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Neural heterogeneity as a
unifying mechanism for efficient
learning in spiking neural
networks

Fudong Zhang'* and Jingjing Cui?

!College of Intelligent Robotics and Advanced Manufacturing, Fudan University, Shanghai, China,
2Department of Computer Science, City University of Hong Kong, Hong Kong, China

The brain is a highly diverse and heterogeneous network, yet the functional role
of this neural heterogeneity remains largely unclear. Despite growing interest
in neural heterogeneity, a comprehensive understanding of how it influences
computation across different neural levels and learning methods is still lacking.
In this work, we systematically examine the neural computation of spiking neural
networks (SNNs) in three key sources of neural heterogeneity: external, network,
and intrinsic heterogeneity. We evaluate their impact using three distinct learning
methods, which can carry out tasks ranging from simple curve fitting to complex
network reconstruction and real-world applications. Our results show that
while different types of neural heterogeneity contribute in distinct ways, they
consistently improve learning accuracy and robustness. These findings suggest
that neural heterogeneity across multiple levels improves learning capacity and
robustness of neural computation, and should be considered a core design
principle in the optimization of SNNs.

KEYWORDS

neural heterogeneity, neural computation, spiking neural networks, deep learning,
reservoir computing

1 Introduction

Neuronal populations in the brain exhibit remarkable heterogeneity, even among
neurons of the same physiological class. Emerging evidence suggests that this diversity
is not merely noise but a fundamental feature of neural computation and processing
(Markram et al., 1997; Marder and Goaillard, 2006; Brémaud et al., 2007; Gast et al., 2024).
This heterogeneity spans structural, genetic, environmental, and electrophysiological
dimensions, including spiking thresholds (Gast et al., 2024; Huang et al., 2016), membrane
time constants (Perez-Nieves et al., 2021; Wu et al., 2025), external currents (Chen and
Campbell, 2022; Montbrié and Paz6, 2020; Montbri6 et al.,, 2015), electrical coupling
strengths (Parker, 2003) and reset mechanisms (Leng and Aihara, 2020). These variations
reflect the heterogeneity in cellular composition and network organization across brain
regions (Billeh et al., 2020; Hawrylycz et al., 2012).

Although this neural heterogeneity might appear detrimental to the reliability of
neural networks, both theoretical and empirical studies have demonstrated that it can, in
fact, enhance information encoding, learning robustness, and task-specific computation
(Chelaru and Dragoi, 2008; Padmanabhan and Urban, 2010; Mejias and Longtin, 2012).
For example, diversity in membrane and synaptic time constants improves generalization
in learning models (Perez-Nieves et al., 2021), while differences in spiking thresholds
allow SNN to flexibly gate, encode, and transform signals (Gast et al., 2024). However,
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focusing on a single source offers an incomplete picture of

how heterogeneity shapes neural computation. Given its

multifaceted nature, understanding the interplay between
different types of heterogeneity remains an important and largely
uncharted direction.

Building on prior theoretical frameworks (Ly, 2015), we classify
neural heterogeneity into three main categories: external, network,
and intrinsic. External heterogeneity stems from variations in input
currents, which are experimenter-controlled and reflect properties
of sensory stimuli rather than network structure (Chen and
Campbell, 2022; Montbrié and Pazo, 2020; Montbrié et al., 2015;
Goldobin et al., 2021; Luccioli et al., 2019). Network heterogeneity
refers to structural diversity within the network, such as variability
in synaptic connectivity or electrical coupling strengths (Marder
and Goaillard, 2006; Oswald et al., 2009). Intrinsic heterogeneity,
in contrast, originates from neuron-specific properties that are
independent of network interactions (Padmanabhan and Urban,
2010). This classification provides a useful lens to systematically
evaluate their computational contributions. While individual forms
of heterogeneity have been explored in isolation, it remains unclear
whether their computational effects are consistent across different
learning methods and task domains. Addressing this gap could
yield a more unified understanding of how heterogeneity shapes
computation in both biological and artificial neural systems.

Previous studies have mainly explored neural heterogeneity in
the special task and learning methods. For example, Ridge Least
Square (RLS) learning method has demonstrated performance
gains in basic curve-fitting tasks when neuron spiking thresholds or
neural time constants are varied (Gast et al., 2024; Wu et al., 2025).
To extend beyond such constrained scenarios, recent work has
incorporated two broader learning methods (Nicola and Clopath,
2017). First, originating in the field of reservoir computing, First-
Order, Reduced and Controlled Error (FORCE) learning method
leverages the dynamics of high-dimensional recurrent systems to
perform computations (Sussillo and Abbott, 2009; Schliebs et al.,
2011; Buonomano and Merzenich, 1995). Learning is driven by
an external supervisory signal that provides error feedback. This
method expands the potential applications for more complicated
target functions, such as chaotic system prediction, songbird
generation and memory recall. Second, Surrogate Gradient Descent
(SGD) (Neftci et al., 2019) enables SNN to classify vision (Orchard
et al., 2015; Lichtsteiner et al., 2008) and auditory (Cramer et al.,
2020) stimuli, and this approach is well-suited for integration into
modern SNNs architectures. While both methods have expanded
the learning capacity of SNNG, it remains unclear whether neural
heterogeneity offers consistent benefits across this range of learning
methods from simple regression to high-dimensional classification.

In this study, we investigate the general computational role
of neural heterogeneity across three representative forms: external
current, synaptic coupling strength, and partial reset. These forms
have been widely used in modeling studies, yet their impact
remains poorly understood. We evaluate their effects across three
complementary learning methods: RLS, FORCE, and SGD, and
apply them to a diverse set of tasks ranging from curve fitting
and network reconstruction to real-world speech and image
classification. Our results demonstrate that neural heterogeneity,
regardless of its origin, consistently improves both performance
and robustness in SNNs. These findings underscore its fundamental
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computational advantages and offer a unified perspective on the
functional role of heterogeneity in neural systems. We argue
that heterogeneity is not merely a biological artifact but a key
design principle for efficient and adaptable learning in next-
generation SNNs. This work thus highlights a potentially unifying
computational role of neural heterogeneity across multiple SNNs
learning methods.

2 The basic SNN system

The Izhikevich (IK) model is a reduced form of the Hodgkin-
Huxley-type neuron model, derived via bifurcation analysis
(Izhikevich, 2007). Despite its reduced complexity, it preserves
essential features of neuronal excitability through an adaptive
quadratic mechanism. In this study, we incorporate external,
network, and intrinsic heterogeneity by allowing three model
parameters to vary across neurons.

External heterogeneity is introduced by assigning each neuron a
unique external current, a method commonly employed in previous
studies (Chen and Campbell, 2022; Montbri6 and Pazd, 2020;
Montbri6 et al., 2015). This design mimics the inherent variability
in sensory input processing in biological systems: sensory neurons
receive non-uniform external drives due to differences in receptor
sensitivity. For example, variations in the density of light-sensitive
opsins in retinal cells or mechanosensitive channels in auditory hair
cells lead to divergent responses to the same stimulus, which is well-
documented in neuroscience (Chen and Campbell, 2022; Montbrid
et al., 2015)

Network heterogeneity is captured by scaling the electrical
coupling strengths, such that neurons receive varying degrees
of network influence (Xue et al., 2014). This approach reflects
extensive experimental evidence of heterogeneity in synaptic
and electrical coupling (Marder and Goaillard, 2006; Oswald
et al,, 2009; Parker, 2003). By incorporating g; heterogeneity our
model replicates this structural diversity ensuring that network
interactions align with the non-uniform connectivity patterns of
real brains.

Intrinsic heterogeneity is implemented via the partial reset
mechanism following spike generation, representing incomplete
membrane repolarization (Leng and Aihara, 2020; Rospars and
Lansky, 1993). This mechanism allows neuron-specific post-spike
dynamics, enhancing variability that arises intrinsically from the
individual neuron’s state. Similar approaches have been used
to account for stochasticity and diversity in spiking behaviors
(Bugmann et al., 1997; Kirst et al., 2009).

The network model for a population of coupled IK neurons is
described by the following equations (Chen and Campbell, 2022)

dv;
Cd—t’ =k(vi —v)vi —v) —wi + L+ gsE—v), (1)

dW,’
TWF = ﬁ(Vi — V) — Wi, (2)

ifvi > Vpeak, then vi <= Vreset + 0i(Vi — Vpeak)

and w; < w; + Wjump

where v; denotes the membrane potential of the ith neuron and
wj its associated recovery variable, which governs spike-frequency
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adaptation. The input current is modeled as I; = 1; + Iex(?),
where n; represents neuron-specific external input and Iex(t) is
a global time-varying external drive. This formulation introduces
external heterogeneity through the distributed input 7,. Network
heterogeneity is incorporated by assigning electrical coupling
strengths g;, which scales the strength of recurrent input each
neuron receives. The core biophysical parameters of each neuron
include membrane capacitance C, the leakage parameter k, the
resting potential v,, the spike threshold potential v;, the synaptic
reversal potential E, the recovery variable time constant t,,, and the
scaling factor 8. When v; reaches the spike cutoff vy, it is reset
according to a partial reset rule:

Vreset + 0i(vi — Vpeak)’

where 0 < 6 < 1 is the reset coefficient for neuron i, introducing
intrinsic heterogeneity. A value of 6; = 0 corresponds to a full reset,
while 6; > 0 retains partial voltage history. Simultaneously, the
adaptation variable undergoes a discrete jump by an amount wjump.
The synaptic gating variable s lies between 0 and 1, representing
the synaptic activation of each neuron. For analytical simplicity,
we assume an all-to-all connectivity structure, which is a standard
approximation widely used in prior studies (Montbri6 et al,
2015; Byrne et al, 2020). The temporal dynamics of synaptic
transmission are formally described by a first-order differential
equation (Ermentrout and Terman, 2010)

N
ds TsSjump X
tsd7:_5+TZ Z S(t_tj): (3)

=k <t

where §(t) is the Dirac delta function, and t]k represents the time
of the kth spike of the jth neuron. 7, is a decay time constant, and
Sjump 18 the coupling strength. We consider the network system of
Equations 1-3 as the basic components of the following SNNs.

3 Results

To introduce different sources of heterogeneity, we assume that
the neuron-specific parameters {n;, g;, 0;} are distributed according
to a Lorentzian probability distribution parameterized by a center
and half-width-at-half-maximum, as described by the density
function

1 Ay
)= ———, 4
= TR (4)
where * = 1,g,0, denoting the three sources of heterogeneity

respectively.

Here, A* denotes the half-width-at-half-maximum of the
Lorentzian distribution, which controls the spread of heterogeneity.
Larger A* values correspond to greater variability in the parameter.
This means that A, controls the range of neuron-specific external
currents, Ag controls the spread of coupling strengths, and Ay
controls the variability of partial reset coefficients).

The
mathematical tractability (facilitating mean-field analysis in

Lorentzian distribution is chosen not only for

Appendix A) but also for biological relevance: it captures the
heavy-tailed variability of sensory input drives observed in

Frontiersin Computational Neuroscience

10.3389/fncom.2025.1661070

empirical studies unlike Gaussian distributions that underestimate
the range of real-world sensory neuron responses (Gast et al., 2024;
Perez-Nieves et al., 2021).

3.1 Heterogeneity is needed in the RLSM
learning network

We now examine the role of neural heterogeneity in enabling
reliable input-output mapping within a reservoir computing
framework. Reservoir computing is particularly well-suited
for processing temporal data, as it employs a fixed, high-
dimensional dynamical system to transform input signals into rich
spatiotemporal representations. These internal dynamics can then
be decoded using simple readout mechanisms. By constructing
a reservoir composed of heterogeneous spiking neurons, we
investigate how different forms of heterogeneity contribute to
computational reliability and temporal pattern processing. This
approach enables us to probe the network’s capacity to encode,
retain, and transform temporal information. Analysis of the
network responses reveals that neuronal heterogeneity enhances
the system’s ability to process complex input patterns and supports
more robust and reliable computation.

In this experiment, we evaluate the networK’s capacity for
reliable input-output mapping when processing complex temporal
patterns within a reservoir computing framework. Information
transformation is a core computational function supported by
the collective dynamics of recurrent neural populations (Vyas
et al,, 2020). Through coordinated activity, recurrently connected
spiking neurons can extract salient features from input streams
and generate temporally extended output signals as nonlinear
transformations of those features. While most model parameters
are calibrated to match the biophysical properties of hippocampal
CA3 pyramidal neurons (Nicola and Campbell, 2013b), the
appropriate range for the external current 7; remains uncertain. To
address this, we employ a mean-field analysis to identify a suitable
operating regime (see Appendix A for details).

The mean-field model offers a reliable approximation of the
bifurcation structure underlying neuronal population dynamics, a
feature that is critical for understanding and optimizing reservoir
computing performance. Using the software XPPAUT (Ermentrout
and Mahajan, 2003), we numerically continued the mean-field
Equations 8-11 to obtain the bifurcation diagram shown in
Figure la. This figure illustrates how the population firing rate
r changes qualitatively with variations in the mean current 7.
As 7 increases, the system transitions through three distinct
dynamical regimes: I. an asynchronous, quiescent regime, IL
a synchronous, oscillatory regime, and III. an asynchronous,
persistently active regime. To examine how these regimes affect
network performance, we varies 7 in Figures 1b, c. And we used two
target functions: a simple sinusoidal signal y;(t) = sin(127¢) and
a more complex signal y,(¢) = sin(127t)sin24mt in Figures 1b, c.
These functions were chosen to test the networks ability to
model both periodic and non-periodic temporal dynamics. When
the system is in the quiescent regime, the network fails to
reproduce the target dynamics, primarily due to the low firing
rates of individual neurons, which hinder effective information
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FIGURE 1

Identification of suitable external current for neural computation. (a) The bifurcation of the firing rate for the mean-field with mean external current
7. Green, blue, red, and mustard curves represent stable fixed points, unstable fixed points, stable limit cycles, and unstable limit cycles, respectively.
(b) and (c) Training and testing MSE as a function of mean external current 7 for different target functions y1 (t) and y»(t).

encoding and propagation. In contrast, once the system enters
the oscillatory regime, both its responsiveness to external inputs
and its ability to support dynamic information processing are
markedly enhanced. Notably, performance remains comparably
high in both the oscillatory and persistently active regimes.
These observations suggest that coordinated neural activity plays
a key role in computation. To promote effective learning, we
therefore initialize the mean background current 7 just above
the lower Hopf bifurcation point, ensuring the system operates
in a dynamic and computationally favorable regime. Specifically,
we initialize an all-to-all coupled network in the oscillatory
regime, then apply a brief external stimulation to all neurons
and record the networks response. Finally, we evaluate the
network’s ability to generate a time-dependent target output by
training a single readout unit to decode the network’s activity,
while keeping the recurrent connectivity fixed (see Appendix A
for details).

Meanwhile, in Figures 2a, b, we observe that heterogeneity
exerts a profound influence on the computational capability of
the reservoir. When all forms of heterogeneity are removed,
the network fails to perform accurate fitting, even under the
initial parameter configurations. In Figures 2c—e, remarkably,
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reintroducing any single form of heterogeneity, among the
three types considered, is sufficient to restore the network’s
computational functionality. We find that increasing the degree
of heterogeneity does not lead to a significant reduction in
computational error, in contrast, excessive heterogeneity harms to
the neural computation in Figures 2d, e. We also find that the mean
partial reset coefficient is more important than the width Ay in
neural computation, the latter not display a role in Figure 2f. While
the degree of heterogeneity does not lead to a significant reduction
in computational ability, the presence of heterogeneity induces
a qualitative improvement in the network’s ability to perform
the task.

Our results further indicate that heterogeneity exerts a more
pronounced effect on training accuracy than on test accuracy, as
shown in the performance plots. This discrepancy may indicate
a degree of overfitting. These findings suggest that conventional
reservoir computing frameworks may be insufficient to fully
capture the ways in which heterogeneity shapes the computational
dynamics of spiking neural populations. This limitation motivates
us to extend our investigation to more robust learning methods,
such as the FORCE learning algorithm, which we explore in the
following section.
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Enhancing the stability of neural computation using RLS in the presence of heterogeneity. (a) and (b) Shown are the curve fitting results on training
and test datasets under conditions with and without external current heterogeneity. (c—e) Results about the MSE on both training and test sets varies
as a function of external, network, and intrinsic heterogeneity. (f) MSE on training and test sets as a function of partial reset coefficient heterogeneity.
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3.2 Heterogeneity is needed in the FORCE

learning network

The FORCE learning algorithm integrates real-time error
feedback into the neuronal dynamics, making it well-suited
for training SNNs to perform complex dynamical tasks.
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Our results show that, even without heterogeneity, adequate
training performance can be achieved given carefully tuned
hyperparameters. However, such success in homogeneous
networks is highly sensitive to hyperparameter settings, suggesting
a lack of robustness and adaptability. Prior research indicates
that performance depends heavily on two key hyperparameters
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Enhancing the stability of neural computation using FORCE in the presence of heterogeneity. (a) Error response to external current (A,)
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(Nicola and Clopath, 2017; Perez-Nieves et al., 2021). To examine
whether heterogeneity can enhance learning robustness under
mistuned conditions, we apply FORCE learning to SNNs tasked
with reproducing diverse target trajectories. Details of our
experimental setup and findings are provided in Appendix B.

In fact, some studies have explored the role of time constant
heterogeneity in mitigating sensitivity to hyperparameters, but they
focus on a single source of heterogeneity (Perez-Nieves et al., 2021).
To generalize these findings, we extend the investigation to multiple
forms of heterogeneity. In Figures 3a-d, we evaluate several
hyperparameter configurations under which a homogeneous
network fails to learn or reproduce the target trajectories.
Remarkably, introducing any single source of heterogeneity,
whether external, network, or intrinsic, restores the network’s
computational ability almost immediately. Figures 4a-d examine
how performance, measured as log(MSE), varies with respect
to different values of two key hyperparameters: G, the gain
of the static recurrent weights (used to initialize the network
in a chaotic regime), and Q, the coefficient of the learned
weights in FORCE learning. Without heterogeneity, reducing G
causes the system to fall out of the active regime, rendering it
incapable of reproducing target dynamics for any Q. However,
heterogeneity in external current (A;), electrical coupling A, or
partial reset coeflicient (0)significantly enlarges the viable region of
the (G, Q) space where reliable learning is possible. In particular,
Ay extends the lower boundary of G from 3,000 to 1,000 in certain
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configurations. Finally, Figures 4e, f explore the joint effects of
multiple heterogeneities. Our results show that the combination
of all three forms of heterogeneity exerts a synergistic effect,
fully restoring computational performance across the entire tested
range of G and Q. This highlights the powerful stabilizing role of
heterogeneity in SNNs under FORCE learning.

We build upon prior findings focused on a single form of
heterogeneity and present a more comprehensive characterization
of its functional role. However, our current analysis is still largely
limited to relatively simple SNNs architecture. To gain deeper
insight into the impact of heterogeneity on neural computation
within more powerful and complex models, we extend our
investigation into the domain of deep learning. Specifically,
we adopt SGD method to facilitate gradient-based training in
deep SNNs. This approach enables us to systematically assess
how various forms of heterogeneity influence computational
performance under conditions that more closely resemble real-
world tasks and deeper hierarchical network structures.

3.3 Heterogeneity is needed in the SGD
learning network

We systematically investigated how neural heterogeneity
influences task performance by training SNNs to approximate both
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simple and complex temporal dynamics. However, SNNs have also
found applications in diverse domains such as image classification
(Huang et al.,, 2023; Li et al., 2023) and speech recognition (Liu
etal,, 2023; Song et al., 2022). To further assess the impact of neural
heterogeneity on task performance, we evaluated its influence on
the ability of SNNs to classify both visual and auditory stimuli. We
employ four benchmark datasets with varying degrees of temporal
complexity: Neuromorphic MNIST (N-MNIST) and the DVS128
Gesture dataset for visual tasks, and the Spiking Heidelberg Digits
(SHD) and Spiking Speech Commands (SSC) datasets for auditory
tasks (see Appendix C for details). While many existing studies use
the Leaky Integrate-and-Fire (LIF) model as the neuronal substrate
(Wu and Maass, 2025; Shen et al., 2025), we adopt the Izhikevich
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(IK) model in our experiments due to its richer biological realism
(Fitz et al., 2020; Dur-e Ahmad et al., 2012). Previous research has
also shown that the IK model can achieve superior performance in
certain contexts (Izhikevich, 2007; Izhikevich and Edelman, 2008).
Additionally, using the same neural model as in Sections A and B
ensures consistency throughout our study.

In Figures 5a-d, the experimental results indicate that,
although performance varies across datasets, heterogeneity
consistently enhances the computational capacity of spiking
neural populations. As the temporal complexity of the datasets
increases, the accuracy improvement due to heterogeneity ranges
from approximately 1% to 6%. This trend aligns with previous
findings in LIF-based SNNs (Perez-Nieves et al., 2021), suggesting
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FIGURE 5

Enhancing the stability of neural computation using SGD in the presence of heterogeneity. (a—d) Example illustrating improved test accuracy on the
N-MNIST, DVS128, SHD, and SSC dataset with and without different forms of heterogeneity-enabled SNN training.
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that heterogeneity may facilitate the encoding of temporal
features. Table 1 summarizes the classification accuracies under
different configurations of the heterogeneity parameters 7, g,
and 6, highlighting their respective contributions to performance
improvements.

The test results across datasets reveal that heterogeneity plays a
significant role in neural computation, contributing to improved
computational accuracy. Notably, the combination of multiple
forms of heterogeneity tends to exert a stronger facilitative effect.
However, increasing the number of heterogeneous parameters
does not necessarily lead to proportional performance gains.
In several cases, similar accuracies were achieved with different
numbers of heterogeneous components. For instance, on the SSC
dataset, independent heterogeneity in parameter 7 yielded the
same accuracy improvement as the joint heterogeneity of (1, g).
This suggests that while heterogeneity is generally beneficial, the
contribution of each source is not uniform. On the SHD dataset, we
even observed that independent heterogeneity in n outperformed
the combined heterogeneity of (1,g), indicating that multiple
sources of heterogeneity do not always act synergistically. These
findings highlight the need for careful consideration when selecting
between single or combined forms of heterogeneity in neural
computation models.

4 Discussion and conclusion

We investigate the role of heterogeneity in SNNs trained
using methods ranging from traditional machine learning to state-
of-the-art deep learning, considering three perspectives: external
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TABLE 1 Mean test accuracy (%, + std) across datasets and configurations
over 15 trials.

Configuration N- DVS128 SHD

Hom (,8,6) 90.0 + 0.3 71.0 0.7 650+£08 | 440405
Hetero (1) 90.7 402 731407 689405 | 485408
Hetero (g) 90.5 4 0.1 722404 67.0£04 | 46.0%05
Hetero () 90.4402 725 +0.5 672410 | 47.0+04
Hetero (1, g) 91.1+0.4 735402 685407 | 485404
Hetero (1, 6) 91.240.1 73.0£0.5 69.14£05 | 480402
Hetero (g, 0) 90.9 4 0.3 73.6+07 | 69.0+04 | 483403
Hetero (1, g, ) 91.340.2 735408 | 695408 | 49.2+02

Bold values denote the results with the highest average value in each dataset.

input, network structure, and intrinsic neuronal variability. Our
findings consistently show that heterogeneity facilitates learning
and enhances computational performance. Furthermore, the
generalizability of its benefits across tasks and models supports
its role as a fundamental mechanism in neural computation.
These results offer promising directions for advancing biologically
inspired neural system design.

A key mechanistic underpinning of heterogeneity’s
performance gains lies in its ability to enhance the dynamical
richness of the network, as implied by the mean-field bifurcation
analysis in Appendix A. The mean-field model reveals how the

population firing rate transitions across distinct dynamical regimes,
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as the mean external current (77) varies (Figure 1a). By introducing
heterogeneity in external current (7;), coupling strength (g;), and
partial reset (6;), we expand the network’s capacity to explore
these regimes. For instance, in reservoir computing (Section 3.1),
heterogeneity enables the network to move beyond the quiescent
regime (where low firing rates hinder information encoding)
and stably operate in oscillatory or persistently active regimes,
stating that support robust temporal feature encoding. This
dynamical expansion is critical for tasks requiring precise temporal
processing, such as fitting complex sinusoidal signals (Section 3.1)
and classifying time-varying stimuli in the DVS128, SHD, and
SSC datasets (Section 3.3). Without heterogeneity, homogeneous
networks remain confined to narrow dynamical ranges, limiting
their ability to adapt to diverse input patterns.

Another theoretical basis for heterogeneity’s benefits is its
role in reducing sensitivity to hyperparameters, particularly
evident in FORCE learning (Section 3.2). Homogeneous FORCE
networks exhibit fragile performance, relying on tightly tuned
hyperparameters G (gain of static recurrent weights) and
Q (coefficient of learned weights) to maintain functional
dynamics (Figure 4a). In contrast, introducing any single form
of heterogeneity, whether in external current (A,), coupling
strength (Ag), or partial reset (¢), broadens the viable (G,Q)
parameter space. For example, external current heterogeneity
extends the lower boundary of G from 3,000 to 1,000 in certain
configurations, while combining all three heterogeneities fully
restores performance across the entire tested range of G and Q in
Figures 4b-f. This hyperparameter robustness can be attributed
to heterogeneity’s ability to break symmetry in homogeneous
networks: by introducing variability in neuron-specific properties,
it reduces redundant neural activity and creates more distinct
input-output mapping pathways. This symmetry breaking allows
the network to efficiently utilize its high-dimensional dynamics,
minimizing the risk of performance collapse due to slight
hyperparameter deviations.

Our model’s accuracy on real-world datasets such as DVS128
and SHD (e.g, a maximum accuracy of 73.6 £ 0.7% on
DVS128, as shown in Table1) has not yet reached that of
state-of-the-art (SOTA) implementations.A major contributing
factor is that our framework is built upon the Izhikevich
neuron model, which, while providing a more biologically
realistic description of spiking dynamics through the recovery
variable (w;) that captures phenomena such as spike-frequency
adaptation, has not been widely adopted in current deep
SNN pipelines due to its higher computational cost and
less optimized parameterization. As a result, our experiments
focus primarily on establishing the fundamental computational
role of neural heterogeneity, rather than achieving peak task-
specific performance. Future work will incorporate our proposed
principles into more advanced, SOTA architectures (e.g., hybrid
convolutional SNNs or transformer-like event encoders) to
further validate the generality of heterogeneity under high-
performance settings.

Our findings align with and extend prior hypotheses about
neural heterogeneity in biological systems. On one hand,
we confirm the long-standing hypothesis that heterogeneity
enhances learning robustness, which is a conclusion previously
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restricted to LIF networks and single heterogeneity types (Perez-
Nieves et al, 2021; Mejias and Longtin, 2012). Our work
broadens this insight by demonstrating that such robustness is
universal across three distinct heterogeneity forms, three learning
methods, and a variety of tasks from simple curve fitting to
complex real-world classification. On the other hand, we also
reveal that the relationship between the number and type of
heterogeneity sources and performance is nonlinear: combined
heterogeneity (e.g., joint variation in 7, g, and 0) does not
always outperform single-type heterogeneity. For instance, on
the SHD dataset, independent heterogeneity in 7 alone yielded
higher accuracy than the combined use of 1 and g. This finding
suggests that biological systems may employ selective rather than
accumulative heterogeneity, prioritizing specific forms according to
task demands.

Nevertheless, our current results, obtained on moderately
scaled networks, are sufficient to establish heterogeneity as a
general and biologically plausible computational mechanism. We
acknowledge that further Validation on more complex architectures
and neuron models is necessary to fully assess the scalability and
task-specific impact of heterogeneity. In future work, we aim to
extend our framework toward SOTA network designs and larger
datasets to bridge the gap between conceptual generality and
high-performance realization.

In conclusion, our study provides systematic evidence that
external, network, and intrinsic heterogeneity collectively enhance
the learning capacity and robustness of SNNs. By linking
these empirical findings to dynamical systems theory and
hyperparameter sensitivity analysis, we strengthen the theoretical
basis for heterogeneity as a core design principle, which bridges
biological observations of neural diversity and engineering goals
of optimizing SNN performance. This unifying perspective
advances both our understanding of biological computation
and our ability to construct more adaptive, efficient artificial
neural systems.
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