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The rapid growth of computational neuroscience and brain–computer interface 
(BCI) technologies require efficient, scalable, and biologically compatible 
approaches for neural data acquisition and interpretation. Traditional sensors and 
signal processing pipelines often struggle with the high dimensionality, temporal 
variability, and noise inherent in neural signals, particularly in elderly populations 
where continuous monitoring is essential. Triboelectric nanogenerators (TENGs), 
as self-powered and flexible multi-sensing devices, offer a promising avenue 
for capturing neural-related biophysical signals such as electroencephalography 
(EEG), electromyography (EMG), and cardiorespiratory dynamics. Their low-
power and wearable characteristics make them suitable for long-term health and 
neurocognitive monitoring. When combined with deep learning models—including 
convolutional neural networks (CNNs), recurrent neural networks (RNNs), and 
spiking neural networks (SNNs)—TENG-generated signals can be efficiently decoded, 
enabling insights into neural states, cognitive functions, and disease progression. 
Furthermore, neuromorphic computing paradigms provide an energy-efficient 
and biologically inspired framework that naturally aligns with the event-driven 
characteristics of TENG outputs. This mini review highlights the convergence of 
TENG-based sensing, deep learning algorithms, and neuromorphic systems for 
neural data interpretation. We discuss recent progress, challenges, and future 
perspectives, with an emphasis on applications in computational neuroscience, 
neurorehabilitation, and elderly health care.
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1 The imperative for advanced healthcare 
monitoring in an aging world

The interpretation of neural data represents one of the most critical challenges in modern 
computational neuroscience and a cornerstone for the future of personalized medicine. Brain 
signals are inherently high-dimensional, nonlinear, and noisy, with complex temporal 
dependencies that complicate analysis (Farias et al., 2018). Traditional statistical and signal 
processing approaches often fail to capture the intricate dynamics of neural activity, limiting 
their effectiveness for long-term monitoring and clinical applications, particularly in real-
world, uncontrolled environments (Meng et al., 2023).
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This analytical challenge is compounded by a pressing societal need. 
The world is experiencing an unprecedented demographic shift, with a 
rapidly aging population (Lutz and Kc, 2010; Mahmood and Dhakal, 
2023). This trend brings a rising prevalence of age-related conditions, 
including neurodegenerative and cognitive disorders (Ogugua et al., 
2024), placing a significant strain on healthcare systems and caregivers 
(Lampersberger et al., 2023; Stimpfel et al., 2020). The growing demand 
for continuous, long-term neural monitoring requires new sensing and 
computational frameworks that can move healthcare from the clinic to 
the home (Fick, 2021; World Health Organization, 2020). To be effective, 
especially for elderly care, these technologies must be  wearable, 
low-power, and biologically compatible (Anghel et al., 2020; He and Lee, 
2021), extending beyond conventional cardiovascular and metabolic 
parameters to include nuanced neural and cognitive functions (Nasr 
et al., 2021). However, the reliance on batteries for power remains a 
significant hurdle, limiting the practicality, reliability, and sustainability 
of long-term wearable devices (Chan et al., 2009; Wu et al., 2020).

In this context, triboelectric nanogenerators (TENGs), 
originally developed for energy harvesting, have emerged as 
transformative candidates for multi-sensing in biomedical and 
neural applications (Zhu et al., 2020; Dong et al., 2020). By efficiently 
converting ambient mechanical energy from sources like human 
motion into electricity, TENGs offer a path to self-powered 
operation (Lai et al., 2022; Pandey et al., 2024), thereby eliminating 
the dependence on external power sources. Their inherent 
advantages—including mechanical flexibility, material versatility 
(Anwer et al., 2022; Yuan et al., 2023), and the ability to perform 

multimodal signal acquisition (Zhuo and Sun, 2020; Méndez et al., 
2020)—make them exceptionally suitable for capturing a diverse 
array of biophysical signals. This includes crucial neural activity-
related measures such as electroencephalography (EEG) and 
electromyography (EMG), as well as other vital signs like pulse wave 
(Yao et al., 2023; Chen et al., 2021), respiration (Liu et al., 2019), and 
pressure (Bai et  al., 2014), creating a holistic view of a patient’s 
health status. However, the rich, multi-stream data generated by 
these TENG-based sensor systems requires advanced computational 
paradigms for effective interpretation (Meng et  al., 2023; Wu 
et al., 2021).

Recent advances in deep learning and neuromorphic computing 
provide powerful new opportunities to decode TENG-acquired neural 
and physiological signals (Nasr et al., 2021; Lin et al., 2020). Deep 
learning models, such as Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs), have shown remarkable promise 
in classifying brain states, detecting cognitive impairments (Farias et al., 
2018), and interpreting complex neural connectivity patterns. These 
AI-driven approaches are essential for transforming raw sensor data 
into actionable clinical insights (Méndez et al., 2020; Nasr et al., 2021). 
As illustrated in Figure 1, the integration of such AI with multi-sensor 
networks creates a powerful human-machine interaction framework 
for elderly health (Lin et al., 2020; Anghel et al., 2020). This system can 
provide personalized health recommendations through real-time 
monitoring, thereby alleviating caregiver burdens (Lampersberger 
et al., 2023; Franck et al., 2016) and significantly improving the quality 
of life for seniors (Ogugua et al., 2024; Fick, 2021).

FIGURE 1

Medical Human-Machine Interaction Scenario Service (Lin et al., 2020).
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The integration of Triboelectric Nanogenerator-based multi-sensor 
systems and artificial intelligence (AI) in elderly health monitoring can 
significantly enhance accuracy and real-time capabilities (Meng et al., 
2023; Wu et al., 2021) while alleviating caregiver burdens (Stimpfel 
et al., 2020) and improving the quality of life for seniors (Franck et al., 
2016; Anghel et al., 2020). Consequently, thorough research on self-
powered multi-sensor and AI technologies in this context is both 
practically significant and holds substantial development potential 
(Nasr et al., 2021; Luo et al., 2023). Multi-sensor network technology 
can track physical performance indicators (Kulurkar et al., 2023; Mahdi 
et al., 2021), and when paired with deep learning for data processing 
(Meng et al., 2023; Méndez et al., 2020), it offers innovative solutions 
for elderly health monitoring. Triboelectric nanogenerators efficiently 
convert mechanical energy from the environment into electrical energy 
(Zhu et al., 2020; Lai et al., 2022), providing a sustainable power source 
for sensors, which enhances system convenience and sustainability 
(Wu et al., 2020; Bulathsinghala et al., 2023). The multi-sensor system 
gathers real-time physiological, environmental, and behavioral data 
from the elderly through various sensors (Chan et al., 2009; Zhuo and 
Sun, 2020), creating a comprehensive health monitoring network. AI 
technologies, particularly machine learning and deep learning, can 
analyze this extensive data to identify health risks, provide early 
warnings (Farias et al., 2018; Nasr et al., 2021), and deliver personalized 
health recommendations (Méndez et al., 2020; Lin et al., 2020).

Beyond traditional deep learning, the field is moving toward more 
biologically inspired models. Spiking neural networks (SNNs) and 
neuromorphic hardware architectures offer an event-driven, energy-
efficient computational paradigm (Nasr et al., 2021) that naturally 
aligns with the sparse and discrete nature of both biological neural 
signals and TENG sensor outputs (Lin et  al., 2020). This synergy 

promises a new generation of ultra-low-power biomedical devices 
capable of sophisticated on-device data processing (He and Lee, 2021; 
Koo et al., 2020) (Figure 2 illustrates how TENG-generated pulse-like 
signals can be seamlessly mapped into neuromorphic frameworks for 
event-driven computation).

In this mini-review, we examine the pivotal role of TENG-based 
sensing in computational neuroscience (Wu et al., 2020; Zhang et al., 
2021) and discuss how its convergence with deep learning and 
neuromorphic paradigms can profoundly enhance neural data 
interpretation (Nasr et al., 2021; Lin et al., 2020). We highlight current 
progress in developing these integrated systems (Meng et al., 2023; Wu 
et al., 2021), outline key challenges related to signal fidelity, system 
integration, and data analysis (Brunner, 2023; Lu et al., 2023), and 
present a forward-looking perspective for the future integration of 
TENGs into advanced neural monitoring and brain–computer 
interface applications (He and Lee, 2021; Wang et al., 2022). To make 
this perspective accessible across disciplines, Figure  2 provides a 
conceptual overview linking TENG signal generation, preprocessing, 
and downstream AI-driven interpretation pathways. Beyond elderly 
healthcare, TENG–AI systems have also demonstrated potential in 
diverse domains such as intelligent prosthetics, athletic performance 
monitoring, environmental sensing, and soft robotic perception.

2 TENG-based multi-sensing 
interfaces for neural data acquisition

Triboelectric nanogenerators (TENGs) have emerged as a 
transformative technology for neural monitoring, leveraging the 
fundamental principles of contact electrification and electrostatic 

FIGURE 2

Conceptual framework linking TENG sensing and computational paradigms. (a) Schematic of TENG and the signal-transformation pipeline from 
mechanical motion to raw electrical outputs. (b) Comparison between TENG pulse-like outputs and biological neural spikes. (c) Integration of event-
driven TENG signals into neuromorphic processing pipelines (SNN/AI) for energy-efficient learning and decision tasks.
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induction to create highly versatile sensing platforms (Zhu et al., 2020; 
Dong et  al., 2020). Their unique capability to directly convert 
biomechanical energy into measurable electrical signals enables truly 
self-powered operation, addressing one of the most significant 
limitations in long-term neural and physiological monitoring systems 
(Lai et al., 2022; Bulathsinghala et al., 2023). Unlike conventional 
sensors that remain constrained by the finite lifetime of battery power 
sources (Chan et al., 2009; Wu et al., 2020), TENG-based systems offer 
inherent advantages for both wearable and implantable applications 
(Anghel et al., 2020; He and Lee, 2021), positioning them as a key 
enabling technology for next-generation computational neuroscience 
and neurorehabilitation solutions (Nasr et al., 2021; Lin et al., 2020).

The material versatility and structural design flexibility of TENGs 
allow for acquisition of a broad spectrum of biophysical signals with 
direct relevance to neural activity (Anwer et al., 2022; Zhang et al., 
2021). For electroencephalography (EEG) and electromyography 
(EMG) applications, while traditional approaches rely on measuring 
biopotentials directly, TENG-based systems can capture the subtle 
mechanical motions of the skin and underlying tissues that accompany 
these electrical activities (Pang et al., 2020; Han et al., 2023). These 
self-powered sensors can be  fabricated from soft, biocompatible 
polymers to create conformal interfaces that improve user comfort 
and signal stability compared to conventional rigid electrodes (Yuan 
et al., 2023; Rahman et al., 2024). The mechanical energy harvested 
from scalp movements or muscle contractions generates electrical 
signals that faithfully reflect underlying neuromuscular activity, 
enabling new approaches to motor control studies and brain-muscle 
interaction analysis (Lin et al., 2020; Luo et al., 2023).

In cardiorespiratory monitoring, TENGs demonstrate exceptional 
sensitivity to the pressure variations and vibrations associated with 
cardiovascular and pulmonary function (Bai et al., 2014; Liu et al., 2019). 
The autonomic nervous system’s tight regulation of these physiological 
processes makes them valuable proxies for cognitive states and stress 
responses. Textile-integrated TENG sensors can monitor pulse waves 
with high fidelity (Chen et al., 2021), while chest-mounted patches track 
respiratory patterns through thoracic expansion measurements (Bai 
et al., 2014). These capabilities provide crucial neural context without 
requiring complex, power-intensive equipment (Casey et al., 2020; World 
Health Organization, 2020), representing a significant advancement in 
ambulatory monitoring technologies.

The application of TENGs extends to tactile and motion sensing, 
where their high sensitivity to pressure and strain enables detailed 
tracking of limb movement, gait dynamics, and postural control 
(Kulurkar et al., 2023; Mahdi et al., 2021). As illustrated in Figure 2, 
tactile sensor arrays based on TENG technology can effectively mimic 
the functional properties of human skin, with particular relevance for 
prosthetic limb applications (Ha et al., 2018; Chang et al., 2023). These 
systems provide not only monitoring capabilities but also closed-loop 
sensory feedback, offering new possibilities for understanding the 
neural control of movement and developing advanced 
neurorehabilitation strategies (Méndez et al., 2020; Lin et al., 2020). 
Collectively, these examples underscore how TENGs function as 
multimodal neural interfaces, simultaneously capturing diverse 
physiological signals in a self-powered manner. Figure 2 provides a 
representative overview of these multimodal sensing capabilities and 
their relevance for computational neuroscience applications.

Several defining characteristics establish TENGs as a disruptive 
force in neural interface technologies. The self-powered nature of 

these devices eliminates dependence on external energy sources, 
enabling sustainable long-term operation through continuous 
harvesting of biomechanical energy (Lai et al., 2022; Pandey et al., 
2024; Bulathsinghala et al., 2023). Material flexibility allows for the 
creation of soft, conformal interfaces using biocompatible polymers 
and hydrogels (Anwer et al., 2022; Rahman et al., 2024), significantly 
improving wearability and reducing motion artifacts compared to 
conventional rigid sensors (He and Lee, 2021; Han et al., 2023). A 
single TENG device can be engineered for multimodal operation, 
simultaneously detecting diverse physiological parameters such as 
pressure, strain, and vibration (Zhuo and Sun, 2020; Wu et al., 2021), 
thereby providing a more comprehensive view of complex brain–body 
interactions than traditional single-modality sensors (Nasr et al., 2021; 
Lin et al., 2020). The inherently scalable fabrication processes support 
both miniaturization for implantable applications and development of 
large-area, high-density sensor arrays (Dong et al., 2020; Ha et al., 
2018), as demonstrated in Figure 3, making the technology adaptable 
to various monitoring scenarios.

From a computational neuroscience perspective, TENGs 
represent more than just a novel sensing modality—they provide an 
interface that fundamentally connects physical neural activity with 
advanced computational frameworks (Nasr et al., 2021; Lin et al., 
2020). The high-dimensional spatiotemporal data generated by multi-
channel TENG arrays offers rich input streams for deep learning 
architectures, enabling sophisticated analysis of brain states and motor 
intent decoding (Farias et al., 2018; Méndez et al., 2020; Luo et al., 
2023). Notably, the characteristic pulse-like signals produced by many 
TENG designs bear a striking resemblance to the spiking activity of 
biological neurons (Nasr et al., 2021). This inherent compatibility with 
neuromorphic processing paradigms, including spiking neural 
networks (SNNs) and event-based processors (Lin et  al., 2020), 
enables highly efficient neural data interpretation that mirrors the 
brain’s own remarkable computational efficiency (He and Lee, 2021; 
Koo et al., 2020). This synergy between TENG-based sensing and 
biologically inspired computing architectures points toward a future 
where neural monitoring systems can achieve unprecedented levels of 
performance and energy efficiency (Zhang et  al., 2021; Wang 
et al., 2022).

Recent experimental studies have verified the feasibility of TENG-
based electrodes for acquiring physiological and neural signals, 
including ECG, EEG, and EMG (Pu et al., 2016; Huang et al., 2025; 
Yang et al., 2023). Comparative evaluations with conventional Ag/
AgCl electrodes indicate that TENG-based sensors can reproduce the 
characteristic waveforms of these signals with acceptable fidelity. For 
instance, EEG recordings captured by TENG electrodes preserve the 
dominant δ, θ, α, and β rhythms, although slight reductions in signal-
to-noise ratio (SNR) and high-frequency fidelity have been observed 
compared to Ag/AgCl electrodes (Huang et al., 2025). Similarly, 
TENG-based ECG and EMG monitoring demonstrates clear 
waveform morphology aligned with traditional electrodes, validating 
their capability for neural and neuromuscular signal acquisition (Pu 
et al., 2016; Yang et al., 2023).

Rather than aiming to replace conventional electrodes in terms of 
precision, the primary advantages of TENG-based neural interfaces 
lie in their self-powered operation, mechanical flexibility, and 
conformability to the skin. These features minimize motion artifacts, 
enhance user comfort, and enable continuous, long-term monitoring 
in wearable or implantable systems. Therefore, TENGs should 
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be  regarded as complementary to existing technologies, offering 
unique benefits for sustained and multimodal neural data acquisition 
in computational neuroscience applications.

3 Deep learning for TENG-based 
neural data interpretation

The advent of deep learning has revolutionized analysis of 
complex biological signals, uncovering spatiotemporal patterns that 
elude conventional signal processing methods (Meng et al., 2023; Nasr 
et  al., 2021). This computational paradigm becomes particularly 
powerful when applied to the multimodal data streams generated by 
triboelectric nanogenerator (TENG) systems, enabling translation of 
raw sensor data into clinically actionable insights for vulnerable 
populations including the elderly and neurologically impaired patients 
(Méndez et al., 2020; Lin et al., 2020). The marriage of TENG-based 
sensing with deep learning forms the technological foundation for 
next-generation smart healthcare systems capable of real-time neural 
and physiological monitoring (Wu et al., 2021; Nasr et al., 2021).

Convolutional Neural Networks (CNNs) have demonstrated 
remarkable efficacy in processing TENG-acquired EEG and EMG 
signals due to their innate capacity for spatial feature extraction (Nasr 
et al., 2021; Lin et al., 2020). By transforming time-series data into 2D 

representations such as spectrograms or connectivity matrices, CNNs 
can identify discriminative patterns for diverse classification tasks. 
These tasks include detecting neurological states (sleep stages, 
attention levels) and recognizing pathological signatures such as 
epileptic discharges (Farias et al., 2018; Meng et al., 2023).

For geriatric applications, CNN-based models enable 
differentiation of cognitive impairment profiles using TENG-derived 
signals. This serves both clinical diagnostics and fundamental 
neuroscience research, highlighting the translational potential of 
integrating TENG signals with AI-driven analysis (Farias et al., 2018; 
Nasr et al., 2021).”

The inherently sequential nature of neural data demands 
architectures capable of modeling temporal dependencies - a role 
fulfilled by Recurrent Neural Networks (RNNs) and their Long 
Short-Term Memory (LSTM) variants (Nasr et al., 2021; Lin et al., 
2020). These networks excel at decoding the dynamic transitions 
in TENG signals that reflect brain–body interactions, providing 
critical insights into phenomena like cognitive fatigue progression 
or stress response dynamics (Méndez et al., 2020; Luo et al., 2023). 
Hybrid CNN-RNN architectures combine these strengths, 
employing CNNs for spatial feature extraction at each timestep 
while RNNs analyze temporal evolution (Lin et al., 2020). This 
dual approach enhances performance in complex applications 
including motor intention prediction and brain-computer 

FIGURE 3

(a) Schematic diagram of the tactile sensor array system. (b) Cross-sectional layered view of the tactile sensor based on PDMS, PCL nanofiber 
membrane, and PEDOT electrodes. (c) SEM image of the PCL nanofiber membrane. (d) SEM image of the pyramid-patterned PDMS layer. (e) 
Schematic diagram of the integration of the tactile sensor array system with a multi-channel data acquisition system and a relative pixel representation 
of the pressure distribution inside the prosthetic socket displayed on the HMI system.
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interface control (Méndez et al., 2020; Lin et al., 2020), making 
deep learning indispensable for interpreting continuous TENG 
data streams.

TENG technology’s unique capability for simultaneous 
multimodal signal acquisition (EEG, EMG, cardiovascular, motion) 
finds its ideal computational counterpart in deep learning-based 
multimodal fusion (Zhuo and Sun, 2020; Wu et al., 2021). By learning 
the complex interrelationships between disparate physiological 
systems, these models achieve superior diagnostic accuracy compared 
to single-modality analysis (Nasr et al., 2021; Lin et al., 2020). For 
elderly care, such integrated analysis enables earlier detection of 
neurodegenerative conditions and more accurate fall risk assessment 
through combined evaluation of cardiorespiratory, movement, and 
neural signals (Kulurkar et  al., 2023; Mahdi et  al., 2021). This 
multimodal approach moves beyond isolated measurements to 
construct a comprehensive picture of an individual’s health status 
(Meng et al., 2023; Méndez et al., 2020).

Despite these advances, significant challenges persist in deploying 
deep learning for TENG data interpretation. The scarcity of high-
quality, well-annotated TENG neural datasets limits model 
generalizability across diverse populations (Nasr et al., 2021; Morley 
et al., 2020). The opaque “black-box” nature of many deep learning 
systems raises interpretability concerns that may hinder clinical 
adoption (Nasr et al., 2021; Morley et al., 2020). Most critically, the 
substantial computational demands of traditional deep learning 
architectures conflict with the low-power design philosophy essential 
for wearable TENG systems (Lin et al., 2020; He and Lee, 2021). 
These challenges are driving exploration of brain-inspired 
neuromorphic approaches that promise to combine analytical power 
with energy efficiency and interpretability (Nasr et al., 2021; Lin et al., 
2020; Koo et al., 2020), potentially overcoming current limitations to 
enable widespread deployment of intelligent TENG-based 
monitoring systems.

To illustrate the practical workflow, Figure 4 summarizes a typical 
processing pipeline for TENG-acquired signals before entering deep 
learning models. Raw pulse-like signals generated by TENGs are first 
filtered and normalized to reduce noise and baseline drift. The 

preprocessed data can then be  transformed into time–frequency 
representations (e.g., spectrograms) or structured time series features. 
These representations serve as inputs for neural networks, where 
convolutional neural networks (CNNs) are effective for extracting 
spatial–frequency patterns, and recurrent neural networks (RNNs) 
capture temporal dependencies. Such pipelines have already been 
applied in preliminary studies of motion detection (Fan et al., 2012), 
electrocardiogram recognition (Pu et  al., 2017), and activity 
quantification (Zhang, 2024) using TENG-based sensors, 
demonstrating the feasibility of integrating TENG signals with 
machine learning frameworks for physiological and neural 
data interpretation.

4 Neuromorphic paradigms for 
energy-efficient neural sensing

While deep learning has revolutionized neural data analysis, its 
computational demands create fundamental limitations for real-time 
wearable applications (Nasr et al., 2021; Lin et al., 2020). The energy-
intensive nature of conventional artificial neural networks directly 
contradicts the design objectives of unobtrusive, long-term 
monitoring systems (He and Lee, 2021; Koo et  al., 2020). 
Neuromorphic computing emerges as a transformative alternative, 
offering biologically plausible processing that aligns seamlessly with 
both the operational principles of biological neurons and the signal 
characteristics of triboelectric nanogenerators (TENGs) (Nasr et al., 
2021; Lin et  al., 2020). This paradigm shift from continuous 
computation to event-driven processing enables autonomous 
healthcare systems that combine intelligent analysis with 
unprecedented energy efficiency (Lin et al., 2020; Koo et al., 2020).

Spiking Neural Networks (SNNs) represent the computational 
foundation of this approach, mimicking the temporal dynamics of 
biological neurons through discrete, asynchronous spike events (Nasr 
et  al., 2021). Their event-driven operation provides three key 
advantages for TENG integration: (1) drastic reduction in 
computational overhead by processing only when input changes 

FIGURE 4

Workflow of TENG signal acquisition and neural network processing.
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occur, (2) native compatibility with the pulsed output characteristics 
of many TENG designs, and (3) inherent capacity to model temporal 
patterns in neural oscillations and autonomic nervous system activity 
(Lin et al., 2020; Koo et al., 2020). This synergy eliminates power-
hungry signal conversion steps, as TENG-generated pulses can 
directly modulate SNN activity (Lin et  al., 2020; Lai et  al., 2022). 
When implemented on neuromorphic hardware, SNNs achieve real-
time performance for applications ranging from motor intent 
decoding to closed-loop neurostimulation (Nasr et al., 2021; He and 
Lee, 2021).

The hardware embodiment of this paradigm has seen remarkable 
progress through platforms like Intel’s Loihi and IBM’s TrueNorth 
(Lin et al., 2020; Koo et al., 2020). These neuromorphic processors 
execute spike-based computations with orders-of-magnitude greater 
energy efficiency than conventional architectures (He and Lee, 2021). 
Their parallel, distributed design enables compact wearable systems 
where TENGs provide both sensory input and supplemental power 
(Lai et al., 2022; Bulathsinghala et al., 2023), while neuromorphic 
chips perform edge-based signal processing (Lin et al., 2020). This 
co-design approach yields multiple system-level benefits: (1) 
elimination of cloud dependency reduces latency to milliseconds, (2) 
on-device processing enhances data privacy for sensitive health 
information, and (3) distributed architecture efficiently handles 
multimodal data from TENG arrays (Zhuo and Sun, 2020; Lin et al., 
2020; Koo et al., 2020).

The TENG-neuromorphic convergence creates unique 
opportunities for autonomous neural interfaces (He and Lee, 2021; 
Wang et  al., 2022). Energy harvested through body movement 
powers both sensing and processing, forming self-sustaining 
feedback loops ideal for real-time applications (Lai et  al., 2022; 
Bulathsinghala et al., 2023). In elderly care scenarios, such systems 
could continuously monitor cognitive state and fall risk without user 
intervention (Kulurkar et  al., 2023; Mahdi et  al., 2021), while 
neurorehabilitation applications benefit from instantaneous 
biofeedback during therapy sessions (Méndez et al., 2020; Lin et al., 
2020). The pulsed operation of both TENGs and SNNs enables 
temporal coding schemes that further optimize energy use (Nasr 
et al., 2021; Lai et al., 2022).

Current limitations facing this integration include the relative 
immaturity of SNN training algorithms compared to deep learning 
methods (Nasr et al., 2021; Lin et al., 2020), limited accessibility of 
commercial neuromorphic hardware (Koo et al., 2020), and the need 
for closer sensor-processor co-design (He and Lee, 2021). However, 
rapid advances in materials science (Anwer et al., 2022; Zhang et al., 
2021) and neuromorphic engineering (Lin et al., 2020; Koo et al., 
2020) are addressing these challenges. The inherent compatibility 
between TENG sensing and spike-based processing suggests this 
bioinspired approach will play a central role in future wearable neural 
interfaces (Nasr et al., 2021; He and Lee, 2021), potentially enabling 
continuous monitoring systems that operate for years without battery 
replacement (Lai et al., 2022; Bulathsinghala et al., 2023).

5 Challenges and future perspectives

The integration of triboelectric nanogenerators (TENGs) with 
deep learning and neuromorphic paradigms presents a transformative 
opportunity for neural data interpretation, promising a future of 

autonomous, personalized healthcare. However, before this vision can 
be fully realized, several key challenges spanning from fundamental 
material science to clinical ethics must be systematically addressed. 
These hurdles represent the critical frontiers where future research 
and innovation are most needed.

5.1 Signal quality and standardization

A foundational challenge lies in the signal quality and 
standardization of TENG-based sensors. While TENGs offer the 
unparalleled advantages of self-powered operation and multimodal 
sensing, their electrical outputs can be  highly sensitive to 
environmental conditions such as humidity, material degradation 
over time, and the inherent variability of biomechanical motion. 
These factors can introduce significant noise and inconsistency into 
neural-related data acquisition, posing a major obstacle to 
achieving the reproducibility and reliability required for clinical 
applications. To ensure that data is comparable across studies and 
individuals, the field urgently needs standardized fabrication 
methods, robust calibration protocols, and advanced signal 
preprocessing pipelines designed to denoise and normalize 
TENG outputs.

5.2 Data availability and algorithmic 
development

Beyond the raw signal, the “fuel” for deep learning models—large, 
well-annotated datasets—remains exceptionally scarce. Effective 
training of robust AI models requires vast amounts of high-quality, 
labeled data, yet publicly available datasets collected with TENG-
based neural sensors are extremely limited. The process of manually 
annotating continuous neural data is not only labor-intensive and 
time-consuming but also requires domain expertise and is often 
subjective. This data bottleneck is perhaps the single greatest barrier 
to progress. To overcome it, the community must foster collaborative 
data-sharing initiatives. Furthermore, exploring semi-supervised or 
self-supervised learning methods will be critical to leverage the large 
volumes of unlabeled TENG-derived data that can be  collected 
more easily.

At a conceptual level, a central tension exists between the high 
performance of conventional deep learning and its significant 
drawbacks in biological plausibility and computational cost. While 
neuromorphic computing directly addresses these concerns with its 
brain-inspired efficiency, its algorithmic maturity currently lags 
behind that of deep learning. A critical area for future research is the 
development of hybrid models that strategically combine the powerful 
representational learning of deep networks with the efficiency and 
temporal processing strengths of neuromorphic approaches. Such 
models could achieve a crucial balance, advancing computational 
neuroscience by creating tools that are both powerful and interpretable.

5.3 Toward clinical translation

To truly unlock the potential of these integrated systems, a 
paradigm shift toward holistic hardware-sensor co-design is essential. 
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Realizing the full synergy between TENGs and neuromorphic systems 
requires strategies where sensors, algorithms, and hardware are 
optimized in concert rather than in isolation. For instance, TENG 
device geometries could be  tailored to generate outputs that are 
intrinsically spike-like, allowing them to communicate in the native 
language of SNNs and thereby reduce preprocessing overhead. 
Similarly, designing neuromorphic chips with input channels that can 
directly interface with the high-impedance, capacitive nature of 
TENGs could enable the creation of highly efficient, closed-loop 
neural monitoring and stimulation systems.

The success of TENG-based neural interfaces will ultimately 
depend on clinical translation and societal acceptance. Applications 
in elderly health monitoring and neurorehabilitation introduce 
challenges related to data privacy, long-term biocompatibility, and 
rigorous clinical validation.

Ensuring patient and clinician trust requires careful attention to 
safety and regulatory compliance. Ethical frameworks should 
be proactively developed to address autonomy, informed consent, and 
potential algorithmic bias, especially when deploying these systems in 
vulnerable populations.”

Looking forward, the roadmap for this field is rich with promising 
research directions. Future work should focus on multimodal 
integration, combining TENG-based signals with traditional 
electrophysiology, medical imaging, and behavioral data to build more 
holistic models of brain states. The development of hybrid 
neuromorphic-deep learning computational paradigms will 
be essential for balancing efficiency with accuracy. Pushing intelligence 
to the edge by embedding AI models directly into TENG-powered 
wearable systems will enable real-time, autonomous neural 
monitoring. Perhaps most excitingly, this could lead to the creation of 
neuroadaptive systems—intelligent feedback loops where TENG-AI 
systems not only monitor but also actively modulate neural activity for 
therapeutic purposes. By addressing these challenges head-on, the 
fusion of TENG-based sensing, deep learning, and neuromorphic 
computing is poised to pave the way for a new generation of intelligent, 
energy-efficient, and biologically inspired systems for neural data 
interpretation. In addition to healthcare-oriented applications, TENG–
AI integration also faces broader challenges such as signal variability 
under dynamic motion, cross-domain generalization, and seamless 
integration with robotic or environmental monitoring platforms.

6 Conclusion

The convergence of triboelectric nanogenerators (TENGs), deep 
learning, and neuromorphic computing represents a promising and 
synergistic frontier in computational neuroscience and personalized 
healthcare. This mini-review has highlighted how TENGs provide a 
self-powered, flexible, and multimodal sensing platform capable of 
capturing a wide range of physiological and neural-related signals, 
offering significant advantages in comfort, sustainability, and 
versatility over conventional electrodes and sensors. When these rich 
data streams are coupled with advanced deep learning methods, the 
complex, noisy signals can be effectively decoded into meaningful 
insights about brain states, neural connectivity, and cognitive health. 

This is particularly transformative for applications such as elderly care, 
where continuous, unobtrusive monitoring is crucial for the early 
detection of cognitive decline and other age-related conditions.

At the same time, the inherent limitations of deep learning—
namely its high computational and energy costs—are directly 
addressed by the emerging field of neuromorphic computing. 
This brain-inspired paradigm offers an energy-efficient and 
biologically plausible alternative for real-time neural data 
interpretation. The characteristically spike-like, event-driven 
nature of TENG outputs aligns naturally with the operational 
principles of Spiking Neural Networks and neuromorphic 
hardware, creating a seamless pathway toward scalable, ultra-low-
power neural monitoring systems that can perform complex 
analysis at the edge. Together, these technologies provide 
complementary strengths: deep learning contributes unparalleled 
pattern recognition capabilities for offline and high-accuracy 
analysis, while neuromorphic computing delivers the on-device 
efficiency and biological plausibility essential for continuous, 
real-time applications.

Looking ahead, the thoughtful integration of TENG-based 
sensing with these AI-driven computational frameworks is poised 
to reshape how neural data are acquired, processed, and 
interpreted. Such integrated systems hold the potential to 
profoundly advance brain-computer interfaces, accelerate 
progress in neurorehabilitation technologies, and revolutionize 
remote and elderly health monitoring. More broadly, this 
interdisciplinary approach embodies a new paradigm for 
decoding brain function, one that closes the loop between 
material innovation, artificial intelligence, and computational 
neuroscience. By bridging this gap, we can move closer to a future 
of intelligent, autonomous, and deeply personalized 
neurological healthcare.
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