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Point cloud semantic segmentation technology for road scenes plays an important 
role in the field of autonomous driving. However, accurate semantic segmentation 
of large-scale and non-uniformly dense LiDAR road point clouds still faces severe 
challenges. To this end, this paper proposes a road point cloud semantic segmentation 
algorithm called RWAFormer. First, a sparse tensor feature encoding module 
(STFE) is introduced to enhance the network’s ability to extract local features of 
point clouds. Secondly, a radial window attention module (RWA) is designed to 
dynamically select the neighborhood window size according to the distance of 
the point cloud data from the center point, effectively aggregating the information 
of long-distance sparse point clouds to the adjacent dense areas, significantly 
improving the segmentation effect of long-distance point clouds. Experimental 
results show that our method achieves an average intersection over union (mIoU) 
of 75.3 and 82.0% on the Semantickitti and Nuscenes datasets, and an accuracy 
(Acc) of 94.5 and 97.4%. These results validate the effectiveness and superiority 
of RWAFormer in road point cloud semantic segmentation.
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1 Introduction

In recent years, the rapid advancement of 3D sensing technology (Song, 2014) has 
significantly improved the quality of 3D point cloud data. Point cloud data, with its ability to 
preserve rich spatial information, has led to notable achievements in 3D computer vision tasks, 
further driving its application in various 3D scenarios, large-scale road point clouds are 
increasingly utilized in fields such as autonomous driving, intelligent transportation systems, 
and urban planning. Studies Poulose et al. (2022) demonstrate that 3D LiDAR point cloud 
maps enable centimeter-accurate vehicle positioning via NDT matching, though this requires 
precise semantic scene understanding. In road scenes, road point cloud semantic segmentation 
(Zhang et  al., 2020) serves as a foundational task for perceiving and understanding the 
environment, aiming to assign a specific semantic label to each point in the cloud. For example, 
in autonomous driving, objects such as pedestrians, vehicles, and traffic lights must 
be accurately identified and understood to guide subsequent decision-making processes. 
However, LiDAR-based road point clouds are characterized by their large scale and uneven 
density, as illustrated in Figure 1, posing significant challenges to achieving both accurate and 
efficient semantic segmentation.

In recent years, deep learning techniques have been widely applied to road point cloud 
segmentation in traffic scenarios. PointNet, proposed by Qi et al. (2017), utilizes a single-branch 
architecture that deepens the network and generates a score for each point by combining global and 
local features. This method’s capability to directly process unordered point clouds lays the groundwork 
for subsequent research. However, its deficiency in lacking local feature interactions leads to limited 
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representation ability of sparse points at long distances. Recent studies (Liu 
et al., 2019) have shown that PointNet’s global max-pooling operation 
discards fine-grained spatial relationships, making it unsuitable for complex 
road scenes where small objects (e.g., traffic signs) require precise 
localization. Since the introduction of PointNet++ (Qi et al., 2017) and 
D-PointNet++ (Xu et al., 2024), which employ farthest point sampling 
(FPS) to aggregate local features in point clouds, incorporating local feature 
aggregation modules has become a dominant trend for hierarchically 
extracting local features. FPS ensures a uniform distribution of points by 
sampling, facilitating the aggregation of local features. However, the 
computational complexity introduced by the hierarchical structure limits 
its application in large-scale scenarios. Empirical evidence (Hu et al., 2020) 
suggests that FPS-based methods suffer from up to 30% performance 
degradation on distant objects (>50 m) due to excessive point sparsity. 
DGCNN (Wang et al., 2019) leverages k-nearest neighbors (k-NN) to 
construct a local neighborhood graph and dynamically updates the graph 
to expand the receptive field as much as possible, approaching the diameter 
of the point cloud. In LiDAR road scenes, dynamic changes in traffic 
elements (such as moving vehicles) lead to frequent changes in the 
neighborhood graph structure, causing a decrease in the computational 
efficiency of DGCNN in real-time segmentation tasks. A recent benchmark 
(Tang et al., 2020) reported that DGCNN’s graph update module consumes 
over 40% of inference time on nuScenes dataset, highlighting its inefficiency 
for dynamic environments. PointMLP (Choy et al., 2019) introduces a 
geometric affine module that enables local point features to be effectively 
extracted both before and after the aggregation process. However, the 
inherent uneven density characteristic of road point clouds (such as dense 
near points and sparse distant points) diminishes the feature representation 
capability of the geometric affine module, particularly resulting in poor 
performance in the segmentation of distant small targets (like traffic signs). 
Comparative experiments (Zhang et  al., 2021) reveal that PointMLP’s 
accuracy drops by 22.5% on SemanticKITTI’s “traffic-sign” class compared 
to close-range objects, underscoring its density sensitivity.

Beyond these methods, voxel-based approaches like VoxelNet 
(Zhou and Tuzel, 2018) partition point clouds into 3D grids to enable 
efficient convolution operations. While they achieve real-time 
processing, their fixed grid resolution causes quantization errors that 
misclassify thin structures (e.g., poles). On SemanticKITTI, 
voxelization artifacts reduce pole segmentation accuracy by 15% 
(Thomas et al., 2019).

In addition, Transformer-based architectures (Liu et al., 2021) 
have achieved notable success in visual tasks, the core advantage lies 
in establishing long-range dependencies through the dot-product self-
attention mechanism (Touvron et al., 2021), which enables the 
dynamic modeling of spatial correlations between any two points in 
the point cloud. To further capture spatial characteristics in higher-
order feature interactions, HorNet introduces a recursive structure 
called gnConv (Rao et al., 2022). While the networks proposed in the 
aforementioned research have demonstrated strong performance in 
point cloud semantic segmentation, they have yet to fully address the 
inherent challenges of road point cloud data, such as its natural 
disorder, large volume, and irregular scene distribution.

In the field of point cloud semantic segmentation, early works 
focused on improving segmentation accuracy and efficiency through 
innovative network architectures and attention mechanisms. As early 
as 2020, Varney et al. (2020) constructed the large-scale aerial LiDAR 
dataset DALES, which laid an important data foundation for 
subsequent research in this field, though it did not involve specific 
network architecture innovations. In 2022, Zhao et al. (2022) proposed 
SVASeg, which captures contextual information through hash table 
lookup of non-empty neighboring voxels, local region multi-head 
attention, and sparse voxel-based multi-head attention (SMHA), but 
it neglects the modeling of fine-grained spatial relationships among 
local points. Later that year, Cen et al. (2022) put forward the REAL 
framework to address open-world segmentation, handling unknown 
categories and incremental learning through redundancy classifiers, 
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FIGURE 1

Large-scale and uneven density characteristics of LiDAR-based road point clouds. Image reproduced with permission from Behley et al. (2019): https://
arxiv.org/abs/1904.01416 under CC BY-NC-SA 4.0.
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while its focus lies in category recognition rather than spatial 
feature extraction.

In 2023, Wang et al. (2023) designed 3D-ARSS to optimize real-
time segmentation on edge devices via spatial and channel attention 
modules, with sparse tensor implementation for efficient computation, 
yet it does not involve high-dimensional spatial encoding of each 
point. Meanwhile, Jhaldiyal and Chaudhary (2023) reviewed 
projection-based methods, emphasizing their advantages in reducing 
computational overhead, though such methods generally suffer from 
the loss of 3D topological information during projection. In 2024, 
Feng et al. (2024) proposed LSK3DNet, optimizing 3D perception 
through dynamic sparse kernels and channel selection, but it relies on 
convolutional operations and does not explicitly model spatial 
relationships of local points. Around the same time, Wu et al. (2024) 
presented Point Transformer V3, achieving efficient attention 
mechanisms via point cloud serialization, yet its serialization strategy 
may lose local geometric correlations.

In contrast, our method effectively fills the gaps in existing 
research through a sparse tensor feature extraction module to preserve 
spatial position information of points, a radial window attention 
module to explicitly model spatial relationships of local points, and a 
skip self-attention mechanism to enhance computational efficiency.

This article investigates the LiDAR road point cloud dataset in 
traffic scenarios and introduces a novel U-Net-based (Ronneberger 
et  al., 2015) architecture to address the semantic segmentation of 
large-scale LiDAR road point clouds by leveraging the unique 
characteristics of this data. The main contributions of this work are 
as follows:

	(1)	 We design a lightweight semantic segmentation algorithm for 
road point clouds, called RWAFormer, based on 
Transformer architecture.

	(2)	 We propose a sparse tensor feature extraction module that 
encodes each point into a high-dimensional vector through 
sparse tensor encoding while preserving its spatial position. 
The encoded point cloud is then processed through multiple 
continuous convolutional layers. Additionally, a radial window 
attention module is introduced to incorporate spatial 
perception into the multi-head attention mechanism by 
modeling the spatial relationships of local neighborhood 
points. A skip self-attention mechanism is used to reduce 
Transformer computations and improve the efficiency of the 
attention mechanism, enabling faster road point 
cloud segmentation.

	(3)	 We demonstrate the effectiveness of the proposed RWAFormer 
on the SemanticKITTI and nuScenes datasets, outperforming 
several state-of-the-art point cloud semantic 
segmentation methods.

The subsequent sections of this paper are organized as follows: In 
Chapter 2, we elaborate on the proposed sparse tensor extraction 
module and the radial window attention module; Chapter 3 verifies 
the effectiveness of the proposed method through extensive 
experiments; finally, Chapter 4 summarizes the full text and discusses 
potential future research directions.

2 Our method

The network is implemented in three stages: (1) The sparse tensor 
feature extraction module captures key geometric and spatial features 
from the input point cloud data. (2) The radial window attention 
module aggregates local features and global contextual information 
across different levels. (3) We design a codec with a structure similar 
to U-Net, incorporating skip connections between different levels to 
facilitate feature fusion.

2.1 Overall network architecture

Road point cloud data contains rich semantic information, 
represented by numerous three-dimensional coordinate points that 
detail the road and its surrounding environment. Each data point 
typically includes multiple dimensions of information, such as point 
coordinates (x, y, z), normal vectors, and colors. The Transformer 
network utilizes the self-attention mechanism to achieve global 
perception, effectively capturing the global relationships between 
points in the point cloud and enhancing the understanding of the 
structure and semantic information of the entire point cloud. 
Additionally, the Transformer network employs positional encoding 
to process the positional information of points, helping the network 
better grasp the relative positional relationships of points in space. 
This positional information aids the Transformer in classifying data 
points more accurately. Hence, we selected the Transformer network 
structure for this task.

The overall network architecture of the model is shown in 
Figure 2. We integrate the vector attention mechanism with the U-Net 
encoder-decoder framework, which comprises 5 encoders and 5 
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FIGURE 2

RAWFormer network architecture. Images reproduced with permission from Behley et al. (2019): https://arxiv.org/abs/1904.01416 under CC BY-NC-SA 
4.0.
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decoders. The encoder includes a downsampling module, a sparse 
tensor feature extraction module (STFE), and the radial window 
attention module (RWA) proposed in this paper to capture features. 
The decoder includes an upsampling module, STFE, and RWA to map 
features. The RWA, based on radial window self-attention, effectively 
extracts feature information from distant points in dense point areas, 
addresses the issue of sparse distant point disconnection, and expands 
the effective receptive field.

RWAFormer adopts an encoder-decoder structure, connecting 
fine-grained features from the encoder to the decoder through skip 
connections. This design allows the network to effectively integrate 
features at various levels and achieve precise segmentation at the pixel 
level. The RWA module is stacked at the end of each encoding stage.

2.2 Sparse tensor feature extraction 
module

Road scenes often contain a large number of scattered points, 
necessitating efficient processing for road point cloud segmentation 
to meet practical application requirements. The sparse tensor feature 
extraction module processes the original point cloud directly through 
continuous convolution operations, avoiding conversion to a dense 
voxel grid. This approach preserves the sparsity of the point cloud and 
reduces computational resource consumption. As illustrated in 
Figure 3, its network architecture design is shown.

The input point cloud data undergoes sparse tensor encoding, 
converting each point into a high-dimensional vector while preserving 
its spatial position information. These encoded point clouds are then 
processed through 8 consecutive Minkowski convolutional layers, 
effectively extracting both local and global features while maintaining 
data sparsity. Activation functions and regularization layers are 
interspersed between these convolutional layers to enhance the 
network’s ability to fit nonlinearities and prevent overfitting.

Sparse tensor encoding is the first and central step in the sparse 
tensor feature extraction module for processing point cloud data. It 
represents each point as a high-dimensional vector while recording its 
spatial position information. This encoding method not only preserves 

the geometric characteristics of point clouds but also provides an 
appropriate input format for subsequent continuous convolution 
operations. The specific encoding method is as follows:

The module employs sparse tensors to represent point cloud data, 
dividing it into two components: the coordinate matrix C and the 
feature matrix F, as defined in Equation 1.

	

  
  = =   
      
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1 1 1 1 1
,

T

TN N N N N

x y z b f
C F

x y z b f 	

(1)

In this representation, (xi, yi, zi) contains the coordinates of the 
point cloud, ib  indicates which point cloud belongs to the batch, N 
represents the total number of points in a batch, and T

if  represents the 
feature of the i-th point. This method effectively saves space and 
boosts computational efficiency.

In the LiDAR point cloud data of this paper, the feature i
Tf  

represents intensity information, which is used to describe the 
strength of the LiDAR return signal. Intensity information can reflect 
the surface properties of the objects corresponding to the point cloud; 
for example, objects with higher reflectivity (such as metals) usually 
have higher intensity values, while those with lower reflectivity (like 
vegetation) typically have lower intensity values. By incorporating 
intensity information into the feature matrix F, the network can better 
capture the semantic information of the point cloud, thereby 
improving segmentation accuracy.

The coordinate matrix C has a shape of N × 4, storing the spatial 
location (x, y, z) and batch index b of each point; the feature matrix F 
has a shape of N × 1, storing only the intensity information of each 
point. This representation method avoids information loss and 
computational redundancy inherent in traditional 
voxelization methods.

Another core component of the sparse tensor feature extraction 
module is the continuous convolutional layer. Unlike traditional 
convolution, it operates directly on the original point cloud data 
without relying on any grid structure. The continuous convolutional 
layers use a differentiable nearest neighbor search algorithm (NNS) to 
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FIGURE 3

Sparse tensor feature extraction module. The yellow blocks represent Minkowski convolutional layers. NNS, nearest neighbor search; BN, batch 
normalization; ReLU, activation function. Image reproduced with permission from Behley et al. (2019): https://arxiv.org/abs/1904.01416 under CC BY-
NC-SA 4.0
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locate points within the local neighborhood of each point, after which 
the Minkowski convolution operations are applied within these local 
neighborhoods to generate local feature maps. Minkowski convolution 
preserves the inherent sparsity of the point cloud data while efficiently 
capturing local features.

The Sparse Tensor Feature Extraction (STFE) module establishes 
a feature extraction mechanism that adapts to the unordered and 
sparse nature of point clouds. This module achieves multi-level feature 
learning based on stacked Minkowski sparse convolutions, specifically 
divided into three stages: Shallow Feature Extraction (Layers 1–3) 
employs asymmetric convolution kernels (3 × 3 × 1), densely sampling 
neighborhood points in the horizontal direction (x-y plane) to capture 
local geometric structures such as road surfaces, vehicles, and 
pedestrians. Meanwhile, it compresses the convolution range in the 
vertical direction (z-axis) to suppress sparse noise interference; 
Mid-Level Feature Extraction (Layers 4–6) further extracts global 
semantic information from the point cloud. By using strided 
convolutions (stride = 2), it gradually expands the receptive field to 
capture large-scale objects in road scenes (such as buildings and 
vegetation) and their spatial distribution; Deep Feature Extraction 
(Layers 7–8) optimizes feature representation capabilities. Through 
deep convolution modeling of long-range dependencies, it enhances 
adaptability to complex scenes (like intersections and dense 
traffic flows).

This hierarchical feature extraction mechanism effectively retains 
the local geometric details and global semantic information of point 
clouds. Additionally, by leveraging the sparse computation 
characteristics of Minkowski convolutions, it significantly improves 
computational efficiency and ensures the network’s robustness to the 
unordered nature of point clouds.

As a result, the STFE module better maintains the spatial structure 
of point cloud data, which is essential for accurately identifying and 
segmenting objects with non-uniform distributions, such as roads 
and vehicles.

2.3 Radial window attention module

Due to the sparsity of LiDAR point cloud distribution, the lack 
of neighboring points near sparse distant points causes a 
disconnection in feature information, which hinders the expansion 
of the receptive field and results in poor segmentation performance 
for distant points. The RWA module proposed in this article 
effectively captures both global and local information in point 
clouds, aggregating long-distance feature information into a single 
operator to adapt to the sparse distribution of point clouds. The 
overall network structure is highly modular, as shown in Figure 4, 
allowing for flexible integration into existing point cloud 
processing networks.

The input is an N × C local feature matrix extracted by the 
sparse tensor feature extraction module. We  first dynamically 
select the local features of the input based on the radius of the 
center point using a radial window mechanism to determine the 
size of the local neighborhood. Next, we  apply spherical 
convolution to the input features. By designing a convolution 
kernel that adapts to the spherical surface, spherical convolution 
can more accurately extract the local geometric features of the 
point cloud while preserving the spatial information. This method 

is particularly suited for processing point cloud data with irregular 
distribution characteristics. After spherical convolution, RWA 
employs a multi-head attention mechanism, allowing the model to 
learn information from multiple different feature subspaces 
simultaneously, which helps capture complex dependencies 
between various features. Following a series of spherical 
convolutions and multi-head attention processing, RWA integrates 
the extracted features.

The radial window partitioning mechanism enhances the 
efficiency and accuracy of feature extraction by dynamically adjusting 
the neighborhood range to adapt to the sparse distribution 
characteristics of point clouds. The core idea of this mechanism is to 
dynamically adjust the neighborhood range based on the radius 
distance between points and a center point. For each center point pi, 
its neighborhood range Neighborhood (pi) is determined by the radius 
ri. This relationship is formulated in Equation 2:

	 ( ) { }= − ≤ Neighborhood i j j i ip p p p r∣ 	 (2)

Here, ip  represents the center point, jp  represents a neighboring 
point, −j ip p  denotes the Euclidean distance between point jp  and the 
center point ip , and ir  is the radius dynamically adjusted based on the 
sparsity of the point cloud.

To dynamically adjust the radius ir , this paper proposes calculating 
it based on the local density characteristics of the point cloud. The 
local density ρi around a center point ip  represents the number of 
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Radial window attention module.
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points within a unit volume surrounding. The radius ir  is dynamically 
adjusted using the following Equation 3:

	

ρ
ρ

= ⋅ ref
basei

i
r r

	
(3)

Where baser  is the base radius, used to control the minimum value of 
the neighborhood range; ρref  is the reference density, used to normalize 
the impact of local density; and ρi is the local density around the center 
point ip . The local density ρi is calculated using Equation 4:

	

{ }
ρ

π

− ≤
=

  init

3
init

4
3

j j i
i

p p p r

r

∣ ∣ ∣

	

(4)

Here, initr  is the initial radius used for calculating the local density; 
{ }− ≤  initj j ip p p r∣ ∣ ∣ represents the number of points within the 
initial radius initr ; and r3init

4
3
π  is the volume of the sphere 

corresponding to the initial radius initr . Based on the aforementioned 
formula, the neighborhood range ( )Neighborhood ip  is dynamically 
adjusted according to the changes in the local density ρi.

Unlike the cubic window partition mechanism, a radial window 
mechanism determines the size of the local neighborhood based on 
the radius from the center point. Figure 5 compares the cube window 
mechanism with the radial window mechanism. The cube window is 
shown in (Figure  5a), while the radial window is presented in 
(Figure 5b). This radial window partitioning mechanism forms the 
core of RWA. By utilizing this approach, RWA effectively handles 
point cloud data with uneven density, enhancing both the adaptability 
and robustness of feature extraction.

The core idea of spherical convolution is to map the local 
neighborhood of point clouds to a spherical coordinate system and 
design convolution kernels in this coordinate system to extract 
geometric features. For each central point ip , its neighboring points jp  
are mapped to the spherical coordinate system. Figure 6 illustrates the 

construction process of the spherical coordinate system, where the 
central point ip  serves as the origin O ( ), ,x y z . The spherical 
coordinates are represented by radius r , polar angle θ , and azimuthal 
angle φ , with the formulas given by Equations 5-7:

	 = − j ir p p 	 (5)
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− 
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FIGURE 5

Comparison between cube window and radial window.
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FIGURE 6

The construction process of the spherical coordinate system.
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where ( ), ,i i ix y z  and ( ), ,j j jx y z  are the Cartesian coordinates of 
the central point ip  and neighboring point jp  respectively.

In the spherical coordinate system, the convolution kernel 
( )θ φ, ,K r  is designed as a function adapted to the spherical geometric 

structure. The kernel weights ( )θ φ, ,W r  are generated by a neural 
network, which takes the spherical coordinates ( )θ φ, ,r  as input and 
outputs the kernel weights ( )θ φ, ,W r . The weights for the convolution 
kernel are generated by a multilayer perceptron (MLP), as described 
by Equation 8:

	 ( ) ( )θ φ θ φ=, , , ,W r MLP r 	 (8)

In the spherical coordinate system, the convolution operation is 
performed to extract local geometric features from the point cloud. 
The specific convolution operation is formulated in Equation 9:

	
( )

( )
( ) ( )θ φ

∈
= ⋅∑out in

Neighborhood
, ,

j i

i j
p p

F p W r F p
	

(9)

RWA also incorporates the multi-head attention mechanism, a 
core component of the Transformer model, to capture both global 
and local features. The multi-head attention mechanism efficiently 
processes sequential data and captures long-range dependencies by 
splitting the input sequence into multiple “heads.” Each head learns 
different representations of the input, and these representations are 

merged to capture diverse aspects of the data. In complex road 
point cloud segmentation scenarios, this mechanism significantly 
enhances model performance by extracting multi-scale features 
and improving the ability to detect features of various scales 
and positions.

Each layer of the Transformer consists of a Multi-head Self-
Attention (MSA) module and a Multi-Layer Perceptron (MLP) 
module. The conventional MSA module in Transformers suffers 
from high computational complexity, making it difficult to adapt 
to large-scale point cloud data. Research findings reveal high 
correlations between the output representations ZMSA across 
different layers. Building upon this discovery, we  propose an 
approach that reuses ZMSA from previous layers as input to a 
SKIPAT parametric function, skips the MSA operations in one or 
more subsequent Transformer layers, and then feeds the features 
output by the SKIPAT parametric function into the MLP module, 
as illustrated in Figure 7.

The output feature representation at layer l can be computed as 
Equation 10:

	

( )
( )

−−←Φ +

← +

MSA
11

MLP
l ll

l l l

Z Z Z

Z Z Z 	
(10)

To ensure that cross-layer reuse of self-attention blocks 
maintains performance, we  introduce a simple parameter 
function, SKIPAT, which not only accelerates the process but also 

FIGURE 7

Transformer network framework with SKIPAT.

FIGURE 8

SKIPAT parameter function computation flow.
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enhances performance. Figure  8 shows the specific 
implementation of the SKIPAT parameter function. SKIPAT 
consists of two linear layers (Fully Connected, FC) and a 
Depthwise Convolution (DwC) (Chollet, 2017). We first feed the 
point cloud block embedding vectors into the initial linear layer, 
FC, to expand the channel dimension: × ×→ 2n d n dR R . Then, DwC 
extracts relational features between point cloud elements using a 
γ γ×  convolution kernel: × × × ×→2 2n n d n n dR R . Before 
applying the depthwise convolution, we reshape the matrix into 
a feature tensor. Afterward, we reshape the output of DwC back 
into a matrix and pass it through the final fully connected layer, 
FC: × ×→2n d n dR R , reducing the channel dimension back to the 
initial dimension d . Finally,we apply an Efficient Channel 
Attention (ECA) module after FC to strengthen cross-channel 
dependencies, producing the output MSAˆ

lZ . The corresponding 
computation is expressed in Equation 11:

	
( )( )( )l lZ ZMSA MSA

2 1 1ECA FC DwC F: Cˆ
−

  
  	

(11)

Therefore, to reduce the computational burden on the Transformer’s 
core computational component within the RWA module, we propose 
utilizing a skip self-attention mechanism. This mechanism improves the 
Transformer’s computational efficiency by reducing redundant operations 
in attention calculation. Specifically, it enables the model to “jump” between 
layers, allowing lower layers to directly interact with higher layers without 
passing information through each intermediate layer.

The radial window attention module designed in this study 
opens new possibilities for point cloud processing. By enhancing 
processing efficiency and strengthening the model’s ability to 
analyze and interpret complex point cloud data through precise 
feature extraction and dependency capture, RWA has the 
potential for broad application across fields such as autonomous 
driving, robotic perception, and virtual reality.

3 Experimental results and analysis

3.1 Dataset description

To evaluate the effectiveness of the proposed RWAFormer 
method, we conducted experiments using two publicly available large-
scale LiDAR point cloud datasets: SemanticKITTI (Behley et al., 2019) 
and NuScenes (Caesar et al., 2020) both datasets were collected in real 
road environments, providing highly realistic and authentic point 
cloud data. These characteristics make them ideal for research in fields 
like autonomous driving and robotics.

3.1.1 SemanticKITTI
This dataset extends the KITTI Vision Benchmark Suite (Geiger 

et al., 2012) by providing semantic annotations that assign a category 
label to each point, such as buildings, vehicles, and pedestrians. These 
labels offer rich semantic information, making the dataset ideal for tasks 
like semantic segmentation and object detection. Figure 9 illustrates the 
SemanticKITTI dataset, showing how point cloud distribution becomes 
sparser as the distance from the LiDAR sensor increases, with points 
further away appearing more dispersed than those closer to the sensor.

Semantickitti contains a large amount of point cloud sequence 
data, the total includes point cloud sequences 00-21, each sequence 
corresponds to a scene or a section of the road video recordings, a 
total of more than 45,000 point cloud frames, a total of 22 categories, 
of which there are 19 categories that can be frequently seen in the 
driving scene, this study for the semantic segmentation of these 19 
categories, and the sequence 08 as an independent test set.

3.1.2 NuScenes
The NuScenes dataset consists of 1,000 driving scenes from Boston and 

Singapore, where each LiDAR point in the keyframes is annotated with one 
of 32 semantic labels. For the LiDAR point cloud semantic segmentation 
tasks, it focuses on 16 primary semantic classes. This dataset contains 1.4 
billion annotated points, covering 40,000 point clouds across 1,000 scenes, 

FIGURE 9

Visualization example of the SemanticKITTI dataset. Images reproduced with permission from Behley et al. (2019): https://arxiv.org/abs/1904.01416 
under CC BY-NC-SA 4.0.
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with 850 scenes designated for training and validation, and 150 for testing. 
The scenes are scanned by a 32-line LiDAR, resulting in a sparser point 
cloud compared to the Semantichitti dataset. Figure 10 highlights this, 
where densely-packed nearby cars are encircled in green, while sparsely-
distributed distant bicycles are marked in red.

3.2 Evaluation metrics

In the experiment, we  selected Acc and mIoU as evaluation 
metrics to assess the model’s performance. Acc measures the 
proportion of correctly segmented points in the point cloud relative 
to all points, while IoU represents the intersection-over-union ratio 
between the true labels and predicted labels of points in a specific 
category. mIoU calculates the average IoU across all categories in 
multi-class scenarios. These metrics are crucial for evaluating the 
accuracy of 3D point cloud segmentation. The formulas for overall 
accuracy (Acc) and mean Intersection over Union (mIoU) are given 
by Equations 12, 13 respectively:

	
=Acc T
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In practical applications of road point cloud segmentation, besides 
accurately identifying pedestrians, vehicles, and traffic lights, the 
network must also operate efficiently within hardware constraints. The 
number of parameters and floating point operations (FLOPs) are core 
metrics for evaluating the computational complexity of a model. 
FLOPs represent the total number of floating-point operations 
required for a single forward pass, which in point cloud networks 
primarily includes convolution/attention operations for feature 
extraction, neighborhood search, and coordinate transformation. The 
number of parameters refers to the total count of learnable weights 

and biases in a deep learning model. It directly impacts the model’s 
storage size and initialization time. Generally, models with more 
parameters have greater capacity, but they also demand higher 
computational and storage resources. This metric reflects the model’s 
complexity, computational cost, and potential generalization capability.

3.3 Experimental setting

This article validates the effectiveness of RWAFormer through 
semantic segmentation results of 3D road scene point clouds on 
the Semantichitti and Nuscenes datasets. We built the entire code 
project using PyTorch and conducted training and testing on an 
RTX 3090 graphics card. We  trained the model for 50 epochs 
using the AdamW optimizer (Loshchilov and Hutter, 2017) and 
the “poly” scheduler. We set the learning rate to 0.006 and the 
weight decay to 0.01, with a batch size of 2. All algorithms used 
consistent patch sizes for the same tasks. To better extract 
semantic information from road point clouds, we set the patch 
sizes for Semantichitti tasks to [0.05, 0.05, 0.05], and for Nuscenes 
tasks to [0.1, 0.1, 0.1]. For the proposed RWAFormer method, 
we set the window size to [120 m, 2°, 2°] (r, θ, ϕ), while for other 
comparative experiments, the window size was set to 50 m (cube 
edge length). During data preprocessing, we  limited the input 
scenario of Semantichitti to [−51.2 m, −51.2 m, −4 m] to [51.2 m, 
51.2 m, 2.4 m]. The voxel size for Semantichitti tasks was set to 
0.1 m, and for Nuscenes tasks, it was set to 0.05 m.

3.4 Experimental results

3.4.1 Experiments on the SemanticKITTI task
To evaluate the segmentation performance of RWAFormer on 

the Semantichitti dataset, we  present the overall experimental 
results and IoU results for each category compared with different 
algorithms in Tables 1, 2. Table 1 shows that using point cloud data 
directly as input and performing layer-by-layer sampling and 
grouping operations, as in the PointNet++ method, results in an 

FIGURE 10

Visualization of the NuScenes dataset. Image reproduced with permission from Behley et al. (2019): https://arxiv.org/abs/1904.01416 under CC BY-NC-SA 4.0.
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mIoU of only 19.2%. The MinkowskiNet (Jia and Leibe, 2021) 
method, which applies dynamic graph convolution to process point 
cloud data with multi-scale convolution operations, increases the 
mIoU to 63.9%. The Cylinder3D (Zhu et al., 2021) method, which 
maps point cloud data into cylindrical space and processes it using 
3D convolutional neural networks (CNNs), further improves mIoU 
to 67.9%, demonstrating good robustness for large-scale scenes. 
SPVCNN (Tang et  al., 2020), which employs spherical pyramid 
pooling to aggregate local features and combines multi-level 
convolution operations for global feature extraction, achieves an 
mIoU of 70.4% and effectively handles complex point cloud shapes.

To ensure our comparison encompasses the most recent 
advancements, we  benchmark our results against the official 
SemanticKITTI leaderboard (access date: May 2024). The 
top-performing published method on the leaderboard is 
Cylinder3D-MT (Zhu et  al., 2021), which achieves 72.9% 
mIoU. Furthermore, the leading methods (including unpublished 

entries) have pushed the performance boundary to between 74.1 and 
76.9% mIoU, primarily through model ensembles and extensive test-
time augmentations.

In this competitive context, the RWAFormer method proposed in 
this article achieves a notably high mIoU of 75.3%. It is important to 
emphasize that while the top leaderboard entries (76.9% mIoU) employ 
computationally expensive strategies unsuitable for real-time applications, 
our method establishes this competitive result as a single model without 
any ensemble or complex test-time tricks. Compared to the strongest 
published single-model method (Cylinder3D-MT, 72.9%), RWAFormer 
improves the overall mIoU by 2.4% and accuracy (Acc) by 1.7%, 
demonstrating the effectiveness of our architectural innovation.

It also achieves competitive results in specific categories such as 
roads (94.6%), vehicles (93.8%), and buildings (90.5%), as shown in 
Table 2.

Our method achieves a mIoU of 75.3% (representing a 4.9–56.1% 
relative improvement) while operating at 2.6–3.8 × lower FLOPs than 

TABLE 1  Experimental results on the SemanticKITTI task.

Method mIoU (%) Acc (%) FLOPs (G)

PointNet++ 19.2 77.3 1.68

MinkuNet 63.9 91.7 36.2

Cylinder3D 67.9 91.5 158.4

SPVCNN 70.4 91.6 62.7

Cylinder3D-MT 72.9 92.8 -

SOTA (range) SemanticKITTI Dataset Leaderboard (2024) 74.1–76.9 93.6–95.1 -

Ours 75.3 94.5 41.3

Bold values indicate the optimal results.

TABLE 2  IoU (%) results for each category on the Semantickitti dataset.

Class PointNet++ MinkuNet Cylinder3D SPVCNN Cylinder3D-MT Ours

car 53.7 81.8 96.4 95.9 97.2 93.8

bicycle 1.9 18.5 43.2 12.9 49.5 47.3

motorcycle 0.2 17.9 65.2 55.7 70.1 67.4

truck 0.9 13.4 82.6 63.6 85.3 65.5

bus 0.2 14.0 59.1 47.9 62.8 25.7

person 0.9 20.1 73.6 63.3 76.2 66.1

bicyclist 1.0 25.1 88.2 79.7 90.5 77.6

motorcyclist 0.0 3.9 0.0 0.0 0.0 0.0

road 72.0 88.6 94.2 93.2 95.1 94.6

parking 18.7 45.8 44.2 45.2 48.9 46.5

sidewalk 41.8 67.6 80.9 80.1 83.2 81.9

other-ground 5.6 17.7 0.4 1.0 3.2 2.5

building 62.3 73.7 88.7 90.6 91.8 90.5

Fence 16.9 41.1 50.4 62.3 65.7 55.1

vegetation 46.5 71.8 87.6 87.2 89.3 88.7

trunk 13.8 35.8 67.8 65.8 71.5 69.5

terrain 30.0 60.2 73.4 71.9 76.8 77.5

pole 6.0 20.2 65.9 63.9 68.4 64.4

traffic-sign 8.9 26.3 52.3 48.4 56.1 50.9

Bold values indicate the optimal results.
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state-of-the-art (SOTA) approaches. This “optimal performance with 
moderate computation” characteristic makes it particularly suitable 
for resource-constrained autonomous driving scenarios.

As shown in Table 2, the detailed per-category IoU results 
provide further insights into the strengths of our approach. When 
compared with the current best published method 
Cylinder3D-MT, our RWAFormer demonstrates competitive or 
superior performance on multiple categories, particularly in 
recognizing thin structures (e.g., bicycle, motorcycle) and ground 
elements (e.g., road, parking, sidewalk, terrain). This can 
be attributed to our radial window attention mechanism, which 
better captures long-range dependencies and fine-grained 
features critical for these challenging categories. The performance 
comparison confirms that our method achieves a more balanced 
performance profile across categories with a simpler and more 
efficient architecture.

As shown in Figure 11, different colors represent different 
segmentation labels, and distant objects with sparse point cloud 
distribution are highlighted with blue boxes. The brown box is a 
zoomed-in display of the blue box, and the last two columns are 
a plot of the difference from the true value, with incorrectly 
segmented points labelled in red and correct ones in black. 
We visually compare the optimal model (i.e., SPVCNN) with the 
RWAFormer model proposed in this paper. It is clear from the 
figure that there are fewer incorrectly segmented points than 
SPVCNN using our proposed RWAFormer model, which has a 
higher accuracy for sparse long-range object recognition.

3.4.2 Experiments on the Nuscenes task
To verify the generalization ability of RWAFormer, we conducted 

further experiments using the Nuscenes LiDAR road point cloud 
dataset. Table 3 compares the semantic segmentation results of several 
classic point cloud semantic segmentation networks with those of the 
RWAFormer model proposed in this paper.

To firmly establish the competitive standing of our work, 
we reference the official NuScenes LiDAR segmentation leaderboard 
(2024). The leading published method on this benchmark, 
LidarMultiNet (Li et al., 2022), reports a score of 80.6% mIoU. The 
current state-of-the-art, including unpublished entries that utilize 
ensembles, achieves between 81.5 and 83.1% mIoU.

Our RWAFormer model achieves 82.0% mIoU on this dataset. 
This result clearly outperforms the best previously published result 
(LidarMultiNet, 80.6% mIoU) by 1.4%. More importantly, our method 
achieves this as a single-model solution, while the top leaderboard 
entries rely on computationally prohibitive ensemble strategies. This 
consistent high performance across two distinct large-scale datasets 
underscores the robustness and effectiveness of our 
proposed architecture.

Experimental results show our approach attains 82.0% mIoU with 
merely 23.2G FLOPs on nuScenes 1.5–3.8 times more efficient than 
SOTA solutions, coupled with 4.6–56.8% relative accuracy gains, 
establishing substantial improvements over existing best methods.

The consistent superiority of RWAFormer across both 
SemanticKITTI and nuScenes datasets demonstrates its robust 
generalization capability. The performance gain is particularly 

Input Ground Truth SPVCNN Ours SPVCNN Ours

barrier bicycle truck car driveable surface manmade terrain sidewalk vegetation

FIGURE 11

Comparison of semantic segmentation results between SPVCNN and the proposed model on the SemanticKITTI task. Image reproduced with 
permission from Behley et al. (2019): https://arxiv.org/abs/1904.01416 under CC BY-NC-SA 4.0.

TABLE 3  Experimental results on the NuScenes task.

Method mIoU (%) Acc (%) FLOPs (G)

PointNet++ 25.2 83.3 0.71

MinkuNet 70.2 93.6 18.9

Cylinder3D 77.2 95.8 89.1

SPVCNN 77.4 95.6 34.6

LidarMultiNet 80.6 96.9 –

SOTA (range) NuScenes LiDAR Segmentation 

Leaderboard (2024)

81.5–83.1 97.1–97.6 –

Ours 82.0 97.4 23.2

Bold values indicate the optimal results.
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significant when compared to the best published methods on both 
benchmarks. Our radial window attention mechanism provides a 
more unified and efficient solution, enabling effective feature learning 
across diverse sensor configurations and urban environments. This 
demonstrates that our architectural innovation offers a superior 
balance between performance and practicality compared to 
existing approaches.

In addition, Figure 12 gives a comparison graph of the visual 
segmentation effect of the SPVCNN model, which has the best 
segmentation effect so far, with our proposed RWAFormer 
method, where different colors represent different segmentation 
labels, and the last two columns are the difference graphs from 
the real values, with the points that are incorrectly segmented 
marked in red and the correct ones marked in black. From the 
figure, we can see that our model segments more points correctly 
than SPVCNN, which can identify the category of the object 
more accurately and segment it completely, and the red box 

highlights the places where the segmentation effect 
contrasts significantly.

3.5 Ablation study

To verify the effectiveness of each module in the proposed 
RWAFormer method, we  conducted ablation experiments on the 
Semantichitti dataset. The experimental results are presented in 
Table 4.

Experiment 1 used the U-Net point cloud processing network 
architecture without incorporating the STFE and RWA modules. The 
road point cloud segmentation accuracy was the lowest at this stage, 
with an mIoU of 66.2% and an accuracy of 82.3%. This outcome 
indicates that U-Net may suffer from information loss when 
processing large 3D scenes due to excessive downsampling 
and pooling.

Ground Truth SPVCNN Ours SPVCNN Ours

barrier bicycle truck car driveable surface manmade terrain sidewalk vegetation

FIGURE 12

Comparison of visual segmentation results between SPVCNN and our proposed method on the NuScenes task. Image reproduced with permission 
from Behley et al. (2019): https://arxiv.org/abs/1904.01416 under CC BY-NC-SA 4.0.

TABLE 4  Ablation experiment results.

Experiment ID STFE RWA mIoU (%) Acc (%) Parameters

1 66.2 82.3 34.2M

2 √ 68.9 87.6 35.3M

3 √ 70.9 91.7 29.1M

4 √ √ 75.3 94.5 31.4M

Bold values indicate the optimal results.
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Experiment 2 introduced the STFE module, which improved 
mIoU and accuracy by 2.7 and 5.3%, respectively, with only a minor 
increase in parameters. This result demonstrates that the STFE module 
effectively handles sparse and spatially irregular point cloud data, 
efficiently extracting both local and global features relevant to road 
scenes. This capability enhances performance in road point cloud 
segmentation tasks, providing significant support for applications 
such as autonomous driving.

Experiment 3 added the RWA module, which captures global and 
local information in point cloud data through spherical convolution 
operations. It uses a skip attention mechanism to calculate self-attention, 
leveraging outputs from the MSA blocks of each layer to represent high 
correlations between ZMSAs and skipping MSA operations in subsequent 
Transformer layers. The parameter count decreased by 5.1 M to 29.1 M, 
while mIoU and accuracy improved by 4.7 and 9.4%, respectively. This 
demonstrates that RWA can effectively mitigate the adverse effects of the 
near-dense and far-sparse characteristics of road point cloud data on 
segmentation performance, reduce Transformer computations, and 
enhance segmentation efficiency.

Experiment 4 included both the RWA and STFE modules. 
Although the number of parameters was slightly higher than in 
Experiment 3, both mIoU and accuracy significantly improved. This 
indicates that combining RWA and STFE can enhance road point 
cloud segmentation accuracy with a relatively small increase 
in parameters.

To assess the effect of inserting the RWA module at different 
stages, we compared Experiment 1 and Experiment 3, confirming that 
introducing the RWA module was effective, with a 4.7% mIoU 
performance gain. This result highlights the benefits of aggregating 
length information using the radial window shape.

Additionally, we examined the effect of RWA insertion positions, as 
shown in Table 5. From Experiment 2 to Experiment 6, applying RWA 
to a single stage from Stage 1 to Stage 5 resulted in gradual performance 
improvements. In Experiment 6, inserting RWA in Stage 5 yielded a 2% 
mIoU performance gain, with negligible impact on inference time and 
model parameter count. Adding RWA to additional stages (Experiments 
7 to 10) resulted in continuous performance enhancement.

This ablation study indicates that we can balance performance and 
efficiency by choosing the stage for insertion. For efficiency, adding 
RWA to the latter stages may be  preferred, while for higher 
performance, incorporating it into more stages provides greater gains. 

In our experiments, we inserted RWA at the end of each encoding 
stage to achieve optimal performance.

4 Conclusion

This article thoroughly examines the distribution characteristics of 
LiDAR road point cloud data and introduces a road point cloud 
segmentation method named RWAFormer. This method features the 
STFE (Sparse Tensor Feature Extraction) module, which processes raw 
point clouds directly through continuous convolution operations, 
avoiding the need to convert data into dense voxel representations. This 
approach preserves the point cloud’s sparsity and efficiently handles 
sparse data. To enhance the model’s ability to capture features across 
various scales and positions and improve performance in road point 
cloud segmentation, this paper proposes a radial window attention 
strategy and develops the RWA (Radial Window Attention) module. This 
module allows sparse radar points that are far from the sensor to 
effectively aggregate crucial information from nearby dense points, 
compensating for information loss due to distance.

Despite the significant achievements of the RWAFormer proposed in 
this paper on LiDAR road point cloud segmentation tasks, there remain 
several issues that warrant further investigation and improvement. Future 
research directions could be explored from the following aspects:

	 1)	 While LiDAR point cloud data can provide rich three-dimensional 
geometric information, its performance may be limited under 
certain conditions (such as adverse weather or low-light 
conditions). Future research could investigate the fusion of LiDAR 
point cloud data with multi-modal data such as camera images 
and radar data to enhance the model’s robustness and 
segmentation accuracy in complex environments.

	 2)	 Current point cloud segmentation methods primarily rely on large 
amounts of annotated data for training, while the cost of 
annotating point cloud data is relatively high. Future exploration 
into self-supervised learning or weakly supervised learning 
methods could utilize unannotated or partially annotated data for 
model training, thereby reducing reliance on annotated data.

In conclusion, LiDAR road point cloud segmentation is a field with 
significant research value and application prospects. The study in this 

TABLE 5  Ablation experiments when inserting RWA modules into different stages.

Exp ID Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 mIoU (%) Parameters

1 70.9 29.1M

2 √ 71.7 29.1M

3 √ 71.7 29.1M

4 √ 71.8 29.3M

5 √ 72.4 30.0M

6 √ 72.5 30.0M

7 √ √ 72.1 29.2M

8 √ √ √ 72.6 29.4M

9 √ √ √ √ 73.1 30.3M

10 √ √ √ √ √ 75.3 31.4M

Bold values indicate the optimal results.
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paper provides an efficient and accurate solution for this field but leaves 
many questions that deserve further exploration. In the future, with the 
continuous development of deep learning technology and sensor 
technology, point cloud segmentation algorithms will play an even more 
crucial role in areas such as autonomous driving and 
intelligent transportation.
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