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Considering biological constraints in artificial neural networks has led to dramatic

improvements in performance. Nevertheless, to date, the positivity of long-

range signals in the cortex has not been shown to yield improvements. While

Non-negative matrix factorization (NMF) captures biological constraints of

positive long-range interactions, deep convolutional neural networks with NMF

modules do notmatch the performance of conventional neural networks (CNNs)

of a similar size. This work shows that introducing intermediate modules that

combine the NMF’s positive activities, analogous to the processing in cortical

columns, leads to improved performance on benchmark data that exceeds that

of vanilla deep convolutional networks. This demonstrates that including positive

long-range signaling together with local interactions of both signs in analogy

to cortical hyper-columns has the potential to enhance the performance of

deep networks.

KEYWORDS

deep neuronal networks, non-negative matrix factorization (NMF), back-propagation
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1 Introduction

The success of modern neural networks has often come from incorporating principles

inspired by their biological role model: the brain. A well-known example is the

introduction of convolutional layers (Lecun et al., 1998), which mirror the organization of

the visual cortex in biological brains. Neurons in the visual cortex have localized receptive

fields, meaning they respond stereotypically to stimuli in specific regions of the visual field

(Hubel and Wiesel, 1962). This principle, first adopted by Fukushima (1980), now enables

convolutional neural networks (CNNs) to efficiently detect patterns and hierarchies in

images. This biologically inspired design has been crucial in advancing the performance

of machine learning models in computer vision (Lecun et al., 1998).

Despite the success of incorporating some biological principles, several key constraints

in biological neural systems remain underexplored in machine learning. For example,

Dale’s Law, one of the core principles of neurobiology, dictates that neurons are either

excitatory or inhibitory but not both (Strata and Harvey, 1999).
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Another often overlooked biological aspect is the nature of

long-range connections between cortical areas, such as those

between the primary visual cortex (V1) and higher visual

areas. In biological neural systems, long-range connections are

predominantly excitatory, in contradiction with usual deep CNNs.

In the cortex, the excitatory postsynaptic currents (EPSCs) are

also received by inhibitory neurons, which only locally modulate

pyramidal (Pyr) cells through inhibitory postsynaptic currents

(IPSCs) (Yang et al., 2013), typically in a different layer. This

configuration implies that while interactions of both signs are

essential for modulating neural responses and shaping information

processing locally, the primary flow of information across layers

and areas is governed by excitatory or "positive" connections.

Our work also builds on the hypothesis that receptive fields

in the visual cortex develop through sparse coding mechanisms—

where neural activity is distributed such that only a small

subset of neurons responds to a given stimulus (Olshausen

and Field, 2006). Non-negative matrix factorization (NMF)

(Lee and Seung, 1999, 2000) provides an elegant mathematical

framework that simultaneously satisfies two key biological

constraints: the positivity of long-range neural interactions and

the tendency toward sparse representations. For instance, Hoyer

(2003) demonstrated that such sparse coding mechanisms could be

effectively modeled using NMF. By imposing both non-negativity

and sparseness constraints, this work showed that NMF can learn

parts-based, interpretable representations similar to themechanism

yielding receptive fields first proposed in Olshausen and Field

(1996).

While Non-negative Matrix Factorization (NMF) is a powerful

unsupervised learning technique used in various fields, including

signal processing, computer vision, and data mining (Lee and

Seung, 1999), applying it effectively to supervised tasks like

computer vision presents significant challenges. When used in

isolation, NMF typically cannot match the performance of modern

deep learning architectures such as CNNs. Previous works have

attempted to bridge this gap by combining NMFwith deep learning

approaches.

For instance, Geng et al. (2021) proposed using an NMF layer

on top of a convolutional model. However, such implementations

often reinitialize and retrain the NMF components from scratch

after each forward pass, leading to computational inefficiency

and potential instability. In contrast, our approach implements a

hierarchical NMF architecture where the NMF weights are treated

as learnable parameters and optimized through back-propagation

alongside the network’s other parameters. This enables the NMF

components to adapt continuously to the task requirements

while maintaining their biological constraints. Missing in current

networks using NMF are local interactions that include inhibition,

an important property of cortical microcircuits (Martin, 1991;

Callaway, 1998).

After briefly reviewing NMF, we introduce a convolutional

network architecture where we exchange CNNmodules with NMF

modules.We then propose a simple but novel extension of theNMF

network where subsequent 1 × 1 convolutional layers are inserted.

Thereby, we realize general local interactions among the features

of the NMF modules in analogy to cortical hyper-columns, which

makes these networks a step toward more biologically realistic

models. When optimized with back-propagation (both the 1 × 1

CNNs and the NMFmodules), we show that these networks exhibit

performances on benchmark data sets that can exceed the values of

pure CNNs with the same architecture.

Furthermore, another aspect of the NMF framework is

its potential compatibility with spiking neural networks. Since

the iterative updates of the NMF modules can be naturally

mapped to event-based computations, the model can, in principle,

be converted into a spiking implementation (Rotermund and

Pawelzik, 2019). Spiking neural networks are currently being

actively investigated due to their unique properties, such as energy

efficiency and their ability to perform online learning in dynamic

environments (Pfeiffer and Pfeil, 2018; Lobo et al., 2020). This

connection highlights an additional avenue where NMF-based

architectures may provide insights into biologically plausible and

resource-efficient neural computation.

Lastly, it is important to note that the primary goal of this

work is not to establish a new state-of-the-art model in image

classification. Instead, we aim to demonstrate that biologically

inspired constraints—such as positive long-range interactions—

can be integrated into deep neural networks while maintaining

competitive performance at a comparable architectural scale.

2 Methods

2.1 Non-negative matrix factorization

Non-negative Matrix Factorization (NMF) (Lee and Seung,

1999, 2000) is a technique used to decompose a non-negative

matrix X of M input vectors into two lower-dimensional non-

negative matricesW and H, such that X ≈ WH, where X ∈ R
M×S
+ ,

W ∈ R
S×I
+ , andH ∈ R

M×I
+ . The goal is to minimize the discrepancy

between X and the productWH while ensuring that bothW andH

remain non-negative. It is often expressed as:

min
W,H
‖X−WH‖ subject to (W)sj = :Wsj ≥ 0, (H)µj = : hµj ≥ 0

(1)

minimizing the Kullback-Leibler divergence defined as:

D(X||WH) =
∑

µ,s

Xµs ln
Xµs

∑

j Wsjhµj

(2)

leads to the following multiplicative update rules forW andH (Lee

and Seung, 2000):

hµi ← hµi

∑

s

WsiXµs
∑

j Wsjhµj
(3)

Wsi ←Wsi

∑

µ

hµiXµs
∑

j Wsjhµj
(4)

Wsi ←
Wsi

∑

j Wji
(5)
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2.2 Deep non-negative matrix factorization
in a neural network

In this work, we extend NMF to a deep learning setting

(Chen et al., 2022) by integrating it into a network architecture.

Specifically, we treat the factorized matrices W and H as

components of a neural network layer. The matrix W is

used as the weight matrix of the layer, while the matrix

H represents the activation values (neuron outputs) of the

layer.

The challenge lies in adapting the unsupervised nature of

NMF (Lee and Seung, 1999) for use in a multi-layer supervised

context, such as classification, where the learned weights must

optimize a specific task-related objective function (Ciampiconi

et al., 2023; Tian et al., 2022). In classical NMF, both W

and H are updated iteratively using, for example, multiplicative

update rules, following the Expectation-Maximization algorithm,

to minimize the factorization error. However, when applying

NMF within a neural network, directly updating W in an

unsupervised manner can lead to weights that are not aligned

with the task objective (e.g., classification loss). To address this,

we decouple the update process for W from the factorization

step.

Instead of updatingW using the NMF update rules, we keepW

fixed during the forward pass, using it to calculate the activations

H for each layer. The neuron values at each iteration, on the other

hand, follow a similar approach to the NMF update rule. For one

pattern, the general update rule for h in a hidden layer at each

iteration t is formulated as:

hi(t) = hi(t − 1)+ εhi(t − 1)

(

∑

s

XsWs,i
∑

i Ws,ihi(t − 1)
− 1

)

(6)

Where Xs denotes the input andWs,i is the weight matrix. Here

we omitted the index µ, representing different samples of data, for

simplicity. Unless said otherwise, ε is set to 1, which leads to an

equation similar to Equation 3. During each forward pass at each

layer, we first initialize h values to hi(0) =
1
I , where I is the number

of neurons, and we repeat the update rule (Equation 6) for N times

until getting the output values of the layer.

In this setting, the factorization is applied repeatedly to the

input activations during each forward pass, where the iterative

update of H is part of the network dynamics. It is worth noting

that this differs fundamentally from approaches such as Low-

Rank Adaptation (LoRA) (Cer et al., 2017) that decompose

weight matrices once for parameter reduction or fine-tuning; in

our case, the decomposition operates on input representations

and is tightly coupled with the learning dynamics of the entire

network.

2.3 Approximated back-propagation

A significant practical challenge in implementing NMF-

based neural architectures is the computational overhead

of back-propagation through iterative steps. Conventional

NMF requires N iterations (N usually ranging from 15 to 100

iterations) in the forward pass, and automatic differentiation

frameworks like PyTorch must store gradients for each

iteration to compute the backward pass accurately. This

creates substantial memory requirements and computational

bottlenecks, especially for deep networks or large-scale

applications.

We address this limitation by using an efficient approximation

to the back-propagation procedure that requires only a single

step, eliminating the need to save and back-propagate through

all intermediate iterations performed during the forward pass.

This method, introduced in Rotermund and Pawelzik (2019),

dramatically reduces both memory consumption and computation

time while maintaining comparable accuracy to full back-

propagation through all iterations. For convenience, we here

only sketch the basic idea underlying this approach but refer to

Rotermund and Pawelzik (2019) for the detailed derivations. Back-

propagation requires the partial derivatives ∂hi
∂xs

and ∂hi
∂Ws,j

. These

derivatives can be obtained from the h-dynamics for a single

pattern x:

h′i = hi + εhi

(

∑

s

xsWs,i

Rs
− 1

)

(7)

= hi + δhi, (8)

where Rs : =
∑

i Ws,ihi.

If we would change x → x + 1x we would obtain a

deterministic change of the output in one step of this dynamics:

h′i = hi + εhi

(

∑

s

(xs +1xs)Ws,i

Rs
− 1

)

(9)

= hi + εhi

(

∑

s

xsWs,i

Rs
+
∑

s

1xsWs,i

Rs
− 1

)

(10)

= hi + δhi +1hi. (11)

That is, we now have the changes of the original δh depending

on changes of the input 1x:

1hi = εhi

(

∑

s

1xsWs,i

Rs

)

. (12)

This formula preserves normalization of h since
∑

i 1hi = 0.

By comparing with the total differential, we obtain

∂h′i
∂xs
∝ hi

Ws,i

Rs
. (13)

Following the same logic, we have

h′i = hi + ε

(

∑

s
xs(Ws,i+1Ws,i)
∑

j(Ws,j+1Ws,j)hj
− 1

)

(14)

≃ hi + δhi + εhi

(

∑

s
xs(Ws,i+1Ws,i)

Rs

−
∑

s

xs(Ws,i+1Ws,i)(
∑

j 1Ws,jhj)

R2s

)

(15)

≈ hi + δhi + εhi

(

∑

s
xs1Ws,i

Rs
−
∑

s

xs(Ws,i)(
∑

j 1Ws,jhj)

R2s

)

. (16)
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FIGURE 1

The di�erence between our approximative approach and the naive back-propagation. Since NMF is an iterative algorithm, the output of each layer is

computed after several iterations of the update rule. To apply the vanilla back-propagation, all these intermediate steps are required to be saved to

the memory during the forward pass, which is time- and memory-ine�cient. Instead, our proposed approximated back-propagation can compute

the corresponding error of a lower layer in one step, only utilizing the output of the layer.

FIGURE 2

Prediction error and computational cost during the back-propagation between CNN, NMF, and NMF with approximate back-propagation (ours). The

comparison spans three metrics: back-propagation memory consumption (left), back-propagation computation time (middle), and classification

error (right). Memory and time values are shown relative to the CNN baseline.

which (again via the total differential) leads to

∂h′i
∂Ws,j

= hi
xs

Rs

(

δi,j −
Ws,ihj

Rs

)

. (17)

These derivatives are then used to change the weights according

to

δωsi =
hiXs

(Rs)2



8
L+1
i Rs −

∑

j

Wsjhj8
L+1
j



 (18)

where

8L
s =

∑

i

8
L+1
i

Wsihi
∑

j Wsjhj
(19)

is the back-propagated error 8
L+1
i . Applying this method only to

the final states h(N) of each layer is provably sufficient. Importantly,

all layers in the network are optimized jointly through back-

propagation; the approximation only concerns the iterative updates

within each NMF module, not a restriction to optimizing the last

layer. Figure 1 illustrates how this approach reduces the amount of

computations.
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2.3.1 Updating the weight matrix
To make the weight matrix W more suitable for classification,

we update W through back-propagation using an optimizer

(e.g., Adam). This ensures that W is optimized based on the

task’s objective function rather than simply minimizing the

reconstruction error from NMF. However, a challenge arises

as gradient-based updates do not inherently preserve the non-

negativity and normalization properties ofW. Since NMF requires

that W remains non-negative and normalized, we cannot directly

update W with the raw gradient values. Instead, we introduce a

trainable auxiliary matrix U, which has the same dimensions asW,

and at each network update, the optimizer will update U using the

error calculated in the Equation 18. Based on this parameter, during

each forward pass, the weightWs,i is obtained based on:

Ws,i =
|Us,i|

∑S
k |Uk,i|

(20)

which applies two main transformations:

1. Non-negativity constraint: We enforce non-negativity by

setting W = |U|, where |U| represents the element-wise

absolute value of U.

2. Normalization: We normalize each row of W to ensure the

sum of each row is equal to 1, ensuring that W remains a valid

factorization matrix.

The transformation ensures that the weight matrix W retains

the necessary properties for NMF while still being adaptable for

learning tasks.

Our empirical evaluation confirms the computational efficiency

of the proposed approximate back-propagation (BP) method while

maintaining performance. Figure 2 compares three architectures: a

normal convolutional network, an NMF-based network with full

BP via Torch Autograd, and our NMF network with approximate

BP. While the standard NMF implementation shows considerable

computational costs, requiring significantly more memory and

time compared to the CNN baseline, our approximation method

dramatically reduces these overheads. Specifically, while achieving

comparable classification accuracy to both baseline models, our

approximate BP approach maintains the same memory footprint

as the CNN model while operating the BP ≈ 29 times faster than

the standard NMF.

These results demonstrate that our approximation strategy

successfully addresses the primary computational bottleneck of

NMF-based networks while preserving their advantages. This

computational innovation makes NMF-based neural architectures

more practical for real-world applications, allowing us to

leverage their biological plausibility advantages without prohibitive

computational costs.

2.4 Proposed methods

2.4.1 Convolutional NMF
In conventional NMF (Lee and Seung, 2000), the input

is reconstructed using a linear transformation of the latent

values, implemented through regular matrix multiplication, which

corresponds to a dense layer in a neural network architecture.

However, this linear transformation can be replaced with other

linear operations while preserving the core principles of NMF.

In our approach, we substitute the standard matrix

multiplication with a convolution operation, resulting in

Convolutional NMF (CNMF). This adaptation maintains the

mathematical foundations of NMF while leveraging the spatial

locality benefits of convolutions. As demonstrated in our previous

work (Rotermund et al., 2023), CNMF can be effectively trained

using back-propagation and exhibits remarkable noise robustness

when compared to conventional CNNs.

While CNMF shows superior performance in noisy conditions,

on clean data, it does not consistently outperform standard

CNNs with comparable architectures. To address this limitation

and further enhance the capabilities of our CNMF approach,

we propose an extended architecture incorporating additional

components as described in the following sections.

2.4.2 1 × 1 convolutions
The non-negative constraint in NMF layers causes the network

to represent data as a combination of basic building blocks

(or “parts”) that are added together, rather than canceled out.

This approach excels at identifying the key components within

input data. However, because NMF is fundamentally a linear

method, it struggles to capture complex patterns that involve non-

linear relationships between features. Our proposed architecture

combines NMF convolutional layers with a layer of a convolutional

neural network with 1 × 1 kernels, providing several key

advantages. The subsequent 1 × 1 convolutional layer, with its

ability to use negative weights, remixes these features by allowing

for subtraction and adjustment, which NMF alone cannot achieve

since it can only add up contributions. This layer processes the data

locally, providing detailed modulations of the more global patterns

identified by the NMF layer.

A diagram of this module is provided in Figure 3e. We

compare this model to our previous CNMF module (Figure 3c)

from Rotermund et al. (2023) and its corresponding CNN model

(Figure 3b). We also compare this model to a similar CNN

architecture shown in section (Figure 3d) of the figure.

2.5 Model architecture

The architecture of all proposed models consists of a sequence

of four processing blocks as illustrated in Figure 3a. Each block

incorporates either a CNN or CNMF module, which may be

followed by a 1 × 1 convolutional layer for local feature mixing.

After each layer, we apply batch normalization followed by ReLU

activation.

Figure 4 provides a detailed representation of our CNMF+ 1×1

convolution implementation (shown in Figure 3e), highlighting

how the architecture progressively transforms the input through

successive layers. For optimization purposes, we omit batch

normalization in the final two blocks.
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FIGURE 3

Model architecture of all investigated networks. (a) Overall model architecture. All three convolutional layers consist of one of the modules listed on

the right. (b) Module used in the baseline CNN model. (c) Module used in the CNMF model. (d) Module used in the CNN + 1×1 Conv model. (e)

Module used in the CNMF + 1×1 Conv model.

FIGURE 4

Network architecture of the proposed method for the CNMF + 1× 1 Convolution. The network consists of four sequential blocks, each containing a

CNMF module followed by a 1 × 1 convolutional layer. The architecture progressively reduces spatial dimensions from 28 × 28 in the input to 1 × 1

while transforming feature channels (32→ 64→ 96→ 10→ output). The output of the last 1 × 1 convolutional layer is used for the classification.

For simplicity, activations and batch normalization layers are omitted from the figure.
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2.5.1 Loss function
To optimize our models, we employed a composite loss

function that combines cross-entropy (CE) loss with mean squared

error (MSE). The loss function is defined as:

L = −
∑

i

yi log(ŷi)+ α
∑

i

(yi − ŷi)
2 (21)

where yi represents the true label (one-hot encoded), ŷi represents

the predicted probability distribution over classes, and α =

0.5 is a weighting factor that balances the contribution of each

component. While cross-entropy loss effectively optimizes for

correct classification by heavily penalizing errors in the predicted

class, it primarily focuses on the correct label and may not

fully capture the relationship between incorrect predictions. By

incorporating MSE with a smaller weight (α = 0.5), we introduce

an additional regularizing term that considers the full distribution

of predictions across all classes. This combined loss function

led to consistent performance improvements across all model

architectures in our experiments.

2.6 Implementation

We evaluated the performance of our proposed model on the

CIFAR-10 dataset, comparing it to a CNN and NMF model similar

to those described in Rotermund et al. (2023). All models were

trained using the Adam optimizer with an initial learning rate of

0.001. To ensure optimal convergence, we implemented a learning

rate reduction strategy where the rate was decreased by a factor

of 10 whenever the validation loss plateaued for 10 consecutive

epochs. The training was terminated either when the learning rate

dropped below 10−9 or when reaching the maximum limit of

500 epochs, whichever occurred first. For data augmentation, we

applied random horizontal flips and color jitter to the training

images. We also apply a random crop on the input image from

32×32 to 28×28. All hyperparameters were kept consistent across

different model architectures to ensure a fair comparison. The

models were implemented in PyTorch and trained on an NVIDIA

GeForce RTX 4090 GPU.

The source containing all models and training setups can be

found under: https://github.com/mahbodnr/deep_nmf.

3 Results

Figure 5 displays the classification accuracy achieved by all

models on the CIFAR-10 dataset alongside their parameter counts.

The results demonstrate that augmenting the CNMF model with

1× 1 convolutions substantially improves performance, allowing it

to significantly outperform the baseline CNNmodel of comparable

architecture and size.

3.1 E�ect of NMF compared to CNN in the
network

To investigate whether the performance improvements in our

model stem primarily from the CNN components or if the NMF

modules play a crucial role, we conducted an extensive analysis

across different model configurations. We generated 100 different

model variants by systematically adjusting the network architecture

in two ways: first, by scaling the number of neurons in each layer

(multiplying by factors of 2, 4, and 8), and second, by varying the

number of groups in both NMF and CNN layers (using 1, 2, 4, 8,

and 16 groups). When we increase the number of groups in a layer,

we divide its channels into separate groups that process the input

independently, thereby reducing the number of parameters while

maintaining the same input and output dimensions. This approach

allowed us to explore models with different ratios of NMF to CNN

parameters while maintaining the overall architectural structure.

The results of this analysis are presented in Figure 6. Figure 6a

shows model accuracy vs. total parameter count, with the color

intensity indicating the ratio of CNN to NMF parameters. The

Pareto front, which represents the best-performing models for a

given parameter budget, shows no systematic bias toward models

with higher CNN parameter ratios. This suggests that simply

increasing the proportion of CNN parameters does not lead to

optimal performance. Figure 6b provides a complementary view,

plotting accuracy against the ratio of CNN to NMF parameters,

with color intensity representing the total parameter count. The

distribution of high-performingmodels appears roughly symmetric

around a balanced ratio, indicating that the best results are achieved

when neither component dominates the network. Notably, the

highest accuracy (indicated by the red dashed line) is achieved with

a nearly balanced distribution of parameters between CNN and

NMF components.

These findings strongly suggest that the NMF modules are

not merely a simple non-linear transformation block but are

essential contributors to the network’s performance. The optimal

performance achieved with a balanced parameter distribution

indicates a synergistic relationship between the NMF and CNN

components, where each plays a crucial and complementary role

in the network’s processing capabilities.

4 Discussion and limitations

Our work demonstrates that incorporating biologically-

inspired computational principles into deep neural networks

can enhance their performance while maintaining biological

plausibility. By combining NMF with local mixing through 1 × 1

convolutions, we achieved classification accuracy that matches or

exceeds standard CNNs on the CIFAR-10 dataset, while preserving

key biological constraints such as positive long-range interactions

and local inhibitory processing. Further experiments on the

FashionMNIST (Xiao et al., 2017) and CIFAR-100 datasets confirm

these conclusions. A report for these experiments can be found in

Appendix A.

It is worth mentioning that there remains a clear performance

gap between the models evaluated in this work and the current

state of the art. For instance, EfficientNetV2 models have been

reported to achieve up to 99.1% accuracy on CIFAR-10 (Tan and

Le, 2021). However, the main goal of our study is not to compete

with such models in terms of benchmark accuracy. Rather, our

intention is to demonstrate that biologically inspired constraints,

such as positive long-range interactions, can be incorporated
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FIGURE 5

Classification accuracy of models on the CIFAR-10 dataset. Error bars represent the standard deviation across five models, and the plotted values

correspond to their average performance over di�erent random initializations.

into deep learning architectures while still achieving competitive

performance compared to conventional models of similar scale.

Finally, it should be emphasized that state-of-the-art approaches

are typically trained at a much larger scale and under substantially

different conditions. For example, the EfficientNetV2-L model

contains 121M parameters (compared to <170k parameters in

our proposed models) and benefits from extensive preprocessing,

aggressive data augmentation, and pre-training on much larger

datasets. Exploring whether our biologically grounded models can

remain competitive under such large-scale settings is an important

question, but it lies beyond the scope of the present work.

4.1 Bridging biological and artificial neural
computation

A fundamental distinction between biological neural

computation and artificial neural networks lies in their

computational dynamics. In biological systems, most neural

processing occurs through implicit layers with complex recurrent

interactions and iterative refinement of neural responses. This

is evident in the cortical microcircuits, where information is

processed through multiple recursive loops between different

neural populations before a stable representation emerges. In

contrast, artificial neural networks predominantly rely on explicit

feedforward computation, which, while computationally efficient,

diverges significantly from biological reality.

Our approach bridges this gap by implementing NMF as

an implicit layer that converges through iterative updates, more

closely mimicking biological neural dynamics. While conventional

feedforward networks like CNNs have dominated deep learning

due to their computational efficiency and straightforward

optimization, our results suggest that biologically inspired implicit

computation can be equally effective when properly implemented.

To make this happen, the key innovation in our work is the

combination of iterative NMF processing with local feature

mixing, which parallels the interaction between long-range

excitatory connections and local inhibitory circuits in cortical

processing.

Moreover, the demonstrated benefits of interleaving

non-negative convolution with local mixing can be directly

transferred to the Spike-by-Spike (SbS) model that we have

developed in previous work (Rotermund and Pawelzik, 2019).

SbS implements the same NMF principles in a spike-based

framework, which is both more biologically plausible and

potentially far more energy-efficient. Moreover, SbS has already

been shown to maintain high robustness under noise, and we

expect that integrating the present CNMF insights will further

enhance its performance (Nevarez et al., 2021; Najafi et al.,

2023). Exploring this extension will be a focus of our future

work.

4.2 Analysis of feature selection in NMF
networks

To understand the limitations of hierarchical NMF networks

trained with unsupervised learning rules and subsequently
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FIGURE 6

Analysis of model performance across di�erent parameter distributions between CNN and NMF components. (a) Test accuracy vs. total parameter

count for 100 model variants, with color intensity indicating the ratio of CNN to NMF parameters (darker blue = higher CNN/CNMF ratio).

(Continued)
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FIGURE 6 (Continued)

The red line shows the Pareto front of optimal-performing models. (b) Test accuracy vs. CNN/CNMF parameter ratio, with color intensity indicating

total parameter count (darker green = more parameters). The red dashed line marks the ratio achieving the highest accuracy. Models belonging to

the Pareto front are indicated with a red edge. Both plots were generated by varying the number of neurons (×1, ×2, ×4, ×8) and groups (1, 2, 4, 8,

16) in the base architecture.

fine-tuned for classification, it is helpful to decompose the input

data into five distinct components:

• CD: Class-relevant Dominant statistical features.

• CN: Class-relevant Non-dominant statistical features.

• UD: class-Unrelated Dominant statistical features.

• UN: class-Unrelated Non-dominant statistical features.

• N: Noise.

The key distinction between back-propagation and NMF’s

local learning lies in their feature selection characteristics. Back-

propagation, guided by the classification objective, effectively

extracts both dominant and non-dominant class-relevant

features (CD and CN). In contrast, NMF’s unsupervised learning

rule, which optimizes for reconstruction based on statistical

prominence, primarily captures dominant features regardless of

their relevance to classification (CD and UD).

This fundamental difference creates a critical issue: when

using NMF’s local learning rules instead of back-propagation,

the non-dominant but class-relevant features (CN) are

progressively filtered out as information flows through the

network layers. By the time the signal reaches the output layer,

these crucial classification features have been lost, despite their

importance for the discrimination task. This explains the reduced

classification performance observed in networks trained with

NMF’s unsupervised learning rules. For example, a model with

a similar architecture to our CNMF model will achieve 32%

accuracy when the NMF modules are trained only based on the

local learning rule on the same task (as opposed to the 81.5% that

is achieved by using backpropagation).

This analysis highlights why our approach of using supervised

gradient descent to update the weights while maintaining

NMF’s non-negativity constraints provides superior classification

performance.
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