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Six variants associated with autism spectrum disorder (ASD) abnormally activate the
WASP-family Verprolin-homologous protein (WAVE) regulatory complex (WRC),
a critical regulator of actin dynamics. This abnormal activation may contribute to
the pathogenesis of this disorder. Using molecular dynamics (MD) simulations,
we recently investigated the structural dynamics of wild-type (WT) WRC and
R87C, A455P, and Q725R WRC disease-linked variants. Here, by extending MD
simulations to 1664M, E665K, and D724H WRC, we suggest that all of the mutations
weaken the interactions and affect intra-complex allosteric communication
between the WAVE1 active C-terminal region (ACR) and the rest of the complex.
This might contribute to an abnormal complex activation, a hallmark of WRC-
linked ASD. In addition, all mutants but 1664M destabilize the ACR V-helix and
increase the participation of ACR in large-scale movements. All these features
may also abnormally influence the inactive WRC toward a dysfunctional state.
We hypothesize that small-molecule ligands counteracting these effects may
help restore normal WRC regulation in ASD-related variants.

KEYWORDS

WAVE regulatory complex, neurodevelopmental disorder, autism spectrum disorder,
missense variants, molecular dynamics, allosteric analysis

1 Introduction

Autism spectrum disorder (ASD) is one of the most common neurodevelopmental
disorders (NDDs) in childhood, affecting approximately 1% of the population (Zeidan
et al., 2022). Individuals with ASD are enriched in de novo missense variants that disrupt
protein-protein interactions (PPIs), with estimates that up to 25% of PPIs are disrupted,
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and genes encoding proteins involved in disrupted PPIs are
correspondingly more readily identifiable as ASD risk genes (Chen
etal., 2018, 2020). One such gene (Fu et al., 2022; Xie et al., 2025a,
2025b), CYFIP2 (cytoplasmic FMRI-interacting protein 2),
encodes a subunit of the WAVE (WASP family verprolin-
homologous) regulatory complex (WRC) (Chen et al., 2010)
(Figure 1). This large hetero-pentameric complex comprises an
elongated, pseudo-symmetrical CYFIP1/2-NCKAP1 (non-catalytic
region of tyrosine Kinase Associated Protein 1) dimer and a trimer
of ABI1/2/3 (Abelson interactor 1/2/3), HSPC300 (hematopoietic
stem/progenitor cell protein 300), and WAVE1/2/3 proteins (Chen
etal., 2010) (Figure 1). Activation of WRC has been demonstrated
to regulate actin remodeling (Rottner et al., 2021), a process that
is critical for brain function and development, such as synapse
maturation and formation (De Rubeis et al., 2013; Davenport et al.,
2019). Under physiological conditions, WRC remains “inactive”
until it binds to cellular partners such as the GTPase Racl (Chen
et al.,, 2017). The latter activates the complex by releasing the
WAVEL active C-terminal region (ACR) without apparently
affecting the rest of the complex (Figure 1) (Ding et al., 2022).

Six CYFIP2 variants related to ASD (R87C, A455P, 1664M,
E665K, D724H, and Q725R) abnormally convert WRC from an
“inactive” state to an “active-like” state even when there is no binding
to cellular partners (Figure 1) (Schaks et al., 2020)". This abnormal
activation can alter the balance between excitatory and inhibitory,
spine morphology, and neuronal excitability, thus increasing the risk
of ASD and other NDDs (De Rubeis et al., 2013; Nakashima et al.,
2018; Zweier et al., 2019; Zhao and Guan, 2024). Previous all-atom
molecular dynamics (MD) studies from us have shown that an
internal variant (A455P) and two variants of the ACR/CYFIP2
interface (R87C and Q725R) similarly reduced ACR interactions with
the rest of the complex, although located in different regions
(Figure 1) (Xie et al., 2025b).

To complete this investigation, here we conducted the same MD
protocol on the WRC carrying the remaining CYFIP2 variants
(1664M, E665K, and D724H). We then compared the results of all
six variants to comprehensively study the impact of ASD-associated
variants on PPIs and structural dynamics of the WRC. This might
into ASD-associated WRC
dysfunctions and a rational basis for therapies that restore normal
WRC regulation.

provide mechanistic insights

2 Results

For each system, the final 1.5-ps equilibrated trajectories from
each of the three independent replicates were pooled for analysis,
yielding a total of 4.5-ps trajectories (more details in the Section
Materials and Methods and in Supplementary material). In no case

1 Other ASD-linked variants have been summarized in our previous work (Xie
et al., 2025a). Y108H in CYFIP2 increases Racl binding abnormally (Schaks
et al,, 2020), but it is unclear if the remaining variants also promote aberrant
WRC activation.
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was global unfolding observed (Supplementary Table S1 and
Supplementary Figures S1-S4)*.

2.1 Positions subject to mutations

In the WT complex, the residues of the mutant site are involved
in a series of interactions between subunits: (i) 1664 (CYFIP2) forms
van der Waals contacts with F157 and W161 (both in ACR), at times
of 99 and 94%, respectively (Figure 2A and Supplementary Table S2).
(ii) E665 (CYFIP2) forms a salt bridge with K164 (ACR) with an
occupancy of 53% (Figure 2B and Supplementary Table S2). (iii)
D724 (CYFIP2) forms a hydrogen bond with Q110 (WAVEI outside
the ACR) with 27% occupancy, and van der Waals contacts with
V531 (ACR) and L111 (WAVE1 outside the ACR), at times of 100 and
50% (Figure 2C and Supplementary Table S2). The variants (I664M,
E665K, and D724H) retain van der Waals contacts but disrupt
hydrogen bonds and salt bridges between subunits (Figures 2D-F
and Supplementary Table S2).

2.2 ACR/WRC interface contacts

Three variants similarly reduce ACR/WRC interactions [by 10 to
18% for the interface area; from 5 to 11% in the number of contacts
(Nc)] compared to the WT complex (Figures 3A,B), while changes to
other interfaces are smaller in comparison (interface area between
—13and —2% and Ncbetween —10 and +6%; Supplementary Figure S5).
Thus, all three variants reduce the stability of the ACR/WRC interface
(Figures 3A,B). However, they do not affect the overall stability of the
complex: Supplementary Figure S4 shows that the changes of radius
of gyration in variants range from —0.1 to 0.1% relative to the
WT complex.

2.3 ACR local disorder

The normalized distance fluctuation for residue i (NDF,) quantifies
how the i-th residue moves in coordination with the rest of the WRC
(Morra et al., 2012). Positive values of the differences in NDF, values
(ANDF;; variant minus WT) indicate an increase in local disorder,
while negative values suggest the opposite (Morra et al., 2014; Triveri
et al., 2023; Castelli et al., 2024; Frasnetti et al., 2024; Torielli et al.,
2025). Minor changes are observed in most ACR residues in the loops,
a5, and C-helices (JANDF, | < 0.1; Figures 3C-E). D724H and E665K
(Figures 3C,D) increase the propensity for uncoiling of the V-helix
segments (ANDEF, ranges from 0.12 to 0.30) compared to the WT
complex, with only one exception (E515; ANDF, =—0.12) in
E665K. In these two variants, some regions of the a6 helix become
more rigid. 1664M exerts a weaker effect than other variants
(Figure 3E) (Xie et al., 2025b): it destabilizes the a5 helix, stabilizes the
a6 helix, and has a mixed impact (both stabilizing and destabilizing)
on the V-helix (Figure 3E). Complex and variant-dependent changes

2 The WT, R87C, A455P, and Q725R WRC trajectories for analysis were taken

from our previous work (Xie et al., 2025b).
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The model is taken from our previous work (Xie et al., 2025b).

Architecture of WT WRC inactive form. The subunits (CYFIP2, purple; NCKAPL, blue; WAVEL, green; HSPC300, burnt orange; and ABI2, yellow) are
shown as surfaces except for ACR (cartoon), which consists of a5, a6, V-, and C-helices, A-loop, and connecting loops. The mutation sites discussed in
the text are shown as labeled spheres. The right-hand panel shows the 90° rotated view of the complex, emphasizing the buried location of the A455.

FIGURE 2

Alterations associated with 1664M (A, D), E665K (B, E), and D724H (C, F) in the chemical environments at the mutation sites. The structures of WT WRC,
obtained from our previous work (Xie et al., 2025b), and of the variants from MD simulations (see Methods in Supplementary material). CYFIP2 and
WAVEL1 are depicted as cartoons, colored purple and green, respectively. Mutated residues and contacting groups are represented as sticks. Hydrogen
bonds and the shortest van der Waals contact are indicated by black and red dashed lines, respectively.

o

/
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are observed in loop regions (Figures 3C-E). The rest of the WRC is
not significantly affected (Supplementary Figure S6). Our results
suggest that E665K and D724H commonly destabilize the V-helix
(Figures 3C,D), while I664M exerts a mild and mixed (both stabilizing
and destabilizing) effect (Figure 3E).

2.4 Large-scale movements

Dynamic cross-correlation analysis shows that three variants alter
the correlations between residue motions within the WRC, with
moderate consistency (Supplementary Figure S7). Pairwise
comparisons of variant-induced changes in motion correlation

matrices yield cosine similarities ranging from 0.43 to 0.63
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(Supplementary Table S3) and Spearman correlations ranging from
0.38 to 0.60 (Supplementary Table S4). Principal component analysis
(PCA) reveals that the three largest eigenvectors (PC1-PC3)
collectively account for approximately 50% of the total variance
(Supplementary Figure S8). PC1-PC3 of E665K and D724H variants
feature an increase in ACR contributions relative to the WT complex
(from 20 to 42 and 25%, respectively), while 1664M shows a smaller
decrease (15%)°. These results suggest that E665K and D724H variants
may promote ACR detachment by increasing its participation in large-
scale movements, whereas [664M does not.

3 The convergence of these results is affected by the timescale of the

simulations (6 ps). Consequently, we restrict our discussion to qualitative trends.
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1664M E665K D724H

Impact of 1664M, E665K, and D724H mutations on interactions between ACR and the rest of the WRC. (A) ACR/WRC interface areas. (B) Number of
contacts with heavy atoms within 5 A. (C—E) ANDF,; values for ACR residues. They range from —04 (blue) to +0.4 (red) for D724H and E665K and from
—0.2 (blue) to +0.2 (red) for 1664M. ACR is represented as a cartoon, while the rest is depicted as a purple surface. ANDF; data for the entire complex
are shown in Supplementary Figure S6. Data for WT WRC were obtained from our previous work (Xie et al., 2025b).

2.5 Allosteric analysis

Here, we calculate the allosteric score to quantify the contribution
of each residue i to the long-range communication within the
complex (AS; see details in Supplementary material) (Schneider and
Antes, 2022). The difference between the scores of the variant and
those of the WT, AAS; (variant minus WT), reflects the impact of the
variant on the allosteric pathways within the complex. A positive
AAS; indicates greater allosteric importance. Negative values indicate
the opposite effect (Schneider and Antes, 2022). In the WT complex,
we identify 50 allosteric hubs (AS; equal to or greater than half of the
maximum, 0.3): 28 in CYFIP2, 21 in NCKAPI, and 1 in HSPC300
(Figure 4A). Notably, all variants disrupt allosteric communication
within the complex (Figures 4B-G): 10, 11, 22, 25, 15, and 10
allosteric hubs show reduced allosteric importance (AAS; less than
—0.1) in variants R87C, A455P, 1664M, E665K, D724H, and Q725R,
respectively. In contrast, few hubs show an increased role (AAS;
greater than 0.1): 2, 0, 2, 2, 1, and 0 for the R87C, A455P, 1664M,
E665K, D724H, and Q725R variants, respectively. The remaining
hubs showed only minor variations (JAAS,| equal to or less than 0.1).
The common erosion of the allosteric role in hubs suggests that all
variants disrupt the long-range communication between the ACR
and the rest of the WRC (Figure 4). This implies that not only A455P
(Xie et al., 2025b), but all six variants could decrease ACR/WRC
interactions via allosteric changes.

3 Discussion

Disruption of ACR’s V-helix contacts with the rest of the
complex abnormally activates the WRC (Chen et al., 2010). Here,
we used molecular dynamics simulations to examine how
ASD-associated variants influence the structural dynamics of ACR,
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particularly those of the V-helix. All mutations are located in
CYFIP2: five are at the interface with ACR, and one (A455P) is
buried internally (Figure 1). Our main findings are as follows
(Supplementary Table S5)*

(1) None of the variants show global unfolding or loss of complex
stability (Supplementary Figures $4,S5).

(2) All of the mutations weaken ACR/WRC contacts relative to the
WT complex, regardless of their location or chemical
properties (Figures 1, 3A,B). The mutations disrupt long-range
communication between the ACR (including its V-helix) and
the rest of the WRC (Figure 4), which may promote aberrant
ACR detachment and WRC activation. A455P does so through
allosteric effects (Figure 4C), while the others do so by
disrupting interfacial hydrogen bonds and/or salt bridges at
their respective sites (Figure 2 and Supplementary Table S2).
These findings are consistent with the ~50% reduction in
CYFIP2 binding to ACR’s V-helix, C-helix, and A-loop for
R87C WRC (Nakashima et al., 2018).

(3) Most variants increase their propensity for unwinding in the
V-helix relative to WT (Figures 3C,D). This may indicate a
process leading to ACR detachment (Chen et al., 2010).
However, 1664M exerts a weaker mixed effect (both stabilizing
and destabilizing; see Figure 3E). Additionally, 1664M decreases
ACR participation in large-scale movements compared to W'T,
while the others show an opposite trend.

4 Except for the allosteric analysis, the findings of WT, R87C, A455P, and
Q725R WRC discussed here were obtained from our previous work (Xie
et al,, 2025b).
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interactions via allosteric changes.
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Effect of the six ASD-linked variants on allosteric communication within the complex. (A) Allosteric scores (AS)) for WT WRC residues, ranging from 0
(blue) to 0.6 (red). Residues with AS; greater than 0.3 are designated as allosteric hubs, illustrated by spheres. The residue index of allosteric hubs is
labeled as follows: purple for CYFIP2, blue for NCKAP1, and orange for HSPC300. (B—G) AAS, for allosteric hubs in variants, ranging from —0.5 (blue) to
0.5 (red). The WRC is shown as a cartoon. The suppression of allosteric hubs in all variants indicates that all variants, not only A455P, weaken ACR/WRC

In summary, we propose that ASD-linked mutations facilitate
ACR detachment (particularly the V-helix) by weakening its contacts
with the rest of the complex and eroding long-range allosteric
communication within the complex. Additionally, all but I664M may
favor ACR detachment by increasing V-helix disorder in ACR and
enlarging ACR participation in large-scale movements. The present
findings are consistent with those of previous in vivo experiments,
which demonstrated that these six mutations cause aberrant
lamellipodia without the binding of their cellular partners (Schaks
et al, 2020). The lamellipodia are cellular hallmarks of ACR
detachment and WRC activation (Schaks et al., 2018).

Unfortunately, no ligand or therapeutic strategy exists yet for the
WRC dysfunction associated with ASD-linked mutations. In an effort
at identifying new therapeutic agents counteracting the deranged
effect of the disease, we hypothesize here that ligands stabilizing the
ACR/WRC interface or reconstructing allosteric communication hold
the potential to restore normal WRC regulation in these ASD-linked
variants. The ACR/CYFIP2 interface is a promising target region for
ligands that stabilize ACR/WRC interactions, since CYFIP2 is the
primary interactor within the WRC (Figure 1). In vivo studies could
determine whether such ligand candidates restore the function of the

Frontiers in Computational Neuroscience

WT, namely the formation of lamellipodia only after Racl binding
(Schaks et al., 2020).

4 Materials and methods

Details of model construction and property calculations are
described in the Supplementary material.

4.1 Molecular dynamics simulation

MD simulations were performed using AMBER 22 software (Case
etal., 2005). Long-range electrostatic interactions were calculated using
the Particle Mesh Ewald (PME) method (Darden et al., 1993). A cutoff
distance of 10 A was applied to short-range non-bonded interactions,
which include Lennard-Jones forces and the short-range component
of the PME calculation. Periodic boundary conditions were applied.
The systems underwent three successive minimization cycles: (i)
10,000 steep descent steps followed by 10,000 conjugate gradient
minimization steps with a 100 kcal/(mol-A?) constraint applied to the
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entire solute; (ii) the same protocol with the same constraints, but
applied only to heavy atoms; and (iii) the same protocol without any
constraints. The systems were then heated from 100 K to 310 K in
0.5 ns using Langevin dynamics (Lemons and Gythiel, 1997). A
constraint of 100 kcal/(mol-A?) was applied to the heavy atoms. The
systems were then subjected to another 0.5ns at 310 K without
restrictions. An integration time interval of 1fs was used during
heating. Subsequently, each system was subjected to three independent
isobaric-isothermal (NPT) simulations lasting 2 ps, each started at
different velocities. The temperature (310 K) and pressure (1 atm) were
maintained using Langevin dynamics (Lemons and Gythiel, 1997) and
a Monte Carlo barostat (Aqvist et al., 2004), respectively. A time step
of 2 fs was used during NPT simulations. The trajectories were output
at a frequency of 10 ps. The data for the MD simulations, including the
input files, parameter files, and analysis scripts, can be found in the
Zenodo repository: https://zenodo.org/record/15481836.
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