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Interleaving cortex-analog
mixing improves deep
non-negative matrix
factorization networks

Mahbod Nouri'*, David Rotermund?, Alberto Garcia-Ortiz? and
Klaus R. Pawelzik!

Institute for Theoretical Physics, University of Bremen, Bremen, Germany, ?Institute of
Electrodynamics and Microelectronics (ITEM.ids), University of Bremen, Bremen, Germany

Considering biological constraints in artificial neural networks has led to dramatic
improvements in performance. Nevertheless, to date, the positivity of long-
range signals in the cortex has not been shown to yield improvements. While
Non-negative matrix factorization (NMF) captures biological constraints of
positive long-range interactions, deep convolutional neural networks with NMF
modules do not match the performance of conventional neural networks (CNNs)
of a similar size. This work shows that introducing intermediate modules that
combine the NMF's positive activities, analogous to the processing in cortical
columns, leads to improved performance on benchmark data that exceeds that
of vanilla deep convolutional networks. This demonstrates that including positive
long-range signaling together with local interactions of both signs in analogy
to cortical hyper-columns has the potential to enhance the performance of
deep networks.

KEYWORDS

deep neuronal networks, non-negative matrix factorization (NMF), back-propagation
error learning, cortical column, convolutional neural networks (CNN)

1 Introduction

The success of modern neural networks has often come from incorporating principles
inspired by their biological role model: the brain. A well-known example is the
introduction of convolutional layers (Lecun et al., 1998), which mirror the organization of
the visual cortex in biological brains. Neurons in the visual cortex have localized receptive
fields, meaning they respond stereotypically to stimuli in specific regions of the visual field
(Hubel and Wiesel, 1962). This principle, first adopted by Fukushima (1980), now enables
convolutional neural networks (CNNs) to efficiently detect patterns and hierarchies in
images. This biologically inspired design has been crucial in advancing the performance
of machine learning models in computer vision (Lecun et al., 1998).

Despite the success of incorporating some biological principles, several key constraints
in biological neural systems remain underexplored in machine learning. For example,
Dale’s Law, one of the core principles of neurobiology, dictates that neurons are either
excitatory or inhibitory but not both (Strata and Harvey, 1999).
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Another often overlooked biological aspect is the nature of
long-range connections between cortical areas, such as those
between the primary visual cortex (V1) and higher visual
areas. In biological neural systems, long-range connections are
predominantly excitatory, in contradiction with usual deep CNNG.
In the cortex, the excitatory postsynaptic currents (EPSCs) are
also received by inhibitory neurons, which only locally modulate
pyramidal (Pyr) cells through inhibitory postsynaptic currents
(IPSCs) (Yang et al., 2013), typically in a different layer. This
configuration implies that while interactions of both signs are
essential for modulating neural responses and shaping information
processing locally, the primary flow of information across layers
and areas is governed by excitatory or "positive" connections.

Our work also builds on the hypothesis that receptive fields
in the visual cortex develop through sparse coding mechanisms—
where neural activity is distributed such that only a small
subset of neurons responds to a given stimulus (Olshausen
and Field, 2006). Non-negative matrix factorization (NMF)
(Lee and Seung, 1999, 2000) provides an elegant mathematical
framework that simultaneously satisfies two key biological
constraints: the positivity of long-range neural interactions and
the tendency toward sparse representations. For instance, Hoyer
(2003) demonstrated that such sparse coding mechanisms could be
effectively modeled using NMF. By imposing both non-negativity
and sparseness constraints, this work showed that NMF can learn
parts-based, interpretable representations similar to the mechanism
yielding receptive fields first proposed in Olshausen and Field
(1996).

While Non-negative Matrix Factorization (NMF) is a powerful
unsupervised learning technique used in various fields, including
signal processing, computer vision, and data mining (Lee and
Seung, 1999), applying it effectively to supervised tasks like
computer vision presents significant challenges. When used in
isolation, NMF typically cannot match the performance of modern
deep learning architectures such as CNNs. Previous works have
attempted to bridge this gap by combining NMF with deep learning
approaches.

For instance, Geng et al. (2021) proposed using an NMF layer
on top of a convolutional model. However, such implementations
often reinitialize and retrain the NMF components from scratch
after each forward pass, leading to computational inefficiency
and potential instability. In contrast, our approach implements a
hierarchical NMF architecture where the NMF weights are treated
as learnable parameters and optimized through back-propagation
alongside the network’s other parameters. This enables the NMF
components to adapt continuously to the task requirements
while maintaining their biological constraints. Missing in current
networks using NMF are local interactions that include inhibition,
an important property of cortical microcircuits (Martin, 1991;
Callaway, 1998).

After briefly reviewing NMF, we introduce a convolutional
network architecture where we exchange CNN modules with NMF
modules. We then propose a simple but novel extension of the NMF
network where subsequent 1 x 1 convolutional layers are inserted.
Thereby, we realize general local interactions among the features
of the NMF modules in analogy to cortical hyper-columns, which
makes these networks a step toward more biologically realistic
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models. When optimized with back-propagation (both the 1 x 1
CNNs and the NMF modules), we show that these networks exhibit
performances on benchmark data sets that can exceed the values of
pure CNN s with the same architecture.

Furthermore, another aspect of the NMF framework is
its potential compatibility with spiking neural networks. Since
the iterative updates of the NMF modules can be naturally
mapped to event-based computations, the model can, in principle,
be converted into a spiking implementation (Rotermund and
Pawelzik, 2019). Spiking neural networks are currently being
actively investigated due to their unique properties, such as energy
efficiency and their ability to perform online learning in dynamic
environments (Pfeiffer and Pfeil, 2018; Lobo et al., 2020). This
connection highlights an additional avenue where NMF-based
architectures may provide insights into biologically plausible and
resource-efficient neural computation.

Lastly, it is important to note that the primary goal of this
work is not to establish a new state-of-the-art model in image
classification. Instead, we aim to demonstrate that biologically
inspired constraints—such as positive long-range interactions—
can be integrated into deep neural networks while maintaining
competitive performance at a comparable architectural scale.

2 Methods

2.1 Non-negative matrix factorization

Non-negative Matrix Factorization (NMF) (Lee and Seung,
1999, 2000) is a technique used to decompose a non-negative
matrix X of M input vectors into two lower-dimensional non-
negative matrices W and H, such that X ~ WH, where X € Rﬂ‘f XS,
W e R$!, and H € R The goal is to minimize the discrepancy
between X and the product WH while ensuring that both W and H
remain non-negative. It is often expressed as:

in | X—WH bject t W) =:Ws >0, (H)yi=:h,, >0
IV{I/,II{IlH [ subjectto ( )S] 5ji = ( )p,] i =

(1)
minimizing the Kullback-Leibler divergence defined as:
D(X||WH) = j{:)< In — s 2)
= s
s Zj Wthﬂj

leads to the following multiplicative update rules for W and H (Lee
and Seung, 2000):

WSiX/LS
hlti <~ h,“‘ ~ (3)
5 Zj Wijhyj
h iX s
Wsi < Wy Ls 4)
Xu: Zj Wiy
W
Wy« = ©)

Zj Wii
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2.2 Deep non-negative matrix factorization
in a neural network

In this work, we extend NMF to a deep learning setting
(Chen et al., 2022) by integrating it into a network architecture.
Specifically, we treat the factorized matrices W and H as
components of a neural network layer. The matrix W is
used as the weight matrix of the layer, while the matrix
H represents the activation values (neuron outputs) of the
layer.

The challenge lies in adapting the unsupervised nature of
NMEF (Lee and Seung, 1999) for use in a multi-layer supervised
context, such as classification, where the learned weights must
optimize a specific task-related objective function (Ciampiconi
et al, 2023; Tian et al, 2022). In classical NME both W
and H are updated iteratively using, for example, multiplicative
update rules, following the Expectation-Maximization algorithm,
to minimize the factorization error. However, when applying
NMEF within a neural network, directly updating W in an
unsupervised manner can lead to weights that are not aligned
with the task objective (e.g., classification loss). To address this,
we decouple the update process for W from the factorization
step.

Instead of updating W using the NMF update rules, we keep W
fixed during the forward pass, using it to calculate the activations
H for each layer. The neuron values at each iteration, on the other
hand, follow a similar approach to the NMF update rule. For one
pattern, the general update rule for h in a hidden layer at each

1) (6)

Where X; denotes the input and Wy ; is the weight matrix. Here

iteration t is formulated as:

XsWsi
hi(t) = hilt — 1) + ehi(t — 1) (Z Wit —1)

we omitted the index , representing different samples of data, for
simplicity. Unless said otherwise, ¢ is set to 1, which leads to an
equation similar to Equation 3. During each forward pass at each
layer, we first initialize h values to h;(0) = %, where I is the number
of neurons, and we repeat the update rule (Equation 6) for N times
until getting the output values of the layer.

In this setting, the factorization is applied repeatedly to the
input activations during each forward pass, where the iterative
update of H is part of the network dynamics. It is worth noting
that this differs fundamentally from approaches such as Low-
Rank Adaptation (LoRA) (Cer et al, 2017) that decompose
weight matrices once for parameter reduction or fine-tuning; in
our case, the decomposition operates on input representations
and is tightly coupled with the learning dynamics of the entire
network.

2.3 Approximated back-propagation

A significant practical challenge in implementing NMEF-
based neural architectures is the computational overhead
of back-propagation through iterative steps. Conventional
NMF requires N iterations (N usually ranging from 15 to 100

iterations) in the forward pass, and automatic differentiation

Frontiersin Computational Neuroscience

10.3389/fncom.2025.1692418

frameworks like PyTorch must store gradients for each
iteration to compute the backward pass accurately. This
creates substantial memory requirements and computational
bottlenecks,

applications.

especially for deep networks or large-scale

We address this limitation by using an efficient approximation
to the back-propagation procedure that requires only a single
step, eliminating the need to save and back-propagate through
all intermediate iterations performed during the forward pass.
This method, introduced in Rotermund and Pawelzik (2019),
dramatically reduces both memory consumption and computation
time while maintaining comparable accuracy to full back-
propagation through all iterations. For convenience, we here
only sketch the basic idea underlying this approach but refer to
Rotermund and Pawelzik (2019) for the detailed derivations. Back-
propagation requires the partial derivatives g—)’:; and aauh/ij- These
derivatives can be obtained from the h-dynamics for a single

pattern x:

B = hi+ ey (Z"S;V”—l) )

s S

= hi + 8hi, (®)

where Ry : = Y, Wy h;.
If we would change x — x + Ax we would obtain a
deterministic change of the output in one step of this dynamics:

Axs)Wsi
W, = hi+ eh; (Z b ¥ A Wi 1) )
S RS
xs Wi Axs Wy
= h; h; —_— = —1 10
e ’(Xs: R, +25: R, ) (1o
= h; + 8h; + Ah;. (11)

That is, we now have the changes of the original §h depending
on changes of the input Ax:

Ax; W
Ahi = 8h1‘ <Z xlzw) .
s S

This formula preserves normalization of h since ) _; Ah; = 0.

(12)

By comparing with the total differential, we obtain

/
% o h V}Z (13)
Following the same logic, we have
W=hi+e (ZS 72"]_‘%;3&";%_ - 1) (14)
= i+ O+ e (3, MU A1)
oy xs(ws,,-+Aw:§)(ZjAw5,jhj)) (15)

AW xs(Ws) (32 AWsihy)
%]’l,‘—{—(ghi—}—é‘hi(zsix RS,_ZsiREJ ]]>.(16)
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L
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The difference between our approximative approach and the naive back-propagation. Since NMF is an iterative algorithm, the output of each layer is
computed after several iterations of the update rule. To apply the vanilla back-propagation, all these intermediate steps are required to be saved to
the memory during the forward pass, which is time- and memory-inefficient. Instead, our proposed approximated back-propagation can compute
the corresponding error of a lower layer in one step, only utilizing the output of the layer.

Comparison of Methods across Different Metrics
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CNMF
Methods

Prediction error and computational cost during the back-propagation between CNN, NMF, and NMF with approximate back-propagation (ours). The
comparison spans three metrics: back-propagation memory consumption (left), back-propagation computation time (middle), and classification
error (right). Memory and time values are shown relative to the CNN baseline.
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which (again via the total differential) leads to

o _
3Ws,j -

These derivatives are then used to change the weights according

to

h;i X

8 ;=
=R

Wi ihj
hiE 5,‘,]‘ - =),
R; R;

O[HIR =Y Wikt
j
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17)

(18)

where

Wiih;
ol = Pl S (19)
DI

i

is the back-propagated error d>iL+1. Applying this method only to
the final states h(N) of each layer is provably sufficient. Importantly,
all layers in the network are optimized jointly through back-
propagation; the approximation only concerns the iterative updates
within each NMF module, not a restriction to optimizing the last
layer. Figure 1 illustrates how this approach reduces the amount of
computations.
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2.3.1 Updating the weight matrix

To make the weight matrix W more suitable for classification,
we update W through back-propagation using an optimizer
(e.g., Adam). This ensures that W is optimized based on the
task’s objective function rather than simply minimizing the
reconstruction error from NMEF. However, a challenge arises
as gradient-based updates do not inherently preserve the non-
negativity and normalization properties of W. Since NMF requires
that W remains non-negative and normalized, we cannot directly
update W with the raw gradient values. Instead, we introduce a
trainable auxiliary matrix U, which has the same dimensions as W,
and at each network update, the optimizer will update U using the
error calculated in the Equation 18. Based on this parameter, during
each forward pass, the weight Wy ; is obtained based on:

U.;
W, = |Us,il (20)

AT S
2k Uil
which applies two main transformations:

1. Non-negativity constraint: We enforce non-negativity by
setting W = |U|, where |U| represents the element-wise
absolute value of U.

2. Normalization: We normalize each row of W to ensure the
sum of each row is equal to 1, ensuring that W remains a valid

factorization matrix.

The transformation ensures that the weight matrix W retains
the necessary properties for NMF while still being adaptable for
learning tasks.

Our empirical evaluation confirms the computational efficiency
of the proposed approximate back-propagation (BP) method while
maintaining performance. Figure 2 compares three architectures: a
normal convolutional network, an NMF-based network with full
BP via Torch Autograd, and our NMF network with approximate
BP. While the standard NMF implementation shows considerable
computational costs, requiring significantly more memory and
time compared to the CNN baseline, our approximation method
dramatically reduces these overheads. Specifically, while achieving
comparable classification accuracy to both baseline models, our
approximate BP approach maintains the same memory footprint
as the CNN model while operating the BP & 29 times faster than
the standard NMF.

These results demonstrate that our approximation strategy
successfully addresses the primary computational bottleneck of
NMF-based networks while preserving their advantages. This
computational innovation makes NMF-based neural architectures
more practical for real-world applications, allowing us to
leverage their biological plausibility advantages without prohibitive
computational costs.

2.4 Proposed methods

2.4.1 Convolutional NMF

In conventional NMF (Lee and Seung, 2000), the input
is reconstructed using a linear transformation of the latent
values, implemented through regular matrix multiplication, which
corresponds to a dense layer in a neural network architecture.
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However, this linear transformation can be replaced with other
linear operations while preserving the core principles of NMF.

substitute the
multiplication with a convolution operation, resulting in
Convolutional NMF (CNMF). This adaptation maintains the
mathematical foundations of NMF while leveraging the spatial

In our approach, we standard matrix

locality benefits of convolutions. As demonstrated in our previous
work (Rotermund et al., 2023), CNMF can be effectively trained
using back-propagation and exhibits remarkable noise robustness
when compared to conventional CNNG.

While CNMF shows superior performance in noisy conditions,
on clean data, it does not consistently outperform standard
CNNs with comparable architectures. To address this limitation
and further enhance the capabilities of our CNMF approach,
we propose an extended architecture incorporating additional
components as described in the following sections.

2.4.2 1 x 1 convolutions

The non-negative constraint in NMF layers causes the network
to represent data as a combination of basic building blocks
(or “parts”) that are added together, rather than canceled out.
This approach excels at identifying the key components within
input data. However, because NMF is fundamentally a linear
method, it struggles to capture complex patterns that involve non-
linear relationships between features. Our proposed architecture
combines NMF convolutional layers with a layer of a convolutional
neural network with 1 x 1 kernels, providing several key
advantages. The subsequent 1 x 1 convolutional layer, with its
ability to use negative weights, remixes these features by allowing
for subtraction and adjustment, which NMF alone cannot achieve
since it can only add up contributions. This layer processes the data
locally, providing detailed modulations of the more global patterns
identified by the NMF layer.

A diagram of this module is provided in Figure 3e. We
compare this model to our previous CNMF module (Figure 3c)
from Rotermund et al. (2023) and its corresponding CNN model
(Figure 3b). We also compare this model to a similar CNN
architecture shown in section (Figure 3d) of the figure.

2.5 Model architecture

The architecture of all proposed models consists of a sequence
of four processing blocks as illustrated in Figure 3a. Each block
incorporates either a CNN or CNMF module, which may be
followed by a 1 x 1 convolutional layer for local feature mixing.
After each layer, we apply batch normalization followed by ReLU
activation.

Figure 4 provides a detailed representation of our CNMF + 1x 1
convolution implementation (shown in Figure 3e), highlighting
how the architecture progressively transforms the input through
successive layers. For optimization purposes, we omit batch
normalization in the final two blocks.
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FIGURE 3
the right. (b) Module used in the baseline CNN model. (c) Module used in the CNMF model. (d) Module used in the CNN + 1x1 Conv model. (e)

Module used in the CNMF + 1x1 Conv model.
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For simplicity, activations and batch normalization layers are omitted from the figure.

Network architecture of the proposed method for the CNMF + 1 x 1 Convolution. The network consists of four sequential blocks, each containing a
CNMF module followed by a 1 x 1 convolutional layer. The architecture progressively reduces spatial dimensions from 28 x 28 in the inputto 1 x 1
while transforming feature channels (32 — 64 — 96 — 10 — output). The output of the last 1 x 1 convolutional layer is used for the classification.
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2.5.1 Loss function

To optimize our models, we employed a composite loss
function that combines cross-entropy (CE) loss with mean squared
error (MSE). The loss function is defined as:

L==) yilog®)+ea) (yi—)’ (21)
1 1

where y; represents the true label (one-hot encoded), y; represents
the predicted probability distribution over classes, and o =
0.5 is a weighting factor that balances the contribution of each
component. While cross-entropy loss effectively optimizes for
correct classification by heavily penalizing errors in the predicted
class, it primarily focuses on the correct label and may not
fully capture the relationship between incorrect predictions. By
incorporating MSE with a smaller weight (@ = 0.5), we introduce
an additional regularizing term that considers the full distribution
of predictions across all classes. This combined loss function
led to consistent performance improvements across all model
architectures in our experiments.

2.6 Implementation

We evaluated the performance of our proposed model on the
CIFAR-10 dataset, comparing it to a CNN and NMF model similar
to those described in Rotermund et al. (2023). All models were
trained using the Adam optimizer with an initial learning rate of
0.001. To ensure optimal convergence, we implemented a learning
rate reduction strategy where the rate was decreased by a factor
of 10 whenever the validation loss plateaued for 10 consecutive
epochs. The training was terminated either when the learning rate
dropped below 10™° or when reaching the maximum limit of
500 epochs, whichever occurred first. For data augmentation, we
applied random horizontal flips and color jitter to the training
images. We also apply a random crop on the input image from
32 x 32 to 28 x 28. All hyperparameters were kept consistent across
different model architectures to ensure a fair comparison. The
models were implemented in PyTorch and trained on an NVIDIA
GeForce RTX 4090 GPU.

The source containing all models and training setups can be
found under: https://github.com/mahbodnr/deep_nmf.

3 Results

Figure 5 displays the classification accuracy achieved by all
models on the CIFAR-10 dataset alongside their parameter counts.
The results demonstrate that augmenting the CNMF model with
1 x 1 convolutions substantially improves performance, allowing it
to significantly outperform the baseline CNN model of comparable
architecture and size.

3.1 Effect of NMF compared to CNN in the
network

To investigate whether the performance improvements in our
model stem primarily from the CNN components or if the NMF
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modules play a crucial role, we conducted an extensive analysis
across different model configurations. We generated 100 different
model variants by systematically adjusting the network architecture
in two ways: first, by scaling the number of neurons in each layer
(multiplying by factors of 2, 4, and 8), and second, by varying the
number of groups in both NMF and CNN layers (using 1, 2, 4, 8,
and 16 groups). When we increase the number of groups in a layer,
we divide its channels into separate groups that process the input
independently, thereby reducing the number of parameters while
maintaining the same input and output dimensions. This approach
allowed us to explore models with different ratios of NMF to CNN
parameters while maintaining the overall architectural structure.

The results of this analysis are presented in Figure 6. Figure 6a
shows model accuracy vs. total parameter count, with the color
intensity indicating the ratio of CNN to NMF parameters. The
Pareto front, which represents the best-performing models for a
given parameter budget, shows no systematic bias toward models
with higher CNN parameter ratios. This suggests that simply
increasing the proportion of CNN parameters does not lead to
optimal performance. Figure 6b provides a complementary view,
plotting accuracy against the ratio of CNN to NMF parameters,
with color intensity representing the total parameter count. The
distribution of high-performing models appears roughly symmetric
around a balanced ratio, indicating that the best results are achieved
when neither component dominates the network. Notably, the
highest accuracy (indicated by the red dashed line) is achieved with
a nearly balanced distribution of parameters between CNN and
NMEF components.

These findings strongly suggest that the NMF modules are
not merely a simple non-linear transformation block but are
essential contributors to the network’s performance. The optimal
performance achieved with a balanced parameter distribution
indicates a synergistic relationship between the NMF and CNN
components, where each plays a crucial and complementary role
in the network’s processing capabilities.

4 Discussion and limitations

Our work demonstrates that incorporating biologically-
inspired computational principles into deep neural networks
can enhance their performance while maintaining biological
plausibility. By combining NMF with local mixing through 1 x 1
convolutions, we achieved classification accuracy that matches or
exceeds standard CNNs on the CIFAR-10 dataset, while preserving
key biological constraints such as positive long-range interactions
and local inhibitory processing. Further experiments on the
FashionMNIST (Xiao et al., 2017) and CIFAR-100 datasets confirm
these conclusions. A report for these experiments can be found in
Appendix A.

It is worth mentioning that there remains a clear performance
gap between the models evaluated in this work and the current
state of the art. For instance, EfficientNetV2 models have been
reported to achieve up to 99.1% accuracy on CIFAR-10 (Tan and
Le, 2021). However, the main goal of our study is not to compete
with such models in terms of benchmark accuracy. Rather, our
intention is to demonstrate that biologically inspired constraints,
such as positive long-range interactions, can be incorporated
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FIGURE 5
Classification accuracy of models on the CIFAR-10 dataset. Error bars represent the standard deviation across five models, and the plotted values
correspond to their average performance over different random initializations.

into deep learning architectures while still achieving competitive
performance compared to conventional models of similar scale.
Finally, it should be emphasized that state-of-the-art approaches
are typically trained at a much larger scale and under substantially
different conditions. For example, the EfficientNetV2-L model
contains 121M parameters (compared to <170k parameters in
our proposed models) and benefits from extensive preprocessing,
aggressive data augmentation, and pre-training on much larger
datasets. Exploring whether our biologically grounded models can
remain competitive under such large-scale settings is an important
question, but it lies beyond the scope of the present work.

4.1 Bridging biological and artificial neural
computation

A fundamental distinction between biological neural

computation and artificial neural networks lies in their
computational dynamics. In biological systems, most neural
processing occurs through implicit layers with complex recurrent
interactions and iterative refinement of neural responses. This
is evident in the cortical microcircuits, where information is
processed through multiple recursive loops between different
neural populations before a stable representation emerges. In
contrast, artificial neural networks predominantly rely on explicit
feedforward computation, which, while computationally efficient,
diverges significantly from biological reality.

Our approach bridges this gap by implementing NMF as
an implicit layer that converges through iterative updates, more

Frontiersin Computational Neuroscience 08

closely mimicking biological neural dynamics. While conventional
feedforward networks like CNNs have dominated deep learning
due to their computational efficiency and straightforward
optimization, our results suggest that biologically inspired implicit
computation can be equally effective when properly implemented.
To make this happen, the key innovation in our work is the
combination of iterative NMF processing with local feature
mixing, which parallels the interaction between long-range
excitatory connections and local inhibitory circuits in cortical
processing.

the of
non-negative convolution with local mixing can be directly
transferred to the Spike-by-Spike (SbS) model that we have
developed in previous work (Rotermund and Pawelzik, 2019).

Moreover, demonstrated  benefits interleaving

SbS implements the same NMF principles in a spike-based
framework, which is both more biologically plausible and
potentially far more energy-efficient. Moreover, SbS has already
been shown to maintain high robustness under noise, and we
expect that integrating the present CNMF insights will further
enhance its performance (Nevarez et al, 2021; Najafi et al,
2023). Exploring this extension will be a focus of our future
work.

4.2 Analysis of feature selection in NMF
networks

To understand the limitations of hierarchical NMF networks
trained with unsupervised learning rules and subsequently

frontiersin.org
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FIGURE 6 (Continued)

The red line shows the Pareto front of optimal-performing models. (b) Test accuracy vs. CNN/CNMF parameter ratio, with color intensity indicating
total parameter count (darker green = more parameters). The red dashed line marks the ratio achieving the highest accuracy. Models belonging to
the Pareto front are indicated with a red edge. Both plots were generated by varying the number of neurons (x1, x2, x4, x8) and groups (1, 2, 4, 8,

16) in the base architecture.

fine-tuned for classification, it is helpful to decompose the input
data into five distinct components:

e CD: Class-relevant Dominant statistical features.
e CN: Class-relevant Non-dominant statistical features.
e UD: class-Unrelated Dominant statistical features.
e UN: class-Unrelated Non-dominant statistical features.
e N: Noise.
The key distinction between back-propagation and NMF’s
local learning lies in their feature selection characteristics. Back-
propagation, guided by the classification objective, effectively
extracts both dominant and non-dominant class-relevant
features (CD and CN). In contrast, NMF’s unsupervised learning
rule, which optimizes for reconstruction based on statistical
prominence, primarily captures dominant features regardless of
their relevance to classification (CD and UD).

This fundamental difference creates a critical issue: when
using NMF’s local learning rules instead of back-propagation,
(CN) are

progressively filtered out as information flows through the

the non-dominant but class-relevant features
network layers. By the time the signal reaches the output layer,
these crucial classification features have been lost, despite their
importance for the discrimination task. This explains the reduced
classification performance observed in networks trained with
NMF’s unsupervised learning rules. For example, a model with
a similar architecture to our CNMF model will achieve 32%
accuracy when the NMF modules are trained only based on the
local learning rule on the same task (as opposed to the 81.5% that
is achieved by using backpropagation).

This analysis highlights why our approach of using supervised
gradient descent to update the weights while maintaining
NMF’s non-negativity constraints provides superior classification
performance.
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