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1 Introduction

Time delays in signal propagation represent a fundamental aspect of neuronal
communication that profoundly influences information processing and learning (Gerstner
et al., 1993, 1996, 1997). Synaptic delays, in particular, arise from the physical constraints
of axonal conduction and dendritic integration. Dendritic and axonal delays within and
between brain areas can vary significantly and are not necessarily identical. For instance,
dendritic delays tend to be typically shorter than axonal delays, ranging from sub-
millisecond to a few milliseconds (Agmon-Snir and Segev, 1993; Schierwagen and Claus,
2001). Axonal delays, on the other hand, can range from a few milliseconds in thalamo-
cortical and cortico-tectal connections (Cleland et al., 1976; Swadlow and Weyand, 1987),
to as much as tens of milliseconds in cortico-cortical connections (Swadlow, 1990; Stoelzel
et al., 2017).

One key aspect of these delays pertains to the modulation of neuronal dynamics. Delays
introduce temporal offsets in signal arrival, affecting synchronization and oscillation
patterns within neuronal ensembles, as demonstrated in several influential theoretical and
computational studies (Ernst et al., 1995; Crook et al., 1997; Ermentrout and Kopell, 1998;
Yeung and Strogatz, 1999; Roxin et al., 2005; DHuys et al., 2008; Gilson et al., 2010;
Popovych et al., 2011). In plastic networks, however, delays play a dual role: they modulate
the temporal dynamics of neuronal activity while simultaneously shaping the adaptive
processes underlying neuroplasticity (Gerstner et al., 1993; Debanne et al., 1998; Senn et al.,
2002; Morrison et al., 2008; Madadi Asl et al., 2017, 2018b,c).

In oscillatory networks, short delays may decouple synchronous firing, promoting
diverse activity states (Lubenov and Siapas, 2008; Kozloski and Cecchi, 2010; Knoblauch
et al., 2012; Babadi and Abbott, 2013), whereas longer delays can enhance inter-
regional synchronization, facilitating coherent information processing (Knoblauch and
Sommer, 2003, 2004). In this way, dendritic and axonal delays may determine phase
relationships between neurons. This temporal structuring is crucial for phenomena
like gamma oscillations in cortical networks, where precise timing underlies sensory
binding and attention mechanisms (Engel and Singer, 2001; Buzsáki and Wang, 2012;
Madadi Asl and Valizadeh, 2025). By incorporating these delays, computational models
can replicate a rich dynamical repertoire, such as multistable attractors where networks
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switch between qualitatively different dynamical states based on
initial conditions (Kim et al., 1997; Ernst et al., 1998; Madadi Asl
et al., 2018a). Such models underscore how delays act as a
regulatory mechanism, enabling flexible network reconfiguration
as well as transitions between different states (Khoshkhou and
Montakhab, 2019; Madadi Asl and Ramezani Akbarabadi, 2023).

Traditional models sometimes simplify or neglect these delays
to reduce computational complexity, but their presence is crucial
for capturing realistic brain behaviors. For instance, in networks
governed by spike-timing-dependent plasticity (STDP) (Gerstner
et al., 1996; Markram et al., 1997b; Bi and Poo, 1998), where the
synaptic weights are adjusted based on the precise timing of pre-
and postsynaptic spikes, delays can alter the effective time lags
between spike pairs. This ultimately leads to emergent connectivity
patterns that differ markedly from delay-free scenarios (Lubenov
and Siapas, 2008; Kozloski and Cecchi, 2010; Knoblauch et al.,
2012; Babadi and Abbott, 2013; Madadi Asl et al., 2017), revealing
how delay-induced temporal mismatches contribute to learning,
memory, and adaptive responses.

More precisely, in STDP frameworks, the outcome of
synaptic modification, i.e., long-term depression (LTD) or long-
term potentiation (LTP), hinges on the relative spike timing
of neuron pairs (Markram et al., 1997b; Bi and Poo, 1998).
However, delays modify this timing at the synaptic site, potentially
reversing or amplifying expected changes. Analytical studies of two
reciprocally coupled neurons demonstrate that the combination
of dendritic and axonal delays can shift spike ordering, leading
to unconventional STDP outcomes like mutual potentiation or
depression in loops (Senn et al., 2002; Morrison et al., 2008;
Babadi and Abbott, 2013). This modulation is particularly evident
in plastic networks subjected to pair-based STDP, where delays
facilitate the preservation of strong bidirectional connections or
loop elimination (Madadi Asl et al., 2017, 2018a). These effects scale
up in larger recurrent networks, fostering motifs such as strong
bidirectional loops when dendritic delays exceed axonal ones, or
loosely connected structures in the reverse scenario (Madadi Asl
et al., 2017, 2018a).

In this piece, I discuss a crucial aspect of modeling plastic
networks, i.e., the differentiation between dendritic and axonal
delays. These delays must be taken into account separately in
computational models because they contribute uniquely to signal
propagation and plasticity. In fact, their sum modulates neuronal
dynamics as the total delay affecting signal transmission from
the presynaptic neuron to the postsynaptic cell, while their
difference determines the time lag perceived at the synapse,
influencing the efficacy of synaptic modifications. Incorporating
distinct dendritic and axonal delays into computational models
significantly improves simulation methodologies. For instance, by
accurately representing these delays, models can better replicate
the temporal precision observed in biological neuronal networks,
leading to more realistic simulations of learning and memory
processes. This approach also enables computational studies to
explore how disruptions in delay dynamics—such as those caused
by neurological disorders—affect brain structure and function.
For example, increased axonal delays in conditions like multiple
sclerosis, due to demyelination, leads to a reduction of conduction
velocity of signals along the axon (Waxman, 2006). This can

disrupt reliable signal transmission, leading to impaired oscillatory
responses (Lefebvre et al., 2025). Models that account for these
delays can advance our understanding of brain function and refine
tools for studying complex neuronal systems.

2 Incorporating delays into
computational models

2.1 Delays change spike timings perceived
at the synapse

As illustrated in Figure 1A, consider that the presynaptic
neuron (1) is connected to the postsynaptic neuron (2),
characterized by the coupling weight w21. If the presynaptic neuron
fires at tpre = t1 and the postsynaptic neuron fires at tpost = t2, both
the forward signal propagated along the presynaptic axon (denoted
by the green arrow) and the backward signal backpropagated
through the dendrite of the postsynaptic neuron (denoted by the
red arrow) are essential for inducing synaptic modifications in the
form of LTD or LTP (also see Figure 1B) (Sjöström and Häusser,
2006; Clopath and Gerstner, 2010; Froemke et al., 2010). However,
when delays are taken into account, the spike times arriving at
the synapse (Figures 1C1–C3, solid markers) may significantly
differ from those initiated at the cell bodies (Figures 1C1–C3,
dashed markers), depending on the trade-off between dendritic and
axonal delays. Specifically, as shown in Figures 1C1–C3, when a
presynaptic spike is generated at t1, it must first travel down the
axon before reaching the synapse, thus arriving at t′1 = t1 + τa,
where τa is the axonal delay. By the same token, a postsynaptic spike
generated at t2 must backpropagate through the dendrite before
arriving at the synapse at t′2 = t2 + τd, where τd is the dendritic
delay. Consequently, this delay-induced time shift in spikes arrival
may significantly affect the outcome of timing-dependent learning
paradigms such as STDP (Gerstner et al., 1993; Senn et al., 2002;
Morrison et al., 2008; Madadi Asl et al., 2017), as discussed below.

2.2 Delay-induced wiring patterns in
plastic networks

In plastic networks, the synaptic weights (w) between neurons
are continually modified based on neuronal activity. Consequently,
in the presence of STDP, the synaptic weight between the pre- and
postsynaptic neurons in Figure 1A is updated at each step of the
simulation (w → w + �w) according to the following temporally
asymmetric learning window (Bi and Poo, 1998), as depicted in
Figure 1B:

�w =
⎧⎨
⎩

A+ exp−
|�t|
τ+ , �t ≥ 0

−A− exp−
|�t|
τ− , �t < 0

(1)

where �w is the synaptic change, and �t = tpost − tpre =
t2 − t1 represents the non-delayed time lag between the spikes
of the presynaptic neuron (1) and the postsynaptic neuron (2).
The parameters A+(A−) and τ+(τ−) denote the learning rate and
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FIGURE 1

Dendritic and axonal delays change spike timings arriving at the synapse. (A) Representation of a neuron pair comprising a presynaptic neuron (1)
connected to a postsynaptic neuron (2) with the coupling weight w21. The presynaptic neuron fires at tpre = t1, and the postsynaptic neuron fires at
tpost = t2. These spike times arrive at the synapse at t′1 = t1 + τa, after axonal delay (τa) in the forward direction (green arrow), and at t′2 = t2 + τd, after
dendritic delay (τd) in the backward direction (red arrow). (B) Schematics of a generic, temporally asymmetric STDP learning window where
�t = tpost − tpre = t2 − t1 is the non-delayed time lag between the pre- and postsynaptic spike pairs, and �w is the resultant synaptic change.
According to Equation 1, pre-before-post spike pairing (�t > 0) induces LTP (�w > 0; blue), whereas post-before-pre pairing (�t < 0) leads to LTD
(�w < 0; red). (C1–C3) Green and red dashed (solid) markers indicate the non-delayed, t1 and t2 (delayed, t′1 and t′2) forward spike time of the
presynaptic neuron and the time of backpropagated potential of the postsynaptic neuron at the synaptic site, respectively. The spike times of the
pre- and postsynaptic neurons are separated by a small, non-delayed time lag �t such that pre-before-post ordering of spikes leads to the
potentiation of synapse. Taking into account the effect of dendritic and axonal delays, the delayed time lag perceived at the synapse is �t′ = �t + ξ ,
where ξ = τd − τa. (C1) When τd > τa, the pre-before-post orderings of delayed and non-delayed spikes are identical and, therefore, the synapse is
potentiated. (C2) When τd < τa, the backpropagated potential of the postsynaptic neuron (solid red) arrives sooner than the forward spike time of the
presynaptic neuron (solid green) at the synapse. Thus, according to the STDP rule, the synapse undergoes depression. (C3) If τd = τa, the situation
resembles the non-delayed scenario since ξ = 0, and �t′ = �t, and the synapse is potentiated due to the pre-before-post spike timing.

the effective time window for synaptic potentiation (depression),
respectively. The generic form of the STDP learning window is
characterized by a greater potentiation amplitude (A+ > A−)
and longer depression time constant (τ+ < τ−) such that
A+τ+ < A−τ− (Bi and Poo, 1998). For biological reasons, synaptic
weights in computer simulations are typically constrained within
the range wmin < w < wmax by imposing soft or hard bound
saturation constraints to ensure they remain within their allowed
limits (Gerstner et al., 1996; Kempter et al., 1999; Song et al., 2000;
Van Rossum et al., 2000; Rubin et al., 2001; Gütig et al., 2003).
According to the STDP rule in Equation 1, when the presynaptic
spikes precedes the postsynaptic spike the synapses is strengthened
(�t > 0 → �w > 0; blue), whereas the synapse is weakened in
the reverse scenario (�t < 0 → �w < 0; red) (Markram et al.,
1997b). In the absence of delays, when the spike times of the pres-
and postsynaptic neurons are separated by a small, non-delayed
time lag (as shown by the dashed markers in Figures 1C1–C3),
the pre-before-post ordering of spikes leads to the potentiation of
synapse.

When dendritic and axonal delays come to play, the perceived
time lag at the synapse (�t′) is not typically the same as the
non-delayed time lag (�t). This difference can be formulated as

follows:

�t′ = t′2 − t′1 = (t2 + τd) − (t1 + τa),

= (t2 − t1) + (τd − τa) = �t + ξ ,
(2)

where ξ = τd − τa, is the difference between dendritic and axonal
delays (Madadi Asl et al., 2017), which alters the time lag used by the
STDP rule, directly impacting synaptic weight evolution. Therefore,
generally, �t in Equation 1 can be replaced by �t′. In the absence
of delays, ξ = 0 and �t is recovered. It is important to note that this
differs from the sum of dendritic and axonal delays (τ = τd + τa),
which indicates the total delay needed for signals to be transmitted
from presynaptic neurons to postsynaptic cells. Theoretically, in the
presence of delays three different scenarios can occur:

• τd > τa: As illustrated in Figure 1C1, the pre-before-post
orderings of delayed and non-delayed spikes are identical
and, therefore, the synapse is potentiated but with a different
magnitude compared to the non-delayed case, since |�t′| >

|�t|.
• τd < τa: In this case, the backpropagated potential of the

postsynaptic neuron (Figure 1C2, solid red) arrives sooner
than the spike time of the presynaptic neuron (Figure 1C2,

Frontiers in Computational Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2025.1700144
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Madadi Asl 10.3389/fncom.2025.1700144

solid green) at the synapse. This leads to the depression of the
synapse based on the STDP rule in Equation 1.

• τd = τa: If dendritic and axonal delays are identical in a special
case, as shown in Figure 1C3, the delayed and non-delayed
time lags are also identical (�t′ = �t), and the synapse is
potentiated due to the pre-before-post spike timing.

These arguments demonstrate that a synapse shared between
two neurons (as in Figure 1A) can be strengthened or weakened,
depending on the values of dendritic and axonal delays.
Intriguingly, in situations where the two neurons are reciprocally
connected to each other even more complex connectivity scenarios
can occur, including the emergence of strong bidirectional loops
(where both the outgoing and incoming synapses are potentiated),
loosely connected structures (where both synapses are depressed),
and unidirectional connections (where one synapses is potentiated
and the other is depressed) (Madadi Asl et al., 2017). STDP is a
local learning rule in which synaptic modifications depend solely on
the joint pre- and postsynaptic activity of neurons (Gerstner et al.,
1996; Markram et al., 1997b; Bi and Poo, 1998). However, these
two-neuron connectivity patterns can build up and significantly
influence the global dynamics of large networks of neurons, leading
to the emergence of qualitatively different wiring patterns, as shown
previousely (Izhikevich et al., 2004; Morrison et al., 2007; Gilson
et al., 2009, 2010).

2.3 Delays shape the coevolution of
neuronal and synaptic dynamics

In computational models of plastic neuronal networks, at least
two sets of equations are present: one set describes neuronal
dynamics, as in Equation 3a, such as the evolution of the membrane
potential of a neuron (v) or, more generally, the phase dynamics of
neuronal oscillators, while the other describes synaptic dynamics,
as in Equation 3b, specifically the time evolution of synaptic
weights (w). A crucial point is, then, the need to differentiate
between dendritic and axonal delays, treating them as distinct
components of synaptic delay rather than combining them into a
single parameter. First, their sum represents the total delay (τ =
τd + τa) required for signal transmission between neurons, which
modifies neuronal dynamics in Equation 3a. Second, as argued
above, their difference (ξ = τd − τa) represents the delayed
spike times of neurons arriving at the synapse which modifies
the synaptic dynamics in Equation 3a, determining the emergent
connectivity patterns due to plasticity. This leads to the coevolution
of the neuronal and synaptic dynamics (Aoki and Aoyagi, 2009;
Madadi Asl et al., 2018c), which can be representatively shown as
follows:

dv
dt

= f (w, τd + τa), (3a)

dw
dt

= g(�t, τd − τa), (3b)

where I have deliberately omitted other functionals to emphasize
the crucial role of dendritic and axonal delays. Given the initial
conditions including the synaptic weights and delays, Equation 3a
determines the time course of neuronal activity, as reflected in their

spike trains. These spike times are then input into Equation 3b,
which calculates the activity-dependent changes in the synaptic
weights. These updated synaptic weights are subsequently fed
back into Equation 3a to refine the activity dynamics, creating a
continuous feedback loop simultaneously shaping neuronal and
synaptic dynamics.

3 Discussion

A critical emphasis in modeling plastic networks is the necessity
to discriminate between dendritic and axonal delays, incorporating
them separately rather than as a lumped parameter. In this piece,
I clarified the dual purpose of dendritic and axonal delays in
computational modeling of neuroplasticity. The first facet of this
dual role pertains to the modulation of neuronal dynamics. The
sum of dendritic and axonal delays represents the total delay
(denoted as τ = τd + τa) required for the transmission of
signals from presynaptic neurons to the postsynaptic cells. This
parameter modifies neuronal dynamics by introducing temporal
offsets in the arrival of the synaptic currents. Transitioning to the
synaptic domain, delays exert a profound influence on plasticity
mechanisms, forming the second pillar of their dual role. By
changing the spike timings arriving at the synapse, dendritic and
axonal delays can shape different connectivity patterns in plastic
networks. The difference between dendritic and axonal delays
(denoted as ξ = τd − τa) plays a key role in this process. This
dual functionality not only refines our simulations but also deepens
insights into brain processes which crucially depend on temporal
resolutions.

Beyond basic dynamics, the inclusion of discriminated delays
enhances our understanding of brain function by bridging gaps
between theoretical models and empirical observations. Failing
to distinguish these can lead to inaccurate predictions; for
instance, classic STDP models without delays might overlook
the emergence of bidirectional motifs prevalent in cortical
networks (Abbott and Nelson, 2000; Song and Abbott, 2001;
Lubenov and Siapas, 2008; Kozloski and Cecchi, 2010; Knoblauch
et al., 2012; Babadi and Abbott, 2013), leading to discrepancies
with experimental data (Markram et al., 1997a; Song et al.,
2005). By integrating delays, it is possible to uncover how
temporal propagation shapes attractor landscapes - stable states
that networks converge to - determining basins of attraction
influenced by delay configurations (Ernst et al., 1995; Crook et al.,
1997; Ermentrout and Kopell, 1998; Yeung and Strogatz, 1999;
Roxin et al., 2005; DHuys et al., 2008). In computational setups,
separate parameterization allows for exploring how imbalances,
such as prolonged axonal delays in demyelinating diseases, affect
plasticity, revealing vulnerabilities in network stability (Lefebvre
et al., 2025).

On the methodological front, incorporating dendritic and
axonal delays crucially improves simulation methodologies in
computational neuroscience. Traditional approaches, often reliant
on instantaneous transmission, yield oversimplified dynamics that
diverge from biological realism. However, biologically plausible
models can benefit from delay inclusion by generating emergent
patterns like frustrated antiphase states or preserved recurrent
loops (Esfahani et al., 2016; Madadi Asl et al., 2017). Moreover,
parameterizing dendritic and axonal delays separately allows for
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sensitivity analyses, identifying critical thresholds where small
changes in ξ precipitate qualitative shifts in network behavior, akin
to delay-induced bifurcations in dynamical systems.

This insight extends to computational models with precise time
delay representations, providing a framework for hypothesizing
therapeutic interventions, such as targeted stimulation to restore
optimal timing and shift network dynamics from diseased states
to healthy attractors. These advancements are applicable, for
instance, to theory-based brain stimulation paradigms where
the time-delayed onset of stimuli enables stimulation of two or
multiple neuronal ensembles, allowing for precise targeting of
specific subsets of neurons with a time delay (Tass, 2003; Tass
and Majtanik, 2006; Schmalz and Kumar, 2019; Madadi Asl et al.,
2023). In fact, as shown computationally, adjusting stimulation
timing to compensate for abnormal neuronal synchronization
can desynchronize aberrant oscillations and rewire pathological
connectivity patterns, for example, in Parkinson’s disease
models (Ebert et al., 2014; Manos et al., 2021; Asadi et al., 2024;
Madadi Asl and Lea-Carnall, 2025), potentially integrating both
short- and long-term synaptic plasticity dynamics during and after
electrical stimulation (Madadi Asl and Lankarany, 2025).

Ultimately, multiple plasticity mechanisms at different levels
may regulate neuronal and synaptic dynamics in the brain (Zenke
et al., 2015). While STDP, a form of Hebbian learning that
emphasizes the precise timing of neuronal spikes, is significant,
it is crucial to consider other plasticity models influenced by
temporal delays. For example, structural plasticity does not
strictly conform to Hebbian or anti-Hebbian paradigms (Butz
et al., 2009). However, certain forms of structural plasticity
may be phenomenologically linked to Hebbian plasticity due
to their activity dependence (Fauth and Tetzlaff, 2016). This
relationship implies a close interplay between STDP and structural
plasticity, where temporal delays in neuronal signaling can
significantly influence these processes, potentially altering the
timing and effectiveness of synaptic modifications. Delays might
affect the synchronization of neuronal firing, thereby impacting
the conditions under which structural plasticity is activated,
as demonstrated by computational studies employing integrated
models of structural plasticity and STDP (Deger et al., 2012,
2018). At another level, synaptic rewiring induced by STDP
necessitates stabilization through compensatory mechanisms, such
as activity-dependent homeostatic plasticity (Turrigiano and
Nelson, 2004; Turrigiano, 2008, 2012). The dynamic adaptation
of network activity patterns is closely linked to the STDP
rule (Izhikevich and Desai, 2003), as homeostatic plasticity can
modulate synaptic strengths in response to changes in overall
neuronal activity. Importantly, temporal delays can crucially
influence the effectiveness of homeostatic adjustments, as they
may disrupt the timely feedback necessary for these mechanisms
to respond appropriately, potentially leading to imbalances in
synaptic strengths and affecting network stability. Furthermore,
learning models such as reinforcement learning with modulated
STDP (Florian, 2007; Farries and Fairhall, 2007), which focus on the
role of reward signals in shaping behavior and synaptic strengths,
operate under different principles and can be affected by delays in
feedback. Additionally, rate-based learning models, which depend
on the average firing rates of neurons rather than precise spike
timing, may also exhibit sensitivity to temporal dynamics (Burkitt

et al., 2004; Gilson et al., 2011). Exploring these diverse learning
models in the context of delays could provide valuable insights
into the broader mechanisms of synaptic plasticity and learning in
neuronal networks, highlighting how different strategies adapt to
the complexities of temporal interactions.

In conclusion, the dual role of delays in neuronal and synaptic
dynamics underscores their critical position in computational
models of neuroplasticity. By simultaneously modulating neuronal
spike timings perceived at the synaptic site and the strength
of synapses, dendritic and axonal delays orchestrate the brain’s
symphony of activity, while their discrimination ensures models
reflect biological intricacies. This approach not only enriches our
comprehension of brain function, but also propels simulation
methodologies toward greater accuracy and applicability.
Discriminating dendritic and axonal delays in computational
models will unlock deeper insights into the neuronal code, paving
the way for a more realistic and biologically plausible modeling of
neuronal and synaptic dynamics.
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