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Advancing epileptic seizure
recognition through bidirectional
LSTM networks

Sanaa Al-Marzouki*

Department of Statistics, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia

Seizure detection in a timely and accurate manner remains a primary challenge in
clinical neurology, affecting diagnosis planning and patient management. Most of
the traditional methods rely on feature extraction and traditional machine learning
techniques, which are not efficient in capturing the dynamic characteristics of
neural signals. It is the aim of this study to address such limitations by designing
a deep learning model from bidirectional Long Short-Term Memory (BiLSTM)
networks in a bid to enhance epileptic seizure identification reliability and accuracy.
The dataset used, drawn from Kaggle's Epileptic Seizure Recognition challenge,
consists of 11,500 samples with 179 features per sample corresponding to different
electroencephalogram (EEG) readings. Data preprocessing was utilized to normalize
and structure the input to the deep learning model. The proposed BiLSTM model
employs sophisticated architecture to leverage temporal dependency and bidirectional
data flows. It incorporates multiple dense and dropout layers alongside batch
normalization to enhance the capability of the model in learning from the EEG
data in an efficient manner. It supports end-to-end feature learning from the raw
EEG signals without the need for intensive preprocessing and feature engineering.
BiLSTM model performed better than others with 98.70% accuracy on the validation
set and surpassed traditional techniques. The F1-score and other statistical metrics
also validated the performance of the model as the confusion matrix achieved high
values for recall and precision. The results confirm the capability of bidirectional
LSTM networks to better identify seizures with significant improvements over
conventional practices. Apart from facilitating seizure detection in a reliable fashion,
the method improves the overall field of biomedical signal processing and can
also be used in real-time observation and intervention protocols.

KEYWORDS

epileptic seizure recognition, bidirectional LSTM, deep learning, EEG analysis, neural
networks, healthcare technology, neurological disorders, brain stimulation

1 Introduction

Epilepsy is a chronic neurological disorder characterized by the recurrence of unprovoked
seizures in approximately 50 million individuals worldwide. Early and accurate seizure
detection is a significant parameter to be considered in appropriate management and
treatment, enhancing the quality of life and safety of the patients. Visual detection of seizures
has been done using electroencephalograms (EEGs), but it is not only time-consuming but
also prone to human errors due to the EEG signal being complex and subtle in nature.

The limitations of the traditional EEG analysis such as relentless human intervention and
knowledge to correctly interpret have compelled the development towards autonomous
systems. Traditional machine learning (ML) models have been utilized in this case to make it
possible, with over-feature extraction and engineering to pipe through the EEG data. They are
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unable to tap temporal dynamics and EEG high-dimensional

structure, leading to performance deterioration in real-
world scenarios.

Deep learning techniques, i.e., long short-term memory (LSTM)
networks, have been found to be useful tools in such case (Chhajer
et al.,, 2022). LSTMs can learn temporal patterns over long-time
frames and hence are very well-suited for modeling EEG signals since
EEG signals are temporal and non-linear.

Existing seizure detection models continue to be afflicted by deep
issues such as low accuracy, failure to generalize across patients, and
heavy reliance on hand-designed features that introduce model
complexity and training bias. These issues underscore the need for
models that can learn to discover patterns from raw data with
little preprocessing.

Bidirectional LSTM (BiLSTM) networks extend traditional
LSTMs with the added advantage of providing additional context from
the sequence data, with processing in forward and backward
directions. The two-path architecture adds more capability for the
model to learn from temporal data, which can result in better and
stronger seizure detection. Although they are promising, the
application of BILSTMs in the classification of EEG signals is yet to
be explored, and thus the research gap is important and this research
will seek to bridge that gap.

This work contributes to the detection of epileptic seizures using

the following innovations:

1 Creating a novel deep learning approach using bidirectional
LSTM networks to enhance the performance of detecting
epileptic seizures from EEG signals.

2 Using a publicly available, annotated dataset to train and test
the new model to enable reproducibility and reliability in real-
world applications.

3 Testing the model using various metrics like accuracy,
confusion matrix, F1-score, and other statistical parameters
applicable to the task to demonstrate its performance and
improvements from the existing state.

4 Comparing the BiLSTM model to traditional machine learning
and other deep learning methods to determine its strengths
and possible areas of research.

Through these objectives, the study aims to not only improve the
technology of seizure detection but also to contribute to the overall
discussion of the application of deep neural network architectures in
health informatics.

While hybrid CNN-BiLSTM architectures offer the promise of
capturing both spatial and temporal EEG features, this study
prioritizes establishing a robust temporal modeling baseline through
BiLSTM networks. Future investigations will evaluate CNN-BiLSTM
combinations to harness complementary spatial information from
multi-channel EEG recordings.

This study differentiates itself from existing BiLSTM-based
seizure detection research through its rigorous data preprocessing
strategy that retains raw EEG temporal characteristics without
synthetic augmentation, a carefully tuned dropout-batch
normalization combination that enhances generalization, and
systematic use of Sparse Categorical Cross entropy to align with
integer-based labels. Also, an ablation study has been conducted to

evaluate hyperparameter sensitivity and demonstrate the stability of
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the proposed architecture, establishing a robust and reproducible
benchmark for future studies.

The manuscript is structured to provide clear and logical
progression of the research. Section 2, “Literature review; critically
assesses existing studies, setting the context for the advancements
introduced by the approach. In Section 3, “Methodology;” detail of
experimental setup, including data preprocessing and the specifics of
the BiLSTM model architecture, ensuring reproducibility and clarity
in the approach is presented. Section 4, “Results and discussion,”
presents the findings, where the efficacy of the model is analyzed and
compared against traditional methods, using robust statistical metrics
to underscore the improvements. This structured approach not only
enhances the understanding of an innovative model but also solidifies
its potential application in clinical settings.

2 Related work

Standard machine learning techniques such as Support Vector
Machines (SVMs), Decision Trees, and k-Nearest Neighbors (k-NN)
have been seminal in seizure detection application (Pan et al., 2025).
SVMs have particularly been noted as being strong in high-
dimensional feature spaces, prevalent in EEG signals. However, the
methods at times are vulnerable to optimal feature extraction and
selection, which may be time-consuming and does not capture all
dynamic features of EEG signals. Decision Trees and k-NN have
provided interpretable models but are overfitted and do not generalize
to other objects (Pan et al., 2024).

Deep learning has introduced a significant shift in seizure
detection techniques. Convolutional Neural Networks (CNNs) have
been applied to segments and automatically extract spatial hierarchies
of features from raw EEG signals (Chaudhary et al., 2024). Recurrent
Neural Networks (RNNs) and their variants like LSTMs have
addressed the temporal aspects of EEG data by effectively learning
dependencies in time-series information (Ma et al., 2024). These
models have shown improved accuracy over classical methods by
autonomously learning features directly from the data, reducing the
need for manual feature engineering. Table 1 illustrates the study of
existing techniques in the related field.

Bidirectional LSTMs (BiLSTMs) extend the capabilities of LSTMs
by processing data in both forward and reverse directions, which helps
in capturing context more effectively. While there have been
applications of BiLSTMs in other domains such as natural language
processing and speech recognition, their use in EEG signal
classification is less explored (Albalawi et al., 2024). Existing studies
utilizing BiLSTMs for EEG have demonstrated potential in enhancing
model performance by leveraging both past and future context of the
EEG sequence, yet often these applications do not fully exploit the
bidirectional  architecture’s  capability to enhance the
temporal resolution.

Existing research on EEG-based seizure detection has
predominantly focused on either feature-engineered classical methods
or unidirectional deep learning models (Yin et al., 2025). This work
extends the current literature by implementing a BiLSTM approach,
which inherently learns to recognize and classify seizure and
non-seizure events from raw EEG data without the necessity for
pre-defined feature extraction. The proposed model not only addresses
the limitations of temporal context capture in traditional LSTM
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TABLE 1 Literature review.

Study

Wong et al. (2023)

Objectives

Review of EEG datasets for seizure detection and

prediction using ML techniques

Discusses the variability in dataset formats and structures, highlighting the need for
standardized guidelines to enhance reproducibility and generalizability in seizure detection

algorithms

10.3389/fncom.2025.1668358

Remarks

Handa et al. (2023) = Review and comparison of EEG datasets for epilepsy

diagnosis and seizure detection

Emphasizes the evolution of dataset availability and suggests the need for a standardized

protocol to improve Al applications in epilepsy diagnosis

Tran et al. (2022) Introduce a machine learning approach for epileptic

seizure detection from EEG signals

Proposes a novel method involving feature selection and reduction to enhance the efficiency

of seizure detection models

Hassan et al. Develop an automatic seizure detection system

Utilizes feature extraction and selection to address the challenges of complex EEG signal

(2022) combining CNN and traditional machine learning analysis for seizure detection

classifiers
Ahmad et al. Present an efficient feature selection and classification | Introduces an explainable AT approach to improve seizure detection and the interpretability
(2024) method for EEG-based epileptic seizure detection of AT decisions in clinical settings
Abdulwahhab etal. | Explore deep learning techniques for seizure detection | Combines CNN and RNN models to analyze time-frequency transformed EEG data for high
(2024) using EEG signal analysis accuracy in seizure detection

Chen et al. (2023) Propose a CNN-based automated detection system for

EEG signals using feature fusion

Highlights the advantages of combining multiple feature types to enhance classification

accuracy in epilepsy detection

Liu et al. (2023) Investigate the significance of periodic and aperiodic

EEG components for seizure detection and prediction

Demonstrates the importance of differentiating EEG components to improve the accuracy of

epilepsy detection methods

Varli and Yilmaz

(2023)

Develop a combined deep learning model for epilepsy

diagnosis and seizure detection

Uses a mix of image and numerical data from EEG signals to classify and detect epileptic

activity across multiple datasets

Hassan et al.

(2022)

Improve epileptic seizure detection using a novel

feature selection method and neural network classifier

Employs empirical mode decomposition and a feature selection algorithm to refine the

inputs for neural network-based seizure detection

models but also showcases a significant improvement in detection
performance, demonstrating the BILSTM’s ability to understand the
complex, nonlinear interdependencies of EEG signals more effectively
than previously reported methods. By intensive testing, analyzing, and
verifying, this research confirms the stability and consistency of
BiLSTMs and presents an efficient and scalable approach to analyzing
real-time seizure detection systems.

Recent advances in seizure detection using EEG are centered on
the use of attention mechanisms to improve feature representation and
increase explainability. Attention layers, together with recurrent
architectures, have been proven to selectively focus on relevant
temporal or spatial segments of EEG, improving classification
performance and providing clinically meaningful results.
Architectures such as Attention-based BiLSTMs and Transformer-
based architectures already demonstrate promising performance on
publicly available EEG datasets and suggest that the incorporation of
attention will offer additional performance and interpretability boost
for seizure detection systems.

3 Methodology

In the present study, the Kaggle Epileptic Seizure Detection
dataset with EEG signals of 500 patients was used to train an aggressive
BiLSTM model for seizure detection. The data were normalized and
scaled and split into the training set, validation set, and test set.
BiLSTM consists of layers like Dense, Bidirectional LSTM, Dropout,
and Batch Normalization to efficiently process temporal EEG signals.
Training was up to 100 epochs with methods such as early stopping
and model checkpointing to improve performance and avoid
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overfitting. This holistic method is applied with the goal of improving
seizure detection system prediction significantly and the process of
this holistic method is shown in Figure 1.

3.1 Dataset description

The dataset utilized in this research is the Epileptic Seizure
Recognition dataset, available on Kaggle and sourced from the UCI
Machine Learning Repository. It comprises EEG recordings from 500
individuals, each sampled over approximately 23.6 s at 178 data points
per second, resulting in 11,500 instances (Khan, 2024). Each instance
includes 178 temporal features representing EEG signal values and an
additional label that categorizes the EEG signals into five distinct
classes. Class 1 identifies seizure activity, classes 2 and 3 are recordings
from tumor-affected and healthy areas respectively, class 4 corresponds
to eyes closed, and class 5 to eyes open (Chandrasekaran et al., 2025).
This structured dataset facilitates the binary classification task of
distinguishing seizure events (class 1) from non-seizure events (classes
2-5), providing a robust foundation for developing advanced seizure
detection models. Figure 2 illustrates the exploratory analysis of EEG
data signals.

3.2 Dataset preprocessing and feature
engineering

In the methodology of this study, extensive data preprocessing and
feature engineering were pivotal to optimizing the input for the BILSTM
model. Initially, the EEG signals underwent a rigorous normalization

frontiersin.org
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(mathematically presented in Equation 1) and scaling process to
harmonize amplitude ranges across various recordings, a crucial step to
mitigate disparities in signal intensity and to facilitate more effective
learning by the deep learning models. Following this standardization, the
dataset was meticulously partitioned into distinct sets for training,
validation, and testing, allocated in proportions of 80%, 10%, and 10%,
respectively. The data set was restricted to Class 1 (seizure) and Class 3
(non-seizure, healthy) samples, creating an unbalanced data set of 2,300
per class before partitioning. Class 3 was re-labeled as 0 and class 1
remained as 1 to form the binary target variable. The 80/10/10 partition
(train/validation/test) was performed on this balanced subset, with each
partition having practically equal seizure and non-seizure ratios. 80/10/10
is the ratio selected to retain as much data as possible to train the models
while having sufficient samples left over for independent testing and
validation so that unbiased performance estimates and good estimation
of generalization can be achieved. Since the data set was balanced by
design, no other class rebalancing techniques such as oversampling,
undersampling, or synthetic augmentation were utilized. This was divided
in a manner such that every class was proportionally present in every set
and hence class imbalance, which would tend to bias the behavior of the
model, was not created. Unlike conventional methods, data augmentation
techniques were deliberately shunned within the experiment. The
encouragement was undertaken on a strategic bias to test the in-built
capacity of the BILSTM model to generalize and self-learn from raw EEG
signals that were not afflicted with the distortion caused by artificially
augmenting the data.

X —
Normalized data = 274

(e

(1)

3.3 Model architecture

The architecture of such research’s BILSTM model is that it is
extremely capable of sensing and probing the temporal dynamics
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utilized in EEG data for effective seizure detection. The design
presented in Figure 3 includes a series of layers with a specific function
to execute in the processing sequence. The technique focuses on the
commitment of an attempt to challenge the natural resilience and
versatility of the model when dealing with unprocessed real-life EEG
data sets.

The input layer of the model and the lowest layer are structured to
receive 178 features per sample of the EEG signal recorded for a
second. The architecture is such that all of the temporal information
of the EEG data is preserved for analysis.

Following input, the input data is passed through a dense layer
with 32 units and ReLU activation. The layer serves to map the input
features into a higher dimension where the non-linear relationship
between points in the EEG data can be described, a property that is
very essential in classifying brain activity types.

The backbone of the model is a 128-unit bidirectional LSTM layer.
This is the core one since it reads forward and backward, hence both
past and future context simultaneously. The bidirectional approach is
particularly useful with EEG data, where timing and sequence of the
signals are the most important things to get right in order to be able
to classify successfully.

To counter the problem of overfitting, dropout layers are inserted
after the LSTM and the dense layer that follows, both with a 30%
dropout rate. Equation 2 illustrates the formula for dropout rate
calculation where p is the probability of retaining a unit in the network
(and therefore r is the probability of dropping a unit). Dropout layers
omit some of the features at random during each training pass,
compelling the model to construct more general features that are not
relying on any one subset of the data.

r=1-p 2)

The model incorporates two dropout layers, each with an identical
dropout rate of 0.3, positioned after the BiLSTM layers. This
configuration was determined through preliminary hyperparameter
tuning, where experiments with differing dropout rates across layers
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did not produce measurable gains in validation accuracy or
generalization performance. Employing the same rate simplified the
tuning process and ensured consistent regularization strength
throughout the recurrent layers. The selected value of 0.3 was found
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to offer an effective balance between mitigating overfitting and

preserving sufficient feature information for seizure classification.
Each dropout layer is followed by batch normalization, represented

mathematically in Equation 3, a technique that standardizes the output
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EEG Signal with Highlighted Amplitude Ranges
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Exploratory data analysis of EEG signals. (a) EEg signal example. (b) Average EEG signal across all records. (c) EEG signal example with Gradient color.

(d) EEG signal with highligjted amplitude ranges. (e) EEg signal rolling average. (f) Multi segment comparison of EEG signal.

of the previous layer by shifting and scaling the activations. This The final layer is an output layer with two units, using a
regularizes the learning process, speeds up convergence, and is known  SoftMax activation function mathematically represented in
to make the overall performance of the model better. Equation 4. The primary function of this layer is to classify the
input EEG signals into binary classes: seizure and non-seizure
xfE[x] activities. The SoftMax function provides a probability
y= v (3)  distribution over the two classes, enabling easy and
A /Var [x] +e X
interpretable output.
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SoftMax(xi ) = (4)

X

J

The model outputs the result using the Adam optimizer as
observed in Equation 5, an adaptive learning rate optimizer that has
gained popularity in training deep neural networks due to its
capability to handle sparse gradients on noisy problems. For the loss
function, Sparse Categorical Crossentropy as observed in
Equation 6 is used, which is suitable for multi-class classification
problems where the classes are mutually exclusive, therefore ideal
for the binary classification problems under consideration. The
choice of Sparse Categorical Crossentropy (SCCE) over Binary
Crossentropy, despite the binary nature of the classification task,
was motivated by the dataset labeling scheme. The preprocessed
(0 and 1)
corresponding to non-seizure and seizure events, respectively,

dataset retained integer-encoded class labels

without one-hot encoding. SCCE is designed to handle such
integer-based labels directly, which avoids the additional memory
and computational overhead of converting to one-hot vectors, while
producing the same optimization behavior as Categorical
Crossentropy for two-class problems. This choice ensured
compatibility with the existing data pipeline and preserved training
stability without requiring structural changes to label representation.

O =0 ——L—m, s
t+ t \/;JFE t (5)
L=—Zic=1yf10g(ﬁ) )

This intricate and advanced architecture is specifically crafted to
leverage the sequential nature of EEG data such that the temporal
best robust  seizure

correlations  are exploited for a

detection capability.

Frontiers in Computational Neuroscience

While the Bidirectional LSTM architecture effectively captures
temporal dependencies in both forward and backward directions, certain
limitations warrant consideration. For very long sequences, the model
may encounter challenges such as increased computational cost, memory
overhead, and potential gradient vanishing or exploding issues, despite
LSTM’s gating mechanisms. The bidirectional nature requires access to
the entire sequence before processing, making it less optimal for real-time
or low-latency applications where streaming data must be analyzed
incrementally. In such cases, unidirectional LSTMs, temporal
convolutional networks (TCNG), or Transformer-based architectures may
offer more suitable trade-offs between accuracy and efficiency.

For real-time seizure monitoring, adaptations such as sliding-
window inference with partial sequence processing or hybrid
architectures combining unidirectional LSTMs with attention
mechanisms can mitigate this limitation. These approaches enable
near real-time prediction while preserving temporal context within
manageable latency, aligning with clinical requirements for continuous
patient monitoring.

Algorithm 1 presents a step-by-step process of a deep learning
model utilizing a bidirectional LSTM network to enhance the
detection accuracy of epileptic seizures from EEG data.

3.4 Training

The training of the BILSTM model is designed with caution to
achieve the highest performance possible without risking overfitting.
The model is trained using up to 100 epochs, a number that allows
sufficient iterations for the learning algorithms to converge very well
to a stable solution. No early stopping mechanism was applied; instead,
model selection relied solely on checkpointing the weights
corresponding to the highest validation accuracy during training.
There are 32 samples per batch, a batch size chosen to achieve a good
balance between the need for computational efficiency on one hand as
well as the benefit of stochastic gradient descent optimization on the
other hand. Table 2 provides detail about training hyperparameters used.
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Input: Preprocessed EEG data with each instance having 178 temporal features.
Output: Classification results indicating seizure or non-seizure activity.
1. Data Preprocessing
o Read data from the file, normalize the data and split data into training, validation, and
test sets
2. Model Definition
o Define a sequential model incorporating dense layers, a bidirectional LSTM layer,
dropout layers for regularization, and batch normalization layers.
o The output layer uses SoftMax activation to classify the input signals into seizure or
non-seizure.
3. Model Compilation
e Compile the model with Adam optimizer and sparse categorical crossentropy as the
loss function.
4. Model Training
o Train model on training data with specified epochs and batch size
e Apply early stopping based on validation loss
¢ Save the best model using a checkpoint based on highest validation accuracy
5. Model Evaluation
o Evaluate the model on test data to calculate accuracy and other performance metrics
and plot accuracy and loss graphs
ALGORITHM 1
Bidirectional LSTM for epileptic seizure recognition

To boost the training dynamics, learning rate scheduling is
introduced shown in Equation 7. The technique varies the learning
rate dynamically based on the training epoch or other performance
measures. It assists in model optimization by slowing down the
learning rate as training progresses, which tends to result in faster
convergence in subsequent stages of training.

To
— 7
e = 1+ 5t ( )

Early stopping is a crucial part of the training procedure. The
procedure monitors the validation loss throughout training and halts the
training procedure if the validation loss does not decrease for a given
number of successive epochs (Yu et al, 2023). Not only is this
computationally beneficial, but it is also safeguarding against overfitting
in that it prevents the model from being capable of learning noise in the
training set beyond the point of profitable generalization.

Besides, model checkpointing is used in maintaining the best
quality model structure. The method stores the model weight whenever
there is validation accuracy improvement. As the highest-performing
weights are stored only, the method guarantees that the last utilized
model when testing and in real applications is the best accuracy model
on the validation set, thereby storing its best generalization performance.

All such methods collectively, batch size selection, learning rate
scheduling, early stopping, and saving models are all components
of an effective training procedure that optimizes the performance
of the model with optimal use of available computational resources.

Frontiers in Computational Neuroscience

TABLE 2 Training hyperparameters.

Batch size 32 Size of training batches
Epochs 100 Number of training cycles
Optimizer Adam Optimization algorithm

3.5 Performance metrics

Performance estimation of sequence modeling is crucial to an
open and robust understanding of its efficacy in seizure detection (Yu
etal., 2023). These metrics vary from general accuracy to the extent of
classification quality across categories.

Accuracy is the most straightforward measure, which is a ratio of
correct predictions of observations to all observations as shown in
Equation 8.

Accuracy = Number of Correct Predictions ®)
Y Total Number of Predictions

Precision assesses the model’s accuracy in predicting positive
labels and is crucial for medical applications where false positives
carry significant consequences (Hicks et al., 2022). It is defined as the
ratio of true positive predictions to the total predicted positives as
shown in Equation 9.
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. True Positives
Precision = — — 9)
True Positives + False Positives

Recall, or sensitivity, measures the model’s ability to detect all
relevant cases within the dataset (i.e., the actual positives) as in
Equation 10.

True Positives

Recall = (10)

True Positives + False Negatives

F1-score showcased in Equation 11 provides a balance between
precision and recall, offering a single metric to evaluate the overall
effectiveness of the model when you need a balance between
recognizing positives accurately and not missing any positives.

Precisi 1l
Fl—score—2 - recision x Reca

(11)

Precision + Recall

Matthews Correlation Coefficient (MCC) as in Equation 12 offers
a comprehensive measure that considers true and false positives and
negatives, particularly useful for imbalanced datasets:

MCC = TPxTN-FPxFN (12)

(TP +EP)(TP +EN)(TN +FP)(TN +FN)

Equation 13 presents a formula for Cohen’s Kappa that provides
an adjustment for the accuracy of a model by considering the
agreement that would be expected by chance.

K:pa_pe

l_pe (13)

Confusion Matrix presents a visualization of the performance of
an algorithm, showing the correct and incorrect predictions broken
down by type: True Positives (TP), True Negatives (TN), False
Positives (FP), False Negatives (FN) (Pommé et al., 2024).

Model Loss Curves are a visual representation of training loss
and validation loss over every epoch. They play a critical role in
determining the cause of model training failure due to fitting,
overfitting, or underfitting. Under normal circumstances,
whenever validation loss begins to increase while training loss
continues to decrease, the model might be overfitting the
training set.

By considering these metrics, a complete evaluation of the model’s
performance is realized, and thus there is robustness and accuracy in
applying seizure detection to real-world EEG data.

4 Experimental results and discussion

Experimental performance results for the BILSTM model are
evaluated objectively on several performance metrics and yield a
comprehensive view of its advantages. Training accuracy was initially
revealed to be 91.25% and consistently rose with epochs to a point of
99.76%. Valid accuracy also increased consistently, with a peak being
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99.57% and the illustrations of fluctuation in training and validation
metrics has been presented in Table 3.

These metrics indicate a stable model convergence, adept at
adapting to both training and unseen validation data without
notable overfitting, corroborated by the loss curves that show a
consistent decline in training and validation loss, ensuring effective
learning while avoiding overfitting pitfalls. Figure 4 illustrates the
graphical representation of training and validation metrics
over epochs.

The confusion matrix for validation data and test data are shown
in Figures 5a,b which further delineates the model’s precision,
revealing a high true positive rate with very few misclassifications.
Only one instance was misclassified out of 460. This is indicative of the
model's robust ability to discriminate between the two
classes effectively.

MSE for the model was calculated at a low 0.0022, with the
RMSE at 0.0466, indicating minimal error between the predicted
and actual class labels, underscoring high model precision. Similarly,
the MAE stood at 0.0022, further confirming the model’s accuracy
in predicting the correct classes with little deviation from the true
labels. The graphical visualizations of regression scores are presented
in Figure 6.

Precision, Recall, and F1-Score metrics were exemplary, with
both precision and recall achieving perfect scores of 1.00 for each
class. This result translates to no false positives or false negatives
within the validation dataset, leading to an Fl-score of 1.00,
reflecting the model’s balanced precision and recall. Cohen’s Kappa
Score, achieving 0.9956 suggests almost perfect agreement between
the predicted and actual classifications, corrected for any random
chance agreement, which is particularly significant in medical
diagnostic tests like EEG analysis. Similarly, the MCC of 0.9957
confirms a very high-quality classification performance, as MCC is
generally regarded as a balanced measure even when classes are of
very different sizes. The F2 score, emphasizing recall over precision,
was nearly perfect at 0.9978, suggesting the model is exceptionally
good at identifying all relevant instances. The F0.5 score, which
places more emphasis on precision, was similarly high at 0.9978,
indicating that the precision of the model does not compromise its

TABLE 3 Model training results summary.

Epoch  Training Validation Training Validation
accuracy accuracy loss loss
1 89.86% 92.83% 0.2568 0.2027
10 96.58% 97.83% 0.0921 0.0745
20 97.17% 96.09% 0.0842 0.1186
30 97.45% 97.61% 0.0754 0.0906
40 98.72% 98.26% 0.0412 0.0485
50 98.99% 98.04% 0.0296 0.0737
60 98.78% 98.26% 0.0345 0.0712
70 98.75% 97.83% 0.0302 0.0725
80 99.40% 98.04% 0.0141 0.0720
90 99.65% 97.61% 0.0109 0.0865
100 99.21% 98.04% 0.0225 0.0685
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Confusion matrix. (@) Confusion matrix for validation data. (b) Confusion matrix for test data.

recall ability. Figure 7 depicts the visualization of various
classification metrics.

These results collectively demonstrate the BILSTM’s robustness
and superiority in seizure detection in epilepsy from EEG signals,
making it a superior choice to traditional methods and promising
significant potential for real clinical application. Its thorough
comparison not only confirms the functional excellence of the model
but also exhibits its adaptability for applying it in real-world practical
medical diagnostic settings.

Comparison of the baseline approaches such as SVM, CNN, and
the traditional LSTM models highlights the enhanced capability of
BiLSTM in dealing with temporal dependencies in EEG data. The
comparison study of the existing methods is indicated in Table 4.

Unlike traditional LSTMs and CNNG offering robust sequence data
analysis models, bidirectional operation of BILSTM captures temporal
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patterns in both directions and hence offers much stronger seizure
activity detection capability than the unidirectional LSTM. Table 5
illustrates the comparison of classification metrics of the proposed model.

An ablation study was conducted to examine the impact of various
hyperparameters and the architectural differences between BiLSTM
and regular LSTM models on the model’s performance. Altering the
dropout rate demonstrated that a 30% rate optimally prevents
overfitting while maintaining sufficient model complexity to capture
relevant patterns in the EEG data. Variations in batch size and learning
rate were also tested, where a batch size of 32 and a dynamic learning
rate provided the best trade-off between training stability and
convergence speed. Comparatively, the BILSTM model outperformed
regular LSTM models, emphasizing the value of capturing temporal
dependencies in both forward and backward directions in the EEG
sequences. This bidirectional approach was critical in enhancing the
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TABLE 4 Comparative study.

Author Techniques Accuracy
Kapoor et al. (2022) Ensemble classifier 95.30%
Aslam et al. (2022) LSTM 94%
Gramacki and Gramacki (2022) Deep learning 96%
Alharthi et al. (2022) Deep learning 96.87%
Kunekar et al. (2024) LSTM 97%
Kumar et al. (2024) BiLSTM 98.37%
Palanisamy and Rengaraj (2024) PO-LSTM 98%
Kanamaneni et al. (2025) CNN 84.2%
Malinus (2025) 2D-CNN 91.80%
Proposed model BiLSTM 98.7%

TABLE 5 Classification metrics comparison.

Metric BiLSTM CNN Standard LSTM
Accuracy 98.7% 95.6% 96.4%
Precision 99.0% 93.8% 94.2%
Recall 98.4% 94.1% 95.5%
Fl-score 98.7% 93.9% 94.8%

accuracy of detection, particularly to identify very thin differences
among different seizure activities.

The findings in the experiment validate the effectiveness of the
BiLSTM model, which was incredibly remarkable in all the
measurements. In particular, the capacity of the model to be extremely
accurate and accurate without significant overfitting evident in the
consistent rise in training and validation accuracy to nearly 99% that
attests to its greater computational efficiency in handling sophisticated
EEG data. Such performance is attested to by slight misclassifications
on the validation set that attests to the accuracy of the model for
practical application. Extensive evaluation also includes rigorous
comparison with other baseline and deep learning models, where the
BiLSTM is found better than others consistently, reflecting its higher
ability in accurate extraction of forward as well as backward temporal
dependencies of EEG data. This discussion not only confirms the
applicability of the model for clinical purposes but also suggests means
of its implementation in realtime monitoring systems, where timely
and accurate identification of seizure is critical. The ablation study is
also used to demonstrate the impact of hyperparameters on
performance and expose the strengths and flexibility of the model for
usage across various clinical environments.

5 Conclusion

For the study reported here, a BILSTM model was proposed for
the classification of epileptic seizures from EEG recordings that has
been capable of overtaking baseline models in terms of prediction. The
BiLSTM model achieved an extremely high accuracy of 98.70%
highlighting its superiority over SVM, CNN, and standard LSTM
models, which had lower performance scores across all classes. The
sophisticated error analysis and interpretative information from
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confusion matrices also confirm the reliability and strength of the
model in clinical settings.

Future work will focus on enhancing the transparency, robustness,
and generalizability of the BILSTM-based seizure detection framework
through multiple extensions and focus on adapting the framework for
real-time seizure monitoring using sliding-window and attention-
enhanced architectures to reduce latency while preserving temporal
context. Planned efforts include integrating statistical significance
testing and uncertainty quantification, such as nonparametric bootstrap
confidence intervals for all evaluation metrics, to rigorously assess the
reliability of observed performance differences. A comprehensive
ablation study varying dropout rate, batch size, and layer configurations
will be conducted, supported by graphical performance summaries and
statistical analyses to validate architectural choices. The framework will
be expanded to incorporate multimodal data sources, including
synchronized EEG and functional MRI recordings, structured clinical
metadata (e.g., demographics, medication history), and wearable
sensor outputs, leveraging fusion techniques such as attention-based
architectures and joint embedding spaces to exploit complementary
features. Real-time seizure prediction capability will be explored to
support continuous patient monitoring and timely interventions,
alongside the application of transfer learning for improved performance
under limited data scenarios and synthetic data augmentation strategies
to address class imbalance. Furthermore, stratified evaluations across
patient subgroups and seizure types will be undertaken to assess model
robustness in diverse clinical contexts, ensuring adaptability and
reliability for real-world neuro-monitoring applications.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

SA: Conceptualization, Data curation, Methodology, Project
administration, Validation, Visualization, Writing - original draft,
Writing - review & editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was supported
by the Deanship of Scientific Research (DSR) at King Abdulaziz
University, Jeddah, Saudi Arabia funded this project, under grant no.
(429/032-17).

Acknowledgments

This project was funded by the Deanship of Scientific Research
(DSR) at King Abdulaziz University, Jeddah, Saudi Arabia under grant
no. (429/032-17). The author gratefully acknowledge the DSR
technical and financial support.

frontiersin.org


https://doi.org/10.3389/fncom.2025.1668358
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Al-Marzouki

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Gen Al was used in the creation of
this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial

References

Abdulwahhab, A. H., Abdulaal, A. H., Al-Ghrairi, A. H. T., Mohammed, A. A., and
Valizadeh, M. (2024). Detection of epileptic seizure using EEG signals analysis based on deep
learning techniques. Chaos Solitons Fract. 181:114700. doi: 10.1016/j.chas.2024.114700

Ahmad, L, Yao, C., Li, L., Chen, Y., Liu, Z., Ullah, L, et al. (2024). An efficient feature
selection and explainable classification method for EEG-based epileptic seizure
detection. J. Inf. Secur. Appl. 80:103654. doi: 10.1016/j.jisa.2023.103654

Albalawi, E., Neal Joshua, E. S., Joys, N. M., Bhatia Khan, S., Shaiba, H., Ahmad, S., et al.
(2024). Hybrid healthcare unit recommendation system using computational techniques with
lung cancer segmentation. Front. Med. 11:1429291. doi: 10.3389/fmed.2024.1429291

Alharthi, M. K., Moria, K. M., Alghazzawi, D. M., and Tayeb, H. O. (2022). Epileptic
disorder detection of seizures using EEG signals. Sensors 22:6592. doi: 10.3390/522176592

Aslam, M. H., Usman, S. M., Khalid, S., Anwar, A., Alroobaea, R., Hussain, S., et al.
(2022). Classification of EEG signals for prediction of epileptic seizures. Appl. Sci.
12:7251. doi: 10.3390/app12147251

Chandrasekaran, S., Aarathi, S., Alghatani, A., Khan, S. B, Quasim, M. T., and
Basheer, S. (2025). Improving healthcare sustainability using advanced brain simulations
using a multi-modal deep learning strategy with VGG19 and bidirectional LSTM. Front.
Med. 12:1574428. doi: 10.3389/fmed.2025.1574428

Chaudhary, P, Varshney, Y. V,, Srivastava, G., and Bhatia, S. (2024). Motor imagery
classification using sparse nonnegative matrix factorization and convolutional neural
networks. Neural Comput. Appl. 36, 213-223. doi: 10.1007/s00521-022-07861-7

Chen, W,, Wang, Y, Ren, Y, Jiang, H., Du, G., Zhang, ], et al. (2023). An automated
detection of epileptic seizures EEG using CNN classifier based on feature fusion with
high accuracy. BMC Med. Inform. Decis. Mak. 23:96. doi: 10.1186/s12911-023-02180-w

Chhajer, P, Shah, M., and Kshirsagar, A. (2022). The applications of artificial neural
networks, support vector machines, and long-short term memory for stock market
prediction. Decis. Anal. J. 2:100015. doi: 10.1016/j.dajour.2021.100015

Gramacki, A., and Gramacki, J. (2022). A deep learning framework for epileptic seizure
detection based on neonatal EEG signals. Sci. Rep. 12:13010. doi: 10.1038/s41598-022-15830-2

Handa, P., Mathur, M., and Goel, N. (2023). EEG datasets in machine learning
applications of epilepsy diagnosis and seizure detection. SN Comput. Sci. 4:437. doi:
10.1007/s42979-023-01958-z

Hassan, E, Hussain, S. F, and Qaisar, S. M. (2022). Epileptic seizure detection using a
hybrid 1D CNN-machine learning approach from EEG data. ] Healthcare Eng 2022,
1-16. doi: 10.1155/2022/9579422

Hassan, K. M., Islam, M. R., Nguyen, T. T., and Molla, M. K. I. (2022). Epileptic seizure
detection in EEG using mutual information-based best individual feature selection.
Expert Syst. Appl. 193:116414. doi: 10.1016/j.eswa.2021.116414

Hicks, S. A., Striimke, I., Thambawita, V., Hammou, M., Riegler, M. A., Halvorsen, P,
etal. (2022). On evaluation metrics for medical applications of artificial intelligence. Sci.
Rep. 12:5979. doi: 10.1038/s41598-022-09954-8

Kanamaneni, K., Dasari, U. K., Talupuru, I, Syed, S. M., and Pasham, P. (2025).
Automated epileptic seizure detection using convolutional neural networks on EEG
signals. In AIP Conference Proceedings (3237, 1). AIP Publishing.

Kapoor, B., Nagpal, B., Jain, P. K., Abraham, A., and Gabralla, L. A. (2022). Epileptic
seizure prediction based on hybrid seek optimization tuned ensemble classifier using
EEG signals. Sensors 23:423. doi: 10.3390/s23010423

Frontiers in Computational Neuroscience

13

10.3389/fncom.2025.1668358

intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Khan, Q. (2024) Epilepsy seizure classification based on EEG signals using machine
learning. (master's thesis). Available online at: https://oulurepo.oulu.fi/handle/10024/50697

Kumar, V. S., Karpagavalli, C., Pradeep, S., Divya, S., Taqui, S. N, and Vinayagam, N.
(2024). Deep learning-based eeg signal classification of epileptic patients. In 2024
International Conference on Expert Clouds and Applications (ICOECA) (pp. 626-
631). IEEE.

Kunekar, P, Gupta, M. K., and Gaur, P. (2024). Detection of epileptic seizure in EEG
signals using machine learning and deep learning techniques. J. Eng. Appl. Sci. 71:21.
doi: 10.1186/s44147-023-00353-y

Liu, S., Wang, J., Li, S., and Cai, L. (2023). Epileptic seizure detection and prediction
in EEGs using power spectra density parameterization. IEEE Trans. Neural Syst. Rehabil.
Eng. 31, 3884-3894. doi: 10.1109/TNSRE.2023.3317093

Ma, H.,, Huang, S., Li, F, Pang, Z., Luo, J., Sun, D,, et al. (2024). Development and
validation of an automatic machine learning model to predict abnormal increase of
transaminase in valproic acid-treated epilepsy. Arch. Toxicol. 98, 3049-3061. doi:
10.1007/500204-024-03803-5

Malinus, A. M. P. (2025) Implementasi 2D-CNN dengan Teknik Augmentasi EEG
untuk Mendeteksi Kejang Epilepsi pada Dataset Siena Scalp EEG (Doctoral dissertation,
Institut Teknologi Sepuluh Nopember)

Palanisamy, K. K., and Rengaraj, A. (2024). Detection of anxiety-based epileptic
seizures in EEG signals using fuzzy features and parrot optimization-tuned LSTM. Brain
Sci. 14:848. doi: 10.3390/brainscil4080848

Pan, H,, Li, Z, Fu, Y., Qin, X,, and Hu, J. (2024). Reconstructing visual stimulus
representation from EEG signals based on deep visual representation model. IEEE Trans.
Hum.-Mach. Syst. 54, 711-722. doi: 10.1109/THMS.2024.3407875

Pan, H., Tong, S., Song, H., and Chu, X. (2025). A miner mental state evaluation
scheme with decision level fusion based on multidomain EEG information. IEEE Trans.
Hum.-Mach. Syst. 55, 289-299. doi: 10.1109/THMS.2025.3538162

Pommé, L. E., Bourqui, R., Giot, R., and Auber, D. (2024). “Relative confusion matrix:
an efficient visualization for the comparison of classification models” in Artificial
intelligence and visualization: advancing visual knowledge discovery (Springer Nature
Switzerland: Cham), 223-243.

Tran, L. V,, Tran, H. M., Le, T. M., Huynh, T. T, Tran, H. T, and Dao, S. V. (2022).
Application of machine learning in epileptic seizure detection. Diagnostics 12:2879. doi:
10.3390/diagnostics12112879

Varli, M., and Yilmaz, H. (2023). Multiple classification of EEG signals and epileptic
seizure diagnosis with combined deep learning. J. Comput. Sci. 67:101943. doi:
10.1016/j.jocs.2023.101943

Wong, S., Simmons, A., Rivera-Villicana, J., Barnett, S., Sivathamboo, S., Perucca, P,
etal. (2023). EEG datasets for seizure detection and prediction—a review. Epilepsia Open
8,252-267. doi: 10.1002/epi4.12704

Yin, ], Qiao, Z., Han, L., and Zhang, X. (2025). EEG-based emotion recognition with
autoencoder feature fusion and MSC-TimesNet model. Comput. Methods Biomech.
Biomed. Eng., 1-18. doi: 10.1080/10255842.2025.2477801

Yu, X, Luan, S., Lei, S., Huang, J., Liu, Z., Xue, X, et al. (2023). Deep learning for fast
denoising filtering in ultrasound localization microscopy. Phys. Med. Biol. 68:205002.
doi: 10.1088/1361-6560/acf98f

frontiersin.org


https://doi.org/10.3389/fncom.2025.1668358
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/j.chaos.2024.114700
https://doi.org/10.1016/j.jisa.2023.103654
https://doi.org/10.3389/fmed.2024.1429291
https://doi.org/10.3390/s22176592
https://doi.org/10.3390/app12147251
https://doi.org/10.3389/fmed.2025.1574428
https://doi.org/10.1007/s00521-022-07861-7
https://doi.org/10.1186/s12911-023-02180-w
https://doi.org/10.1016/j.dajour.2021.100015
https://doi.org/10.1038/s41598-022-15830-2
https://doi.org/10.1007/s42979-023-01958-z
https://doi.org/10.1155/2022/9579422
https://doi.org/10.1016/j.eswa.2021.116414
https://doi.org/10.1038/s41598-022-09954-8
https://doi.org/10.3390/s23010423
https://oulurepo.oulu.fi/handle/10024/50697
https://doi.org/10.1186/s44147-023-00353-y
https://doi.org/10.1109/TNSRE.2023.3317093
https://doi.org/10.1007/s00204-024-03803-5
https://doi.org/10.3390/brainsci14080848
https://doi.org/10.1109/THMS.2024.3407875
https://doi.org/10.1109/THMS.2025.3538162
https://doi.org/10.3390/diagnostics12112879
https://doi.org/10.1016/j.jocs.2023.101943
https://doi.org/10.1002/epi4.12704
https://doi.org/10.1080/10255842.2025.2477801
https://doi.org/10.1088/1361-6560/acf98f

	Advancing epileptic seizure recognition through bidirectional LSTM networks
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Dataset description
	3.2 Dataset preprocessing and feature engineering
	3.3 Model architecture
	3.4 Training
	3.5 Performance metrics

	4 Experimental results and discussion
	5 Conclusion

	References

