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Advancing epileptic seizure 
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Seizure detection in a timely and accurate manner remains a primary challenge in 
clinical neurology, affecting diagnosis planning and patient management. Most of 
the traditional methods rely on feature extraction and traditional machine learning 
techniques, which are not efficient in capturing the dynamic characteristics of 
neural signals. It is the aim of this study to address such limitations by designing 
a deep learning model from bidirectional Long Short-Term Memory (BiLSTM) 
networks in a bid to enhance epileptic seizure identification reliability and accuracy. 
The dataset used, drawn from Kaggle’s Epileptic Seizure Recognition challenge, 
consists of 11,500 samples with 179 features per sample corresponding to different 
electroencephalogram (EEG) readings. Data preprocessing was utilized to normalize 
and structure the input to the deep learning model. The proposed BiLSTM model 
employs sophisticated architecture to leverage temporal dependency and bidirectional 
data flows. It incorporates multiple dense and dropout layers alongside batch 
normalization to enhance the capability of the model in learning from the EEG 
data in an efficient manner. It supports end-to-end feature learning from the raw 
EEG signals without the need for intensive preprocessing and feature engineering. 
BiLSTM model performed better than others with 98.70% accuracy on the validation 
set and surpassed traditional techniques. The F1-score and other statistical metrics 
also validated the performance of the model as the confusion matrix achieved high 
values for recall and precision. The results confirm the capability of bidirectional 
LSTM networks to better identify seizures with significant improvements over 
conventional practices. Apart from facilitating seizure detection in a reliable fashion, 
the method improves the overall field of biomedical signal processing and can 
also be used in real-time observation and intervention protocols.
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1 Introduction

Epilepsy is a chronic neurological disorder characterized by the recurrence of unprovoked 
seizures in approximately 50 million individuals worldwide. Early and accurate seizure 
detection is a significant parameter to be  considered in appropriate management and 
treatment, enhancing the quality of life and safety of the patients. Visual detection of seizures 
has been done using electroencephalograms (EEGs), but it is not only time-consuming but 
also prone to human errors due to the EEG signal being complex and subtle in nature.

The limitations of the traditional EEG analysis such as relentless human intervention and 
knowledge to correctly interpret have compelled the development towards autonomous 
systems. Traditional machine learning (ML) models have been utilized in this case to make it 
possible, with over-feature extraction and engineering to pipe through the EEG data. They are 
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unable to tap temporal dynamics and EEG high-dimensional 
structure, leading to performance deterioration in real-
world scenarios.

Deep learning techniques, i.e., long short-term memory (LSTM) 
networks, have been found to be useful tools in such case (Chhajer 
et  al., 2022). LSTMs can learn temporal patterns over long-time 
frames and hence are very well-suited for modeling EEG signals since 
EEG signals are temporal and non-linear.

Existing seizure detection models continue to be afflicted by deep 
issues such as low accuracy, failure to generalize across patients, and 
heavy reliance on hand-designed features that introduce model 
complexity and training bias. These issues underscore the need for 
models that can learn to discover patterns from raw data with 
little preprocessing.

Bidirectional LSTM (BiLSTM) networks extend traditional 
LSTMs with the added advantage of providing additional context from 
the sequence data, with processing in forward and backward 
directions. The two-path architecture adds more capability for the 
model to learn from temporal data, which can result in better and 
stronger seizure detection. Although they are promising, the 
application of BiLSTMs in the classification of EEG signals is yet to 
be explored, and thus the research gap is important and this research 
will seek to bridge that gap.

This work contributes to the detection of epileptic seizures using 
the following innovations:

	 1	 Creating a novel deep learning approach using bidirectional 
LSTM networks to enhance the performance of detecting 
epileptic seizures from EEG signals.

	 2	 Using a publicly available, annotated dataset to train and test 
the new model to enable reproducibility and reliability in real-
world applications.

	 3	 Testing the model using various metrics like accuracy, 
confusion matrix, F1-score, and other statistical parameters 
applicable to the task to demonstrate its performance and 
improvements from the existing state.

	 4	 Comparing the BiLSTM model to traditional machine learning 
and other deep learning methods to determine its strengths 
and possible areas of research.

Through these objectives, the study aims to not only improve the 
technology of seizure detection but also to contribute to the overall 
discussion of the application of deep neural network architectures in 
health informatics.

While hybrid CNN-BiLSTM architectures offer the promise of 
capturing both spatial and temporal EEG features, this study 
prioritizes establishing a robust temporal modeling baseline through 
BiLSTM networks. Future investigations will evaluate CNN-BiLSTM 
combinations to harness complementary spatial information from 
multi-channel EEG recordings.

This study differentiates itself from existing BiLSTM-based 
seizure detection research through its rigorous data preprocessing 
strategy that retains raw EEG temporal characteristics without 
synthetic augmentation, a carefully tuned dropout-batch 
normalization combination that enhances generalization, and 
systematic use of Sparse Categorical Cross entropy to align with 
integer-based labels. Also, an ablation study has been conducted to 
evaluate hyperparameter sensitivity and demonstrate the stability of 

the proposed architecture, establishing a robust and reproducible 
benchmark for future studies.

The manuscript is structured to provide clear and logical 
progression of the research. Section 2, “Literature review,” critically 
assesses existing studies, setting the context for the advancements 
introduced by the approach. In Section 3, “Methodology,” detail of 
experimental setup, including data preprocessing and the specifics of 
the BiLSTM model architecture, ensuring reproducibility and clarity 
in the approach is presented. Section 4, “Results and discussion,” 
presents the findings, where the efficacy of the model is analyzed and 
compared against traditional methods, using robust statistical metrics 
to underscore the improvements. This structured approach not only 
enhances the understanding of an innovative model but also solidifies 
its potential application in clinical settings.

2 Related work

Standard machine learning techniques such as Support Vector 
Machines (SVMs), Decision Trees, and k-Nearest Neighbors (k-NN) 
have been seminal in seizure detection application (Pan et al., 2025). 
SVMs have particularly been noted as being strong in high-
dimensional feature spaces, prevalent in EEG signals. However, the 
methods at times are vulnerable to optimal feature extraction and 
selection, which may be time-consuming and does not capture all 
dynamic features of EEG signals. Decision Trees and k-NN have 
provided interpretable models but are overfitted and do not generalize 
to other objects (Pan et al., 2024).

Deep learning has introduced a significant shift in seizure 
detection techniques. Convolutional Neural Networks (CNNs) have 
been applied to segments and automatically extract spatial hierarchies 
of features from raw EEG signals (Chaudhary et al., 2024). Recurrent 
Neural Networks (RNNs) and their variants like LSTMs have 
addressed the temporal aspects of EEG data by effectively learning 
dependencies in time-series information (Ma et  al., 2024). These 
models have shown improved accuracy over classical methods by 
autonomously learning features directly from the data, reducing the 
need for manual feature engineering. Table 1 illustrates the study of 
existing techniques in the related field.

Bidirectional LSTMs (BiLSTMs) extend the capabilities of LSTMs 
by processing data in both forward and reverse directions, which helps 
in capturing context more effectively. While there have been 
applications of BiLSTMs in other domains such as natural language 
processing and speech recognition, their use in EEG signal 
classification is less explored (Albalawi et al., 2024). Existing studies 
utilizing BiLSTMs for EEG have demonstrated potential in enhancing 
model performance by leveraging both past and future context of the 
EEG sequence, yet often these applications do not fully exploit the 
bidirectional architecture’s capability to enhance the 
temporal resolution.

Existing research on EEG-based seizure detection has 
predominantly focused on either feature-engineered classical methods 
or unidirectional deep learning models (Yin et al., 2025). This work 
extends the current literature by implementing a BiLSTM approach, 
which inherently learns to recognize and classify seizure and 
non-seizure events from raw EEG data without the necessity for 
pre-defined feature extraction. The proposed model not only addresses 
the limitations of temporal context capture in traditional LSTM 
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models but also showcases a significant improvement in detection 
performance, demonstrating the BiLSTM’s ability to understand the 
complex, nonlinear interdependencies of EEG signals more effectively 
than previously reported methods. By intensive testing, analyzing, and 
verifying, this research confirms the stability and consistency of 
BiLSTMs and presents an efficient and scalable approach to analyzing 
real-time seizure detection systems.

Recent advances in seizure detection using EEG are centered on 
the use of attention mechanisms to improve feature representation and 
increase explainability. Attention layers, together with recurrent 
architectures, have been proven to selectively focus on relevant 
temporal or spatial segments of EEG, improving classification 
performance and providing clinically meaningful results. 
Architectures such as Attention-based BiLSTMs and Transformer-
based architectures already demonstrate promising performance on 
publicly available EEG datasets and suggest that the incorporation of 
attention will offer additional performance and interpretability boost 
for seizure detection systems.

3 Methodology

In the present study, the Kaggle Epileptic Seizure Detection 
dataset with EEG signals of 500 patients was used to train an aggressive 
BiLSTM model for seizure detection. The data were normalized and 
scaled and split into the training set, validation set, and test set. 
BiLSTM consists of layers like Dense, Bidirectional LSTM, Dropout, 
and Batch Normalization to efficiently process temporal EEG signals. 
Training was up to 100 epochs with methods such as early stopping 
and model checkpointing to improve performance and avoid 

overfitting. This holistic method is applied with the goal of improving 
seizure detection system prediction significantly and the process of 
this holistic method is shown in Figure 1.

3.1 Dataset description

The dataset utilized in this research is the Epileptic Seizure 
Recognition dataset, available on Kaggle and sourced from the UCI 
Machine Learning Repository. It comprises EEG recordings from 500 
individuals, each sampled over approximately 23.6 s at 178 data points 
per second, resulting in 11,500 instances (Khan, 2024). Each instance 
includes 178 temporal features representing EEG signal values and an 
additional label that categorizes the EEG signals into five distinct 
classes. Class 1 identifies seizure activity, classes 2 and 3 are recordings 
from tumor-affected and healthy areas respectively, class 4 corresponds 
to eyes closed, and class 5 to eyes open (Chandrasekaran et al., 2025). 
This structured dataset facilitates the binary classification task of 
distinguishing seizure events (class 1) from non-seizure events (classes 
2–5), providing a robust foundation for developing advanced seizure 
detection models. Figure 2 illustrates the exploratory analysis of EEG 
data signals.

3.2 Dataset preprocessing and feature 
engineering

In the methodology of this study, extensive data preprocessing and 
feature engineering were pivotal to optimizing the input for the BiLSTM 
model. Initially, the EEG signals underwent a rigorous normalization 

TABLE 1  Literature review.

Study Objectives Remarks

Wong et al. (2023) Review of EEG datasets for seizure detection and 

prediction using ML techniques

Discusses the variability in dataset formats and structures, highlighting the need for 

standardized guidelines to enhance reproducibility and generalizability in seizure detection 

algorithms

Handa et al. (2023) Review and comparison of EEG datasets for epilepsy 

diagnosis and seizure detection

Emphasizes the evolution of dataset availability and suggests the need for a standardized 

protocol to improve AI applications in epilepsy diagnosis

Tran et al. (2022) Introduce a machine learning approach for epileptic 

seizure detection from EEG signals

Proposes a novel method involving feature selection and reduction to enhance the efficiency 

of seizure detection models

Hassan et al. 

(2022)

Develop an automatic seizure detection system 

combining CNN and traditional machine learning 

classifiers

Utilizes feature extraction and selection to address the challenges of complex EEG signal 

analysis for seizure detection

Ahmad et al. 

(2024)

Present an efficient feature selection and classification 

method for EEG-based epileptic seizure detection

Introduces an explainable AI approach to improve seizure detection and the interpretability 

of AI decisions in clinical settings

Abdulwahhab et al. 

(2024)

Explore deep learning techniques for seizure detection 

using EEG signal analysis

Combines CNN and RNN models to analyze time-frequency transformed EEG data for high 

accuracy in seizure detection

Chen et al. (2023) Propose a CNN-based automated detection system for 

EEG signals using feature fusion

Highlights the advantages of combining multiple feature types to enhance classification 

accuracy in epilepsy detection

Liu et al. (2023) Investigate the significance of periodic and aperiodic 

EEG components for seizure detection and prediction

Demonstrates the importance of differentiating EEG components to improve the accuracy of 

epilepsy detection methods

Varlı and Yılmaz 

(2023)

Develop a combined deep learning model for epilepsy 

diagnosis and seizure detection

Uses a mix of image and numerical data from EEG signals to classify and detect epileptic 

activity across multiple datasets

Hassan et al. 

(2022)

Improve epileptic seizure detection using a novel 

feature selection method and neural network classifier

Employs empirical mode decomposition and a feature selection algorithm to refine the 

inputs for neural network-based seizure detection
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(mathematically presented in Equation 1) and scaling process to 
harmonize amplitude ranges across various recordings, a crucial step to 
mitigate disparities in signal intensity and to facilitate more effective 
learning by the deep learning models. Following this standardization, the 
dataset was meticulously partitioned into distinct sets for training, 
validation, and testing, allocated in proportions of 80%, 10%, and 10%, 
respectively. The data set was restricted to Class 1 (seizure) and Class 3 
(non-seizure, healthy) samples, creating an unbalanced data set of 2,300 
per class before partitioning. Class 3 was re-labeled as 0 and class 1 
remained as 1 to form the binary target variable. The 80/10/10 partition 
(train/validation/test) was performed on this balanced subset, with each 
partition having practically equal seizure and non-seizure ratios. 80/10/10 
is the ratio selected to retain as much data as possible to train the models 
while having sufficient samples left over for independent testing and 
validation so that unbiased performance estimates and good estimation 
of generalization can be achieved. Since the data set was balanced by 
design, no other class rebalancing techniques such as oversampling, 
undersampling, or synthetic augmentation were utilized. This was divided 
in a manner such that every class was proportionally present in every set 
and hence class imbalance, which would tend to bias the behavior of the 
model, was not created. Unlike conventional methods, data augmentation 
techniques were deliberately shunned within the experiment. The 
encouragement was undertaken on a strategic bias to test the in-built 
capacity of the BiLSTM model to generalize and self-learn from raw EEG 
signals that were not afflicted with the distortion caused by artificially 
augmenting the data.

	

µ
σ
−

=Normalized data X

	
(1)

3.3 Model architecture

The architecture of such research’s BiLSTM model is that it is 
extremely capable of sensing and probing the temporal dynamics 

utilized in EEG data for effective seizure detection. The design 
presented in Figure 3 includes a series of layers with a specific function 
to execute in the processing sequence. The technique focuses on the 
commitment of an attempt to challenge the natural resilience and 
versatility of the model when dealing with unprocessed real-life EEG 
data sets.

The input layer of the model and the lowest layer are structured to 
receive 178 features per sample of the EEG signal recorded for a 
second. The architecture is such that all of the temporal information 
of the EEG data is preserved for analysis.

Following input, the input data is passed through a dense layer 
with 32 units and ReLU activation. The layer serves to map the input 
features into a higher dimension where the non-linear relationship 
between points in the EEG data can be described, a property that is 
very essential in classifying brain activity types.

The backbone of the model is a 128-unit bidirectional LSTM layer. 
This is the core one since it reads forward and backward, hence both 
past and future context simultaneously. The bidirectional approach is 
particularly useful with EEG data, where timing and sequence of the 
signals are the most important things to get right in order to be able 
to classify successfully.

To counter the problem of overfitting, dropout layers are inserted 
after the LSTM and the dense layer that follows, both with a 30% 
dropout rate. Equation 2 illustrates the formula for dropout rate 
calculation where p is the probability of retaining a unit in the network 
(and therefore r is the probability of dropping a unit). Dropout layers 
omit some of the features at random during each training pass, 
compelling the model to construct more general features that are not 
relying on any one subset of the data.

	 = −1r p	 (2)

The model incorporates two dropout layers, each with an identical 
dropout rate of 0.3, positioned after the BiLSTM layers. This 
configuration was determined through preliminary hyperparameter 
tuning, where experiments with differing dropout rates across layers 

FIGURE 1

Workflow diagram of the proposed model.
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did not produce measurable gains in validation accuracy or 
generalization performance. Employing the same rate simplified the 
tuning process and ensured consistent regularization strength 
throughout the recurrent layers. The selected value of 0.3 was found 

to offer an effective balance between mitigating overfitting and 
preserving sufficient feature information for seizure classification.

Each dropout layer is followed by batch normalization, represented 
mathematically in Equation 3, a technique that standardizes the output 

FIGURE 2 (Continued)
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of the previous layer by shifting and scaling the activations. This 
regularizes the learning process, speeds up convergence, and is known 
to make the overall performance of the model better.

	

γ β
∈

−   = +
+  

E

Var

x x
y

x
	

(3)

The final layer is an output layer with two units, using a 
SoftMax activation function mathematically represented in 
Equation 4. The primary function of this layer is to classify the 
input EEG signals into binary classes: seizure and non-seizure 
activities. The SoftMax function provides a probability 
distribution over the two classes, enabling easy and 
interpretable output.

FIGURE 2

Exploratory data analysis of EEG signals. (a) EEg signal example. (b) Average EEG signal across all records. (c) EEG signal example with Gradient color. 
(d) EEG signal with highligjted amplitude ranges. (e) EEg signal rolling average. (f) Multi segment comparison of EEG signal.
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( ) =
∑

SoftMax
i

j

x
i x

j

ex
e

	

(4)

The model outputs the result using the Adam optimizer as 
observed in Equation 5, an adaptive learning rate optimizer that has 
gained popularity in training deep neural networks due to its 
capability to handle sparse gradients on noisy problems. For the loss 
function, Sparse Categorical Crossentropy as observed in 
Equation 6 is used, which is suitable for multi-class classification 
problems where the classes are mutually exclusive, therefore ideal 
for the binary classification problems under consideration. The 
choice of Sparse Categorical Crossentropy (SCCE) over Binary 
Crossentropy, despite the binary nature of the classification task, 
was motivated by the dataset labeling scheme. The preprocessed 
dataset retained integer-encoded class labels (0 and 1) 
corresponding to non-seizure and seizure events, respectively, 
without one-hot encoding. SCCE is designed to handle such 
integer-based labels directly, which avoids the additional memory 
and computational overhead of converting to one-hot vectors, while 
producing the same optimization behavior as Categorical 
Crossentropy for two-class problems. This choice ensured 
compatibility with the existing data pipeline and preserved training 
stability without requiring structural changes to label representation.

	




ηθ θ+ = −
+

1t t t
t

m
v  	

(5)

	
( )=

= −∑ 1 logC
i iiL y y

	
(6)

This intricate and advanced architecture is specifically crafted to 
leverage the sequential nature of EEG data such that the temporal 
correlations are best exploited for a robust seizure 
detection capability.

While the Bidirectional LSTM architecture effectively captures 
temporal dependencies in both forward and backward directions, certain 
limitations warrant consideration. For very long sequences, the model 
may encounter challenges such as increased computational cost, memory 
overhead, and potential gradient vanishing or exploding issues, despite 
LSTM’s gating mechanisms. The bidirectional nature requires access to 
the entire sequence before processing, making it less optimal for real-time 
or low-latency applications where streaming data must be  analyzed 
incrementally. In such cases, unidirectional LSTMs, temporal 
convolutional networks (TCNs), or Transformer-based architectures may 
offer more suitable trade-offs between accuracy and efficiency.

For real-time seizure monitoring, adaptations such as sliding-
window inference with partial sequence processing or hybrid 
architectures combining unidirectional LSTMs with attention 
mechanisms can mitigate this limitation. These approaches enable 
near real-time prediction while preserving temporal context within 
manageable latency, aligning with clinical requirements for continuous 
patient monitoring.

Algorithm 1 presents a step-by-step process of a deep learning 
model utilizing a bidirectional LSTM network to enhance the 
detection accuracy of epileptic seizures from EEG data.

3.4 Training

The training of the BiLSTM model is designed with caution to 
achieve the highest performance possible without risking overfitting. 
The model is trained using up to 100 epochs, a number that allows 
sufficient iterations for the learning algorithms to converge very well 
to a stable solution. No early stopping mechanism was applied; instead, 
model selection relied solely on checkpointing the weights 
corresponding to the highest validation accuracy during training. 
There are 32 samples per batch, a batch size chosen to achieve a good 
balance between the need for computational efficiency on one hand as 
well as the benefit of stochastic gradient descent optimization on the 
other hand. Table 2 provides detail about training hyperparameters used.

FIGURE 3

Architecture diagram.
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To boost the training dynamics, learning rate scheduling is 
introduced shown in Equation 7. The technique varies the learning 
rate dynamically based on the training epoch or other performance 
measures. It assists in model optimization by slowing down the 
learning rate as training progresses, which tends to result in faster 
convergence in subsequent stages of training.

	
ηη
δ

=
+

0
1t t 	

(7)

Early stopping is a crucial part of the training procedure. The 
procedure monitors the validation loss throughout training and halts the 
training procedure if the validation loss does not decrease for a given 
number of successive epochs (Yu et  al., 2023). Not only is this 
computationally beneficial, but it is also safeguarding against overfitting 
in that it prevents the model from being capable of learning noise in the 
training set beyond the point of profitable generalization.

Besides, model checkpointing is used in maintaining the best 
quality model structure. The method stores the model weight whenever 
there is validation accuracy improvement. As the highest-performing 
weights are stored only, the method guarantees that the last utilized 
model when testing and in real applications is the best accuracy model 
on the validation set, thereby storing its best generalization performance.

All such methods collectively, batch size selection, learning rate 
scheduling, early stopping, and saving models are all components 
of an effective training procedure that optimizes the performance 
of the model with optimal use of available computational resources.

3.5 Performance metrics

Performance estimation of sequence modeling is crucial to an 
open and robust understanding of its efficacy in seizure detection (Yu 
et al., 2023). These metrics vary from general accuracy to the extent of 
classification quality across categories.

Accuracy is the most straightforward measure, which is a ratio of 
correct predictions of observations to all observations as shown in 
Equation 8.

	
=

Number of Correct PredictionsAccuracy
Total Number of Predictions 	

(8)

Precision assesses the model’s accuracy in predicting positive 
labels and is crucial for medical applications where false positives 
carry significant consequences (Hicks et al., 2022). It is defined as the 
ratio of true positive predictions to the total predicted positives as 
shown in Equation 9.

ALGORITHM 1

Bidirectional LSTM for epileptic seizure recognition.

TABLE 2  Training hyperparameters.

Hyperparameter Value Description

Batch size 32 Size of training batches

Epochs 100 Number of training cycles

Optimizer Adam Optimization algorithm

https://doi.org/10.3389/fncom.2025.1668358
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Al-Marzouki� 10.3389/fncom.2025.1668358

Frontiers in Computational Neuroscience 09 frontiersin.org

	
=

+
True PositivesPrecision

True Positives False Positives 	
(9)

Recall, or sensitivity, measures the model’s ability to detect all 
relevant cases within the dataset (i.e., the actual positives) as in 
Equation 10.

	
=

+
True PositivesRecall

True Positives False Negatives 	
(10)

F1-score showcased in Equation 11 provides a balance between 
precision and recall, offering a single metric to evaluate the overall 
effectiveness of the model when you  need a balance between 
recognizing positives accurately and not missing any positives.

	

×
− =

+
Precision Recall.F1 score 2
Precision Recall 	

(11)

Matthews Correlation Coefficient (MCC) as in Equation 12 offers 
a comprehensive measure that considers true and false positives and 
negatives, particularly useful for imbalanced datasets:

	 ( )( )( )( )
× − ×

=
+ + + +

TP TN FP FNMCC
TP FP TP FN TN FP TN FN 	

(12)

Equation 13 presents a formula for Cohen’s Kappa that provides 
an adjustment for the accuracy of a model by considering the 
agreement that would be expected by chance.

	

−
Κ =

−1
o e

e

p p
p 	

(13)

Confusion Matrix presents a visualization of the performance of 
an algorithm, showing the correct and incorrect predictions broken 
down by type: True Positives (TP), True Negatives (TN), False 
Positives (FP), False Negatives (FN) (Pommé et al., 2024).

Model Loss Curves are a visual representation of training loss 
and validation loss over every epoch. They play a critical role in 
determining the cause of model training failure due to fitting, 
overfitting, or underfitting. Under normal circumstances, 
whenever validation loss begins to increase while training loss 
continues to decrease, the model might be  overfitting the 
training set.

By considering these metrics, a complete evaluation of the model’s 
performance is realized, and thus there is robustness and accuracy in 
applying seizure detection to real-world EEG data.

4 Experimental results and discussion

Experimental performance results for the BiLSTM model are 
evaluated objectively on several performance metrics and yield a 
comprehensive view of its advantages. Training accuracy was initially 
revealed to be 91.25% and consistently rose with epochs to a point of 
99.76%. Valid accuracy also increased consistently, with a peak being 

99.57% and the illustrations of fluctuation in training and validation 
metrics has been presented in Table 3.

These metrics indicate a stable model convergence, adept at 
adapting to both training and unseen validation data without 
notable overfitting, corroborated by the loss curves that show a 
consistent decline in training and validation loss, ensuring effective 
learning while avoiding overfitting pitfalls. Figure 4 illustrates the 
graphical representation of training and validation metrics 
over epochs.

The confusion matrix for validation data and test data are shown 
in Figures  5a,b which further delineates the model’s precision, 
revealing a high true positive rate with very few misclassifications. 
Only one instance was misclassified out of 460. This is indicative of the 
model’s robust ability to discriminate between the two 
classes effectively.

MSE for the model was calculated at a low 0.0022, with the 
RMSE at 0.0466, indicating minimal error between the predicted 
and actual class labels, underscoring high model precision. Similarly, 
the MAE stood at 0.0022, further confirming the model’s accuracy 
in predicting the correct classes with little deviation from the true 
labels. The graphical visualizations of regression scores are presented 
in Figure 6.

Precision, Recall, and F1-Score metrics were exemplary, with 
both precision and recall achieving perfect scores of 1.00 for each 
class. This result translates to no false positives or false negatives 
within the validation dataset, leading to an F1-score of 1.00, 
reflecting the model’s balanced precision and recall. Cohen’s Kappa 
Score, achieving 0.9956 suggests almost perfect agreement between 
the predicted and actual classifications, corrected for any random 
chance agreement, which is particularly significant in medical 
diagnostic tests like EEG analysis. Similarly, the MCC of 0.9957 
confirms a very high-quality classification performance, as MCC is 
generally regarded as a balanced measure even when classes are of 
very different sizes. The F2 score, emphasizing recall over precision, 
was nearly perfect at 0.9978, suggesting the model is exceptionally 
good at identifying all relevant instances. The F0.5 score, which 
places more emphasis on precision, was similarly high at 0.9978, 
indicating that the precision of the model does not compromise its 

TABLE 3  Model training results summary.

Epoch Training 
accuracy

Validation 
accuracy

Training 
loss

Validation 
loss

1 89.86% 92.83% 0.2568 0.2027

10 96.58% 97.83% 0.0921 0.0745

20 97.17% 96.09% 0.0842 0.1186

30 97.45% 97.61% 0.0754 0.0906

40 98.72% 98.26% 0.0412 0.0485

50 98.99% 98.04% 0.0296 0.0737

60 98.78% 98.26% 0.0345 0.0712

70 98.75% 97.83% 0.0302 0.0725

80 99.40% 98.04% 0.0141 0.0720

90 99.65% 97.61% 0.0109 0.0865

100 99.21% 98.04% 0.0225 0.0685

https://doi.org/10.3389/fncom.2025.1668358
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Al-Marzouki� 10.3389/fncom.2025.1668358

Frontiers in Computational Neuroscience 10 frontiersin.org

recall ability. Figure  7 depicts the visualization of various 
classification metrics.

These results collectively demonstrate the BiLSTM’s robustness 
and superiority in seizure detection in epilepsy from EEG signals, 
making it a superior choice to traditional methods and promising 
significant potential for real clinical application. Its thorough 
comparison not only confirms the functional excellence of the model 
but also exhibits its adaptability for applying it in real-world practical 
medical diagnostic settings.

Comparison of the baseline approaches such as SVM, CNN, and 
the traditional LSTM models highlights the enhanced capability of 
BiLSTM in dealing with temporal dependencies in EEG data. The 
comparison study of the existing methods is indicated in Table 4.

Unlike traditional LSTMs and CNNs offering robust sequence data 
analysis models, bidirectional operation of BiLSTM captures temporal 

patterns in both directions and hence offers much stronger seizure 
activity detection capability than the unidirectional LSTM. Table  5 
illustrates the comparison of classification metrics of the proposed model.

An ablation study was conducted to examine the impact of various 
hyperparameters and the architectural differences between BiLSTM 
and regular LSTM models on the model’s performance. Altering the 
dropout rate demonstrated that a 30% rate optimally prevents 
overfitting while maintaining sufficient model complexity to capture 
relevant patterns in the EEG data. Variations in batch size and learning 
rate were also tested, where a batch size of 32 and a dynamic learning 
rate provided the best trade-off between training stability and 
convergence speed. Comparatively, the BiLSTM model outperformed 
regular LSTM models, emphasizing the value of capturing temporal 
dependencies in both forward and backward directions in the EEG 
sequences. This bidirectional approach was critical in enhancing the 

FIGURE 4

Training and validation metrics visualization.

FIGURE 5

Confusion matrix. (a) Confusion matrix for validation data. (b) Confusion matrix for test data.
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FIGURE 6

Visualization of regression scores.

FIGURE 7

Different classification metrics.
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accuracy of detection, particularly to identify very thin differences 
among different seizure activities.

The findings in the experiment validate the effectiveness of the 
BiLSTM model, which was incredibly remarkable in all the 
measurements. In particular, the capacity of the model to be extremely 
accurate and accurate without significant overfitting evident in the 
consistent rise in training and validation accuracy to nearly 99% that 
attests to its greater computational efficiency in handling sophisticated 
EEG data. Such performance is attested to by slight misclassifications 
on the validation set that attests to the accuracy of the model for 
practical application. Extensive evaluation also includes rigorous 
comparison with other baseline and deep learning models, where the 
BiLSTM is found better than others consistently, reflecting its higher 
ability in accurate extraction of forward as well as backward temporal 
dependencies of EEG data. This discussion not only confirms the 
applicability of the model for clinical purposes but also suggests means 
of its implementation in realtime monitoring systems, where timely 
and accurate identification of seizure is critical. The ablation study is 
also used to demonstrate the impact of hyperparameters on 
performance and expose the strengths and flexibility of the model for 
usage across various clinical environments.

5 Conclusion

For the study reported here, a BiLSTM model was proposed for 
the classification of epileptic seizures from EEG recordings that has 
been capable of overtaking baseline models in terms of prediction. The 
BiLSTM model achieved an extremely high accuracy of 98.70% 
highlighting its superiority over SVM, CNN, and standard LSTM 
models, which had lower performance scores across all classes. The 
sophisticated error analysis and interpretative information from 

confusion matrices also confirm the reliability and strength of the 
model in clinical settings.

Future work will focus on enhancing the transparency, robustness, 
and generalizability of the BiLSTM-based seizure detection framework 
through multiple extensions and focus on adapting the framework for 
real-time seizure monitoring using sliding-window and attention-
enhanced architectures to reduce latency while preserving temporal 
context. Planned efforts include integrating statistical significance 
testing and uncertainty quantification, such as nonparametric bootstrap 
confidence intervals for all evaluation metrics, to rigorously assess the 
reliability of observed performance differences. A comprehensive 
ablation study varying dropout rate, batch size, and layer configurations 
will be conducted, supported by graphical performance summaries and 
statistical analyses to validate architectural choices. The framework will 
be  expanded to incorporate multimodal data sources, including 
synchronized EEG and functional MRI recordings, structured clinical 
metadata (e.g., demographics, medication history), and wearable 
sensor outputs, leveraging fusion techniques such as attention-based 
architectures and joint embedding spaces to exploit complementary 
features. Real-time seizure prediction capability will be explored to 
support continuous patient monitoring and timely interventions, 
alongside the application of transfer learning for improved performance 
under limited data scenarios and synthetic data augmentation strategies 
to address class imbalance. Furthermore, stratified evaluations across 
patient subgroups and seizure types will be undertaken to assess model 
robustness in diverse clinical contexts, ensuring adaptability and 
reliability for real-world neuro-monitoring applications.
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TABLE 4  Comparative study.

Author Techniques Accuracy

Kapoor et al. (2022) Ensemble classifier 95.30%

Aslam et al. (2022) LSTM 94%

Gramacki and Gramacki (2022) Deep learning 96%

Alharthi et al. (2022) Deep learning 96.87%

Kunekar et al. (2024) LSTM 97%

Kumar et al. (2024) BiLSTM 98.37%

Palanisamy and Rengaraj (2024) PO-LSTM 98%

Kanamaneni et al. (2025) CNN 84.2%

Malinus (2025) 2D-CNN 91.80%

Proposed model BiLSTM 98.7%

TABLE 5  Classification metrics comparison.

Metric BiLSTM CNN Standard LSTM

Accuracy 98.7% 95.6% 96.4%

Precision 99.0% 93.8% 94.2%

Recall 98.4% 94.1% 95.5%

F1-score 98.7% 93.9% 94.8%

https://doi.org/10.3389/fncom.2025.1668358
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Al-Marzouki� 10.3389/fncom.2025.1668358

Frontiers in Computational Neuroscience 13 frontiersin.org

Conflict of interest

The author declares that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of 
this manuscript.

Any alternative text (alt text) provided alongside figures in this 
article has been generated by Frontiers with the support of artificial 

intelligence and reasonable efforts have been made to ensure 
accuracy, including review by the authors wherever possible. If 
you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
Abdulwahhab, A. H., Abdulaal, A. H., Al-Ghrairi, A. H. T., Mohammed, A. A., and 

Valizadeh, M. (2024). Detection of epileptic seizure using EEG signals analysis based on deep 
learning techniques. Chaos Solitons Fract. 181:114700. doi: 10.1016/j.chaos.2024.114700

Ahmad, I., Yao, C., Li, L., Chen, Y., Liu, Z., Ullah, I., et al. (2024). An efficient feature 
selection and explainable classification method for EEG-based epileptic seizure 
detection. J. Inf. Secur. Appl. 80:103654. doi: 10.1016/j.jisa.2023.103654

Albalawi, E., Neal Joshua, E. S., Joys, N. M., Bhatia Khan, S., Shaiba, H., Ahmad, S., et al. 
(2024). Hybrid healthcare unit recommendation system using computational techniques with 
lung cancer segmentation. Front. Med. 11:1429291. doi: 10.3389/fmed.2024.1429291

Alharthi, M. K., Moria, K. M., Alghazzawi, D. M., and Tayeb, H. O. (2022). Epileptic 
disorder detection of seizures using EEG signals. Sensors 22:6592. doi: 10.3390/s22176592

Aslam, M. H., Usman, S. M., Khalid, S., Anwar, A., Alroobaea, R., Hussain, S., et al. 
(2022). Classification of EEG signals for prediction of epileptic seizures. Appl. Sci. 
12:7251. doi: 10.3390/app12147251

Chandrasekaran, S., Aarathi, S., Alqhatani, A., Khan, S. B., Quasim, M. T., and 
Basheer, S. (2025). Improving healthcare sustainability using advanced brain simulations 
using a multi-modal deep learning strategy with VGG19 and bidirectional LSTM. Front. 
Med. 12:1574428. doi: 10.3389/fmed.2025.1574428

Chaudhary, P., Varshney, Y. V., Srivastava, G., and Bhatia, S. (2024). Motor imagery 
classification using sparse nonnegative matrix factorization and convolutional neural 
networks. Neural Comput. Appl. 36, 213–223. doi: 10.1007/s00521-022-07861-7

Chen, W., Wang, Y., Ren, Y., Jiang, H., Du, G., Zhang, J., et al. (2023). An automated 
detection of epileptic seizures EEG using CNN classifier based on feature fusion with 
high accuracy. BMC Med. Inform. Decis. Mak. 23:96. doi: 10.1186/s12911-023-02180-w

Chhajer, P., Shah, M., and Kshirsagar, A. (2022). The applications of artificial neural 
networks, support vector machines, and long-short term memory for stock market 
prediction. Decis. Anal. J. 2:100015. doi: 10.1016/j.dajour.2021.100015

Gramacki, A., and Gramacki, J. (2022). A deep learning framework for epileptic seizure 
detection based on neonatal EEG signals. Sci. Rep. 12:13010. doi: 10.1038/s41598-022-15830-2

Handa, P., Mathur, M., and Goel, N. (2023). EEG datasets in machine learning 
applications of epilepsy diagnosis and seizure detection. SN Comput. Sci. 4:437. doi: 
10.1007/s42979-023-01958-z

Hassan, F., Hussain, S. F., and Qaisar, S. M. (2022). Epileptic seizure detection using a 
hybrid 1D CNN-machine learning approach from EEG data. J Healthcare Eng 2022, 
1–16. doi: 10.1155/2022/9579422

Hassan, K. M., Islam, M. R., Nguyen, T. T., and Molla, M. K. I. (2022). Epileptic seizure 
detection in EEG using mutual information-based best individual feature selection. 
Expert Syst. Appl. 193:116414. doi: 10.1016/j.eswa.2021.116414

Hicks, S. A., Strümke, I., Thambawita, V., Hammou, M., Riegler, M. A., Halvorsen, P., 
et al. (2022). On evaluation metrics for medical applications of artificial intelligence. Sci. 
Rep. 12:5979. doi: 10.1038/s41598-022-09954-8

Kanamaneni, K., Dasari, U. K., Talupuru, I., Syed, S. M., and Pasham, P. (2025). 
Automated epileptic seizure detection using convolutional neural networks on EEG 
signals. In AIP Conference Proceedings (3237, 1). AIP Publishing.

Kapoor, B., Nagpal, B., Jain, P. K., Abraham, A., and Gabralla, L. A. (2022). Epileptic 
seizure prediction based on hybrid seek optimization tuned ensemble classifier using 
EEG signals. Sensors 23:423. doi: 10.3390/s23010423

Khan, Q. (2024) Epilepsy seizure classification based on EEG signals using machine 
learning. (master's thesis). Available online at: https://oulurepo.oulu.fi/handle/10024/50697

Kumar, V. S., Karpagavalli, C., Pradeep, S., Divya, S., Taqui, S. N., and Vinayagam, N. 
(2024). Deep learning-based eeg signal classification of epileptic patients. In 2024 
International Conference on Expert Clouds and Applications (ICOECA) (pp. 626–
631). IEEE.

Kunekar, P., Gupta, M. K., and Gaur, P. (2024). Detection of epileptic seizure in EEG 
signals using machine learning and deep learning techniques. J. Eng. Appl. Sci. 71:21. 
doi: 10.1186/s44147-023-00353-y

Liu, S., Wang, J., Li, S., and Cai, L. (2023). Epileptic seizure detection and prediction 
in EEGs using power spectra density parameterization. IEEE Trans. Neural Syst. Rehabil. 
Eng. 31, 3884–3894. doi: 10.1109/TNSRE.2023.3317093

Ma, H., Huang, S., Li, F., Pang, Z., Luo, J., Sun, D., et al. (2024). Development and 
validation of an automatic machine learning model to predict abnormal increase of 
transaminase in valproic acid-treated epilepsy. Arch. Toxicol. 98, 3049–3061. doi: 
10.1007/s00204-024-03803-5

Malinus, A. M. P. (2025) Implementasi 2D-CNN dengan Teknik Augmentasi EEG 
untuk Mendeteksi Kejang Epilepsi pada Dataset Siena Scalp EEG (Doctoral dissertation, 
Institut Teknologi Sepuluh Nopember)

Palanisamy, K. K., and Rengaraj, A. (2024). Detection of anxiety-based epileptic 
seizures in EEG signals using fuzzy features and parrot optimization-tuned LSTM. Brain 
Sci. 14:848. doi: 10.3390/brainsci14080848

Pan, H., Li, Z., Fu, Y., Qin, X., and Hu, J. (2024). Reconstructing visual stimulus 
representation from EEG signals based on deep visual representation model. IEEE Trans. 
Hum.-Mach. Syst. 54, 711–722. doi: 10.1109/THMS.2024.3407875

Pan, H., Tong, S., Song, H., and Chu, X. (2025). A miner mental state evaluation 
scheme with decision level fusion based on multidomain EEG information. IEEE Trans. 
Hum.-Mach. Syst. 55, 289–299. doi: 10.1109/THMS.2025.3538162

Pommé, L. E., Bourqui, R., Giot, R., and Auber, D. (2024). “Relative confusion matrix: 
an efficient visualization for the comparison of classification models” in Artificial 
intelligence and visualization: advancing visual knowledge discovery (Springer Nature 
Switzerland: Cham), 223–243.

Tran, L. V., Tran, H. M., Le, T. M., Huynh, T. T., Tran, H. T., and Dao, S. V. (2022). 
Application of machine learning in epileptic seizure detection. Diagnostics 12:2879. doi: 
10.3390/diagnostics12112879

Varlı, M., and Yılmaz, H. (2023). Multiple classification of EEG signals and epileptic 
seizure diagnosis with combined deep learning. J. Comput. Sci. 67:101943. doi: 
10.1016/j.jocs.2023.101943

Wong, S., Simmons, A., Rivera-Villicana, J., Barnett, S., Sivathamboo, S., Perucca, P., 
et al. (2023). EEG datasets for seizure detection and prediction—a review. Epilepsia Open 
8, 252–267. doi: 10.1002/epi4.12704

Yin, J., Qiao, Z., Han, L., and Zhang, X. (2025). EEG-based emotion recognition with 
autoencoder feature fusion and MSC-TimesNet model. Comput. Methods Biomech. 
Biomed. Eng., 1–18. doi: 10.1080/10255842.2025.2477801

Yu, X., Luan, S., Lei, S., Huang, J., Liu, Z., Xue, X., et al. (2023). Deep learning for fast 
denoising filtering in ultrasound localization microscopy. Phys. Med. Biol. 68:205002. 
doi: 10.1088/1361-6560/acf98f

https://doi.org/10.3389/fncom.2025.1668358
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/j.chaos.2024.114700
https://doi.org/10.1016/j.jisa.2023.103654
https://doi.org/10.3389/fmed.2024.1429291
https://doi.org/10.3390/s22176592
https://doi.org/10.3390/app12147251
https://doi.org/10.3389/fmed.2025.1574428
https://doi.org/10.1007/s00521-022-07861-7
https://doi.org/10.1186/s12911-023-02180-w
https://doi.org/10.1016/j.dajour.2021.100015
https://doi.org/10.1038/s41598-022-15830-2
https://doi.org/10.1007/s42979-023-01958-z
https://doi.org/10.1155/2022/9579422
https://doi.org/10.1016/j.eswa.2021.116414
https://doi.org/10.1038/s41598-022-09954-8
https://doi.org/10.3390/s23010423
https://oulurepo.oulu.fi/handle/10024/50697
https://doi.org/10.1186/s44147-023-00353-y
https://doi.org/10.1109/TNSRE.2023.3317093
https://doi.org/10.1007/s00204-024-03803-5
https://doi.org/10.3390/brainsci14080848
https://doi.org/10.1109/THMS.2024.3407875
https://doi.org/10.1109/THMS.2025.3538162
https://doi.org/10.3390/diagnostics12112879
https://doi.org/10.1016/j.jocs.2023.101943
https://doi.org/10.1002/epi4.12704
https://doi.org/10.1080/10255842.2025.2477801
https://doi.org/10.1088/1361-6560/acf98f

	Advancing epileptic seizure recognition through bidirectional LSTM networks
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Dataset description
	3.2 Dataset preprocessing and feature engineering
	3.3 Model architecture
	3.4 Training
	3.5 Performance metrics

	4 Experimental results and discussion
	5 Conclusion

	References

