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Introduction: Parkinson’s disease (PD) is the fastest-growing neurodegenerative
disorder, with subtle gait changes such as reduced vertical ground-reaction
forces (VGRF) often preceding motor symptoms. These gait abnormalities,
measurable via wearable VGRF sensors, offer a non-invasive means for early
PD detection. However, current computational approaches often suffer
from redundant features and class imbalance, limiting both accuracy and
generalizability.

Methods: We propose CRISP (Correlation-filtered Recursive Feature Elimination
and Integration of SMOTE Pipeline for Gait-Based Parkinson’s Disease Screening),
a lightweight multistage framework that sequentially applies correlation-based
feature pruning, recursive feature elimination (RFE), and Synthetic Minority
Oversampling Technique (SMOTE) based class balancing. To ensure clinically
meaningful evaluation, a novel subject-wise protocol was also introduced that
assigns one prediction per individual enhancing patient-level variability capture
and better aligning with diagnostic workflows. Using 306 VGRF recordings (93
PD, 76 controls), five classifiers, i.e., k-Nearest Neighbours (KNN), Decision
Tree (DT), Random Forest (RF), Gradient boosting (GB), and Extreme Gradient
Boosting (XGBoost) were evaluated for both binary PD detection and multiclass
severity grading.

Results: CRISP consistently improved performance across all models under
5-fold cross-validation. XGBoost achieved the highest performance, increasing
subject-wise PD detection accuracy from 96.1 + 0.8% to 98.3 + 0.8%, and
severity grading accuracy from 96.2 + 0.7% to 99.3 + 0.5%.

Conclusion: CRISP is the first VGRF-based pipeline to combine correlation-
filtered feature pruning, recursive feature elimination, and SMOTE to enhance
PD detection performance, while also introducing a subject-wise evaluation
protocol that captures patient-level variability for truly personalized diagnostics.
These twin novelties deliver clinically significant gains and lay the foundation for
real-time, on-device PD detection and severity monitoring.
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1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder
characterized by the progressive loss of dopamine-producing neurons
in the brain (Ramesh and Arachchige, 2023), leading to motor
impairments such as tremors, bradykinesia, and rigidity, which
severely affect a patient’s daily functioning (Kumar et al., 2021). Early
diagnosis and intervention are crucial in managing PD, as current
treatments can alleviate symptoms but cannot reverse the underlying
neurodegeneration (Bloem et al, 2021). However, conventional
diagnostic methods, such as neurological exams and brain imaging,
often fall short in detecting the disease in its early, subtle stages. This
limitation highlights the urgent need for non-invasive, early-stage
diagnostic tools to detect PD at its initial, asymptomatic phase
(Brindha et al., 2022).

Gait abnormalities, such as reduced stride length, slower walking
speed, and irregular cadence, are often among the earliest signs of PD,
appearing before more obvious symptoms like tremors (Baker, 2018;
Barbera et al, 2024). Wearable sensors, including Inertial
Measurement Units (IMUs) and accelerometers, have shown
significant promise for continuously monitoring gait in real-world
settings. These sensors capture real-time, three-dimensional motion
data, providing a non-invasive and scalable method for detecting
subtle gait changes indicative of PD (Salchow-Hommen et al., 2022;
Hemmerling et al., 2025). The use of these sensors offers a potential
solution for early-stage, real-time PD detection, enabling more timely
and accurate diagnoses. To further this goal, the PhysioNet gait dataset
has become an essential resource in PD research. This dataset includes
comprehensive recordings of vertical ground-reaction forces (VGRF)
(Alam et al., 2017; Etoom et al., 2024) and IMU data from both PD
patients and healthy controls, offering a valuable foundation for
training machine learning (ML) models (Alkhatib et al., 2020;
Chudzik et al., 2024). The PhysioNet dataset enables researchers to
examine the relationship between gait abnormalities and PD,
supporting the development of diagnostic models that can accurately
identify subtle gait changes associated with the disease (Baker, 2018;
Veeraragavan et al., 2020; Bloem et al., 2021; Salchow-Hémmen et al.,
2022; Etoom et al., 2024).

ML models have become a crucial tool in analyzing gait data for
PD detection. These models can process large volumes of data
collected from wearable sensors, detecting subtle patterns and
abnormalities in gait that may not be apparent to human observers
(Rana et al., 2022). Popular approaches such as k-Nearest Neighbors
(KNN), Decision Tree (DT) and other ensemble or distance-based
classifiers have demonstrated promising results in distinguishing
PD from healthy gait patterns (Roy et al., 2024). Several studies have
further shown that models capable of capturing spatial and temporal
dependencies in gait signals can enhance classification accuracy
reporting high performance levels (Liu et al., 2021). These models
offer a scalable solution for analyzing gait data, providing high
diagnostic precision and enabling earlier detection of PD (Shalin
et al,, 2021; Choi et al., 2024; Srinivasarao et al., 2024; Navita Mittal
et al, 2025). Related studies have also explored alternative
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modalities such as voice analysis (Ghaheri et al., 2024) and
neuromorphic systems (Siddique et al., 2023) for PD screening. The
effectiveness of these ML models highlights their potential for a
real-time and reliable benchmark for PD diagnosis (Joshi et al.,
2017; Zeng et al., 2019; Abdullah et al., 2024).

Despite these advances, several key challenges remain. First, gait-
based datasets often begin with a high-dimensional feature space yet
few studies systematically prune redundant or irrelevant features
before model training. Second, class imbalance in PD versus control
recordings can bias classifiers such as k-Nearest Neighbors (KNN),
Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB),
and Extreme Gradient Boosting (XGBoost) toward the majority class,
thus reducing generalization. Third, most studies leveraging datasets
like PhysioNet report only aggregated accuracy across all gait cycles,
masking subject-level variability critical for clinical interpretation and
personalized diagnostics (Horst et al., 2019; Maachi et al., 2020; Dong
etal., 2023).

To address these gaps, CRISP a unified pipeline, was proposed
that (i) filters out highly correlated features, (ii) applies recursive
feature elimination (RFE) to isolate the most informative metrics, and
(iii) balances each training fold with SMOTE (Synthetic Minority
Oversampling Technique) to counter class imbalance. In tandem,
we adopt a subject-wise evaluation protocol that evaluates each patient
separately ensuring one prediction per individual and thus faithfully
captures patient-level performance.

CRISP was evaluated on 306 VGREF recordings (93 PD, 76 control
subjects) using five mainstream classifiers (KNN, DT, RE GB,
XGBoost) across two tasks: binary PD detection and multiclass severity
grading (Hoehn & Yahr scale). To our knowledge, this is the first study
to integrate correlation pruning, RFE, and SMOTE into a single,
efficient pipeline for VGRF-based PD screening while also rigorously
evaluating patient-level performance. Our results show that CRISP
consistently improves performance across all models. For the best-
performing classifier, XGBoost, subject-wise accuracy improves from
96.1 + 0.8% to 98.3 + 0.8% for PD detection, and from 96.2 + 0.7% to
99.3 £0.5% for severity grading. These results highlight the critical
importance of both careful feature curation and subject-wise evaluation
for personalized diagnostics and pave the way for real-time, on-device
PD screening and severity monitoring.

This study makes the following key contributions:

1. We propose CRISP (Correlation-filtered Recursive feature
elimination and Integration of SMOTE Pipeline), a lightweight,
modular framework that sequentially (i) prunes redundant
features through correlation filtering, (ii) selects the most
informative subset using RFE and (iii) mitigates class imbalance
via SMOTE. This is the first study to combine all three
components in a unified pipeline for VGRF-based PD
screening delivering substantial performance gains across five
classifiers (KNN, DT, RE, GB, XGBoost).

2. We introduce a rigorous subject-wise cross-validation scheme
that issues a single prediction per individual, in contrast to
conventional cycle-level aggregation. This approach captures
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patient-level variability essential for real-world, personalized
diagnostics and provides a more clinically interpretable
performance estimate.

3. CRISP consistently improves diagnostic accuracy across both
binary PD detection and multiclass severity grading (Hoehn &
Yahr scale). For the best-performing model (XGBoost),
subject-wise accuracy improves from 96.1+0.8% to
98.3 + 0.8% for binary classification, and from 96.2 + 0.7% to
99.3 + 0.5% for severity grading showcasing the robustness and
generalizability of our pipeline.

4. When paired with efficient learners such as XGBoost, CRISP
supports rapid inference with minimal computational
overhead, making it suitable for real-time, on-device
deployment. This positions our method as a scalable solution
for continuous, non-invasive monitoring in both clinical and
home settings.

This study provides a promising approach for early, non-invasive
PD screening by combining advanced feature curation and
personalized evaluation, demonstrating that lightweight pipelines like
CRISP can deliver both high accuracy and real-time performance.
Our results pave the way for scalable, on-device diagnostic tools that
could potentially bring personalized gait-based monitoring out of the
lab and into everyday clinical and at-home use.

2 Materials and methods

This study used The CRISP pipeline for gait-based PD detection
(Figure 1) includes three modules: correlation-based feature
pruning, RFE, and SMOTE-based class balancing, which together
reduce dimensionality, balance classes, and improve generalization.
Model development and evaluation (Section 2.5) employed five
classifiers (KNN, DT, RE, GB, XGBoost) under a subject-wise
protocol. Performance was measured for binary PD detection and
multiclass Hoehn-Yahr grading using Accuracy, Precision, Recall,
Specificity, F1-score, and ROC-AUC.

2.1 Dataset

VGREF signals from an open-access gait database comprising 93
PD patients and 76 healthy controls (HC) were obtained from the
PhysioNet Gait in Neurodegenerative Disease database (Goldberger
et al., 2000), which aggregates data from three clinical studies
(Frenkel-Toledo et al., 2005; Yogev et al., 2005; Hausdorft, 2008).
These recordings capture multiple walking conditions using
instrumented footwear equipped with 16 force-sensitive resistors,
eight per shoe sole, sampling at 100 Hz to measure plantar VGRF
over time (Zeng et al., 2019). Further details of Dataset are in
section S6 of cohort demographics in Supplementary file.

2.2 Preprocessing and gait-event detection

Raw VGRF signals were recorded using 16 force-sensitive
sensors embedded in each shoe sole and normalized to the [0,1]
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range via min-max scaling. To reduce artefacts, the first 20 s and
last 10 s of each 60-s walk were excluded. High-frequency noise was
suppressed using a 10-point median filter (kernel size 9), preserving
waveform integrity (Zeng et al., 2019; Wang et al., 2024). Heel-
strike (HS) and toe-off (TO) were detected using a 20% threshold
of peak vertical force, with HS defined by upward crossing and TO
by the subsequent downward crossing (Alkhatib et al., 2020). A gait
cycle comprised two successive HS events, with features computed
per cycle. Supplementary Figure S12 compares VGREF profiles of PD
and healthy subjects, while Supplementary Figure S13 illustrates the
smoothing effect of median filtering.

2.3 Spatiotemporal feature extraction

Heel-strike and toe-off events (Section 2.2) were used to
segment gait cycles, from which eight spatiotemporal features were
extracted: stride time, stance time, swing time, their percentages,
cadence, step length, and stride length (Supplementary Table S14;
Supplementary Figure S14). For each participant, features were
computed per cycle and summarized as mean and standard
valid
(Supplementary Table S15) show PD subjects with longer stride and

deviation  across strides.  Group-level  statistics
swing times, higher stance percentage, and reduced cadence,
patterns consistent with bradykinesia and postural instability. These
distinct features were used as predictors in the supervised learning
models. In order to avoid any potential label leakage, both RFE and
mutual information-based feature selection were applied strictly
within each training fold during the cross-validation process,
ensuring that no information from the test sets influenced the

feature selection process.

2.4 CRISP overview

CRISP consists of three stages: (i) Pearson correlation analysis
to remove highly collinear features (|r| > 0.80), (ii) RFE with a
100-tree random forest to select the 10 most predictive features, and
(iii) SMOTE to balance classes within each training fold. The curated
features were then used to train five classifiers (KNN, DT, RE, GB,
XGBoost), evaluated under both cycle-level and subject-wise cross-
validation. Outputs included binary PD detection and multiclass
Hoehn-Yahr grading, assessed using Accuracy, Precision, Recall,
Specificity, F1-score, and ROC-AUC.

2.4.1 Correlation pruning

To reduce multicollinearity, we computed pairwise Pearson
correlations for all gait features (Figure 2). Feature names were
standardized, coefficients rounded to two decimals, and a threshold
of |r] = 0.80 applied to flag strongly correlated pairs. This cutoff,
commonly used in biomedical predictive modeling (Kuhn and
Johnson, 2013; Connolly et al., 2016), avoids excessive feature loss.
For each correlated pair, mutual information (MI) with respect to
the diagnostic label (PD status or Hoehn-Yahr grade) was
calculated, and the feature with lower MI was discarded. This
pruning removed six features, reducing dimensionality to 24 while
retaining those most informative. All correlation and MI
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Correlation-filtered Recursive feature elimination and Integration of SMOTE Pipeline overview for gait-based Parkinson’s detection. (A) Data collection
and preprocessing. (B) Spatiotemporal feature extraction. (C) Consecutive stages. (c1) Correlation pruning (c2) Recursive feature elimination (c3)
SMQOTE class balancing synthetically oversamples minority classes inside every training fold to balance the dataset. (D) Model training and evaluation.

E. Results

Ex ive 5-fold cross 1 under both overall and subject-wise
protocols confirms CRISP’s gains across tasks. /

calculations were restricted to training data to avoid

information leakage.

2.4.2 Feature selection with RFE (recursive feature
elimination)

After correlation based pruning, RFE using a 100 tree random
forest within each training fold further reduced the feature set to ten,
thereby preventing information leakage. Figure 3 shows importance
of rankings: gait speed, cadence, stance-time variability, and stance-
to-swing ratio ranked highest, while bilateral stance-time ranked
lowest. Accuracy plateaued at 10 features, simplifying SMOTE
balancing and model training without performance loss. This subset
was used across all models and tasks in CRISP.
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2.4.3 SMOTE class balancing

Despite dimensionality reduction, the resulting feature matrix
remained class-imbalanced due to two factors: (i) PD participants
contributed more gait cycles than healthy controls, and (ii) the distribution
of Hoehn and Yahr severity stages within the PD group was highly
skewed. To address class imbalance in the severity grading task,
we employed SMOTE a well-established oversampling method that
generates synthetic samples for the minority class. SMOTE was selected
based on its simplicity, interpretability, and proven empirical effectiveness
in small-sample, high-dimensional biomedical contexts. Abdulsadig and
Rodriguez-Villegas (2024) reported strong performance of SMOTE
across 10 resampling techniques applied to physiological PPG data,
particularly in terms of sensitivity and balanced accuracy.
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FIGURE 2

pruning step reduces redundancy prior to feature selection in CRISP.
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negative). Features with |r| > 0.80 are considered highly correlated, and the one with lower mutual information relative to the label is discarded. This

SMOTE generates by
interpolating between neighboring feature vectors in the input space.

synthetic minority-class samples
Specifically, for a given minority instance x; , a new synthetic sample
Xpew 1 computed as shown in Equation (1):

Xpew =X t 8'(xzi _xi)

1

In our context, each x; is a feature vector from the minority class.
It represents a high-dimensional gait feature vector derived from a
single stride belonging to the minority class either a healthy
control in the binary PD-versus-control task or a PD patient

Frontiers in Computational Neuroscience

05

in an underrepresented Hoehn & Yahr stage in the multiclass setting.
The neighbor x, is one of the k-nearest neighbors of x;.
It is selected from within the same class, ensuring that
interpolation The

§: A random scalar in the range [0,1],sampled from a uniform distribution.

remains  class  consistent. scalar
It introduced controlled variation, generating synthetic samples that
enriched the minority distribution without duplication. In the
multiclass task, this corrected the underrepresentation of Stage 3,
equalizing all classes to ~5,500 cycles; a similar strategy was used for
the binary task. SMOTE was applied only to training folds to prevent
data leakage, ensuring balanced priority during training while leaving

validation and test sets unbiased.
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Top-10 Feature Selection with RFE
Binary PD Detection Multiclass Severity Grading
speed speed
cadence cadence
Step Time Right. Stance Time Right|
. . ) T
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g
. . : 2y
SS Ratio Left Stride Time Right g
3
SS Ratio Right- Swing Time Right- 13
Swing Time Leﬂ- Swing Time Left-
Stride Time Left- Stride Time Left-
Stance Time Left. Stance Time Leftl
FIGURE 3
Top 10 gait features selected via Recursive Feature Elimination for binary PD detection (left) and multiclass Hoehn—-Yahr grading (right). Feature
importance is shown by bar length and color intensity, with speed and cadence ranking highest, followed by timing and swing—-stance ratios.

2.5 Model training and evaluation

2.5.1 Classifier suite

To assess how different learning paradigms handle Parkinson-related
gait variability, we employed a panel of five supervised classifiers

encompassing instance-based, rule-based, and

K-Nearest Neighbors (KNN) classifies samples by the majority label of

ensemble strategies:

their k nearest neighbors, offering a simple non-parametric approach
effective for moderate-sized clinical datasets. Decision Tree (DT) models
partition data using axis-aligned splits that maximize information gain,
offering interpretability and highlighting key gait features related to
PD. Random Forest (RF) is an ensemble of decision trees trained on

Vm is the step size (leaming mte)

Extreme Gradient Boosting (XGBoost) extends GB with regularized
objective and efficient implementation. The objective function minimized
at each iteration includes a second-order Taylor approximation of the loss
and an explicit regularization term as shown in Equation (3):

O3 o) eratn) o

random data and feature subsets, with predictions aggregated by majority where:
voting to improve generalization and reduce overfitting. In Equation (2)
Gradient Boosting (GB) constructs an additive ensemble model in which ol ( VirYi )
each new tree h,, (x) is trained to approximate the negative gradient of oo (ﬁ”St —order gmdzent)
the loss function with respect to the current ensemble prediction Ji
Eu1 (x) The model is updated iteratively as: 5 ~
1| yioyi)
hj =————= (second —order gradient)
Fm(x)szfl(x)"'Ymhm(x) 2) 6y,-2
1 T
Where: Q(fy)=rT +E/12j:1wf (regularization term)
E, (x) is the ensemble prediction at iteration m
Here, T is the number of leaves in the decision tree f;, w j is the
. . ) weight of the j—th leaf, and y, A are regularization hyperparameters.
him (x) is the new weak learner trained on the residuals This second-order formulation accelerates convergence and improves
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generalization by penalizing complex trees. XGBoost’s efficiency and
ability to handle sparse data make it well-suited for clinical datasets.
To optimize performance, grid search with five-fold cross-validation
was used to tune key hyperparameters across all models, ensuring best
configurations for KNN, DT, RE, GB, and XGBoost

2.5.2 Evaluation protocol

Most PhysioNet studies report performance at the stride (cycle)
level, where each participant may contribute hundreds of samples and
thus have a disproportionate influence on pooled metrics. To obtain
clinically relevant estimates we adopted a subject-wise evaluation: after
a classifier generated predictions for every gait cycle in the test fold,
we collapsed those cycle-level outputs into a single patient-level
decision by majority vote for the binary task and by modal class for
the three-class severity task. Ties observed in <0.5% of cases were
broken by the average posterior probability. The resulting 169 patient
labels (93 PD, 76 HC) were compared with the ground-truth diagnoses
to compute accuracy, precision, recall, F1-score and ROC-AUC. These
subject-level metrics were averaged across the five outer folds to yield
the final performance estimates reported in Section 3. This subject-
aware protocol provides one interpretable decision per patient, the
granularity required for real-world screening and exposes failure
modes that cycle-level metrics may mask, such as systematic
misclassification of individuals with atypical gait patterns or limited
stride counts.

2.5.3 Prediction tasks

Two prediction tasks were addressed: Binary classification
distinguishing PD patients from healthy controls. Multiclass
classification assigning PD cases to one of three Hoehn and Yahr
severity grades (1, 2, or 3), reflecting early disease progression.

2.5.4 Evaluation metrics

To evaluate classification performance, we report six standard
metrics: Accuracy, Precision, Recall (Sensitivity), Specificity, F1-score,
and ROC-AUC. Accuracy captures overall correctness, while

TABLE 1 Binary PD detection results with and without CRISP Pipeline.

10.3389/fncom.2025.1660963

Precision and Recall focus on false positives and false negatives,
respectively critical in clinical screening tasks. Specificity measures the
ability to correctly identify negative cases. The F1-score balances
Precision and Recall, making it suitable for imbalanced data. Finally,
ROC-AUC quantifies classifier robustness across decision thresholds
and is widely used for model comparison.

3 Results

This section presents key outcomes of our gait-based PD detection
framework, binary and multiclass classification performance, t-SNE
visualizations, and confusion matrices. Together, these results
highlight the robustness and interpretability of the CRISP pipeline for
PD screening.

3.1 Binary Parkinson’s disease detection

To assess the diagnostic utility of the CRISP pipeline, we first
addressed the binary classification task of distinguishing PD patients
from healthy controls. Performance was evaluated under two
validation schemes: (i) an overall protocol, where gait cycles were
pooled across participants and aggregated for evaluation, and (ii) a
subject-wise protocol, in which evaluation was conducted individually
for each patient, enabling person-level inference.

3.1.1 Overall and subject-wise classification
performance

Table 1 reports the average classification metrics achieved by
each of the five models under both evaluation schemes. Across the
board, CRISP consistently outperformed the baseline configuration,
yielding gains in accuracy, precision, recall, and F1-score. Under the
overall protocol, where cycle-level predictions were aggregated
regardless of subject origin, XGBoost achieved the highest mean
accuracy of 97.7%, closely followed by Random Forest (97.1%) and

Overall Accuracy Precision Recall Fl-score
Baseline CRISP Baseline CRISP Baseline CRISP Baseline CRISP
KNN 89.0 0.8 94.5+0.3 846+ 15 88.0 0.6 834+ 1.1 97.4+0.5 84.0 + 1.1 92.5 + 0.4
DT 91.9+ 1.0 92713 86.6+ 1.9 84.9+2.4 90.7 + 1.5 96.0 + 1.9 88.6% 1.4 90.1% 1.7
RF 94.3 + 0.4 94.8 + 0.4 89.4+0.9 89.1+1.0 94.9 + 0.4 97.0+0.3 92.1+0.6 92.9 + 0.4
GB 96.3 0.6 97.0%0.5 97305 93.1+0.8 91.8+ 1.4 98.6 + 0.8 94.5%0.9 95.8 0.7
XGBoost 95.4+0.4 97.7£0.6 95.6 +0.7 948+ 1.5 91.0% 0.9 98.8 + 0.3 93.3+0.6 96.8 + 0.8
Subject-wise Accuracy Precision Recall F1-score
Baseline CRISP Baseline CRISP Baseline CRISP Baseline CRISP
KNN 97.7+1.0 97.4%0.6 98.0+0.7 954+ 1.1 96.6+ 1.9 98.9 + 0.6 97312 97.1%0.7
DT 93.1+1.9 921+ 1.6 90.2 +3.2 86.4+2.8 94.7 +2.1 975423 92.4+2.1 916+ 1.7
RF 97305 96.7 £ 1.0 947 +1.6 94.1+1.8 99.4%1.1 98.6 + 0.9 97.0%0.5 963+ 1.1
GB 97.4+0.8 97.2+0.8 99.4+0.7 94.9 + 1.4 94.7+1.9 98.9 + 1.1 97.0% 1.0 96.8 + 0.9
XGBoost 96.1+0.8 98.3+0.8 982+ 1.1 973+ 1.7 92.7+ 1.0 98.9+0.6 954+ 1.0 98.0 +0.9

The top block reports conventional overall performance, while the bottom block summarizes subject-level evaluation (one prediction per participant). Each metric (Accuracy, Precision, Recall,
Fl-score) is shown as a pair of sub-columns: Baseline and CRISP, with values formatted as percentage mean =+ standard deviation. CRISP consistently improves across all models and settings.
Extreme Gradient Boosting (XGB) yields the highest Accuracy in both evaluation levels (bolded font).
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Gradient Boosting (96.9%). The precision-recall balance was
particularly strong for ensemble-based models, indicating that
CRISP not only improved raw detection rates but also minimized
false alarms and missed cases across heterogeneous gait cycles. In
the more clinically relevant subject-wise protocol, which aggregates
predictions at the patient level to simulate real-world deployment,
CRISP continued to deliver robust improvements. XGBoost’s
subject-level accuracy improved from 96.1% (baseline) to 98.3%
(CRISP), with F1-score and specificity also showing upward trends.
Other classifiers, including Gradient Boosting and Random Forest,
followed a similar pattern of enhanced subject-wise generalization.
This consistency highlights the pipeline’s effectiveness in supporting
patient-level diagnostic decisions rather than merely optimizing
cycle-level performance. For a full breakdown of metrics and fold-
level variance, refer to Supplementary Tables S1-54.

3.1.2 Comparative radar plot of metric gains

Figure 4 illustrates the relative improvements achieved by CRISP
through radar plots that span five core performance metrics: accuracy,
precision, recall, specificity, and F1-score. Each panel contrasts the
baseline (violet) and CRISP-enhanced (orange-red) performance for
one of the five classifiers. The CRISP polygon consistently encloses a
larger area, indicating uniform gains across all metrics. The
improvements are especially pronounced in recall and Fl-score,
metrics that are critical for early detection and clinical reliability.
Notably, under the subject-wise protocol, both Gradient Boosting and
XGBoost demonstrated substantial expansions in these dimensions,
reflecting CRISP’s enhanced ability to detect PD-positive individuals
who exhibit high inter-stride variability or atypical gait signatures. The
plots also expose the comparative strengths of each model. While
KNN and DT exhibit modest gains under CRISP, ensemble methods,
particularly XGBoost, show broad and significant expansion across

10.3389/fncom.2025.1660963

the metric space. This reinforces the value of the CRISP pipeline in
harmonizing sensitivity and precision, especially under conditions
emulating real-world deployment.

3.1.3 Model-wise accuracy gains

Figure 5 (left panel) presents a grouped-bar chart comparing
classification accuracy before and after applying the CRISP pipeline
across the five models: KNN, DT, RE, GB, and XGB. Across the board,
CRISP yielded clear and consistent improvements in diagnostic
accuracy. The largest absolute gains were observed for ensemble-based
methods. XGBoost improved from 95.4 to 97.7%, while Gradient
Boosting rose from 93.8 to 96.5%, confirming CRISP’s ability to
enhance even high-performing models. Random Forest also
benefitted, increasing from 92.9 to 95.6%. Simpler models such as
KNN and DT exhibited smaller but still meaningful improvements,
highlighting CRISP’s capacity to support generalization across diverse
modelling paradigms. These improvements highlight the cumulative
benefits of CRISP’s components: correlation pruning, feature selection,
and SMOTE balancing, which together reduce noise, enhance
discriminative signal, and mitigate class imbalance. Notably, the gains
were robust across both evaluation protocols suggesting the
improvements are not specific to evaluation strategies.

3.1.4 ROC curve analysis

Figure 6 shows ROC curves for five classifiers under the overall
protocol, comparing baseline models (lilac) with CRISP (orange).
Fold-averaged traces with +1 SD ribbons indicate that CRISP
consistently shifts curves toward the upper-left, improving sensitivity—
specificity trade-offs and class separation. Gains are most pronounced
for KNN and DT, while ensemble models also show refined
performance and reduced variability, reflecting the benefits of feature
pruning and class rebalancing.
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Boosting (GB) and Extreme Gradient Boosting (XGBoost).
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Radar-plot comparison of baseline (violet) and CRISP (orange-red) across five metrics for binary PD detection. The top row shows overall performance,
and the bottom row shows subject-wise results. CRISP consistently improves all models, with the largest gains in recall and F1-score for Gradient
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Grouped-bar chart of five classifiers before (lilac) and after (orange

binary, 97.6% — 98.1% multiclass).

CRISP. Left: binary PD detection; right: multiclass severity grading. CRISP improves
accuracy across all models, with the largest gains for Gradient Boosting (GB) and Extreme Gradient Boosting (XGBoost) (e.g., XGB: 95.4% — 97.7%
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Mean ROC curves for five classifiers under the overall protocol. Baseline models are shown in lilac and CRISP in orange, averaged over 5-fold cross-
validation (ribbons = +1 SD). CRISP shifts all curves toward the upper-left, with the largest gains on K Nearest Neighbours (KNN) and Decision Tree (DT)
and consistent improvements on Gradient Boosting (GB) and Extreme Gradient Boosting (XGB).

3.1.5 Confusion matrix visualization

Figure 7 shows confusion matrices for XGBoost on the binary
PD-versus-healthy task, comparing baseline (Panel 1) and CRISP
(Panel 2). Each matrix is the mean of five cross-validation folds,
row-normalized for class-level comparison. CRISP sharply reduces
false negatives (9% — 1%) with only a slight rise in false positives
(2% — 3%), raising accuracy from 95 to 98%. This refined error
distribution highlights improved sensitivity and stability,
particularly valuable in clinical contexts. Equivalent matrices for
other classifiers and subject-wise evaluation (Supplementary
Figures S2-S11) show similar trends. Figure 7 (Panels 3-4) shows
confusion matrices for multiclass severity classification with
XGBoost, comparing baseline and CRISP. The baseline shows
confusion between adjacent stages (e.g., grades 1 and 2), while
CRISP greatly reduces off-diagonal errors, improving accuracy and
sharpening decision boundaries for fine-grained grading. Full
all are in  Supplementary

results  for classifiers

Figures S7-S11.
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3.2 Severity grading (multiclass)

3.2.1 Overall and subject-wise metrics

In the multiclass severity grading task, the goal was to assign
Parkinson’s patients to one of three Hoehn & Yahr (H&Y) stages: 0, 1,
or 2 based on their gait cycle characteristics. Table 2 presents a
summary of classification performance under both the overall and
subject-wise (patient-level) evaluation protocols across the five ML
classifiers. The proposed CRISP pipeline consistently outperformed
the baseline across all metrics: accuracy, precision, recall, specificity,
and F1-score. Under the overall evaluation, CRISP yielded strong
improvements across the board with the ensemble classifiers
(XGBoost and Gradient Boosting) achieving the highest performance.
Subject-wise evaluation, which simulates real-world clinical decision-
making, further validated CRISP’s diagnostic utility. Classification
performance remained stable or improved when predictions were
aggregated at the patient level, reflecting the reliability of the model in
generating consistent decisions across multiple gait cycles. A visual
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Confusion matrices for Extreme Gradient Boosting (XGBoost) under binary and multiclass settings (Hoehn—Yahr 0-3). Panels compare baseline vs.
CRISP, with violet-indigo shading indicating class percentages. CRISP reduces off-diagonal errors, cutting binary false negatives from 9 to 1% and
multiclass confusions (e.g., 1<2) to <1%.

TABLE 2 Multiclass PD severity classification before and after CRISP using 5-fold cross-validation.

Overall Accuracy Precision Recall F1-score
Baseline CRISP Baseline CRISP Baseline Baseline CRISP
KNN 90.9+ 0.5 93.0+0.4 90.9+0.5 93.1+04 90.9+0.5 93.0+0.4 90.8+0.5 93.0+0.4
DT 81.1+0.6 87.0+ 1.0 82.0+0.6 87.6+ 1.1 81.1+0.6 87.0+ 1.0 81.0+0.7 87.0 0.9
RE 89.2+0.8 923+08 89.5+0.6 925+0.8 89.2+0.8 923+038 89.2+0.8 923408
GB 92.8+0.5 93.6+0.2 92.9+0.5 93.6+0.2 92.8+0.5 93.6 +0.2 92.7+0.5 93.6 +0.2
XGBoost 97.6 0.2 98.1+0.2 97.6 0.2 98.1+0.2 97.6+0.2 98.1+0.2 97.6 0.2 98.1+0.2
Subject-wise Accuracy Precision Recall F1-score
Baseline CRISP Baseline CRISP Baseline Baseline CRISP
KNN 97.940.5 98.2+0.5 97.9+0.5 982+0.5 97.9+0.5 98.2+0.5 97.940.5 98.2+0.5
DT 850+ 1.7 86.5+0.5 862+ 18 87.2+0.6 85.0+ 1.7 86.5+0.5 849+ 18 86.5+0.5
RF 93.6 0.8 94.6 +0.5 94.0 0.7 94.8 + 0.4 93.6+0.8 94.6 +0.5 93.6+0.8 94.6 +0.5
GB 955+ 1.6 96.1+0.8 95.6+ 1.6 96.1+0.8 955+ 1.6 96.1+0.8 954+ 1.6 96.1+0.8
XGBoost 96.2+0.7 99.3+0.5 96.3+0.7 993405 962+ 0.7 99.3+0.5 96.2+0.7 99.3+0.5

The top block reports overall metrics, while the bottom block summarizes subject-level predictions (Subject-wise). Each performance metric (Accuracy, Precision, Recall, and F1-score) is
presented as paired sub-columns for Baseline and CRISP, with values shown as percentage mean =+ standard deviation. CRISP consistently improves model performance across both settings,

with Gradient Boosting (GB) and XGBoost (XGB) showing the largest gains. XGB achieves the highest Accuracy in both evaluation levels (bolded font).

overview of performance improvements is provided in
Supplementary Figure S1 which shows radar plots comparing baseline
and CRISP pipelines across various metrics for each classifier. The
CRISP polygon encloses a larger area in every plot, indicating gains
across all metrics. Improvements were especially pronounced for
Gradient Boosting and XGBoost under the subject-wise protocol
where increases in recall and F1-score suggest a heightened ability to
correctly identify and differentiate between closely related severity
levels. Detailed breakdowns are included in Supplementary
Tables S5-S8 offering deeper insight into CRISP’s effect on individual

H&Y stage prediction.

3.2.2 Accuracy comparison (baseline vs. CRISP)
Figure 5 (right panel) presents grouped-bar plots illustrating
the accuracy achieved by each classifier on the multiclass severity
grading task, comparing baseline performance with that achieved
after applying the CRISP pipeline. As with the binary classification
results, accuracy improvements were observed consistently across
all five models following CRISP preprocessing. XGBoost recorded
the highest overall accuracy, increasing from 97.6% under the

Frontiers in Computational Neuroscience

baseline pipeline to 98.1% after CRISP. Gradient Boosting followed
closely with a similar upward trend. Even the weaker models such
as Decision Tree and k-Nearest Neighbors benefited from the
CRISP refinements, showing non-trivial accuracy boosts despite
their lower baseline performance. These results highlight CRISP’s
effectiveness in preserving subtle class boundaries associated with
Parkinson’s severity levels while mitigating issues such as class
imbalance and multicollinearity. By streamlining the feature space
and applying synthetic resampling in a fold-aware manner, CRISP
enhances each model’s ability to learn fine-grained decision rules
without overfitting.

3.2.3 Ablation study and feature contribution
analysis

To assess the contribution of individual pipeline components,
we conducted a focused ablation study on the two best-performing
classifiers Gradient Boosting and XGBoost by selectively removing
RFE-based feature selection and SMOTE sampling. As summarized
in Appendix Table S9, both components contribute to improved
performance: removing either one leads to a drop in both accuracy
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and Fl-score. While this is a preliminary analysis, it supports the
efficacy of the CRISP pipeline design.

3.2.4 T-SNE visualization of class probability
structure

To investigate how well the CRISP pipeline enhances latent class
structure, we applied t-distributed Stochastic Neighbor Embedding
(t-SNE) to the class probability outputs of the top-performing
models. This method projects the high-dimensional softmax vectors
into a two-dimensional space while preserving local neighborhood
relationships. Figure 8 shows these t-SNE embeddings for top-3
performing models: Random Forest, Gradient Boosting, and
XGBoost, both before (top row) and after (bottom row) CRISP. Each
dot represents a gait cycle color-coded by the true Hoehn & Yahr
grade. Pre-CRISP plots show substantial overlap, especially between
adjacent classes such as grades 0-1 and 1-2. In contrast, the CRISP-
enhanced embeddings exhibit much tighter intra-class clustering
and clearer separation between severity levels. Grade 3 (red), which
was previously scattered, becomes markedly more cohesive after
CRISP, while boundaries between mild (blue) and moderate
(orange/green) stages sharpen significantly. These patterns suggest
that CRISP does not merely optimize classification margins but also
reshapes the decision manifold to reflect meaningful probabilistic
structure. This separation is particularly important for clinical
deployment scenarios where interpretability and trust in model
confidence are essential.

3.3 Statistical analysis

We validated CRISP’s improvements using two-sided paired
t-tests across Accuracy, Precision, Recall, Specificity, and F1-score,

10.3389/fncom.2025.1660963

evaluated over cross-validation folds. Tests were run separately for
binary and multiclass tasks. Supplementary Table S10 summarizes
binary results, showing statistically significant gains, particularly in
Accuracy, Recall, and F1-score, while non-significant cases (mainly
Multiclass
(Supplementary Table S11) confirm that CRISP’s enhancements are

Specificity) are reported transparently. results

consistent and statistically robust across models and tasks.

4 Discussion

4.1 Why CRISP works

The performance gains achieved by CRISP can be attributed to three
sequential enhancements: correlation pruning, feature elimination, and
class rebalancing. Each of these stages introduces targeted improvements
that collectively elevate classifier generalization and interpretability.
Correlation pruning removes redundant inputs, stabilizing feature
importance and yielding a robust 10-feature subset (Figure 2). RFE
further refines the set, consistently identifying gait speed, cadence,
stance-swing ratio, and stance variability as clinically relevant predictors,
while discarding less informative stride-timing metrics. This streamlined
input improves generalization and helps simpler models like KNN and
DT approach ensemble performance (Figure 3). SMOTE balances
within training folds and corrects class imbalance, particularly boosting
recall and F1-score in multiclass severity grading. Confusion matrices
(Figure 7) confirm fewer adjacent-grade errors and perfect recall for
Stage 3 after CRISP. Collectively, these stages produce more compact,
stable, and clinically interpretable models. The ROC curves (Figure 6)
shift decisively toward the upper left, indicating higher discriminability
and reduced classifier variance. Moreover, the t-SNE projection
(Figure 8) reveals that CRISP reshapes the latent probability space to

RF - Baseline

GB - Baseline

XGB - Baseline

« 0 o 1

FIGURE 8

boundaries in the calibrated probability manifold.

Severity grade

« 2 o

t-SNE visualization of the 4-class probability space generated by the top three models. The top row shows (a) Random Forest (RF) (b) Gradient
Boosting (GB) and (c) Extreme Gradient Boosting (XGB) baseline models; the bottom row (d-f) shows the same classifiers after the proposed CRISP
pipeline. Each dot is a single gait cycle, colour-coded by the true Hoehn & Yahr severity grade (0 = blue, ..., 3 = red). CRISP tightens intra-class
cohesion and enlarges inter-class gaps particularly between the mild (grade O, blue) and severe (grade 3, red) clusters, indicating cleaner decision
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enhance inter-class separation, an essential property for trustworthy
probabilistic output in diagnostic systems.

4.2 Subject-wise protocol and personalized
diagnostics

CRISP’s strongest performance gains emerge under the subject-
wise evaluation protocol, which collapses cycle-level predictions into
a single patient-level decision. This approach mimics real clinical
workflows, where physicians act on per-subject diagnoses rather than
per-stride classifications. As demonstrated in Table 1 and Figure 4
(bottom row), CRISP leads to substantial improvements in recall and
specificity across classifiers particularly for XGBoost and Gradient
Boosting. Subject-level confusion matrices (Figure 7) confirm lower
false-negative rates, while radar plots (Supplementary Figure S1)
reinforce the robustness of gains across patient cohorts. This person-
aware evaluation also helps detect systematic misclassification patterns
that might be obscured in pooled cycle-level metrics. CRISP’s ability
to sustain high subject-wise accuracy, without sacrificing sensitivity,
real-time

positions it as a viable tool for personalized,

Parkinson’ screening.

4.3 Clinical deployment potential

Beyond accuracy, real-world deployment demands lightweight
models with low inference latency. In this respect, Gradient Boosting
and XGBoost offer an optimal balance between predictive
performance and hardware feasibility. The GB model occupies
approximately 10 MB and yields predictions in a few milliseconds on
a standard smartphone CPU. Such efficiency makes it viable for
in-shoe microcontrollers or wearable gait-monitoring platforms. The
ability to passively record walking data and output a single, daily PD
probability score could revolutionize remote monitoring. This daily
score could trigger telehealth consultations, medication adjustments,
or fall-risk interventions, bringing Parkinsons care closer to
continuous, ambient diagnosis.

4.4 Limitations and future work

Several limitations must be acknowledged. First, the study is based
on a curated, cross-sectional dataset acquired in semi-controlled
environments. The PhysioNet Gait in Parkinson’s Disease dataset,
however, remains one of the most widely used public benchmarks in
this domain due to its rich composition of gait conditions (normal,
rhythmic, and treadmill), repeated sessions, and clinically verified
severity scores. This diversity enables robust modeling of inter- and
intra-subject variability, making it well-suited for preliminary clinical
evaluation pipelines. While it does not fully replicate real-world gait
settings, its depth and accessibility justify its continued use in model
development and benchmarking. Although the PhysioNet dataset is
widely used and includes diverse walking conditions, it remains a
lab-controlled ~ dataset. This
generalizability, particularly to free-living settings. While large-scale,

single-source, limits external

clinically labeled VGRF datasets from real-world environments are
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rare due to privacy and ethical constraints, we are actively initiating
our own IMU-based free-living gait data collection. Such external
validation remains an essential direction for future work to ensure
clinical robustness and deployment readiness. External validation on
free-living IMU datasets and multi-site cohorts is needed to ensure
generalizability. While this study is based on VGREF signals from force
plates, IMU-based systems are more commonly used in wearable gait
analysis and free-living contexts. Validating CRISP on IMU data is a
crucial next step to assess its modality-agnostic performance and
enable broader real-world deployment. Additionally, because this
work uses cross-sectional data, it cannot capture temporal dynamics
of Parkinson’s disease progression or treatment effects. Future work
should include longitudinal studies that correlate daily gait fluctuations
with medication cycles, symptom severity, and clinical follow-ups.
Such efforts would enable real-time, in-shoe monitoring of disease
evolution in naturalistic settings. Second, the Hoehn & Yahr severity
labels were obtained within 48 h of the gait recordings, introducing a
mild risk of temporal mismatch that may affect grading fidelity. Third,
while CRISP is model agnostic, its feature set and SMOTE parameters
may require adaptation for different sensor configurations or
clinical settings.

CRISP models on resource-constrained hardware such as
in-shoe microcontrollers. Our final XGBoost pipeline uses only 10
features, enabling a compact model footprint. Recent studies have
demonstrated that gradient-boosted decision trees, including
XGBoost, can be efficiently quantized and optimized for on-device
use. For instance, (Saha et al., 2022; Zhou et al., 2025) report low
inference latency and memory requirements for tree-based models
deployed on embedded systems. While we have not yet implemented
on-device deployment, these findings suggest that CRISP can
be feasibly adapted for wearable clinical applications in the near
future. One key limitation of this study is its reliance on cross-
sectional data, which provides only a static view of patient status.
This restricts our ability to model intra-individual changes or
disease progression over time. Future work should pursue
longitudinal data collection using wearable sensors to capture
repeated gait measurements over extended periods (e.g.,
6-12 months). Such data would enable more robust tracking of PD
progression, facilitate early detection of deterioration or relapse,
and better assess treatment effects enhancing the clinical utility of
the CRISP framework.

Additionally, the demographic composition of the PhysioNet
dataset may introduce bias. The dataset skews toward older adults,
with limited representation from younger age groups and unclear
ethnic diversity. Such imbalances could restrict the generalizability of
our findings and potentially lead to model overfitting to dominant
demographic groups. Future studies should validate CRISP on more
demographically diverse datasets to ensure robustness across
Another
demographic and clinical metadata in the PhysioNet dataset. While

populations. limitation concerns the incomplete
we have included age, gender, and severity stage distributions,
important factors such as detailed medication status and ethnicity are
not available. The absence of such information may introduce
unmeasured biases and limits our ability to assess the full
generalizability of the CRISP pipeline across more diverse populations
and clinical contexts. While the PhysioNet dataset offers a range of

walking conditions including treadmill, normal pace, and rhythmic
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walking, these settings do not fully replicate the complexities of real-
world PD gait, such as staircase climbing. This constraint may limit
generalizability to free-living contexts. To partially address this,
we employ a subject-wise evaluation strategy, which aggregates
predictions at the participant level rather than per recording, reducing
overfitting to session-specific artifacts. Nonetheless, future validation
on ambulatory IMU-based datasets from free-living settings is
essential for establishing ecological validity and clinical robustness.
Beyond traditional feature-based models, recent studies have shown
the potential of multiscale entropy (MSE) in capturing non-linear and
multi-timescale gait dynamics in Parkinson’s disease. For example,
(Amisola et al., 2025) apply MSE to quantify gait complexity and
variability, offering complementary insights to ML-driven feature
selection. Integrating such signal-level descriptors with CRISP is a
promising direction for future work.

Future work will address these issues through longitudinal
tracking, domain adaptation across shoe types and surfaces and
multi-modal fusion with inertial signals. A six-month pilot study
is designed to correlate daily gait scores with medication cycles, fall
incidents and symptom diaries. This will help translate CRISP from
proof-of-concept to clinical practice, ultimately enabling real-time,
in-shoe Parkinson’s monitoring. As a step forward, we are actively
pursuing new data collection efforts within our lab to assemble a
free-living IMU-based PD dataset, although this process is
resource-intensive and subject to ethical approvals. We view this as
a crucial direction for future work to establish broader real-
world applicability.

5 Conclusion

This study introduced CRISP: A Correlation-filtered Recursive
Feature Elimination & Integration of SMOTE pipeline for robust gait-
based detection and severity grading of Parkinson’s disease (PD).
Using vertical ground-reaction-force signals from over 160
participants, CRISP demonstrated significant improvements over
baseline approaches across multiple classification models, under both
overall and subject-wise evaluation protocols. The pipeline’s efficacy
stems from its principled design: correlation pruning reduces
redundancy and improves generalizability, RFE (Recursive Feature
Elimination) isolates biomechanically meaningful features and
SMOTE (Synthetic Minority Oversampling Technique) balances class
distributions for fairer learning. Together, these enhancements yield
higher accuracy, better class separation, and more interpretable
predictions, as evidenced by metric gains (Tables 1, 2), radar plots
(Figure 4), and reduced misclassification in confusion matrices
(Figure 7). Beyond its analytical rigor, CRISP offers practical benefits
for clinical deployment. Ensemble models like Gradient Boosting
(GB) and Extreme Gradient Boosting (XGBoost) deliver near-instant
inference and compact storage, supporting future integration into
wearable, in-shoe monitoring systems. By outputting a single, daily
diagnostic score, CRISP has the potential to align with clinical
workflows and enable continuous, personalized care for PD patients.
Future directions include external validation on wearable IMU data,
domain adaptation, and longitudinal studies correlating gait-derived
scores with medication cycles and fall risk. Ultimately, CRISP
represents a step toward real-time, data-driven neurology where
personalized movement analytics inform timely clinical interventions.
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