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Triboelectric nanogenerators for
neural data interpretation:
bridging multi-sensing interfaces
with neuromorphic and deep
learning paradigms

Lingli Gan, Shuqin Yuan, Min Guo, Qian Wang, Zongfang Deng
and Bin Jia*

Center for Neurology, The Thirteenth People’s Hospital of Chongging, Chongging, China

The rapid growth of computational neuroscience and brain—computer interface
(BCI) technologies require efficient, scalable, and biologically compatible
approaches for neural data acquisition and interpretation. Traditional sensors and
signal processing pipelines often struggle with the high dimensionality, temporal
variability, and noise inherent in neural signals, particularly in elderly populations
where continuous monitoring is essential. Triboelectric nanogenerators (TENGs),
as self-powered and flexible multi-sensing devices, offer a promising avenue
for capturing neural-related biophysical signals such as electroencephalography
(EEG), electromyography (EMG), and cardiorespiratory dynamics. Their low-
power and wearable characteristics make them suitable for long-term health and
neurocognitive monitoring. When combined with deep learning models—including
convolutional neural networks (CNNs), recurrent neural networks (RNNs), and
spiking neural networks (SNNs)—TENG-generated signals can be efficiently decoded,
enabling insights into neural states, cognitive functions, and disease progression.
Furthermore, neuromorphic computing paradigms provide an energy-efficient
and biologically inspired framework that naturally aligns with the event-driven
characteristics of TENG outputs. This mini review highlights the convergence of
TENG-based sensing, deep learning algorithms, and neuromorphic systems for
neural data interpretation. We discuss recent progress, challenges, and future
perspectives, with an emphasis on applications in computational neuroscience,
neurorehabilitation, and elderly health care.

KEYWORDS
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1 The imperative for advanced healthcare
monitoring in an aging world

The interpretation of neural data represents one of the most critical challenges in modern
computational neuroscience and a cornerstone for the future of personalized medicine. Brain
signals are inherently high-dimensional, nonlinear, and noisy, with complex temporal
dependencies that complicate analysis (Farias et al., 2018). Traditional statistical and signal
processing approaches often fail to capture the intricate dynamics of neural activity, limiting
their effectiveness for long-term monitoring and clinical applications, particularly in real-
world, uncontrolled environments (Meng et al., 2023).
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This analytical challenge is compounded by a pressing societal need.
The world is experiencing an unprecedented demographic shift, with a
rapidly aging population (Lutz and Kc, 2010; Mahmood and Dhakal,
2023). This trend brings a rising prevalence of age-related conditions,
including neurodegenerative and cognitive disorders (Ogugua et al.,
2024), placing a significant strain on healthcare systems and caregivers
(Lampersberger et al., 2023; Stimpfel et al., 2020). The growing demand
for continuous, long-term neural monitoring requires new sensing and
computational frameworks that can move healthcare from the clinic to
the home (Fick, 2021; World Health Organization, 2020). To be effective,
especially for elderly care, these technologies must be wearable,
low-power, and biologically compatible (Anghel et al., 2020; He and Lee,
2021), extending beyond conventional cardiovascular and metabolic
parameters to include nuanced neural and cognitive functions (Nasr
et al,, 2021). However, the reliance on batteries for power remains a
significant hurdle, limiting the practicality, reliability, and sustainability
of long-term wearable devices (Chan et al., 2009; Wu et al., 2020).

In this context, triboelectric nanogenerators (TENGs),
originally developed for energy harvesting, have emerged as
transformative candidates for multi-sensing in biomedical and
neural applications (Zhu et al., 2020; Dong et al., 2020). By efficiently
converting ambient mechanical energy from sources like human
motion into electricity, TENGs offer a path to self-powered
operation (Lai et al., 2022; Pandey et al., 2024), thereby eliminating
the dependence on external power sources. Their inherent
advantages—including mechanical flexibility, material versatility
(Anwer et al., 2022; Yuan et al., 2023), and the ability to perform
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multimodal signal acquisition (Zhuo and Sun, 2020; Méndez et al.,
2020)—make them exceptionally suitable for capturing a diverse
array of biophysical signals. This includes crucial neural activity-
related measures such as electroencephalography (EEG) and
electromyography (EMQG), as well as other vital signs like pulse wave
(Yao etal., 2023; Chen et al., 2021), respiration (Liu et al., 2019), and
pressure (Bai et al., 2014), creating a holistic view of a patient’s
health status. However, the rich, multi-stream data generated by
these TENG-based sensor systems requires advanced computational
paradigms for effective interpretation (Meng et al., 2023; Wu
etal., 2021).

Recent advances in deep learning and neuromorphic computing
provide powerful new opportunities to decode TENG-acquired neural
and physiological signals (Nasr et al., 2021; Lin et al., 2020). Deep
learning models, such as Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs), have shown remarkable promise
in classifying brain states, detecting cognitive impairments (Farias et al.,
2018), and interpreting complex neural connectivity patterns. These
Al-driven approaches are essential for transforming raw sensor data
into actionable clinical insights (Méndez et al., 2020; Nasr et al., 2021).
As illustrated in Figure 1, the integration of such AI with multi-sensor
networks creates a powerful human-machine interaction framework
for elderly health (Lin et al., 2020; Anghel et al., 2020). This system can
provide personalized health recommendations through real-time
monitoring, thereby alleviating caregiver burdens (Lampersberger
etal., 2023; Franck et al,, 2016) and significantly improving the quality
of life for seniors (Ogugua et al., 2024; Fick, 2021).
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FIGURE 1
Medical Human-Machine Interaction Scenario Service (Lin et al., 2020).
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The integration of Triboelectric Nanogenerator-based multi-sensor
systems and artificial intelligence (AI) in elderly health monitoring can
significantly enhance accuracy and real-time capabilities (Meng et al.,
2023; Wu et al.,, 2021) while alleviating caregiver burdens (Stimpfel
etal, 2020) and improving the quality of life for seniors (Franck et al.,
2016; Anghel et al., 2020). Consequently, thorough research on self-
powered multi-sensor and Al technologies in this context is both
practically significant and holds substantial development potential
(Nasr et al.,, 2021; Luo et al., 2023). Multi-sensor network technology
can track physical performance indicators (Kulurkar et al., 2023; Mahdi
etal., 2021), and when paired with deep learning for data processing
(Meng et al., 2023; Méndez et al., 2020), it offers innovative solutions
for elderly health monitoring. Triboelectric nanogenerators efficiently
convert mechanical energy from the environment into electrical energy
(Zhu et al., 2020; Lai et al., 2022), providing a sustainable power source
for sensors, which enhances system convenience and sustainability
(Wu et al., 2020; Bulathsinghala et al., 2023). The multi-sensor system
gathers real-time physiological, environmental, and behavioral data
from the elderly through various sensors (Chan et al., 2009; Zhuo and
Sun, 2020), creating a comprehensive health monitoring network. Al
technologies, particularly machine learning and deep learning, can
analyze this extensive data to identify health risks, provide early
warnings (Farias et al., 2018; Nasr et al., 2021), and deliver personalized
health recommendations (Méndez et al., 2020; Lin et al., 2020).

Beyond traditional deep learning, the field is moving toward more
biologically inspired models. Spiking neural networks (SNNs) and
neuromorphic hardware architectures offer an event-driven, energy-
efficient computational paradigm (Nasr et al., 2021) that naturally
aligns with the sparse and discrete nature of both biological neural
signals and TENG sensor outputs (Lin et al., 2020). This synergy
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promises a new generation of ultra-low-power biomedical devices
capable of sophisticated on-device data processing (He and Lee, 2021;
Koo et al., 2020) (Figure 2 illustrates how TENG-generated pulse-like
signals can be seamlessly mapped into neuromorphic frameworks for
event-driven computation).

In this mini-review, we examine the pivotal role of TENG-based
sensing in computational neuroscience (Wu et al., 2020; Zhang et al.,
2021) and discuss how its convergence with deep learning and
neuromorphic paradigms can profoundly enhance neural data
interpretation (Nasr et al., 2021; Lin et al., 2020). We highlight current
progress in developing these integrated systems (Meng et al., 2023; Wu
et al,, 2021), outline key challenges related to signal fidelity, system
integration, and data analysis (Brunner, 2023; Lu et al., 2023), and
present a forward-looking perspective for the future integration of
TENGs into advanced neural monitoring and brain-computer
interface applications (He and Lee, 2021; Wang et al., 2022). To make
this perspective accessible across disciplines, Figure 2 provides a
conceptual overview linking TENG signal generation, preprocessing,
and downstream Al-driven interpretation pathways. Beyond elderly
healthcare, TENG-AI systems have also demonstrated potential in
diverse domains such as intelligent prosthetics, athletic performance
monitoring, environmental sensing, and soft robotic perception.

2 TENG-based multi-sensing
interfaces for neural data acquisition

Triboelectric nanogenerators (TENGs) have emerged as a
transformative technology for neural monitoring, leveraging the
fundamental principles of contact electrification and electrostatic
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FIGURE 2

Conceptual framework linking TENG sensing and computational paradigms. (a) Schematic of TENG and the signal-transformation pipeline from
mechanical motion to raw electrical outputs. (b) Comparison between TENG pulse-like outputs and biological neural spikes. (c) Integration of event-
driven TENG signals into neuromorphic processing pipelines (SNN/AI) for energy-efficient learning and decision tasks.
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induction to create highly versatile sensing platforms (Zhu et al., 2020;
Dong et al., 2020). Their unique capability to directly convert
biomechanical energy into measurable electrical signals enables truly
self-powered operation, addressing one of the most significant
limitations in long-term neural and physiological monitoring systems
(Lai et al., 2022; Bulathsinghala et al., 2023). Unlike conventional
sensors that remain constrained by the finite lifetime of battery power
sources (Chan et al., 2009; Wu et al., 2020), TENG-based systems offer
inherent advantages for both wearable and implantable applications
(Anghel et al., 2020; He and Lee, 2021), positioning them as a key
enabling technology for next-generation computational neuroscience
and neurorehabilitation solutions (Nasr et al., 2021; Lin et al., 2020).

The material versatility and structural design flexibility of TENGs
allow for acquisition of a broad spectrum of biophysical signals with
direct relevance to neural activity (Anwer et al., 2022; Zhang et al.,
2021). For electroencephalography (EEG) and electromyography
(EMG) applications, while traditional approaches rely on measuring
biopotentials directly, TENG-based systems can capture the subtle
mechanical motions of the skin and underlying tissues that accompany
these electrical activities (Pang et al., 2020; Han et al., 2023). These
self-powered sensors can be fabricated from soft, biocompatible
polymers to create conformal interfaces that improve user comfort
and signal stability compared to conventional rigid electrodes (Yuan
et al,, 2023; Rahman et al., 2024). The mechanical energy harvested
from scalp movements or muscle contractions generates electrical
signals that faithfully reflect underlying neuromuscular activity,
enabling new approaches to motor control studies and brain-muscle
interaction analysis (Lin et al., 2020; Luo et al., 2023).

In cardiorespiratory monitoring, TENGs demonstrate exceptional
sensitivity to the pressure variations and vibrations associated with
cardiovascular and pulmonary function (Bai et al., 2014; Liu et al., 2019).
The autonomic nervous systems tight regulation of these physiological
processes makes them valuable proxies for cognitive states and stress
responses. Textile-integrated TENG sensors can monitor pulse waves
with high fidelity (Chen et al., 2021), while chest-mounted patches track
respiratory patterns through thoracic expansion measurements (Bai
et al., 2014). These capabilities provide crucial neural context without
requiring complex, power-intensive equipment (Casey et al., 2020; World
Health Organization, 2020), representing a significant advancement in
ambulatory monitoring technologies.

The application of TENGs extends to tactile and motion sensing,
where their high sensitivity to pressure and strain enables detailed
tracking of limb movement, gait dynamics, and postural control
(Kulurkar et al., 2023; Mahdi et al., 2021). As illustrated in Figure 2,
tactile sensor arrays based on TENG technology can effectively mimic
the functional properties of human skin, with particular relevance for
prosthetic limb applications (Ha et al., 2018; Chang et al., 2023). These
systems provide not only monitoring capabilities but also closed-loop
sensory feedback, offering new possibilities for understanding the
neural control of movement and developing advanced
neurorehabilitation strategies (Méndez et al., 2020; Lin et al., 2020).
Collectively, these examples underscore how TENGs function as
multimodal neural interfaces, simultaneously capturing diverse
physiological signals in a self-powered manner. Figure 2 provides a
representative overview of these multimodal sensing capabilities and
their relevance for computational neuroscience applications.

Several defining characteristics establish TENGs as a disruptive
force in neural interface technologies. The self-powered nature of
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these devices eliminates dependence on external energy sources,
enabling sustainable long-term operation through continuous
harvesting of biomechanical energy (Lai et al., 2022; Pandey et al,,
2024; Bulathsinghala et al., 2023). Material flexibility allows for the
creation of soft, conformal interfaces using biocompatible polymers
and hydrogels (Anwer et al., 2022; Rahman et al., 2024), significantly
improving wearability and reducing motion artifacts compared to
conventional rigid sensors (He and Lee, 2021; Han et al., 2023). A
single TENG device can be engineered for multimodal operation,
simultaneously detecting diverse physiological parameters such as
pressure, strain, and vibration (Zhuo and Sun, 2020; Wu et al., 2021),
thereby providing a more comprehensive view of complex brain-body
interactions than traditional single-modality sensors (Nasr et al., 2021;
Lin et al., 2020). The inherently scalable fabrication processes support
both miniaturization for implantable applications and development of
large-area, high-density sensor arrays (Dong et al., 2020; Ha et al,,
2018), as demonstrated in Figure 3, making the technology adaptable
to various monitoring scenarios.

From a computational neuroscience perspective, TENGs
represent more than just a novel sensing modality—they provide an
interface that fundamentally connects physical neural activity with
advanced computational frameworks (Nasr et al., 2021; Lin et al,,
2020). The high-dimensional spatiotemporal data generated by multi-
channel TENG arrays offers rich input streams for deep learning
architectures, enabling sophisticated analysis of brain states and motor
intent decoding (Farias et al., 2018; Méndez et al., 2020; Luo et al,,
2023). Notably, the characteristic pulse-like signals produced by many
TENG designs bear a striking resemblance to the spiking activity of
biological neurons (Nasr et al., 2021). This inherent compatibility with
neuromorphic processing paradigms, including spiking neural
networks (SNNs) and event-based processors (Lin et al., 2020),
enables highly efficient neural data interpretation that mirrors the
brain’s own remarkable computational efficiency (He and Lee, 2021;
Koo et al., 2020). This synergy between TENG-based sensing and
biologically inspired computing architectures points toward a future
where neural monitoring systems can achieve unprecedented levels of
performance and energy efficiency (Zhang et al, 2021; Wang
etal., 2022).

Recent experimental studies have verified the feasibility of TENG-
based electrodes for acquiring physiological and neural signals,
including ECG, EEG, and EMG (Pu et al., 2016; Huang et al., 2025;
Yang et al., 2023). Comparative evaluations with conventional Ag/
AgCl electrodes indicate that TENG-based sensors can reproduce the
characteristic waveforms of these signals with acceptable fidelity. For
instance, EEG recordings captured by TENG electrodes preserve the
dominant 6, 6, a, and f rhythms, although slight reductions in signal-
to-noise ratio (SNR) and high-frequency fidelity have been observed
compared to Ag/AgCl electrodes (Huang et al., 2025). Similarly,
TENG-based ECG and EMG monitoring demonstrates clear
waveform morphology aligned with traditional electrodes, validating
their capability for neural and neuromuscular signal acquisition (Pu
etal, 2016; Yang et al., 2023).

Rather than aiming to replace conventional electrodes in terms of
precision, the primary advantages of TENG-based neural interfaces
lie in their self-powered operation, mechanical flexibility, and
conformability to the skin. These features minimize motion artifacts,
enhance user comfort, and enable continuous, long-term monitoring
in wearable or implantable systems. Therefore, TENGs should
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Real-time sensing

be regarded as complementary to existing technologies, offering
unique benefits for sustained and multimodal neural data acquisition
in computational neuroscience applications.

3 Deep learning for TENG-based
neural data interpretation

The advent of deep learning has revolutionized analysis of
complex biological signals, uncovering spatiotemporal patterns that
elude conventional signal processing methods (Meng et al., 2023; Nasr
et al., 2021). This computational paradigm becomes particularly
powerful when applied to the multimodal data streams generated by
triboelectric nanogenerator (TENG) systems, enabling translation of
raw sensor data into clinically actionable insights for vulnerable
populations including the elderly and neurologically impaired patients
(Méndez et al., 2020; Lin et al., 2020). The marriage of TENG-based
sensing with deep learning forms the technological foundation for
next-generation smart healthcare systems capable of real-time neural
and physiological monitoring (Wu et al., 2021; Nasr et al., 2021).

Convolutional Neural Networks (CNNs) have demonstrated
remarkable efficacy in processing TENG-acquired EEG and EMG
signals due to their innate capacity for spatial feature extraction (Nasr
etal, 2021; Lin et al.,, 2020). By transforming time-series data into 2D

Frontiers in Computational Neuroscience

representations such as spectrograms or connectivity matrices, CNNs
can identify discriminative patterns for diverse classification tasks.
These tasks include detecting neurological states (sleep stages,
attention levels) and recognizing pathological signatures such as
epileptic discharges (Farias et al., 2018; Meng et al., 2023).

CNN-based models
differentiation of cognitive impairment profiles using TENG-derived

For geriatric applications, enable
signals. This serves both clinical diagnostics and fundamental
neuroscience research, highlighting the translational potential of
integrating TENG signals with AI-driven analysis (Farias et al., 2018;
Nasr et al., 2021)”

The inherently sequential nature of neural data demands
architectures capable of modeling temporal dependencies - a role
fulfilled by Recurrent Neural Networks (RNNs) and their Long
Short-Term Memory (LSTM) variants (Nasr et al., 2021; Lin et al.,
2020). These networks excel at decoding the dynamic transitions
in TENG signals that reflect brain-body interactions, providing
critical insights into phenomena like cognitive fatigue progression
or stress response dynamics (Méndez et al., 2020; Luo et al., 2023).
Hybrid CNN-RNN architectures combine these strengths,
employing CNNs for spatial feature extraction at each timestep
while RNNs analyze temporal evolution (Lin et al., 2020). This
dual approach enhances performance in complex applications
including motor intention prediction and brain-computer
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interface control (Méndez et al., 2020; Lin et al., 2020), making
deep learning indispensable for interpreting continuous TENG
data streams.

TENG technology’s unique capability for simultaneous
multimodal signal acquisition (EEG, EMG, cardiovascular, motion)
finds its ideal computational counterpart in deep learning-based
multimodal fusion (Zhuo and Sun, 2020; Wu et al., 2021). By learning
the complex interrelationships between disparate physiological
systems, these models achieve superior diagnostic accuracy compared
to single-modality analysis (Nasr et al., 2021; Lin et al., 2020). For
elderly care, such integrated analysis enables earlier detection of
neurodegenerative conditions and more accurate fall risk assessment
through combined evaluation of cardiorespiratory, movement, and
neural signals (Kulurkar et al., 2023; Mahdi et al, 2021). This
multimodal approach moves beyond isolated measurements to
construct a comprehensive picture of an individual’s health status
(Meng et al., 2023; Méndez et al., 2020).

Despite these advances, significant challenges persist in deploying
deep learning for TENG data interpretation. The scarcity of high-
quality, well-annotated TENG neural datasets limits model
generalizability across diverse populations (Nasr et al., 2021; Morley
et al,, 2020). The opaque “black-box” nature of many deep learning
systems raises interpretability concerns that may hinder clinical
adoption (Nasr et al., 2021; Morley et al., 2020). Most critically, the
substantial computational demands of traditional deep learning
architectures conflict with the low-power design philosophy essential
for wearable TENG systems (Lin et al., 2020; He and Lee, 2021).
These challenges are driving exploration of brain-inspired
neuromorphic approaches that promise to combine analytical power
with energy efficiency and interpretability (Nasr et al., 2021; Lin et al.,
2020; Koo et al., 2020), potentially overcoming current limitations to
enable widespread deployment of intelligent TENG-based
monitoring systems.

To illustrate the practical workflow, Figure 4 summarizes a typical
processing pipeline for TENG-acquired signals before entering deep
learning models. Raw pulse-like signals generated by TENGs are first
filtered and normalized to reduce noise and baseline drift. The

10.3389/fncom.2025.1691017

preprocessed data can then be transformed into time-frequency
representations (e.g., spectrograms) or structured time series features.
These representations serve as inputs for neural networks, where
convolutional neural networks (CNNs) are effective for extracting
spatial-frequency patterns, and recurrent neural networks (RNNs)
capture temporal dependencies. Such pipelines have already been
applied in preliminary studies of motion detection (Fan et al., 2012),
electrocardiogram recognition (Pu et al, 2017), and activity
(Zhang, 2024) using TENG-based
demonstrating the feasibility of integrating TENG signals with

quantiﬁcation Sensors,
machine learning frameworks for physiological and neural
data interpretation.

4 Neuromorphic paradigms for
energy-efficient neural sensing

While deep learning has revolutionized neural data analysis, its
computational demands create fundamental limitations for real-time
wearable applications (Nasr et al., 2021; Lin et al., 2020). The energy-
intensive nature of conventional artificial neural networks directly
contradicts the design objectives of unobtrusive, long-term
monitoring systems (He and Lee, 2021; Koo et al, 2020).
Neuromorphic computing emerges as a transformative alternative,
offering biologically plausible processing that aligns seamlessly with
both the operational principles of biological neurons and the signal
characteristics of triboelectric nanogenerators (TENGs) (Nasr et al.,
2021; Lin et al., 2020). This paradigm shift from continuous
computation to event-driven processing enables autonomous
healthcare systems that combine intelligent analysis with
unprecedented energy efficiency (Lin et al., 2020; Koo et al., 2020).

Spiking Neural Networks (SNNs) represent the computational
foundation of this approach, mimicking the temporal dynamics of
biological neurons through discrete, asynchronous spike events (Nasr
et al, 2021). Their event-driven operation provides three key
advantages for TENG integration: (1) drastic reduction in
computational overhead by processing only when input changes

:.W ~ W — e — -
Mechanical Signal Feature Neural Network
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FIGURE 4
Workflow of TENG signal acquisition and neural network processing.
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occur, (2) native compatibility with the pulsed output characteristics
of many TENG designs, and (3) inherent capacity to model temporal
patterns in neural oscillations and autonomic nervous system activity
(Lin et al., 2020; Koo et al., 2020). This synergy eliminates power-
hungry signal conversion steps, as TENG-generated pulses can
directly modulate SNN activity (Lin et al., 2020; Lai et al., 2022).
When implemented on neuromorphic hardware, SNNs achieve real-
time performance for applications ranging from motor intent
decoding to closed-loop neurostimulation (Nasr et al., 2021; He and
Lee, 2021).

The hardware embodiment of this paradigm has seen remarkable
progress through platforms like Intel’s Loihi and IBM’s TrueNorth
(Lin et al., 2020; Koo et al., 2020). These neuromorphic processors
execute spike-based computations with orders-of-magnitude greater
energy efficiency than conventional architectures (He and Lee, 2021).
Their parallel, distributed design enables compact wearable systems
where TENGs provide both sensory input and supplemental power
(Lai et al., 2022; Bulathsinghala et al., 2023), while neuromorphic
chips perform edge-based signal processing (Lin et al., 2020). This
co-design approach yields multiple system-level benefits: (1)
elimination of cloud dependency reduces latency to milliseconds, (2)
on-device processing enhances data privacy for sensitive health
information, and (3) distributed architecture efficiently handles
multimodal data from TENG arrays (Zhuo and Sun, 2020; Lin et al.,
2020; Koo et al., 2020).

The TENG-neuromorphic
opportunities for autonomous neural interfaces (He and Lee, 2021;

convergence creates unique
Wang et al., 2022). Energy harvested through body movement
powers both sensing and processing, forming self-sustaining
feedback loops ideal for real-time applications (Lai et al., 2022;
Bulathsinghala et al., 2023). In elderly care scenarios, such systems
could continuously monitor cognitive state and fall risk without user
intervention (Kulurkar et al., 2023; Mahdi et al., 2021), while
neurorehabilitation applications benefit from instantaneous
biofeedback during therapy sessions (Méndez et al., 2020; Lin et al.,
2020). The pulsed operation of both TENGs and SNNs enables
temporal coding schemes that further optimize energy use (Nasr
etal., 2021; Lai et al., 2022).

Current limitations facing this integration include the relative
immaturity of SNN training algorithms compared to deep learning
methods (Nasr et al., 2021; Lin et al,, 2020), limited accessibility of
commercial neuromorphic hardware (Koo et al., 2020), and the need
for closer sensor-processor co-design (He and Lee, 2021). However,
rapid advances in materials science (Anwer et al., 2022; Zhang et al.,
2021) and neuromorphic engineering (Lin et al., 2020; Koo et al,,
2020) are addressing these challenges. The inherent compatibility
between TENG sensing and spike-based processing suggests this
bioinspired approach will play a central role in future wearable neural
interfaces (Nasr et al., 2021; He and Lee, 2021), potentially enabling
continuous monitoring systems that operate for years without battery
replacement (Lai et al., 2022; Bulathsinghala et al., 2023).

5 Challenges and future perspectives

The integration of triboelectric nanogenerators (TENGs) with
deep learning and neuromorphic paradigms presents a transformative
opportunity for neural data interpretation, promising a future of
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autonomous, personalized healthcare. However, before this vision can
be fully realized, several key challenges spanning from fundamental
material science to clinical ethics must be systematically addressed.
These hurdles represent the critical frontiers where future research
and innovation are most needed.

5.1 Signal quality and standardization

A foundational challenge lies in the signal quality and
standardization of TENG-based sensors. While TENGs offer the
unparalleled advantages of self-powered operation and multimodal
sensing, their electrical outputs can be highly sensitive to
environmental conditions such as humidity, material degradation
over time, and the inherent variability of biomechanical motion.
These factors can introduce significant noise and inconsistency into
neural-related data acquisition, posing a major obstacle to
achieving the reproducibility and reliability required for clinical
applications. To ensure that data is comparable across studies and
individuals, the field urgently needs standardized fabrication
methods, robust calibration protocols, and advanced signal
preprocessing pipelines designed to denoise and normalize
TENG outputs.

5.2 Data availability and algorithmic
development

Beyond the raw signal, the “fuel” for deep learning models—Ilarge,
well-annotated datasets—remains exceptionally scarce. Effective
training of robust AI models requires vast amounts of high-quality,
labeled data, yet publicly available datasets collected with TENG-
based neural sensors are extremely limited. The process of manually
annotating continuous neural data is not only labor-intensive and
time-consuming but also requires domain expertise and is often
subjective. This data bottleneck is perhaps the single greatest barrier
to progress. To overcome it, the community must foster collaborative
data-sharing initiatives. Furthermore, exploring semi-supervised or
self-supervised learning methods will be critical to leverage the large
volumes of unlabeled TENG-derived data that can be collected
more easily.

At a conceptual level, a central tension exists between the high
performance of conventional deep learning and its significant
drawbacks in biological plausibility and computational cost. While
neuromorphic computing directly addresses these concerns with its
brain-inspired efficiency, its algorithmic maturity currently lags
behind that of deep learning. A critical area for future research is the
development of hybrid models that strategically combine the powerful
representational learning of deep networks with the efficiency and
temporal processing strengths of neuromorphic approaches. Such
models could achieve a crucial balance, advancing computational
neuroscience by creating tools that are both powerful and interpretable.

5.3 Toward clinical translation

To truly unlock the potential of these integrated systems, a
paradigm shift toward holistic hardware-sensor co-design is essential.
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Realizing the full synergy between TENGs and neuromorphic systems
requires strategies where sensors, algorithms, and hardware are
optimized in concert rather than in isolation. For instance, TENG
device geometries could be tailored to generate outputs that are
intrinsically spike-like, allowing them to communicate in the native
language of SNNs and thereby reduce preprocessing overhead.
Similarly, designing neuromorphic chips with input channels that can
directly interface with the high-impedance, capacitive nature of
TENGs could enable the creation of highly efficient, closed-loop
neural monitoring and stimulation systems.

The success of TENG-based neural interfaces will ultimately
depend on clinical translation and societal acceptance. Applications
in elderly health monitoring and neurorehabilitation introduce
challenges related to data privacy, long-term biocompatibility, and
rigorous clinical validation.

Ensuring patient and clinician trust requires careful attention to
safety and regulatory compliance. Ethical frameworks should
be proactively developed to address autonomy, informed consent, and
potential algorithmic bias, especially when deploying these systems in
vulnerable populations.”

Looking forward, the roadmap for this field is rich with promising
research directions. Future work should focus on multimodal
integration, combining TENG-based signals with traditional
electrophysiology, medical imaging, and behavioral data to build more
holistic models of brain states. The development of hybrid
neuromorphic-deep learning computational paradigms will
be essential for balancing efficiency with accuracy. Pushing intelligence
to the edge by embedding AI models directly into TENG-powered
wearable systems will enable real-time, autonomous neural
monitoring. Perhaps most excitingly, this could lead to the creation of
neuroadaptive systems—intelligent feedback loops where TENG-AI
systems not only monitor but also actively modulate neural activity for
therapeutic purposes. By addressing these challenges head-on, the
fusion of TENG-based sensing, deep learning, and neuromorphic
computing is poised to pave the way for a new generation of intelligent,
energy-efficient, and biologically inspired systems for neural data
interpretation. In addition to healthcare-oriented applications, TENG-
Al integration also faces broader challenges such as signal variability
under dynamic motion, cross-domain generalization, and seamless
integration with robotic or environmental monitoring platforms.

6 Conclusion

The convergence of triboelectric nanogenerators (TENGs), deep
learning, and neuromorphic computing represents a promising and
synergistic frontier in computational neuroscience and personalized
healthcare. This mini-review has highlighted how TENGs provide a
self-powered, flexible, and multimodal sensing platform capable of
capturing a wide range of physiological and neural-related signals,
offering significant advantages in comfort, sustainability, and
versatility over conventional electrodes and sensors. When these rich
data streams are coupled with advanced deep learning methods, the
complex, noisy signals can be effectively decoded into meaningful
insights about brain states, neural connectivity, and cognitive health.
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This is particularly transformative for applications such as elderly care,
where continuous, unobtrusive monitoring is crucial for the early
detection of cognitive decline and other age-related conditions.

At the same time, the inherent limitations of deep learning—
namely its high computational and energy costs—are directly
addressed by the emerging field of neuromorphic computing.
This brain-inspired paradigm offers an energy-efficient and
biologically plausible alternative for real-time neural data
interpretation. The characteristically spike-like, event-driven
nature of TENG outputs aligns naturally with the operational
principles of Spiking Neural Networks and neuromorphic
hardware, creating a seamless pathway toward scalable, ultra-low-
power neural monitoring systems that can perform complex
analysis at the edge. Together, these technologies provide
complementary strengths: deep learning contributes unparalleled
pattern recognition capabilities for offline and high-accuracy
analysis, while neuromorphic computing delivers the on-device
efficiency and biological plausibility essential for continuous,
real-time applications.

Looking ahead, the thoughtful integration of TENG-based
sensing with these AI-driven computational frameworks is poised
to reshape how neural data are acquired, processed, and
interpreted. Such integrated systems hold the potential to
profoundly advance brain-computer interfaces, accelerate
progress in neurorehabilitation technologies, and revolutionize
remote and elderly health monitoring. More broadly, this
interdisciplinary approach embodies a new paradigm for
decoding brain function, one that closes the loop between
material innovation, artificial intelligence, and computational
neuroscience. By bridging this gap, we can move closer to a future
of intelligent,

autonomous, and deeply personalized

neurological healthcare.
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