked in red.

3.2 Evaluation metrics

In the experiment, we selected Acc and mlIoU as evaluation
metrics to assess the model's performance. Acc measures the
proportion of correctly segmented points in the point cloud relative
to all points, while IoU represents the intersection-over-union ratio
between the true labels and predicted labels of points in a specific
category. mIoU calculates the average IoU across all categories in
multi-class scenarios. These metrics are crucial for evaluating the
accuracy of 3D point cloud segmentation. The formulas for overall
accuracy (Acc) and mean Intersection over Union (mloU) are given
by Equations 12, 13 respectively:

T
Acc=— 12
N (12)

1E& C::

C:
i=0 ZCJ’ + ZCIJ — Cii
j=0 j=0

(13)

In practical applications of road point cloud segmentation, besides
accurately identifying pedestrians, vehicles, and traffic lights, the
network must also operate efficiently within hardware constraints. The
number of parameters and floating point operations (FLOPs) are core
metrics for evaluating the computational complexity of a model.
FLOPs represent the total number of floating-point operations
required for a single forward pass, which in point cloud networks
primarily includes convolution/attention operations for feature
extraction, neighborhood search, and coordinate transformation. The
number of parameters refers to the total count of learnable weights

10.3389/fcomp.2025.1542813

and biases in a deep learning model. It directly impacts the model’s
storage size and initialization time. Generally, models with more
parameters have greater capacity, but they also demand higher
computational and storage resources. This metric reflects the model’s
complexity, computational cost, and potential generalization capability.

3.3 Experimental setting

This article validates the effectiveness of RWAFormer through
semantic segmentation results of 3D road scene point clouds on
the Semantichitti and Nuscenes datasets. We built the entire code
project using PyTorch and conducted training and testing on an
RTX 3090 graphics card. We trained the model for 50 epochs
using the AdamW optimizer (Loshchilov and Hutter, 2017) and
the “poly” scheduler. We set the learning rate to 0.006 and the
weight decay to 0.01, with a batch size of 2. All algorithms used
consistent patch sizes for the same tasks. To better extract
semantic information from road point clouds, we set the patch
sizes for Semantichitti tasks to [0.05, 0.05, 0.05], and for Nuscenes
tasks to [0.1, 0.1, 0.1]. For the proposed RWAFormer method,
we set the window size to [120 m, 2°, 2°] (r, 0, ¢), while for other
comparative experiments, the window size was set to 50 m (cube
edge length). During data preprocessing, we limited the input
scenario of Semantichitti to [-51.2 m, —51.2 m, —4 m] to [51.2 m,
51.2 m, 2.4 m]. The voxel size for Semantichitti tasks was set to
0.1 m, and for Nuscenes tasks, it was set to 0.05 m.

3.4 Experimental results

3.4.1 Experiments on the SemanticKITTI task

To evaluate the segmentation performance of RWAFormer on
the Semantichitti dataset, we present the overall experimental
results and IoU results for each category compared with different
algorithms in Tables 1, 2. Table 1 shows that using point cloud data
directly as input and performing layer-by-layer sampling and
grouping operations, as in the PointNet++ method, results in an

FIGURE 10

distant

Visualization of the NuScenes dataset. Image reproduced with permission from Behley et al. (2019): https://arxiv.org/abs/1904.01416 under CC BY-NC-SA 4.0.
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TABLE 1 Experimental results on the SemanticKITTI task.

10.3389/fcomp.2025.1542813

Method mloU (%) Acc (%) FLOPs (G)
PointNet++ 19.2 77.3 1.68
MinkuNet 63.9 91.7 36.2
Cylinder3D 67.9 91.5 158.4
SPVCNN 70.4 91.6 62.7
Cylinder3D-MT 72.9 92.8 -
SOTA (range) SemanticKITTI Dataset Leaderboard (2024) 74.1-76.9 93.6-95.1 -

Ours 75.3 94.5 41.3

Bold values indicate the optimal results.

TABLE 2 loU (%) results for each category on the Semantickitti dataset.

PointNet++ MinkuNet Cylinder3D SPVCNN Cylinder3D-MT Ours
car 53.7 81.8 96.4 95.9 97.2 93.8
bicycle 1.9 18.5 43.2 12.9 49.5 47.3
motorcycle 0.2 17.9 65.2 55.7 70.1 67.4
truck 0.9 13.4 82.6 63.6 85.3 65.5
bus 0.2 14.0 59.1 47.9 62.8 25.7
person 0.9 20.1 73.6 63.3 76.2 66.1
bicyclist 1.0 25.1 88.2 79.7 90.5 77.6
motorcyclist 0.0 3.9 0.0 0.0 0.0 0.0
road 72.0 88.6 94.2 93.2 95.1 94.6
parking 18.7 45.8 442 452 48.9 46.5
sidewalk 41.8 67.6 80.9 80.1 83.2 81.9
other-ground 5.6 17.7 0.4 1.0 3.2 2.5
building 62.3 73.7 88.7 90.6 91.8 90.5
Fence 16.9 41.1 50.4 62.3 65.7 55.1
vegetation 46.5 71.8 87.6 87.2 89.3 88.7
trunk 13.8 35.8 67.8 65.8 71.5 69.5
terrain 30.0 60.2 73.4 71.9 76.8 77.5
pole 6.0 20.2 65.9 63.9 68.4 64.4
traffic-sign 8.9 26.3 52.3 48.4 56.1 50.9

Bold values indicate the optimal results.

mloU of only 19.2%. The MinkowskiNet (Jia and Leibe, 2021)
method, which applies dynamic graph convolution to process point
cloud data with multi-scale convolution operations, increases the
mloU to 63.9%. The Cylinder3D (Zhu et al., 2021) method, which
maps point cloud data into cylindrical space and processes it using
3D convolutional neural networks (CNNs), further improves mIoU
to 67.9%, demonstrating good robustness for large-scale scenes.
SPVCNN (Tang et al., 2020), which employs spherical pyramid
pooling to aggregate local features and combines multi-level
convolution operations for global feature extraction, achieves an
mloU of 70.4% and effectively handles complex point cloud shapes.

To ensure our comparison encompasses the most recent
advancements, we benchmark our results against the official
SemanticKITTI leaderboard (access date: May 2024). The
top-performing published method on the leaderboard is
Cylinder3D-MT (Zhu et al, 2021), which achieves 72.9%
mloU. Furthermore, the leading methods (including unpublished
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entries) have pushed the performance boundary to between 74.1 and
76.9% mloU, primarily through model ensembles and extensive test-
time augmentations.

In this competitive context, the RWAFormer method proposed in
this article achieves a notably high mIoU of 75.3%. It is important to
emphasize that while the top leaderboard entries (76.9% mloU) employ
computationally expensive strategies unsuitable for real-time applications,
our method establishes this competitive result as a single model without
any ensemble or complex test-time tricks. Compared to the strongest
published single-model method (Cylinder3D-MT, 72.9%), RWAFormer
improves the overall mloU by 2.4% and accuracy (Acc) by 1.7%,
demonstrating the effectiveness of our architectural innovation.

It also achieves competitive results in specific categories such as
roads (94.6%), vehicles (93.8%), and buildings (90.5%), as shown in
Table 2.

Our method achieves a mIoU of 75.3% (representing a 4.9-56.1%
relative improvement) while operating at 2.6-3.8 x lower FLOPs than
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state-of-the-art (SOTA) approaches. This “optimal performance with
moderate computation” characteristic makes it particularly suitable
for resource-constrained autonomous driving scenarios.

As shown in Table 2, the detailed per-category IoU results
provide further insights into the strengths of our approach. When
best published method
Cylinder3D-MT, our RWAFormer demonstrates competitive or

compared with the current
superior performance on multiple categories, particularly in
recognizing thin structures (e.g., bicycle, motorcycle) and ground
elements (e.g., road, parking, sidewalk, terrain). This can
be attributed to our radial window attention mechanism, which
better captures long-range dependencies and fine-grained
features critical for these challenging categories. The performance
comparison confirms that our method achieves a more balanced
performance profile across categories with a simpler and more
efficient architecture.

As shown in Figure 11, different colors represent different
segmentation labels, and distant objects with sparse point cloud
distribution are highlighted with blue boxes. The brown box is a
zoomed-in display of the blue box, and the last two columns are
a plot of the difference from the true value, with incorrectly
segmented points labelled in red and correct ones in black.
We visually compare the optimal model (i.e., SPVCNN) with the
RWAFormer model proposed in this paper. It is clear from the
figure that there are fewer incorrectly segmented points than
SPVCNN using our proposed RWAFormer model, which has a
higher accuracy for sparse long-range object recognition.

10.3389/fcomp.2025.1542813

3.4.2 Experiments on the Nuscenes task

To verify the generalization ability of RWAFormer, we conducted
further experiments using the Nuscenes LiDAR road point cloud
dataset. Table 3 compares the semantic segmentation results of several
classic point cloud semantic segmentation networks with those of the
RWAFormer model proposed in this paper.

To firmly establish the competitive standing of our work,
we reference the official NuScenes LiDAR segmentation leaderboard
(2024). The leading published method on this benchmark,
LidarMultiNet (Li et al., 2022), reports a score of 80.6% mloU. The
current state-of-the-art, including unpublished entries that utilize
ensembles, achieves between 81.5 and 83.1% mIoU.

Our RWAFormer model achieves 82.0% mloU on this dataset.
This result clearly outperforms the best previously published result
(LidarMultiNet, 80.6% mIoU) by 1.4%. More importantly, our method
achieves this as a single-model solution, while the top leaderboard
entries rely on computationally prohibitive ensemble strategies. This
consistent high performance across two distinct large-scale datasets
underscores the robustness and effectiveness of our
proposed architecture.

Experimental results show our approach attains 82.0% mloU with
merely 23.2G FLOPs on nuScenes 1.5-3.8 times more efficient than
SOTA solutions, coupled with 4.6-56.8% relative accuracy gains,
establishing substantial improvements over existing best methods.

The consistent superiority of RWAFormer across both
SemanticKITTI and nuScenes datasets demonstrates its robust
generalization capability. The performance gain is particularly

Ground Truth
barrier ~ bicycle |l truck

FIGURE 11

car [l driveable surface [l manmade

Comparison of semantic segmentation results between SPVCNN and the proposed model on the SemanticKITTI task. Image reproduced with
permission from Behley et al. (2019): https://arxiv.org/abs/1904.01416 under CC BY-NC-SA 4.0.

terrain [l sidewalk [l vegetation

TABLE 3 Experimental results on the NuScenes task.

Method mloU (%) Acc (%) FLOPs (G)
PointNet++ 252 83.3 0.71
MinkuNet 70.2 93.6 18.9
Cylinder3D 77.2 95.8 89.1
SPVCNN 77.4 95.6 34.6
LidarMultiNet 80.6 96.9 -
SOTA (range) NuScenes LIDAR Segmentation 81.5-83.1 97.1-97.6 -
Leaderboard (2024)

Ours 82.0 97.4 23.2

Bold values indicate the optimal results.
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significant when compared to the best published methods on both
benchmarks. Our radial window attention mechanism provides a
more unified and efficient solution, enabling effective feature learning
across diverse sensor configurations and urban environments. This
demonstrates that our architectural innovation offers a superior
balance between performance and practicality compared to
existing approaches.

In addition, Figure 12 gives a comparison graph of the visual
segmentation effect of the SPVCNN model, which has the best
segmentation effect so far, with our proposed RWAFormer
method, where different colors represent different segmentation
labels, and the last two columns are the difference graphs from
the real values, with the points that are incorrectly segmented
marked in red and the correct ones marked in black. From the
figure, we can see that our model segments more points correctly
than SPVCNN, which can identify the category of the object
more accurately and segment it completely, and the red box

10.3389/fcomp.2025.1542813

highlights the
contrasts significantly.

places where the segmentation effect

3.5 Ablation study

To verify the effectiveness of each module in the proposed
RWAFormer method, we conducted ablation experiments on the
Semantichitti dataset. The experimental results are presented in
Table 4.

Experiment 1 used the U-Net point cloud processing network
architecture without incorporating the STFE and RWA modules. The
road point cloud segmentation accuracy was the lowest at this stage,
with an mIoU of 66.2% and an accuracy of 82.3%. This outcome
indicates that U-Net may suffer from information loss when
processing large 3D scenes due to excessive downsampling
and pooling.

Ground Truth

barrier bicycle [l truck

FIGURE 12

car [l driveable surface [l manmade

SPVCNN

terrain [l sidewalk [l vegetation

Comparison of visual segmentation results between SPVCNN and our proposed method on the NuScenes task. Image reproduced with permission
from Behley et al. (2019): https://arxiv.org/abs/1904.01416 under CC BY-NC-SA 4.0.

TABLE 4 Ablation experiment results.

Experiment ID STFE RWA mloU (%) Acc (%) Parameters
1 66.2 82.3 342M
2 v 68.9 87.6 353M
3 v 70.9 91.7 29.1M
4 v v 75.3 94.5 31.4M

Bold values indicate the optimal results.
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Experiment 2 introduced the STFE module, which improved
mloU and accuracy by 2.7 and 5.3%, respectively, with only a minor
increase in parameters. This result demonstrates that the STFE module
effectively handles sparse and spatially irregular point cloud data,
efficiently extracting both local and global features relevant to road
scenes. This capability enhances performance in road point cloud
segmentation tasks, providing significant support for applications
such as autonomous driving.

Experiment 3 added the RWA module, which captures global and
local information in point cloud data through spherical convolution
operations. It uses a skip attention mechanism to calculate self-attention,
leveraging outputs from the MSA blocks of each layer to represent high
correlations between ZMSAs and skipping MSA operations in subsequent
Transformer layers. The parameter count decreased by 5.1 M to 29.1 M,
while mIoU and accuracy improved by 4.7 and 9.4%, respectively. This
demonstrates that RWA can effectively mitigate the adverse effects of the
near-dense and far-sparse characteristics of road point cloud data on
segmentation performance, reduce Transformer computations, and
enhance segmentation efficiency.

Experiment 4 included both the RWA and STFE modules.
Although the number of parameters was slightly higher than in
Experiment 3, both mIoU and accuracy significantly improved. This
indicates that combining RWA and STFE can enhance road point
cloud segmentation accuracy with a relatively small increase
in parameters.

To assess the effect of inserting the RWA module at different
stages, we compared Experiment 1 and Experiment 3, confirming that
introducing the RWA module was effective, with a 4.7% mloU
performance gain. This result highlights the benefits of aggregating
length information using the radial window shape.

Additionally, we examined the effect of RWA insertion positions, as
shown in Table 5. From Experiment 2 to Experiment 6, applying RWA
to a single stage from Stage 1 to Stage 5 resulted in gradual performance
improvements. In Experiment 6, inserting RWA in Stage 5 yielded a 2%
mloU performance gain, with negligible impact on inference time and
model parameter count. Adding RWA to additional stages (Experiments
7 to 10) resulted in continuous performance enhancement.

This ablation study indicates that we can balance performance and
efficiency by choosing the stage for insertion. For efficiency, adding
RWA to the latter stages may be preferred, while for higher
performance, incorporating it into more stages provides greater gains.

10.3389/fcomp.2025.1542813

In our experiments, we inserted RWA at the end of each encoding
stage to achieve optimal performance.

4 Conclusion

This article thoroughly examines the distribution characteristics of
LiDAR road point cloud data and introduces a road point cloud
segmentation method named RWAFormer. This method features the
STEE (Sparse Tensor Feature Extraction) module, which processes raw
point clouds directly through continuous convolution operations,
avoiding the need to convert data into dense voxel representations. This
approach preserves the point clouds sparsity and efficiently handles
sparse data. To enhance the model’s ability to capture features across
various scales and positions and improve performance in road point
cloud segmentation, this paper proposes a radial window attention
strategy and develops the RWA (Radial Window Attention) module. This
module allows sparse radar points that are far from the sensor to
effectively aggregate crucial information from nearby dense points,
compensating for information loss due to distance.

Despite the significant achievements of the RWAFormer proposed in
this paper on LiDAR road point cloud segmentation tasks, there remain
several issues that warrant further investigation and improvement. Future
research directions could be explored from the following aspects:

1) While LiDAR point cloud data can provide rich three-dimensional
geometric information, its performance may be limited under
certain conditions (such as adverse weather or low-light
conditions). Future research could investigate the fusion of LIDAR
point cloud data with multi-modal data such as camera images
and radar data to enhance the models robustness and
segmentation accuracy in complex environments.

2) Current point cloud segmentation methods primarily rely on large

amounts of annotated data for training, while the cost of

annotating point cloud data is relatively high. Future exploration
into self-supervised learning or weakly supervised learning
methods could utilize unannotated or partially annotated data for

model training, thereby reducing reliance on annotated data.

In conclusion, LiDAR road point cloud segmentation is a field with
significant research value and application prospects. The study in this

TABLE 5 Ablation experiments when inserting RWA modules into different stages.

Exp ID Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 mloU (%) Parameters

1 70.9 29.1M

2 v 71.7 29.1M

3 v 71.7 29.1M

4 Vv 71.8 29.3M

5 v 724 30.0M

6 v 725 30.0M

7 v v 72.1 29.2M

8 v v v 726 29.4M

9 v v v v 73.1 30.3M

10 v v v v v 75.3 31.4M
Bold values indicate the optimal results.
Frontiers in Computer Science 13 frontiersin.org
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paper provides an efficient and accurate solution for this field but leaves
many questions that deserve further exploration. In the future, with the
continuous development of deep learning technology and sensor
technology, point cloud segmentation algorithms will play an even more
crucial role in areas such autonomous

as driving and

intelligent transportation.
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