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Universal di�erential equations
as a unifying modeling language
for neuroscience

Ahmed El-Gazzar* and Marcel van Gerven

Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands

The rapid growth of large-scale neuroscience datasets has spurred diverse

modeling strategies, ranging from mechanistic models grounded in biophysics,

to phenomenological descriptions of neural dynamics, to data-driven deep

neural networks (DNNs). Each approach o�ers distinct strengths as mechanistic

models provide interpretability, phenomenological models capture emergent

dynamics, and DNNs excel at predictive accuracy but this also comes with

limitations when applied in isolation. Universal di�erential equations (UDEs)

o�er a unifying modeling framework that integrates these complementary

approaches. By treating di�erential equations as parameterizable, di�erentiable

objects that can be combined with modern deep learning techniques, UDEs

enable hybrid models that balance interpretability with predictive power. We

provide a systematic overview of the UDE framework, covering its mathematical

foundations, training methodologies, and recent innovations. We argue that

UDEs fill a critical gap between mechanistic, phenomenological, and data-

driven models in neuroscience, with potential to advance applications in

neural computation, neural control, neural decoding, and normative modeling

in neuroscience.
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descriptions, neural dynamics, data-driven deep neural networks, DNNs, neural

computation

1 Introduction

As holds for all the natural sciences, modern neuroscience is a scientific discipline

whose advancement is fueled by both theoretical and experimental research (Urai et al.,

2022; Churchland and Sejnowski, 2016). From a theoretical standpoint, we have witnessed

important developments, ranging from detailed mechanistic models of specific neural

circuits (Kim et al., 2017; Izhikevich and Edelman, 2008; Felleman and Van Essen, 1991;

Bliss and Collingridge, 1993) to grand unified theories of brain function (Van Gelder,

1998; Friston, 2009; Hawkins, 2021; Miller and Cohen, 2001). At the same time, from

an experimental standpoint, advances in neurotechnolgy are allowing us to measure

(Steinmetz et al., 2021; Urai et al., 2022; Machado et al., 2022) and manipulate (Deisseroth,

2015; Lozano et al., 2019; Blumberger et al., 2018) the activity of many thousands of

neurons at an unprecedented scale.

A central challenge in neuroscience is how to integrate these theoretical

and empirical insights in order to understand neural mechanisms and develop

practical applications. A wide range of modeling approaches have been proposed,

each emphasizing different trade-offs between mechanistic interpretability and data-

driven flexibility. At one end of the spectrum are white-box or mechanistic

models, such as biophysical (Hodgkin and Huxley, 1952; Izhikevich, 2007) and
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multi-scale (Markram et al., 2015; Breakspear, 2017) simulations

of neurons and circuits, which explicitly incorporate known

physiology and dynamics. At the other end are black-box or

data-driven models, including deep neural networks (Güçlü and

Van Gerven, 2015; Yamins and DiCarlo, 2016) and statistical

predictors (Yu et al., 2008; Wu et al., 2006; Pandarinath et al.,

2018), which excel at capturing variance in high-dimensional

data but offer limited interpretability. Between these extremes lie

phenomenological (Wilson and Cowan, 1972; Chichilnisky, 2001)

and normative (Laughlin, 1981; Todorov and Jordan, 2002; Knill

and Pouget, 2004) that abstract away biophysical details to capture

computational principles or functional constraints. This diversity

reflects both the richness of neuroscience and the limitations of

any single paradigm: mechanistic models may be too rigid to

account for data variability, while black-box models can miss

crucial structure.

Universal differential equations (UDEs) have recently emerged

as a promising framework to bridge these approaches (Rackauckas

et al., 2020). UDEs extend the dynamical systems perspective that

has long guided neuroscience (Favela, 2021), by allowing parts of

the governing equations to be learned directly from data while

other parts encode prior knowledge. In this way, UDEs combine

the interpretability ofmechanistic modeling with the adaptability of

machine learning. This hybrid formulation is particularly valuable

in neuroscience, where experimental measurements are often

sparse and noisy, yet rich theoretical knowledge exists across scales,

from ion channels to cognitive processes. By embedding flexible

function approximators within structured dynamical systems,

UDEs enable models that are simultaneously data-adaptive and

theory-constrained.

Consequently, UDEs are gaining traction across scientific

domains where mechanistic models dominate but fall short of

fully explaining observations, and where data remain limited

(AlQuraishi and Sorger, 2021; Lai et al., 2021; Karniadakis et al.,

2021). In neuroscience, this offers a unique opportunity: to unify

disparate modeling traditions within a common mathematical

framework, situating UDEs as a bridge between white-box and

black-box approaches (cf. Figure 1). In doing so, UDEs provide a

pathway toward more comprehensive models that integrate across

levels of abstraction and link fundamental mechanisms to applied

neuroscience (Ramezanian-Panahi et al., 2022).

To motivate UDEs, we begin with a critique on the current

landscape of data-driven dynamical systems in neuroscience,

highlighting key applications, and challenges, culminating in the

motivation for hybrid approaches that combine prior knowledge

with empirical data. Next, we delve into the taxonomy of UDEs

in the context of stochastic dynamical systems and show how

these mathematical objects provide a spectrum of modeling

techniques familiar to the neuroscientist spanning from traditional

mechanistic white-box models to sophisticated black-box deep

learning models. We provide a general recipe for domain-informed

training of UDEs for neural system identification and examine the

benefits of UDE-based models in emerging applications within the

field. We conclude by discussing current challenges and potential

future directions. Through this discourse, we argue that UDEs,

when augmented with modern machine learning techniques, can

serve as the foundational building block for multi-scale modeling

in neuroscience, establishing a common language for theory

formation and model development.

2 Dynamical systems in neuroscience

A prevalent perspective in neuroscience is viewing the brain

as a dynamical system, availing the comprehensive toolbox of

dynamical systems theory (DST) to the field (Van Gelder, 1998;

Izhikevich, 2007; Deco et al., 2008; Breakspear, 2017; Favela, 2021).

DST enables the formalization of mechanistic models as systems

of differential equations or iterative maps (Hodgkin and Huxley,

1952; FitzHugh, 1961; Izhikevich, 2003) and provides a framework

to explain properties of neural systems using intuitive geometrical

and topological representations (Deco and Jirsa, 2012; Khona and

Fiete, 2022). This view also opens the door to adopt established

phenomenological models and tools used in statistical physics to

understand neural dynamics (Wilson and Cowan, 1972; Kuramoto,

1975; Buzsaki and Draguhn, 2004). However, mechanistic models

often become intractable when scaled to large systems, while

phenomenological models may oversimplify biological processes

and lack predictive generalizability. For example, van Albada

et al. (2015) show that mechanistic models (cortical network

simulations) hit limits when scaling, while phenomenological

models, such as the Wilson-Cowan equations of population

dynamics Wilson and Cowan (1972) or linear-nonlinear models

in sensory neuroscience (Chichilnisky, 2001), necessarily simplify

neural complexity, thereby limiting their generalizability to high-

dimensional neural data.

The unprecedented availability of large-scale datasets in

neuroscience has spurred the exploration of data-driven dynamical

systems, propelling the field into the era of big data (Landhuis,

2017). These data-driven methods minimize reliance on a-priori

assumptions, instead leveraging the rich data available to guide

model identification (Brunton and Kutz, 2019). By training these

systems to reconstruct empirical observations, they can act as direct

surrogates to the system of interest. This attribute makes them

especially appealing within neuroscience (Brunton and Beyeler,

2019), a field wherein the systems in question are notoriously

complex to model, a unifying theoretical framework is still nascent,

and the existing measurement tools do not currently provide

a comprehensive representation of the underlying mechanisms.

Consequently, data-driven dynamical systems, and specifically

deep recurrent neural networks (RNNs) and their variants, are

increasingly integrated into a variety of research areas within

neuroscience. In systems and computational neuroscience, data-

driven dynamical systems are becoming valuable research tools

for probing the neural underpinnings of cognitive and behavioral

functions (Durstewitz et al., 2023; Vyas et al., 2020; Shenoy et al.,

2013; Sussillo, 2014; Barak, 2017; Schaeffer et al., 2022; Mante et al.,

2013). In neural control engineering, they are used to develop

optimal neurostimulation profiles for treating clinical conditions

(Tang and Bassett, 2018; Acharya et al., 2022; Yang et al., 2018;

Bolus et al., 2021; Rueckauer and van Gerven, 2023). Similarly, in

neural decoding, they are used for reconstructing natural stimuli

from neural recordings (Willett et al., 2023; Metzger et al., 2023;

Anumanchipalli et al., 2019; Zhang et al., 2019; Livezey and
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Glaser, 2021), advancing brain-computer interface technologies.

Their applications extend to clinical neuroscience, where they are

used for bio-marker discovery of psychiatric disorders, patient

stratification, and prognosis (Bystritsky et al., 2012; Roberts et al.,

2017a,b; Durstewitz et al., 2021).

The shift toward data-driven methodologies in neuroscience

can introduce significant technical challenges. These range from

data-centric challenges such as high dimensionality, partial

observability, non-linearity, process and measurement noise, non-

stationarity, and data scarcity, to modeling hurdles such as

uncertainty quantification, non-identifiability, and interpretability

issues (Durstewitz et al., 2023). This landscape has resulted

in a plethora of specialized technical advancements driven by

distinct theoretical and practical frameworks (Brunton and Beyeler,

2019; Hurwitz et al., 2021a; Ramezanian-Panahi et al., 2022). A

symptom of this status quo is the prevalent dichotomy between

model expressivity and interpretability. As researchers opt for

more expressive models to capture the intricacies of neural

dynamics, they encounter interpretability challenges. This is further

exacerbated by optimization challenges that arise either due to

the models (e.g. exploding/vanishing gradients in RNNs) or the

behavior of the system (e.g. chaos and non-stationarity), entailing

highly technical solutions that further fragments neuroscientific

practice. Additionally, while the allure of utilizing unbiased

expressive models is initially appealing, in the absence of large-scale

curated datasets, eschewing prior knowledge often results in ill-

posed problems and implausible solutions as highlighted in recent

studies (Kao, 2019; Alber et al., 2019; Su et al., 2017). In practical

terms, this means that the models become prone to overfitting on

spurious correlations and exhibit high sensitivity to design choices

that are peripheral to the main task at hand, ultimately leading

to issues in generalization and replication across datasets, tasks,

and subjects (Maheswaranathan et al., 2019; Schaeffer et al., 2022;

Hurwitz et al., 2021a; Han et al., 2023).

Neural differential equations (NDEs) (Chen et al., 2018;

Kidger, 2022) have emerged as a powerful tool of choice to

implement data-driven dynamical systems. NDEs represent an

emerging family of continuous models that utilize neural networks

to parameterize the vector fields of differential equations. This

integration marries the expressive power of neural networks with

the rigorous theoretical foundations established by decades of

research in differential equations and dynamical systems theory.

While originally popularized as deep neural network models with

continuous depth (Chen et al., 2018), recent advancements have

burgeoned into a rich spectrum of continuous-time architectures

rooted in dynamical systems theory (Tzen and Raginsky, 2019a;

Morrill et al., 2021; Li et al., 2020b; Jia and Benson, 2019; Poli et al.,

2019; Kidger et al., 2020). Recently, neural ordinary differential

equations are being increasingly adopted in computational and

systems neuroscience, showing improved performance compared

to current approaches (Kim et al., 2021; Sedler et al., 2022;

Geenjaar et al., 2023; Versteeg et al., 2023). While this is a

promising sign, their current application have only focused on

black-box, explicitly discretized versions that do not capture the

broader potential of NDEs as a pathway toward a unified scientific

modeling language (Shen et al., 2023; AlQuraishi and Sorger,

2021; Wang et al., 2023). This untapped potential can be realized

by conceptualizing differential equations as parameterizable,

differentiable mathematical objects amenable to augmentation and

training via scalable machine learning techniques. Traditional DEs

and NDEs can thus be viewed as special cases at the extreme ends

of a spectrum.

3 Universal di�erential equations

3.1 Mathematical formulation

A UDE is a mathematical model that extends a traditional

differential equation by incorporating free parameters whose values

can be learnt from data. By including free parameters, a UDE can

act as a universal approximator (Cybenko, 1989; Hornik et al.,

1989), meaning that it is able to approximate any dynamical

system. In their most general form, UDEs are parameterized

differential equations that may contain delays, forcing terms,

algebraic constraints and/or depend on multiple independent

variables (Rackauckas et al., 2020). In this paper, we focus our

attention on parameterized forced stochastic differential equations

(SDEs) that are able to capture the dynamics of a countable

number of state variables (e.g. membrane potentials or population

responses) under the influence of process noise and external

perturbations (e.g. sensory input or experimental manipulations).

SDEs extend ordinary differential equations by incorporating

stochastic processes, enabling the modeling of dynamical systems

subject to uncertainty. The key to this extension is the inclusion

of a stochastic term that represents random fluctuations arising

from either intrinsic or extrinsic factors. A forced SDE makes

explicit how the (multi-dimensional) state x(t) of a system of

interest changes as a function of control inputs u(t) and (Brownian)

process noise W(t) with t the time index. This can be succinctly

represented as

dx(t) = µα(x(t), u(t))dt + σβ (x(t), u(t))dW(t) (1)

where µ and σ are drift and diffusion functions, representing the

deterministic and stochastic parts of the time evolution of the

system. Both µ and σ are parameterized by θ = (α,β), which are

the (learnable) free parameters of the system. Note that the time

indices in Equation 1 are typically suppressed from the notation

for conciseness.

SDEs offer considerable flexibility for modeling stochastic

dynamics. This adaptability largely stems from the diffusion term’s

configuration and Brownian motion properties (Oksendal, 2013;

Särkkä and Solin, 2019). For instance, in cases where σ is a constant

matrix or a state-independent function, the noise becomes additive,

rendering it suitable for modeling extrinsic uncertainties such as

external, unobserved interactions. Conversely, when σ is a function

of the system’s state, the noise becomesmultiplicative, which varies

with the system’s state, aptly capturing intrinsic uncertainties, such

as uncertainties in drift term parameters. Notably, despite the

Brownian noise process capturing uncorrelated Gaussian white

noise, its interaction with σ enables modeling of non-Gaussian

noise distributions. These nuances provide a comprehensive

framework for modeling complex dynamical systems with varying

types of uncertainty. It is at the modeler’s discretion to define
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FIGURE 1

Universal di�erential equations. (a) A schematic illustration of a universal di�erential equation. The vector field of the di�erential equation is defined

via either an existing model from the literature, or a di�erentiable universal approximator (e.g. a neural network) or a combination of both. The

numerical solver is an SDE-compatible numerical solver, which takes in the initial condition x0, a geometric Brownian motion generator 1W, the

forcing signal u, the functions defining the vector fields of the SDE µ and σ , along with their parameters θ . The numerical solver then computes the

solution at time t. The parameters of the di�erential equation can then be trained either via automatic di�erentiation or using adjoints methods. This

setup enables the use of a UDE either as universal function approximator on their own or as a part (layer) in a di�erentiable computational graph. (b)

The formulation of a UDE encompasses a spectrum of modeling techniques from white-box traditional models to fully data-driven black box

models. This flexibility can foster interoperability between di�erent methodological e�orts, provide solid theoretical background to face multifaceted

challenges in neuroscience modeling across scales and applications, and o�er a principled approach to balance between data adaptability and

scientific rationale in model development.

the functional form of µ and σ . Ultimately, this functional form

should accurately capture the (uncertain) evolution of the state

of the system. This is evaluated by computing the solution to

Equation 1, which is a distribution over paths x(t) within some

range t ∈ [0,T]. When this functional form is unknown, a feed-

forward neural network becomes a conventional choice due to their

ability to approximate any function. Appendix B provides details on

SDE solvers.

3.2 Fitting a UDE to data

The key idea behind efficient and scalable training of UDEs

is the incorporation of a numerical solver within a differentiable

computational graph (Figure 1a). This setup allows gradient back-

propagation through the solution of the differential equation,

enabling fitting the UDE parameters to observed data given a

cost function. There are two primary strategies for this purpose:

(i) discretize-then-optimize, which involves storing and gradient-

backpropgation through all intermediate steps of the solver,

providing exact gradients and (ii) optimize-then-discretize, utilizing

the (stochastic) adjoint-method to approximate gradients at fixed

memory cost. Whereas the former is preferred for large-scale

learning tasks, the latter preserves continuous-time fidelity and

is preferred in control-theoretical settings when stability or

theoretical guarantees are critically important.1 Effectively, this

setup enables the training of a UDE-based model using standard

loss functions similar to those used in discrete deep learning

models. Nonetheless, given the stochastic nature of a UDE,

maximizing the log-likelihood of observations alone can cause

the diffusion function to converge to zero (Li et al., 2020a). To

counteract this, alternative training strategies, including adversarial

methods (Kidger et al., 2021a) or variational inference (Li et al.,

2020a; Tzen and Raginsky, 2019a,b), are employed for stochastic

UDEs. We explore in further detail the application of variational

inference for UDE-based models in Section 4 and the technical

details are provided in Appendix C.

3.3 A continuum of models

The UDE formulation naturally encompasses a spectrum

of modeling approaches from traditional white-box mechanistic

models to contemporary expressive black-box deep learning

models (Figure 1b). Several modeling scenarios can thus be phrased

as a UDE training problem. Here we provide some examples

of these scenarios, where we use a subscript θ to indicate free

1 Other methods, such as reversible solvers or forward sensitivity methods,

also exist but are less common. For a detailed comparison of NDE automatic

di�erentiation techniques, refer to Ma et al. (2021) and Kidger (2022).
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parameters. What these examples have in common is that they fit

parameters θ to capture unmodeled variance, which, as we will

argue, are themselves amenable to scientific interrogation.

3.3.1 Di�erential equations with known
unknowns

In this setup, the structure of the system dynamics is known

or assumed but the values of some parameters are unknown.

Training a UDE thus amounts to estimating these unknown

parameters from observations. This approach provides a structured

and interpretable yet adaptable approach to modeling, capitalizing

on domain knowledge or assumptions about the dynamics. This

significantly reduces the model search space, and, if correct,

would consequently reduce the amount of training required to

approximate the dynamical system (Linial et al., 2021; Djeumou

et al., 2023; Abrevaya et al., 2023). Consider the following Ornstein-

Uhlenbeck (OU) process used as a mechanistic model of the

dynamics of a neuron’s membrane potential (Laing and Lord,

2009):

dx = a(m− x)dt + bdW (2)

where x denotes the membrane potential and θ = (a,m, b) are the

free parameters. Here, a indicates the rate of potential reversion to

themean,m represents the restingmembrane potential, and b is the

magnitude of random fluctuations due to synaptic inputs. Here the

OU process provides the structure of the model dynamics, while

the values of the parameters θ are estimated by fitting the UDE

on empirical observations. Hence, the parameters θ provide data-

driven estimates of the model parameters that govern stochastic

membrane dynamics.

3.3.2 Di�erential equations with learnable
uncertainty

In this setup, the structure of the deterministic dynamics is

known or assumed, with unknown parameters, and a function

approximator is used to capture intrinsic and/or extrinsic

uncertainty about the model. Consider the modern interpretation

of a Wilson-Cowan model (Wilson and Cowan, 1972), used to

describe the average firing rates of a group of neurons (Sussillo,

2014). This model can be phrased as a UDE to capture stochastic

dynamics not captured by the original model as follows:

dx =
1

τ
(−x+ Jr(x)+ Bu)dt + σβ (x, u)dW (3)

where x represents the neurons’ synaptic currents and θ =

(τ , J,B,β) are the free parameters. The function r is a saturating

nonlinear function and J is a matrix that represents the recurrent

connections between neurons. The vector u represent the external

input to the network that enters the system through the matrix B,

and τ represents the time scale of the network. The function σ

is a differentiable function approximator (a neural network) that

captures both how the dynamics respond to external unobserved

inputs (extrinsic uncertainty) and how the dynamics evolve subject

to uncertainty about the model parameters (intrinsic uncertainty).

Hence, θ denotes the parameters of the traditional model and the

function approximator. These parameters are jointly learned by

fitting the UDE on observations. Hence, the parameters θ capture

essential properties of population dynamics, such as the time

constants τ of neuronal population dynamics and the structural,

functional and effective connectivity between neural populations,

as captured by J. This setup allows leveraging interpretable

mechanistic deterministic models while embracing the complex

stochastic nature that arise empirically when modeling complex

systems from partial or noisy observations.

3.3.3 Di�erential equation with residual learning
This approach starts from an underlying model but assumes

that part of the structure of the deterministic dynamics is unknown,

which can be captured via a universal function approximator. This

approach, also referred to as residual dynamics learning, enables

generalizing powerful mechanistic models to handle dynamics

not captured by the model. For instance, consider the original

Kuramotomodel (Kuramoto, 1975), widely used in neuroscience to

study synchronization phenomena in systems of coupled oscillators

(e.g. neurons, brain regions). A notable shortcoming of this model

is its assumption of oscillator homogeneity, implying uniformity

across all neurons or regions. However, biological systems often

exhibit significant heterogeneity in terms of cell types, regional

characteristics, and unobserved inputs. To accommodate these

disparities, the Kuramoto model can be augmented with a function

approximator, allowing for a more precise representation of neural

oscillations. This can be phrased as a UDE

dx =



ω +
K

N

N
∑

j=1

sin(xj − x)+ fα(x)



 dt + 6 dW (4)

where x is a vector representing the phase of N oscillators and θ =

(ω,K,6,α) the free parameters with ω the natural frequencies, K a

matrix representing the coupling strength between the oscillators,

and 6 representing the magnitude of extrinsic random forces

acting on the network. The function f , parameterized by α, acts

as a dynamic corrective mechanism, adjusting for deterministic

discrepancies not accounted for in the original model formulation.

Note that in this example, all the parameters θ are assumed to be

estimated from data, providing an estimate of both the oscillator

model parameters as well as the unmodelled dynamics.

3.3.4 Structured neural di�erential equations
This setup posits that while the coupling architecture between

the states (and inputs) of a system is known, the specific dynamic

functions governing these states remain unidentified and can

thus be approximated via a neural network. This approach is

particularly apt for modeling complex, multi-scale, or networked

non-linear dynamical systems. Consider the following graph-

coupled nonlinear dynamical system generalizing the Kuramoto

model, phrased as a UDE:

dx =



fα(x, u)+ A

N
∑

j=1

gα(xj, x)



 dt + 6 dW (5)
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where x and u represent the states and inputs of the system,

respectively, and θ = (α,6) are the free parameters. The

functions f and g are function approximators describing the local

and interconnected system dynamics, respectively. The matrix

A denotes the adjacency matrix representing the coupling

structure, and 6 represents the magnitude of extrinsic random

forces acting on the network. In this particular example, the

coupling structure is known or assumed based on a-priori

assumptions (e.g. structural/functional connectivity), whereas the

local and global dynamics functions are completely learned

from observations. In essence, either f or g could be replaced

by traditional models allowing combining data-driven and

mechanistic/phenomenological modeling across scales.

3.3.5 Neural di�erential equations
In this configuration, both the parameters and structure of

the system’s dynamics are unknown. Consequently, the drift and

diffusion vector fields of the UDE are entirely described via neural

networks as function approximators. This setup represents the

epitome of black-box modeling, as it enables the derivation of

models directly from observational data circumventing the need for

any assumptions about the system’s dynamics. A generic UDE in

this case can be written in the form of Equation 1 as

dx = µα(x, u)dt + σβ (x, u)dW (6)

where µ and σ are neural networks with parameters θ = (α,β).

This equation can be viewed as a stochastic, continuous-time

generalization of discrete-time deep recurrent neural networks

prevalent in contemporary machine learning research (Kidger,

2022; Tzen and Raginsky, 2019a,b; Li et al., 2020a). Hence, the

parameterized state equations and their ensuing dynamics can

be interrogated using analysis techniques developed by the AI

and control theory communities (Güçlü and Van Gerven, 2015;

Brunton and Kutz, 2019).

3.4 Toward informed stochastic models

Generally, all of the presented UDE configurations fill a

spectrum between white-box and black-box models under a unified

formulation. As one progresses from white-box models toward

black-box models, the reliance on empirical data for model

identification increases correspondingly, inversely proportional to

the number of presupposed assumptions about the underlying

dynamics (the more correct the model, the less data needed, and

vice versa). In practice, it should be expected that a certain degree

of knowledge or hypothesis about the studied system is available.

This knowledge should not be constrained to the structure of

the dynamics, but could cover all aspects of the computational

model (e.g., dimensionality, information about the stimulus or

observation modality, scale of noise, expected dynamics, etc.).

UDEs simply serve as a universal tool for evaluating this knowledge,

or augmenting them to develop scalable models that can be used in

several downstream applications (see Section 5).

Crucially, UDEs conceptualize neural processes as continuous-

time stochastic processes. This perspective can bring computational

models closer to the complex nature of neural processes.

This is imperative when modeling neural dynamics, where

stochasticity can be traced from the molecular level, with stochastic

behaviors in ion channels and synaptic transmission (Hille, 1978;

Sakmann, 2013), to the cellular scale where neurons demonstrate

unpredictable firing patterns (Tuckwell, 1988). Importantly,

stochasticity is not confined to the micro-scale as it escalates to

the level of neural populations, where the effects of noise and

randomness are not merely incidental but play a crucial role in

the functioning and organization of neural systems (Rolls and

Deco, 2010; Faisal et al., 2008). The following section delves

into leveraging UDEs to develop fully differentiable, informed,

probabilistic models for neural system identification.

4 Neural system identification

Let us consider a neural system whose dynamics are the

realization of a continuous-time stochastic process {x(t) : 0 ≤

t ≤ T} that is potentially modulated by exogenous input u(t).

In practice, we observe neither x nor u directly but rather have

access to stimuli vn = v(tn) and neurobehavioural recordings

yn = y(tn), sampled at discrete timepoints t1, . . . , tN with 0 ≤

tn ≤ T. We also use v1 :N and y1 :N to denote these observations

across timepoints. Let τ = (v1, y1, . . . , vN , yN) denote a trajectory

of stimuli and responses and assume that we have access to a dataset

D = {τ 1, . . . , τK} consisting of k such trajectories. The goal of

neural system identification is to estimate the neural dynamics x(t)

from dataD.

We propose to model the underlying stochastic process x as the

(weak) solution of a latent UDE, and frame the problem of system

identification as a posterior inference problem of the distribution

p(x | y, v), which we tackle via variational inference. Accurate

resolution of this problem yields multiple benefits. First, it allows

inference of the latent (hidden) states of the system in online and

offline settings. Second, it allows reconstructing and predicting

the system’s behavior under various conditions. Third, it provides

an expressive probabilistic modeling framework that quantifies

uncertainty and incorporates prior knowledge, facilitating robust

hypothesis generation and testing.

Recent methodological advancements in variational inference

for SDE-based models are unlocking new avenues for probabilistic

modeling of stochastic dynamical systems (Li et al., 2020a;

Tzen and Raginsky, 2019a,b; Ryder et al., 2018; Course and

Nair, 2023). This progress can offer transformative potential for

neuroscience, specifically for modeling neural systems during

complex naturalistic behavior. Here we outline an intuitive recipe,

leveraging these techniques in conjunction with neuroscientific

domain knowledge, aiming for an informed and data-efficient

framework suitable to various applications in the field. As shown in

Figure 2, we structure this recipe into four key modules, that is, (i)

a stimulus encoder, (ii) a recognition model, (iii) a process model,

and (iv) an observation model. This approach was recently adopted

by ElGazzar and van Gerven (2024) to estimate the parameters

of a stochastic coupled oscillator model which captures the neural

dynamics under various motor tasks.
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FIGURE 2

Framework for neural system identification. (a) Shows the forward pass (generative mode) during the encoding of a (high-dimensional) stimulus v

into neurobehavioral observations y. This is done through a fully di�erentiable graph, which consists of (i) a stimulus encoder to encode the stimulus

into a lower dimensional continuous representation, (ii) a recognition model to infer the hidden initial state x0, (iii) a latent dynamics model to model

the temporal evolution of the dynamics, and (iv) an observation model to map the latent states into observations. (b) Illustrates the formulation of the

informed stimulus encoder which is tasked with learning a lower dimensional continuous representation u from the discrete (high-dimensional)

stimulus signal v. (c) Illustrates examples of modality-specific observation models to map the latent process into neurobehavioral measurements.

4.1 Stimulus encoder

The objective of this module is to map the discrete-time

measured stimulus v into a (lower-dimensional) continuous-time

representation u that is suitable for input into the latent dynamics.

This is crucial in scenarios where the stimulus is a high-dimensional

signal (e.g., images, videos, text, audio), as direct integration into

the dynamics model would be computationally expensive. It is also

crucial if we wish to sample the latent dynamics at a temporal

resolution different from the temporal resolution of the measured

input. We formalize this process as

u(t) = π {αθ (vτ )}τ≤t (7)

where αθ : R
dv → R

du is a (parameterized) encoding function

and π : R
du × [0,T] → R

du is the interpolation function that

constructs a continuous representation over time. The design of

both functions should be guided by the stimulus modality and the

context of the scientific question being addressed.

The choice of interpolation scheme π should align with the

temporal properties (e.g. smoothness, boundedness, missing data)

of the stimulus (Morrill et al., 2022; Lepot et al., 2017), the

downstream application (e.g. online vs offline, speed vs accuracy),

and the theoretical requirements of the drift term in the dynamics

function (controlled differential equation (Kidger et al., 2020) vs

forced ODE). For example, while linear interpolation might suffice

in most offline scenarios, if the model is to be used in real-time

settings (e.g. control) then a rectilinear interpolation scheme is a

suitable choice. A general recommended practice is to incorporate

time as an additional input channel (Kidger, 2022), especially

when the raw input lacks temporal variation, or to model non-

autonomous dynamics.

The encoding function α can assume different forms,

depending on the research question and data at hand. It could

be a simple identity function in case the sensory input is low-

dimensional. In case of high-dimensional input, leveraging one or

more pre-trained models tailored to specific data modalities could

offer a starting point (for instance, a pre-trained convolutional
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neural network for image data, or a pre-trained language model

for text). Alternatively, α may be parameterized by θ and learned

directly from data.

Note that α could also be utilized to approximate the posterior

distribution p(u | v) instead of relying on point estimates which

would fit well within variational inference framework. However,

if the primary interest lies in parameterizing the underlying

dynamical system, this added complexity may be unnecessary, as

uncertainties about u can also be captured through the diffusion

term in the UDE. With that said, this approach could be more

relevant in downstream applications such as neural decoding (see

Section 5).

4.2 Recognition model

The objective of this module is to accurately estimate the initial

hidden state x0 of the system. To accomplish this, we define a

mapping function that uses a segment of the observed data to infer

x0 as suggested in recent studies (Massaroli et al., 2020; Rubanova

et al., 2019). This process involves a backward-running trainable

sequential model, denoted as ζθ [e.g. a RNN or neural controlled

differential equation (Kidger et al., 2021a)]. The recognition task

can be expressed compactly as

x0 = ζθ

(

yc : 0, uc : 0
)

(8)

where c ∈ [0,N] denotes the end of the observation interval used

for estimating the initial condition. Note that notations yc : 0, uc : 0
indicate that the intervals are reversed in time. The choice of

c will depend on the nature of the dynamics or context of the

application. For example, in stationary settings, it might suffice to

have c ≪ N. It is also important to consider, which phenomena

is under study. In most cognitive experiments, pre-task/stimulus

recordings exist and can be utilized for this purpose. On the

other hand, in online settings, dynamically sampling c from a pre-

defined distribution during training can adapt the model more

effectively to real-time variations. In general it is important to

ensure that ζ is not overly parameterized to avoid encoding future

information about the dynamics as recommended by Massaroli

et al. (2020). Additionally, it is worth noting that ζ can be employed

to approximate the posterior distribution of the initial state p(x0 |

yc : 0, uc : 0). However, one must consider the added complexity this

introduces in the optimization process, especially when variational

inference is to be applied across the entire dynamics of the system.

Introducing this level of complexity might not always be necessary

and could potentially complicate the model without significant

benefits in certain contexts.. This approach could be relevant if the

underlying dynamics of the system are assumed to be deterministic

and autonomous, mirroring many current data-driven dynamical

systems in neuroscience (Chen et al., 2018; Sedler et al., 2022).

4.3 Process model

The goal of this module is to learn the distribution of the latent

stochastic process x. This is done by employing a UDE to model the

temporal evolution of the initial state x0, subject to external control

u, and Brownian motionW. This is expressed as before as

dx = µα(x, u)dt + σβ (x, u)dW . (9)

The design of the UDE should be dependent on domain knowledge

about the system in question (Section 3) and the downstream

application of the model (Section 5). The parameters of the

UDE can be trained along with the rest of the model via

variational inference of x (Li et al., 2020a; Tzen and Raginsky,

2019b,a) (Appendix C). For the reader familiar with conventional

variational autoencoders (VAEs) (Kingma and Welling, 2013), it

might be useful to conceptualize this as a variational autoencoder,

conditioned on the stimulus (Sohn et al., 2015), with a (learned)

expressive prior (Ma et al., 2018), and whose latent space is an

SDE-induced continuous stochastic process.

4.4 Observation model

Observation models, also known as measurement or emission

models, define the probabilistic relationship between the latent

states of a system and the observed data. The observation model

is formalized as follows:

y(t) = λθ (x(t), ǫ(t)) (10)

where λθ : R
dx → R

dy is the observation function and ǫ(t) is

observation noise. The above mapping specifies the conditional

distribution pθ (y | x) within our probabilistic inference framework.

The fidelity of observation models is paramount in the accurate

identification of dynamical systems. These models must be tailored

to reflect the biophysical constraints in the modality employed,

account for specific noise structures, and possibly impose structure

if the biological interpetability of latent states is required (Klindt

et al., 2017; Seeliger et al., 2021). For instance, point process

models can be employed for spike train data (Heeger, 2000).

Nonlinear Gaussian models may be apt for local field potentials

(LFPs) (Herreras, 2016). Emission models for fMRI should account

for the hemodynamic response function (HRF), possibly utilizing

convolution or more complex models for regional variation

(Friston et al., 2000). Calcium imaging data necessitate nonlinear

models to reflect the complex relationship between neural firing

and observed signals, with considerations for photobleaching or

other imaging artifacts (Rahmati et al., 2016).

5 Opportunities in neuroscience

UDEs, when trained for neural system identification, offer

the potential to serve as direct substitutes for various (data-

driven) dynamical systems currently employed in neuroscience.

Here we highlight four emerging applications within the field,

outlining both the current challenges and the potential advantages

of integrating UDE-based models over existing methodologies.
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FIGURE 3

UDE-based models across di�erent applications in neuroscience (a) UDEs can be used to represent the underlying latent dynamical system to

understand how neural dynamics give rise to computations and ultimately behavior. This could be achieved via imposing multi-scale dynamics

models, comparing di�erent dynamics models, and dynamical systems analysis. (b) UDEs can be used for model-based closed loop control of neural

systems via model predictive control methods. (c) UDE models trained for neural encoding can also be leveraged for neural decoding of the stimulus

from neural observations. This could be achieved via explicitly training UDEs to jointly estimate latent dynamics and the stimulus in a supervised

fashion or via using control-theoretic methods to infer the applied stimulus from observational data. (d) UDE models can be employed for capturing

population-average neural dynamics utilized for patients stratification in a normative modeling framework. First UDEs can be trained on

population-level data, and then used as a scoring function to detect outliers at inference time.

5.1 Explaining cognitive and behavioral
functions

A central question in neuroscience is how the brain implements

cognitive and behavioral functions. In the past decade, significant

progress have been gained by recognizing that these functions

arise from coordinated activity within neural populations. This

specific population-wide activity appears to be systematically

governed by underlying lower-dimensional latent states (Mante

et al., 2013; Churchland et al., 2012; Sadtler et al., 2014; Elsayed and

Cunningham, 2017). The characterization of latent state dynamics

has been a primary focus of many latent variable models (LVMs)

(Yu et al., 2008; Cunningham and Yu, 2014; Chen et al., 2018;

Glaser et al., 2020; Kim et al., 2021; Hurwitz et al., 2021b; Zhou

and Wei, 2020; Schneider et al., 2023). Despite their success in

uncovering the neural basis of several phenomena, their utility is

contingent upon several factors specific to the neuronal population

and experimental settings at hand (Urai et al., 2022; Hurwitz

et al., 2021a). These factors include low dimensionality of neural

population activity, autonomous latent trajectories, and settings

where most of the variance is explained by behavior. Consequently,

most breakthroughs in this domain have arisen from studies of

highly stereotyped behaviors within simple contexts, particularly

in neural populations in the motor cortex. Additionally, several

open challenges remain for current LVM approaches (Vyas et al.,

2020), such as delineating the specific input-output structures of

brain regions, understanding inter-neuronal population influences,

modulating of local and global dynamics, and integrating both

anatomical and functional constraints.

We posit that UDEs provide principled solutions to address

these issues, making them a suitable candidate for multi-scale

modeling of neural dynamics during complex behaviors. Note

that LVMs, by design, will mix all sources of neural variability

in the latent space, obscuring the interpretation of the latent

dynamical system, especially for complex behaviors or diverse

stimulus ensembles. UDEs offer a solution by imposing structured

dynamics in the latent space, which can additionally improvemodel

expressiveness and reduce the search space. The rich history of

differential equations in neuroscience provides a foundation for

such structure, which can be utilized to construct the drift term

of a UDE and leverage the variational inference framework to

infer their parameters. The effectiveness of this approach also

crucially depends on the construction of appropriate encoder and

observation models since this will affect the nature of inferred

latent dynamics.

A particularly intriguing possibility that arises from the

hybridization of mechanistic differential equations and neural

networks in UDEs is developing expressive tractable multi-scale
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models. By imposing a-priori dynamics (with trainable parameters)

at one scale while learning complex dynamics at another, we can

combine different level of descriptions within a unified framework

(Figure 3a). For example, existing single-neuron differential

equations could model micro-scale dynamics, while neural

networks could capture abstract inter-population macroscopic

dynamics. Conversely, neural networks might model abstract

microscopic dynamics within brain regions, and phenomenological

models, guided by structural or functional insights, could represent

macroscopic dynamics between brain regions. In this setup, UDEs

function as a system of nested, coupled differential equations (Koch

et al., 2023). Again the ability to assign such correspondences

would require the design of (low-rank) observation models that

allow for the allocation of specific latent states to particular

physical observations.

Another dimension of interpretability, which does not hinge

on interpretable latent states, emerges from applying dynamical

systems theory. By examining the vector field of the trained UDEs

to identify dynamical phenomena and structures of interest (such as

attractors, limit cycles, bifurcations, etc.), we can generate insights

into how the dynamical system facilitates computations underlying

cognition and behavior. This approach, drawing on principles from

dynamical systems theory, has gained popularity in the analysis

of RNN-based models (Sussillo and Barak, 2013; Durstewitz et al.,

2023; Vyas et al., 2020).

Contemporary methodologies for addressing stochasticity in

neural dynamics often resort to simplified models of noise.

Common approaches include using probabilistic initial states

coupled with deterministic dynamics, or incorporating dynamics

perturbed by additive Gaussian or Poisson noise, as well as

employing hidden Markov models (Linderman et al., 2017;

Laing and Lord, 2009; Pandarinath et al., 2018). While these

methods can be adequate for modeling neural activity in

autonomous tasks, discrete decision-making processes, or certain

brain regions, they frequently fall short in encapsulating the full

complexity inherent in higher-order brain functions or intricate

decision-making scenarios. In such contexts, noise plays a more

substantive role than just a source of randomness; it becomes a

fundamental component of neural coding and behavior formation

(Rolls and Deco, 2010; Faisal et al., 2008). UDEs represent

a significant leap in the ability to model arbitrarily complex

noise distributions. This is achieved through the integration

of a high-capacity function approximator such as a neural

network conditioned on the state in the diffusion term. By

appropriately choosing the function σ (x, u), which encodes a

state- and control-dependent diffusion matrix, the diffusion term

can capture a wide range of noise phenomena. For example,

constant or state-dependent σ produces additive or multiplicative

Gaussian fluctuations, diffusion approximations σ (x, u)dW can

approximate non-Gaussian variability, such as Poisson-like spike

count fluctuations, while multiple or correlated Wiener processes

encoded in the off-diagonal terms of the diffusion matrix allow

structured or network-level noise. Finally, it is important to note

that UDEs are not bound to conditioning on Brownian noise since

SDEs can also be driven by jump processes or more general Lévy

processes (Øksendal, 2003; Gardiner, 2009; Faugeras and Inglis,

2015).

UDEs offer a compelling framework for model comparison in

neuroscience. Essentially, by leveraging the probabilistic inference

framework, we can configure the prior UDE to reflect various

theoretical models about how neural processes unfold over time.

The crux of this approach lies in determining whether UDEs,

when structured to reflect specific hypotheses, can improve the

log-likelihood of observed data over models with non-specific or

generic priors under identical training data conditions. Such a

comparison is not hypothesis testing in the formal Bayesian sense,

but rather a way to evaluate the relative effectiveness of different

(potentially highly expressive) dynamical models in explaining

neural data, which otherwise would not be tractable in standard

Bayesian settings (Grimmer, 2011).

Beyond hypothesis testing, one of the most compelling aspects

about adopting UDEs for neuroscience is the potential for

automated scientific discovery. This process is typically enabled

by using sparsity-promoting optimization techniques (Brunton

et al., 2016; Schmidt and Lipson, 2009) to recover compact

closed-form equations from a large database of basis functions.

Within the framework of UDEs, this is viewed as a post-hoc

step involving symbolic distillation of the function approximators

to recover missing terms and auto-correct existing mechanistic

models (Cranmer et al., 2020; Rackauckas et al., 2020). Unlike

several scientific disciplines which are starting to embrace this

approach (Raissi, 2018; Keith et al., 2021; Davies et al., 2021;

Duraisamy et al., 2019; Kusner et al., 2017; Choudhary et al.,

2022), this remains an underexplored opportunity in neuroscience

with a potential to generate data-driven hypotheses in the form of

interpretable algebraic expressions (Wang et al., 2023).

5.2 Neural control

The confluence of neuroscience and control theory is becoming

increasingly pronounced, spurred by the potential of brain-

computer interfaces (BCI) and neurostimulation for clinical

interventions, sensorimotor augmentation, and functional brain

mapping (Yang et al., 2018; Acharya et al., 2022). This burgeoning

field, also termed “neural control engineering” (Schiff, 2011),

is predicated on the notion that the brain is fundamentally a

complex, adaptive system, amenable to modeling and control

using established engineering and control theory principles.

In practice, the predominant focus has been on open-loop

control methods for neural systems. However, there is a

growing consensus that transitioning to a closed-loop control

paradigm is imperative to improve reliability, safety and energy

efficiency (Ramirez-Zamora et al., 2018; Särkkä and Solin, 2019).

Particularly, model-based closed-loop control aids safety via

allowing the development and validation of control strategies

in-silico (Rueckauer and van Gerven, 2023). It also promotes

interpretability by facilitating causal analysis of the models (Imbens

and Rubin, 2015). Additionally, it paves the way for integrating

the latest advancements at the intersection of control theory and

machine learning in a data-efficient manner (Moerland et al., 2023).

However, unlike the typical engineering context in which

model-based control methods are being developed, the brain posits

a number of additional challenges (Schiff, 2011). These challenges
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encompass its high dimensionality, the multitude of constituent

subsystems, limited data availability, inherent stochasticity, the

myriad of spatio-temporal scales influencing system behavior,

and technological constraints in sensing and actuation, among

others. Consequently, there is a pressing need for tailored

model-based frameworks specific to the brain (Ramirez-Zamora

et al., 2018). UDE-based models provide principled solutions to

address these challenges, rendering them a strong candidate to

develop models for neural control (Figure 3b). The integration

of mechanistic models with data-driven models in UDEs offer a

way to navigate the current dichotomy of expressiveness versus

data requirements. Fully mechanistic models, or linear data-driven

models, while being less reliant on extensive data and potentially

more interpretable, may compromise on prediction accuracy.

Conversely, expressive non-linear data-driven dynamical systems

can provide better prediction fidelity but necessitate substantial,

often personalized, supervised datasets—a requirement that can be

challenging in practice.

One of the main concerns of closed-loop control system is

its robustness to external disturbances and uncertainties. These

uncertainties as discussed can come from all kind of sources in

the neural system, ranging from epistemic uncertainty about the

system to aleatoric uncertainty as generated by sensor, process and

actuator noise. Such uncertainties is critical for safe and reliable

design of control policies. A latent UDE model can provide a

principled approach to estimate and disentangle these uncertainties

even for highly expressive models in a tractable efficient manner.

Latent UDEs facilitate the use of both linear and nonlinear

control methods. Through the notion of amortized priors, a

distilled, simpler (possibly linear) model can be approximated

from a complex dynamics model for real-time application,

enabling optimal linear control strategies. In applications where

linear models are sub-optimal, we can still use an amortized

non-linear UDE for system identification. The availability of

a fully differentiable dynamics model then unlocks advanced

control strategies, such as model-based reinforcement learning and

(gradient-based) model predictive control (Moerland et al., 2023;

Djeumou et al., 2023).

For real-time applications, striking a balance between

prediction accuracy and computational efficiency is paramount.

UDEs, being compatible with adaptive numerical solvers, can

thus be tailored to offer this trade-off crucial during real-time

application via the choice of the numerical solver, or the trade-

off between error tolerances and speed (Yildiz et al., 2021).

Additionally, their continuous-time nature allows for handling

irregularly sampled heterogeneous data and guarantees adaptive

continuous control in the absence of observations, ensuring safety

of operation (Lewis et al., 2012).

5.3 Neural decoding

Neural decoding utilizes activity recorded from the brain to

make predictions about stimuli in the outside world (Rieke et al.,

1999; Horikawa et al., 2013; Anumanchipalli et al., 2019; Seeliger

et al., 2018; Metzger et al., 2023). Such predictions can serve various

purposes, from enabling communication interfaces and controlling

robotic devices to improving our understanding of how brain

regions interact with natural stimuli. As a result, neural decoding

is rapidly becoming an indispensable framework in neuroscience

(Donoghue, 2002; Zhang et al., 2019). Current approaches can be

roughly broken down into two categories, in which the decoding

algorithm is based on either (deep learning-based) regression

techniques (Warland et al., 1997; Horikawa et al., 2013; Seeliger

et al., 2018; Anumanchipalli et al., 2019; Metzger et al., 2023) or

Bayesian methods (Pillow et al., 2011).

The architecture introduced earlier for system identification in

Section 4 can be viewed as a neural encoding model. One option to

reconfigure the architecture for neural decoding is to simply invert

the input and output (and their corresponding encoder/decoder

networks) during the training process to obtain a feasible trainable

akin to modern supervised decoding models. A more powerful

alternative is to utilize the same model for encoding, to also do

decoding (Paninski et al., 2007; Kriegeskorte and Douglas, 2019).

Despite the ill-posed nature of the problem, we propose two

approaches commonly used in modern control literature, utilizing

the same architecture introduced earlier to potentially approach

this problem in a tractable manner.

The first approach includes a modification to the architecture

introduced earlier in Section to extend the probabilistic inference

framework to approximate the posterior distribution p(v | y). This

involves updating the stimulus encoder to generate the parameters

of an approximate posterior instead, a tractable prior over p(u), and

an additional decoder head to output the reconstructed stimulus

(Figure 3c).We can then update optimization function accordingly.

The second approach is to frame the problem of stimulus inference

as a separate optimization problem akin to optimization problems

solved in control applications.

Recently, Schimel et al. (2021) adopted the latter idea, by

utilizing an iterative linear quadratic regulator (ILQR) within the

recognition model of a sequential VAE. This method is used

to estimate the initial state and infer any unobserved external

inputs driving the system, demonstrating success on both synthetic

and real-world neuroscience datasets. However, they note that

the approach can be prone to local minima and may struggle

with significant mismatches between the employed prior over the

input and the posterior. They suggest that independently modeling

process noise could mitigate these issues. This is an inherent

advantage of UDEs, which naturally incorporate independent

modeling of process noise, and could utilize this control-based

approach for decoding.

5.4 Normative modeling

Normative modeling is an increasingly popular framework in

clinical and developmental neuroscience that aims to characterize

the normal variation in brain features across a population and

then assess individual deviations from this norm (Marquand et al.,

2016; Insel et al., 2010; Bethlehem et al., 2022). This approach

offers a statistical framework to correlate individual differences in

brain metrics such as connectivity patterns, structural attributes,

or task-induced responses with behavioral or clinical indicators.

The appeal of normative modeling is becoming particularly
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pronounced in psychiatry. As the discipline increasingly recognizes

the heterogeneity inherent in these measures (Kapur et al.,

2012), there is a concerted move toward eschewing symptom-

based labels in favor of biologically grounded metrics. So far

the emphasis in normative modeling has been on behavioral,

structural neuroimaging, or static summaries of functional data

(Wolfers et al., 2020; Zabihi et al., 2019; Rutherford et al.,

2023). Developing normative models for dynamic representations

of functional neuroimaging (e.g. EEG/fMRI timecourses) data

remains a formidable challenge but necessary to characterize

the majority of psychiatric disorders (Marquand et al., 2019;

Brodersen et al., 2014; Rutherford et al., 2022; Gazzar et al.,

2022). The challenge lies in capturing the high dimensional spatio-

temporal dynamics of brain activity, which is further complicated

by factors such as inter-subject variability, measurement noise

(including physiological and scanner-related noise), and often

limited sample sizes.

UDE-based models can provide a solution to navigate these

challenges. Their flexible structure is adept at encapsulating a

wide range of variability through the a complex diffusion term

while capturing the population average behavior in the drift term.

The drift component of the UDE can further be parameterized

with fixed arguments reflecting observed covariates within the

population such as age, sex, scanning site, behavioral metrics, etc.

At training time, the model can be optimized to reconstruct the

neural data from observed variations and initial observations of

population-sample or control only multi-site datasets (Rutherford

et al., 2022). At test time, stratification is done via running

the model on both control and patients and comparing their

latent dynamics (or observations) log-likelihood (Figure 3d). This

approach further provides a principled interpretable method to

understand psychiatric disorders through the lens of network

dynamics (Durstewitz et al., 2021; Anyaeji et al., 2021; Segal et al.,

2023).

6 Outlook and challenges

There is a growing consensus that solutions to complex science

and engineering problems require novel methodologies that are

able to integrate traditional mechanistic modeling approaches

and domain expertise with state-of-the-art machine learning and

optimization techniques (Raissi et al., 2019; Alber et al., 2019;

Willard et al., 2022; Cuomo et al., 2022; AlQuraishi and Sorger,

2021; De Bézenac et al., 2019). In this vein, we explore the potential

of universal differential equations (Rackauckas et al., 2020) as

a framework to facilitate this integration in neuroscience. This

endeavor is centered around the motivation of establishing a

common potent language for modeling across the field.

In the realm of machine learning, differential equations and

neural networks are increasingly being recognized as two sides of

the same coin through the concept of neural differential equations

(Kidger, 2022). For example, a residual neural network can be

viewed as a discretized variant of a continuous-depth ODE with

a neural network parametrizing its vector field (Chen et al.,

2018). Similarly, an RNN is equivalent to a neural controlled

differential equation or a forced neural ODE, discretized via

Euler approximation (Kidger et al., 2020). A convolutional neural

network is roughly equivalent to the discretization of a parabolic

PDE (Li et al., 2020b,c). At first glance, these insights might not

be entirely novel or exciting for a field such as computational

neuroscience, which has been successfully applying RNNs and their

variants as discretizations of ODE models for over a decade. What

is exciting however, is that this offers a fresh perspective to view and

connect models from different scales of organization and levels of

abstraction in neuroscience under one potent framework.

Beyond the advantages discussed throughout the rest of the

paper, this perspective brings us closer to the language of dynamical

system theory and classical differential equation literature. This

alignment provides principled solutions to optimization and

interpretation challenges in existing RNN-based models. For

example, rough differential equations and log-ODEs might offer

improved handling of long time series data (Morrill et al.,

2021), partial differential equations (PDEs) create a natural bridge

between dynamical systems and spatial domains (Li et al., 2020b),

while SDEs offer structured ways to handle uncertainty (Laing and

Lord, 2009). Being inherently continuous, these models adeptly

handle irregularly sampled data and are compatible with powerful

adaptive numerical solvers. All of these solutions could be explored

and parsed through the formalism of UDEs.

Our focus in this paper is primarily on stochastic variants

of UDEs, underscoring the empirical challenges in modeling

neural systems. Despite advancements in neural recording

technologies, the data obtained represents only a small, noisy

subset of underlying mechanisms. Recent hypotheses suggest that

behaviorally relevant neural dynamics may be confined to lower-

dimensional spaces (Mante et al., 2013; Churchland et al., 2012;

Sadtler et al., 2014; Elsayed and Cunningham, 2017). Yet, these

representations may not consistently translate across time, task

contexts, and brain regions. Challenges such as non-stationarity,

intrinsic stochasticity of neural mechanisms, and the absence

of a robust theoretical modeling framework raise doubts about

our capacity to accurately model neural systems. Consequently,

current models may over-rely on conditions where dynamics are

autonomous or predominantly behavior-driven, as observed in

cognitive experiments involving stereotyped tasks. These models

are less effective in complex scenarios where the multi-scale spatial

and temporal aspects of neural dynamics, such as in naturalistic

behavior, become prominent. UDEs, as a form of SDEs, provide

a framework to acknowledge and address these uncertainties by

modeling neural processes as stochastic phenomena. Leveraging

high-capacity function approximators in conjunction with SDE

theory offers a pathway to navigate this challenging terrain.

We have presented a recipe for informed training of UDE-

based models for neural system identification. This recipe leverages

recent advancements in stochastic variational inference for SDE-

based models and can be easily tailored to different downstream

applications.While similar strategies are showing promising results

across different applications (Course and Nair, 2023; Djeumou

et al., 2023; Fagin et al., 2023), practical implementation in

neuroscience is still warranted. Additionally, there remains several

open practical questions and simplifying assumptions that warrant

further research.

One assumption is modeling all uncertainties as standard

Brownian motion within our dynamical systems. This perspective,

while potent and aligning with the central limit theorem, can
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oversimplify real-world scenarios, where noise characteristics differ

in bias and time-dependence. Recent advances in learning neural

SDEs for fractional Brownian motion types offer avenues to better

represent these complexities (Tong et al., 2022; Daems et al., 2023).

Secondly, the variational inference approach models the

probability distributions of latent states and observations but

makes point estimates for other inferred values, like initial

states, model parameters, and encoded stimuli. While from a

pragmatic point of view, this can be warranted, especially given

the nature of SDE-based dynamical systems, these practices could

significantly influence the final model, and prevent formal Bayesian

model comparison. With that said, recent developments in this

area are promising and rapidly evolving. For example, Course

and Nair (2023) provides an approach to jointly estimate

the probability distribution of the SDE parameters using a

reparametrization trick for Gaussian-Markov processes. This

could be beneficial in our setup if the drift in the UDE

is dependent on the parameters of the mechanistic model

alone and no neural networks are used. Alternatively, Zeng

et al. (2023) provides an efficient approach for probabilistic

inference of latent neural SDEs that operate on homogeneous

manifolds, an assumption ubiquitous in neuroscience. These

developments pave the way toward fully probabilistic treatment of

our models.

Lastly, the field of neural differential equations is relatively

nascent compared to established deep learning practice. Challenges

remain, particularly in gradient back-propagation through

numerical solvers. In some scenarios where the dynamics are stiff

or discontinuous, training via automatic differentiation with high-

order adaptive numerical solvers can be very expensive in terms

of memory and speed (Ma et al., 2021). Alternatively, training

via adjoint-sensitivity methods can be more memory-efficient

but still remains slow and results in biased gradients. Innovative

solutions like algebraically reversible solvers (Kidger et al., 2021b),

and stochastic automatic differentiation (Arya et al., 2022) are

emerging, but their mainstream adoption is still in early stages.

With that said, the challenges discussed are not unique to

neuroscience but resonate across various scientific disciplines. This

burgeoning field of scientific machine learning is a collaborative

and innovative arena, marked by rapid advancements. The recent

surge in open-source software and packages (Rackauckas and

Nie, 2017; Rackauckas et al., 2019; Lienen and Günnemann,

2022; Drgona et al., 2023; Kidger and Garcia, 2021) centered

around neural and universal differential equations specifically,

and automated model discovery in general, underscores the

growing interest and recognition of a new era of scientific

discovery (Wang et al., 2023). Neuroscience is poised to

embrace this new era, to push the boundaries of our current

understanding of the brain and advance practical applications in

the field.
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