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Introduction: Parkinson’s disease (PD) is the fastest-growing neurodegenerative 
disorder, with subtle gait changes such as reduced vertical ground-reaction 
forces (VGRF) often preceding motor symptoms. These gait abnormalities, 
measurable via wearable VGRF sensors, offer a non-invasive means for early 
PD detection. However, current computational approaches often suffer 
from redundant features and class imbalance, limiting both accuracy and 
generalizability.
Methods: We propose CRISP (Correlation-filtered Recursive Feature Elimination 
and Integration of SMOTE Pipeline for Gait-Based Parkinson’s Disease Screening), 
a lightweight multistage framework that sequentially applies correlation-based 
feature pruning, recursive feature elimination (RFE), and Synthetic Minority 
Oversampling Technique (SMOTE) based class balancing. To ensure clinically 
meaningful evaluation, a novel subject-wise protocol was also introduced that 
assigns one prediction per individual enhancing patient-level variability capture 
and better aligning with diagnostic workflows. Using 306 VGRF recordings (93 
PD, 76 controls), five classifiers, i.e., k-Nearest Neighbours (KNN), Decision 
Tree (DT), Random Forest (RF), Gradient boosting (GB), and Extreme Gradient 
Boosting (XGBoost) were evaluated for both binary PD detection and multiclass 
severity grading.
Results: CRISP consistently improved performance across all models under 
5-fold cross-validation. XGBoost achieved the highest performance, increasing 
subject-wise PD detection accuracy from 96.1 ± 0.8% to 98.3 ± 0.8%, and 
severity grading accuracy from 96.2 ± 0.7% to 99.3 ± 0.5%.
Conclusion: CRISP is the first VGRF-based pipeline to combine correlation-
filtered feature pruning, recursive feature elimination, and SMOTE to enhance 
PD detection performance, while also introducing a subject-wise evaluation 
protocol that captures patient-level variability for truly personalized diagnostics. 
These twin novelties deliver clinically significant gains and lay the foundation for 
real-time, on-device PD detection and severity monitoring.
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1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder 
characterized by the progressive loss of dopamine-producing neurons 
in the brain (Ramesh and Arachchige, 2023), leading to motor 
impairments such as tremors, bradykinesia, and rigidity, which 
severely affect a patient’s daily functioning (Kumar et al., 2021). Early 
diagnosis and intervention are crucial in managing PD, as current 
treatments can alleviate symptoms but cannot reverse the underlying 
neurodegeneration (Bloem et  al., 2021). However, conventional 
diagnostic methods, such as neurological exams and brain imaging, 
often fall short in detecting the disease in its early, subtle stages. This 
limitation highlights the urgent need for non-invasive, early-stage 
diagnostic tools to detect PD at its initial, asymptomatic phase 
(Brindha et al., 2022).

Gait abnormalities, such as reduced stride length, slower walking 
speed, and irregular cadence, are often among the earliest signs of PD, 
appearing before more obvious symptoms like tremors (Baker, 2018; 
Barberà et  al., 2024). Wearable sensors, including Inertial 
Measurement Units (IMUs) and accelerometers, have shown 
significant promise for continuously monitoring gait in real-world 
settings. These sensors capture real-time, three-dimensional motion 
data, providing a non-invasive and scalable method for detecting 
subtle gait changes indicative of PD (Salchow-Hömmen et al., 2022; 
Hemmerling et al., 2025). The use of these sensors offers a potential 
solution for early-stage, real-time PD detection, enabling more timely 
and accurate diagnoses. To further this goal, the PhysioNet gait dataset 
has become an essential resource in PD research. This dataset includes 
comprehensive recordings of vertical ground-reaction forces (VGRF) 
(Alam et al., 2017; Etoom et al., 2024) and IMU data from both PD 
patients and healthy controls, offering a valuable foundation for 
training machine learning (ML) models (Alkhatib et  al., 2020; 
Chudzik et al., 2024). The PhysioNet dataset enables researchers to 
examine the relationship between gait abnormalities and PD, 
supporting the development of diagnostic models that can accurately 
identify subtle gait changes associated with the disease (Baker, 2018; 
Veeraragavan et al., 2020; Bloem et al., 2021; Salchow-Hömmen et al., 
2022; Etoom et al., 2024).

ML models have become a crucial tool in analyzing gait data for 
PD detection. These models can process large volumes of data 
collected from wearable sensors, detecting subtle patterns and 
abnormalities in gait that may not be apparent to human observers 
(Rana et al., 2022). Popular approaches such as k-Nearest Neighbors 
(KNN), Decision Tree (DT) and other ensemble or distance-based 
classifiers have demonstrated promising results in distinguishing 
PD from healthy gait patterns (Roy et al., 2024). Several studies have 
further shown that models capable of capturing spatial and temporal 
dependencies in gait signals can enhance classification accuracy 
reporting high performance levels (Liu et al., 2021). These models 
offer a scalable solution for analyzing gait data, providing high 
diagnostic precision and enabling earlier detection of PD (Shalin 
et al., 2021; Choi et al., 2024; Srinivasarao et al., 2024; Navita Mittal 
et  al., 2025). Related studies have also explored alternative 

modalities such as voice analysis (Ghaheri et  al., 2024) and 
neuromorphic systems (Siddique et al., 2023) for PD screening. The 
effectiveness of these ML models highlights their potential for a 
real-time and reliable benchmark for PD diagnosis (Joshi et al., 
2017; Zeng et al., 2019; Abdullah et al., 2024).

Despite these advances, several key challenges remain. First, gait-
based datasets often begin with a high-dimensional feature space yet 
few studies systematically prune redundant or irrelevant features 
before model training. Second, class imbalance in PD versus control 
recordings can bias classifiers such as k-Nearest Neighbors (KNN), 
Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), 
and Extreme Gradient Boosting (XGBoost) toward the majority class, 
thus reducing generalization. Third, most studies leveraging datasets 
like PhysioNet report only aggregated accuracy across all gait cycles, 
masking subject-level variability critical for clinical interpretation and 
personalized diagnostics (Horst et al., 2019; Maachi et al., 2020; Dong 
et al., 2023).

To address these gaps, CRISP a unified pipeline, was proposed 
that (i) filters out highly correlated features, (ii) applies recursive 
feature elimination (RFE) to isolate the most informative metrics, and 
(iii) balances each training fold with SMOTE (Synthetic Minority 
Oversampling Technique) to counter class imbalance. In tandem, 
we adopt a subject-wise evaluation protocol that evaluates each patient 
separately ensuring one prediction per individual and thus faithfully 
captures patient-level performance.

CRISP was evaluated on 306 VGRF recordings (93 PD, 76 control 
subjects) using five mainstream classifiers (KNN, DT, RF, GB, 
XGBoost) across two tasks: binary PD detection and multiclass severity 
grading (Hoehn & Yahr scale). To our knowledge, this is the first study 
to integrate correlation pruning, RFE, and SMOTE into a single, 
efficient pipeline for VGRF-based PD screening while also rigorously 
evaluating patient-level performance. Our results show that CRISP 
consistently improves performance across all models. For the best-
performing classifier, XGBoost, subject-wise accuracy improves from 
96.1 ± 0.8% to 98.3 ± 0.8% for PD detection, and from 96.2 ± 0.7% to 
99.3 ± 0.5% for severity grading. These results highlight the critical 
importance of both careful feature curation and subject-wise evaluation 
for personalized diagnostics and pave the way for real-time, on-device 
PD screening and severity monitoring.

This study makes the following key contributions:

	 1.	 We propose CRISP (Correlation-filtered Recursive feature 
elimination and Integration of SMOTE Pipeline), a lightweight, 
modular framework that sequentially (i) prunes redundant 
features through correlation filtering, (ii) selects the most 
informative subset using RFE and (iii) mitigates class imbalance 
via SMOTE. This is the first study to combine all three 
components in a unified pipeline for VGRF-based PD 
screening delivering substantial performance gains across five 
classifiers (KNN, DT, RF, GB, XGBoost).

	 2.	 We introduce a rigorous subject-wise cross-validation scheme 
that issues a single prediction per individual, in contrast to 
conventional cycle-level aggregation. This approach captures 
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patient-level variability essential for real-world, personalized 
diagnostics and provides a more clinically interpretable 
performance estimate.

	 3.	 CRISP consistently improves diagnostic accuracy across both 
binary PD detection and multiclass severity grading (Hoehn & 
Yahr scale). For the best-performing model (XGBoost), 
subject-wise accuracy improves from 96.1 ± 0.8% to 
98.3 ± 0.8% for binary classification, and from 96.2 ± 0.7% to 
99.3 ± 0.5% for severity grading showcasing the robustness and 
generalizability of our pipeline.

	 4.	 When paired with efficient learners such as XGBoost, CRISP 
supports rapid inference with minimal computational 
overhead, making it suitable for real-time, on-device 
deployment. This positions our method as a scalable solution 
for continuous, non-invasive monitoring in both clinical and 
home settings.

This study provides a promising approach for early, non-invasive 
PD screening by combining advanced feature curation and 
personalized evaluation, demonstrating that lightweight pipelines like 
CRISP can deliver both high accuracy and real-time performance. 
Our results pave the way for scalable, on-device diagnostic tools that 
could potentially bring personalized gait-based monitoring out of the 
lab and into everyday clinical and at-home use.

2 Materials and methods

This study used The CRISP pipeline for gait-based PD detection 
(Figure  1) includes three modules: correlation-based feature 
pruning, RFE, and SMOTE-based class balancing, which together 
reduce dimensionality, balance classes, and improve generalization. 
Model development and evaluation (Section 2.5) employed five 
classifiers (KNN, DT, RF, GB, XGBoost) under a subject-wise 
protocol. Performance was measured for binary PD detection and 
multiclass Hoehn–Yahr grading using Accuracy, Precision, Recall, 
Specificity, F1-score, and ROC-AUC.

2.1 Dataset

VGRF signals from an open-access gait database comprising 93 
PD patients and 76 healthy controls (HC) were obtained from the 
PhysioNet Gait in Neurodegenerative Disease database (Goldberger 
et  al., 2000), which aggregates data from three clinical studies 
(Frenkel-Toledo et al., 2005; Yogev et al., 2005; Hausdorff, 2008). 
These recordings capture multiple walking conditions using 
instrumented footwear equipped with 16 force-sensitive resistors, 
eight per shoe sole, sampling at 100 Hz to measure plantar VGRF 
over time (Zeng et  al., 2019). Further details of Dataset are in 
section S6 of cohort demographics in Supplementary file.

2.2 Preprocessing and gait-event detection

Raw VGRF signals were recorded using 16 force-sensitive 
sensors embedded in each shoe sole and normalized to the [0,1] 

range via min–max scaling. To reduce artefacts, the first 20 s and 
last 10 s of each 60-s walk were excluded. High-frequency noise was 
suppressed using a 10-point median filter (kernel size 9), preserving 
waveform integrity (Zeng et al., 2019; Wang et al., 2024). Heel-
strike (HS) and toe-off (TO) were detected using a 20% threshold 
of peak vertical force, with HS defined by upward crossing and TO 
by the subsequent downward crossing (Alkhatib et al., 2020). A gait 
cycle comprised two successive HS events, with features computed 
per cycle. Supplementary Figure S12 compares VGRF profiles of PD 
and healthy subjects, while Supplementary Figure S13 illustrates the 
smoothing effect of median filtering.

2.3 Spatiotemporal feature extraction

Heel-strike and toe-off events (Section 2.2) were used to 
segment gait cycles, from which eight spatiotemporal features were 
extracted: stride time, stance time, swing time, their percentages, 
cadence, step length, and stride length (Supplementary Table S14; 
Supplementary Figure S14). For each participant, features were 
computed per cycle and summarized as mean and standard 
deviation across valid strides. Group-level statistics 
(Supplementary Table S15) show PD subjects with longer stride and 
swing times, higher stance percentage, and reduced cadence, 
patterns consistent with bradykinesia and postural instability. These 
distinct features were used as predictors in the supervised learning 
models. In order to avoid any potential label leakage, both RFE and 
mutual information-based feature selection were applied strictly 
within each training fold during the cross-validation process, 
ensuring that no information from the test sets influenced the 
feature selection process.

2.4 CRISP overview

CRISP consists of three stages: (i) Pearson correlation analysis 
to remove highly collinear features (|r| ≥ 0.80), (ii) RFE with a 
100-tree random forest to select the 10 most predictive features, and 
(iii) SMOTE to balance classes within each training fold. The curated 
features were then used to train five classifiers (KNN, DT, RF, GB, 
XGBoost), evaluated under both cycle-level and subject-wise cross-
validation. Outputs included binary PD detection and multiclass 
Hoehn–Yahr grading, assessed using Accuracy, Precision, Recall, 
Specificity, F1-score, and ROC-AUC.

2.4.1 Correlation pruning
To reduce multicollinearity, we  computed pairwise Pearson 

correlations for all gait features (Figure  2). Feature names were 
standardized, coefficients rounded to two decimals, and a threshold 
of |r| ≥ 0.80 applied to flag strongly correlated pairs. This cutoff, 
commonly used in biomedical predictive modeling (Kuhn and 
Johnson, 2013; Connolly et al., 2016), avoids excessive feature loss. 
For each correlated pair, mutual information (MI) with respect to 
the diagnostic label (PD status or Hoehn–Yahr grade) was 
calculated, and the feature with lower MI was discarded. This 
pruning removed six features, reducing dimensionality to 24 while 
retaining those most informative. All correlation and MI 
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calculations were restricted to training data to avoid 
information leakage.

2.4.2 Feature selection with RFE (recursive feature 
elimination)

After correlation based pruning, RFE using a 100 tree random 
forest within each training fold further reduced the feature set to ten, 
thereby preventing information leakage. Figure 3 shows importance 
of rankings: gait speed, cadence, stance-time variability, and stance-
to-swing ratio ranked highest, while bilateral stance-time ranked 
lowest. Accuracy plateaued at 10 features, simplifying SMOTE 
balancing and model training without performance loss. This subset 
was used across all models and tasks in CRISP.

2.4.3 SMOTE class balancing
Despite dimensionality reduction, the resulting feature matrix 

remained class-imbalanced due to two factors: (i) PD participants 
contributed more gait cycles than healthy controls, and (ii) the distribution 
of Hoehn and Yahr severity stages within the PD group was highly 
skewed. To address class imbalance in the severity grading task, 
we  employed SMOTE a well-established oversampling method that 
generates synthetic samples for the minority class. SMOTE was selected 
based on its simplicity, interpretability, and proven empirical effectiveness 
in small-sample, high-dimensional biomedical contexts. Abdulsadig and 
Rodriguez-Villegas (2024) reported strong performance of SMOTE 
across 10 resampling techniques applied to physiological PPG data, 
particularly in terms of sensitivity and balanced accuracy.

FIGURE 1

Correlation-filtered Recursive feature elimination and Integration of SMOTE Pipeline overview for gait-based Parkinson’s detection. (A) Data collection 
and preprocessing. (B) Spatiotemporal feature extraction. (C) Consecutive stages. (c1) Correlation pruning (c2) Recursive feature elimination (c3) 
SMOTE class balancing synthetically oversamples minority classes inside every training fold to balance the dataset. (D) Model training and evaluation. 
(E) Results.
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SMOTE generates synthetic minority-class samples by 
interpolating between neighboring feature vectors in the input space. 
Specifically, for a given minority instance ix , a new synthetic sample 

newx  is computed as shown in Equation (1):

	 ( )= + δ −new ·i zi ix x x x
	 (1)

In our context, each ix  is a feature vector from the minority class. 
It represents a high-dimensional gait feature vector derived from a 
single stride belonging to the minority class either a healthy 
control in the binary PD-versus-control task or a PD patient 

in an underrepresented Hoehn & Yahr stage in the multiclass setting. 
The neighbor 

izx  is one of the k-nearest neighbors of ix . 
It is selected from within the same class, ensuring that 
interpolation remains class consistent. The scalar 

[ ]δ : A random scalar in the range 0,1 , sampled from a uniform distribution.  
It introduced controlled variation, generating synthetic samples that 
enriched the minority distribution without duplication. In the 
multiclass task, this corrected the underrepresentation of Stage 3, 
equalizing all classes to ~5,500 cycles; a similar strategy was used for 
the binary task. SMOTE was applied only to training folds to prevent 
data leakage, ensuring balanced priority during training while leaving 
validation and test sets unbiased.

FIGURE 2

Pearson correlation matrix among raw gait features. Pairwise correlation heatmap of gait features colored on a diverging red-blue scale (positive to 
negative). Features with |r| ≥ 0.80 are considered highly correlated, and the one with lower mutual information relative to the label is discarded. This 
pruning step reduces redundancy prior to feature selection in CRISP.
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2.5 Model training and evaluation

2.5.1 Classifier suite
To assess how different learning paradigms handle Parkinson-related 

gait variability, we  employed a panel of five supervised classifiers 
encompassing instance-based, rule-based, and ensemble strategies: 
K-Nearest Neighbors (KNN) classifies samples by the majority label of 
their k nearest neighbors, offering a simple non-parametric approach 
effective for moderate-sized clinical datasets. Decision Tree (DT) models 
partition data using axis-aligned splits that maximize information gain, 
offering interpretability and highlighting key gait features related to 
PD. Random Forest (RF) is an ensemble of decision trees trained on 
random data and feature subsets, with predictions aggregated by majority 
voting to improve generalization and reduce overfitting. In Equation (2) 
Gradient Boosting (GB) constructs an additive ensemble model in which 
each new tree ( )mh x is trained to approximate the negative gradient of 
the loss function with respect to the current ensemble prediction 

( )−1mF x . The model is updated iteratively as:

	 ( ) ( ) ( )−= + γ1m m m mF x F x h x
	 (2)

Where:

	 ( )    mF x is the ensemble prediction at iteration m

	 ( )     mh x is the new weak learner trained on the residuals

	 ( )γ     m is the step size learning rate

Extreme Gradient Boosting (XGBoost) extends GB with regularized 
objective and efficient implementation. The objective function minimized 
at each iteration includes a second-order Taylor approximation of the loss 
and an explicit regularization term as shown in Equation (3):

	

( ) ( ) ( ) ( )=
 = + +Ω  

∑ 2
1

1
2

nt
i t i i t i ti g f x h f x f

	
(3)

where:

	

( )


( )
∂

= −
∂

,
 

i i
i

i

l y y
g first order gradient

y

	

( )


( )
∂

= −
∂

2

2

,
 

i i
i

i

l y y
h second order gradient

y

	
( ) ( )γ λ

=
Ω = + ∑ 2

1
1  
2

T
t jjf T w regularization term

Here, T  is the number of leaves in the decision tree tf , jw  is the 
weight of the −j th leaf, and 𝛾, 𝜆 are regularization hyperparameters. 
This second-order formulation accelerates convergence and improves 

FIGURE 3

Top 10 gait features selected via Recursive Feature Elimination for binary PD detection (left) and multiclass Hoehn–Yahr grading (right). Feature 
importance is shown by bar length and color intensity, with speed and cadence ranking highest, followed by timing and swing–stance ratios.
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generalization by penalizing complex trees. XGBoost’s efficiency and 
ability to handle sparse data make it well-suited for clinical datasets. 
To optimize performance, grid search with five-fold cross-validation 
was used to tune key hyperparameters across all models, ensuring best 
configurations for KNN, DT, RF, GB, and XGBoost

2.5.2 Evaluation protocol
Most PhysioNet studies report performance at the stride (cycle) 

level, where each participant may contribute hundreds of samples and 
thus have a disproportionate influence on pooled metrics. To obtain 
clinically relevant estimates we adopted a subject-wise evaluation: after 
a classifier generated predictions for every gait cycle in the test fold, 
we  collapsed those cycle-level outputs into a single patient-level 
decision by majority vote for the binary task and by modal class for 
the three-class severity task. Ties observed in <0.5% of cases were 
broken by the average posterior probability. The resulting 169 patient 
labels (93 PD, 76 HC) were compared with the ground-truth diagnoses 
to compute accuracy, precision, recall, F1-score and ROC-AUC. These 
subject-level metrics were averaged across the five outer folds to yield 
the final performance estimates reported in Section 3. This subject-
aware protocol provides one interpretable decision per patient, the 
granularity required for real-world screening and exposes failure 
modes that cycle-level metrics may mask, such as systematic 
misclassification of individuals with atypical gait patterns or limited 
stride counts.

2.5.3 Prediction tasks
Two prediction tasks were addressed: Binary classification 

distinguishing PD patients from healthy controls. Multiclass 
classification assigning PD cases to one of three Hoehn and Yahr 
severity grades (1, 2, or 3), reflecting early disease progression.

2.5.4 Evaluation metrics
To evaluate classification performance, we report six standard 

metrics: Accuracy, Precision, Recall (Sensitivity), Specificity, F1-score, 
and ROC-AUC. Accuracy captures overall correctness, while 

Precision and Recall focus on false positives and false negatives, 
respectively critical in clinical screening tasks. Specificity measures the 
ability to correctly identify negative cases. The F1-score balances 
Precision and Recall, making it suitable for imbalanced data. Finally, 
ROC-AUC quantifies classifier robustness across decision thresholds 
and is widely used for model comparison.

3 Results

This section presents key outcomes of our gait-based PD detection 
framework, binary and multiclass classification performance, t-SNE 
visualizations, and confusion matrices. Together, these results 
highlight the robustness and interpretability of the CRISP pipeline for 
PD screening.

3.1 Binary Parkinson’s disease detection

To assess the diagnostic utility of the CRISP pipeline, we first 
addressed the binary classification task of distinguishing PD patients 
from healthy controls. Performance was evaluated under two 
validation schemes: (i) an overall protocol, where gait cycles were 
pooled across participants and aggregated for evaluation, and (ii) a 
subject-wise protocol, in which evaluation was conducted individually 
for each patient, enabling person-level inference.

3.1.1 Overall and subject-wise classification 
performance

Table 1 reports the average classification metrics achieved by 
each of the five models under both evaluation schemes. Across the 
board, CRISP consistently outperformed the baseline configuration, 
yielding gains in accuracy, precision, recall, and F1-score. Under the 
overall protocol, where cycle-level predictions were aggregated 
regardless of subject origin, XGBoost achieved the highest mean 
accuracy of 97.7%, closely followed by Random Forest (97.1%) and 

TABLE 1  Binary PD detection results with and without CRISP Pipeline.

Overall Accuracy Precision Recall F1-score

Baseline CRISP Baseline CRISP Baseline CRISP Baseline CRISP

KNN 89.0 ± 0.8 94.5 ± 0.3 84.6 ± 1.5 88.0 ± 0.6 83.4 ± 1.1 97.4 ± 0.5 84.0 ± 1.1 92.5 ± 0.4

DT 91.9 ± 1.0 92.7 ± 1.3 86.6 ± 1.9 84.9 ± 2.4 90.7 ± 1.5 96.0 ± 1.9 88.6 ± 1.4 90.1 ± 1.7

RF 94.3 ± 0.4 94.8 ± 0.4 89.4 ± 0.9 89.1 ± 1.0 94.9 ± 0.4 97.0 ± 0.3 92.1 ± 0.6 92.9 ± 0.4

GB 96.3 ± 0.6 97.0 ± 0.5 97.3 ± 0.5 93.1 ± 0.8 91.8 ± 1.4 98.6 ± 0.8 94.5 ± 0.9 95.8 ± 0.7

XGBoost 95.4 ± 0.4 97.7 ± 0.6 95.6 ± 0.7 94.8 ± 1.5 91.0 ± 0.9 98.8 ± 0.3 93.3 ± 0.6 96.8 ± 0.8

Subject-wise Accuracy Precision Recall F1-score

Baseline CRISP Baseline CRISP Baseline CRISP Baseline CRISP

KNN 97.7 ± 1.0 97.4 ± 0.6 98.0 ± 0.7 95.4 ± 1.1 96.6 ± 1.9 98.9 ± 0.6 97.3 ± 1.2 97.1 ± 0.7

DT 93.1 ± 1.9 92.1 ± 1.6 90.2 ± 3.2 86.4 ± 2.8 94.7 ± 2.1 97.5 ± 2.3 92.4 ± 2.1 91.6 ± 1.7

RF 97.3 ± 0.5 96.7 ± 1.0 94.7 ± 1.6 94.1 ± 1.8 99.4 ± 1.1 98.6 ± 0.9 97.0 ± 0.5 96.3 ± 1.1

GB 97.4 ± 0.8 97.2 ± 0.8 99.4 ± 0.7 94.9 ± 1.4 94.7 ± 1.9 98.9 ± 1.1 97.0 ± 1.0 96.8 ± 0.9

XGBoost 96.1 ± 0.8 98.3 ± 0.8 98.2 ± 1.1 97.3 ± 1.7 92.7 ± 1.0 98.9 ± 0.6 95.4 ± 1.0 98.0 ± 0.9

The top block reports conventional overall performance, while the bottom block summarizes subject-level evaluation (one prediction per participant). Each metric (Accuracy, Precision, Recall, 
F1-score) is shown as a pair of sub-columns: Baseline and CRISP, with values formatted as percentage mean ± standard deviation. CRISP consistently improves across all models and settings. 
Extreme Gradient Boosting (XGB) yields the highest Accuracy in both evaluation levels (bolded font).
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Gradient Boosting (96.9%). The precision-recall balance was 
particularly strong for ensemble-based models, indicating that 
CRISP not only improved raw detection rates but also minimized 
false alarms and missed cases across heterogeneous gait cycles. In 
the more clinically relevant subject-wise protocol, which aggregates 
predictions at the patient level to simulate real-world deployment, 
CRISP continued to deliver robust improvements. XGBoost’s 
subject-level accuracy improved from 96.1% (baseline) to 98.3% 
(CRISP), with F1-score and specificity also showing upward trends. 
Other classifiers, including Gradient Boosting and Random Forest, 
followed a similar pattern of enhanced subject-wise generalization. 
This consistency highlights the pipeline’s effectiveness in supporting 
patient-level diagnostic decisions rather than merely optimizing 
cycle-level performance. For a full breakdown of metrics and fold-
level variance, refer to Supplementary Tables S1–S4.

3.1.2 Comparative radar plot of metric gains
Figure 4 illustrates the relative improvements achieved by CRISP 

through radar plots that span five core performance metrics: accuracy, 
precision, recall, specificity, and F1-score. Each panel contrasts the 
baseline (violet) and CRISP-enhanced (orange-red) performance for 
one of the five classifiers. The CRISP polygon consistently encloses a 
larger area, indicating uniform gains across all metrics. The 
improvements are especially pronounced in recall and F1-score, 
metrics that are critical for early detection and clinical reliability. 
Notably, under the subject-wise protocol, both Gradient Boosting and 
XGBoost demonstrated substantial expansions in these dimensions, 
reflecting CRISP’s enhanced ability to detect PD-positive individuals 
who exhibit high inter-stride variability or atypical gait signatures. The 
plots also expose the comparative strengths of each model. While 
KNN and DT exhibit modest gains under CRISP, ensemble methods, 
particularly XGBoost, show broad and significant expansion across 

the metric space. This reinforces the value of the CRISP pipeline in 
harmonizing sensitivity and precision, especially under conditions 
emulating real-world deployment.

3.1.3 Model-wise accuracy gains
Figure  5 (left panel) presents a grouped-bar chart comparing 

classification accuracy before and after applying the CRISP pipeline 
across the five models: KNN, DT, RF, GB, and XGB. Across the board, 
CRISP yielded clear and consistent improvements in diagnostic 
accuracy. The largest absolute gains were observed for ensemble-based 
methods. XGBoost improved from 95.4 to 97.7%, while Gradient 
Boosting rose from 93.8 to 96.5%, confirming CRISP’s ability to 
enhance even high-performing models. Random Forest also 
benefitted, increasing from 92.9 to 95.6%. Simpler models such as 
KNN and DT exhibited smaller but still meaningful improvements, 
highlighting CRISP’s capacity to support generalization across diverse 
modelling paradigms. These improvements highlight the cumulative 
benefits of CRISP’s components: correlation pruning, feature selection, 
and SMOTE balancing, which together reduce noise, enhance 
discriminative signal, and mitigate class imbalance. Notably, the gains 
were robust across both evaluation protocols suggesting the 
improvements are not specific to evaluation strategies.

3.1.4 ROC curve analysis
Figure 6 shows ROC curves for five classifiers under the overall 

protocol, comparing baseline models (lilac) with CRISP (orange). 
Fold-averaged traces with ±1 SD ribbons indicate that CRISP 
consistently shifts curves toward the upper-left, improving sensitivity–
specificity trade-offs and class separation. Gains are most pronounced 
for KNN and DT, while ensemble models also show refined 
performance and reduced variability, reflecting the benefits of feature 
pruning and class rebalancing.

FIGURE 4

Radar-plot comparison of baseline (violet) and CRISP (orange-red) across five metrics for binary PD detection. The top row shows overall performance, 
and the bottom row shows subject-wise results. CRISP consistently improves all models, with the largest gains in recall and F1-score for Gradient 
Boosting (GB) and Extreme Gradient Boosting (XGBoost).
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3.1.5 Confusion matrix visualization
Figure 7 shows confusion matrices for XGBoost on the binary 

PD-versus-healthy task, comparing baseline (Panel 1) and CRISP 
(Panel 2). Each matrix is the mean of five cross-validation folds, 
row-normalized for class-level comparison. CRISP sharply reduces 
false negatives (9% → 1%) with only a slight rise in false positives 
(2% → 3%), raising accuracy from 95 to 98%. This refined error 
distribution highlights improved sensitivity and stability, 
particularly valuable in clinical contexts. Equivalent matrices for 
other classifiers and subject-wise evaluation (Supplementary  
Figures S2–S11) show similar trends. Figure 7 (Panels 3–4) shows 
confusion matrices for multiclass severity classification with 
XGBoost, comparing baseline and CRISP. The baseline shows 
confusion between adjacent stages (e.g., grades 1 and 2), while 
CRISP greatly reduces off-diagonal errors, improving accuracy and 
sharpening decision boundaries for fine-grained grading. Full 
results for all classifiers are in Supplementary  
Figures S7–S11.

3.2 Severity grading (multiclass)

3.2.1 Overall and subject-wise metrics
In the multiclass severity grading task, the goal was to assign 

Parkinson’s patients to one of three Hoehn & Yahr (H&Y) stages: 0, 1, 
or 2 based on their gait cycle characteristics. Table  2 presents a 
summary of classification performance under both the overall and 
subject-wise (patient-level) evaluation protocols across the five ML 
classifiers. The proposed CRISP pipeline consistently outperformed 
the baseline across all metrics: accuracy, precision, recall, specificity, 
and F1-score. Under the overall evaluation, CRISP yielded strong 
improvements across the board with the ensemble classifiers 
(XGBoost and Gradient Boosting) achieving the highest performance. 
Subject-wise evaluation, which simulates real-world clinical decision-
making, further validated CRISP’s diagnostic utility. Classification 
performance remained stable or improved when predictions were 
aggregated at the patient level, reflecting the reliability of the model in 
generating consistent decisions across multiple gait cycles. A visual 

FIGURE 5

Grouped-bar chart of five classifiers before (lilac) and after (orange) CRISP. Left: binary PD detection; right: multiclass severity grading. CRISP improves 
accuracy across all models, with the largest gains for Gradient Boosting (GB) and Extreme Gradient Boosting (XGBoost) (e.g., XGB: 95.4% → 97.7% 
binary, 97.6% → 98.1% multiclass).

FIGURE 6

Mean ROC curves for five classifiers under the overall protocol. Baseline models are shown in lilac and CRISP in orange, averaged over 5-fold cross-
validation (ribbons = ±1 SD). CRISP shifts all curves toward the upper-left, with the largest gains on K Nearest Neighbours (KNN) and Decision Tree (DT) 
and consistent improvements on Gradient Boosting (GB) and Extreme Gradient Boosting (XGB).
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overview of performance improvements is provided in 
Supplementary Figure S1 which shows radar plots comparing baseline 
and CRISP pipelines across various metrics for each classifier. The 
CRISP polygon encloses a larger area in every plot, indicating gains 
across all metrics. Improvements were especially pronounced for 
Gradient Boosting and XGBoost under the subject-wise protocol 
where increases in recall and F1-score suggest a heightened ability to 
correctly identify and differentiate between closely related severity 
levels. Detailed breakdowns are included in Supplementary  
Tables S5–S8 offering deeper insight into CRISP’s effect on individual 
H&Y stage prediction.

3.2.2 Accuracy comparison (baseline vs. CRISP)
Figure 5 (right panel) presents grouped-bar plots illustrating 

the accuracy achieved by each classifier on the multiclass severity 
grading task, comparing baseline performance with that achieved 
after applying the CRISP pipeline. As with the binary classification 
results, accuracy improvements were observed consistently across 
all five models following CRISP preprocessing. XGBoost recorded 
the highest overall accuracy, increasing from 97.6% under the 

baseline pipeline to 98.1% after CRISP. Gradient Boosting followed 
closely with a similar upward trend. Even the weaker models such 
as Decision Tree and k-Nearest Neighbors benefited from the 
CRISP refinements, showing non-trivial accuracy boosts despite 
their lower baseline performance. These results highlight CRISP’s 
effectiveness in preserving subtle class boundaries associated with 
Parkinson’s severity levels while mitigating issues such as class 
imbalance and multicollinearity. By streamlining the feature space 
and applying synthetic resampling in a fold-aware manner, CRISP 
enhances each model’s ability to learn fine-grained decision rules 
without overfitting.

3.2.3 Ablation study and feature contribution 
analysis

To assess the contribution of individual pipeline components, 
we conducted a focused ablation study on the two best-performing 
classifiers Gradient Boosting and XGBoost by selectively removing 
RFE-based feature selection and SMOTE sampling. As summarized 
in Appendix Table S9, both components contribute to improved 
performance: removing either one leads to a drop in both accuracy 

FIGURE 7

Confusion matrices for Extreme Gradient Boosting (XGBoost) under binary and multiclass settings (Hoehn–Yahr 0–3). Panels compare baseline vs. 
CRISP, with violet–indigo shading indicating class percentages. CRISP reduces off-diagonal errors, cutting binary false negatives from 9 to 1% and 
multiclass confusions (e.g., 1↔2) to ≤1%.

TABLE 2  Multiclass PD severity classification before and after CRISP using 5-fold cross-validation.

Overall Accuracy Precision Recall F1-score

Baseline CRISP Baseline CRISP Baseline CRISP Baseline CRISP

KNN 90.9 ± 0.5 93.0 ± 0.4 90.9 ± 0.5 93.1 ± 0.4 90.9 ± 0.5 93.0 ± 0.4 90.8 ± 0.5 93.0 ± 0.4

DT 81.1 ± 0.6 87.0 ± 1.0 82.0 ± 0.6 87.6 ± 1.1 81.1 ± 0.6 87.0 ± 1.0 81.0 ± 0.7 87.0 ± 0.9

RF 89.2 ± 0.8 92.3 ± 0.8 89.5 ± 0.6 92.5 ± 0.8 89.2 ± 0.8 92.3 ± 0.8 89.2 ± 0.8 92.3 ± 0.8

GB 92.8 ± 0.5 93.6 ± 0.2 92.9 ± 0.5 93.6 ± 0.2 92.8 ± 0.5 93.6 ± 0.2 92.7 ± 0.5 93.6 ± 0.2

XGBoost 97.6 ± 0.2 98.1 ± 0.2 97.6 ± 0.2 98.1 ± 0.2 97.6 ± 0.2 98.1 ± 0.2 97.6 ± 0.2 98.1 ± 0.2

Subject-wise Accuracy Precision Recall F1-score

Baseline CRISP Baseline CRISP Baseline CRISP Baseline CRISP

KNN 97.9 ± 0.5 98.2 ± 0.5 97.9 ± 0.5 98.2 ± 0.5 97.9 ± 0.5 98.2 ± 0.5 97.9 ± 0.5 98.2 ± 0.5

DT 85.0 ± 1.7 86.5 ± 0.5 86.2 ± 1.8 87.2 ± 0.6 85.0 ± 1.7 86.5 ± 0.5 84.9 ± 1.8 86.5 ± 0.5

RF 93.6 ± 0.8 94.6 ± 0.5 94.0 ± 0.7 94.8 ± 0.4 93.6 ± 0.8 94.6 ± 0.5 93.6 ± 0.8 94.6 ± 0.5

GB 95.5 ± 1.6 96.1 ± 0.8 95.6 ± 1.6 96.1 ± 0.8 95.5 ± 1.6 96.1 ± 0.8 95.4 ± 1.6 96.1 ± 0.8

XGBoost 96.2 ± 0.7 99.3 ± 0.5 96.3 ± 0.7 99.3 ± 0.5 96.2 ± 0.7 99.3 ± 0.5 96.2 ± 0.7 99.3 ± 0.5

The top block reports overall metrics, while the bottom block summarizes subject-level predictions (Subject-wise). Each performance metric (Accuracy, Precision, Recall, and F1-score) is 
presented as paired sub-columns for Baseline and CRISP, with values shown as percentage mean ± standard deviation. CRISP consistently improves model performance across both settings, 
with Gradient Boosting (GB) and XGBoost (XGB) showing the largest gains. XGB achieves the highest Accuracy in both evaluation levels (bolded font).
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and F1-score. While this is a preliminary analysis, it supports the 
efficacy of the CRISP pipeline design.

3.2.4 T-SNE visualization of class probability 
structure

To investigate how well the CRISP pipeline enhances latent class 
structure, we applied t-distributed Stochastic Neighbor Embedding 
(t-SNE) to the class probability outputs of the top-performing 
models. This method projects the high-dimensional softmax vectors 
into a two-dimensional space while preserving local neighborhood 
relationships. Figure 8 shows these t-SNE embeddings for top-3 
performing models: Random Forest, Gradient Boosting, and 
XGBoost, both before (top row) and after (bottom row) CRISP. Each 
dot represents a gait cycle color-coded by the true Hoehn & Yahr 
grade. Pre-CRISP plots show substantial overlap, especially between 
adjacent classes such as grades 0–1 and 1–2. In contrast, the CRISP-
enhanced embeddings exhibit much tighter intra-class clustering 
and clearer separation between severity levels. Grade 3 (red), which 
was previously scattered, becomes markedly more cohesive after 
CRISP, while boundaries between mild (blue) and moderate 
(orange/green) stages sharpen significantly. These patterns suggest 
that CRISP does not merely optimize classification margins but also 
reshapes the decision manifold to reflect meaningful probabilistic 
structure. This separation is particularly important for clinical 
deployment scenarios where interpretability and trust in model 
confidence are essential.

3.3 Statistical analysis

We validated CRISP’s improvements using two-sided paired 
t-tests across Accuracy, Precision, Recall, Specificity, and F1-score, 

evaluated over cross-validation folds. Tests were run separately for 
binary and multiclass tasks. Supplementary Table S10 summarizes 
binary results, showing statistically significant gains, particularly in 
Accuracy, Recall, and F1-score, while non-significant cases (mainly 
Specificity) are reported transparently. Multiclass results 
(Supplementary Table S11) confirm that CRISP’s enhancements are 
consistent and statistically robust across models and tasks.

4 Discussion

4.1 Why CRISP works

The performance gains achieved by CRISP can be attributed to three 
sequential enhancements: correlation pruning, feature elimination, and 
class rebalancing. Each of these stages introduces targeted improvements 
that collectively elevate classifier generalization and interpretability. 
Correlation pruning removes redundant inputs, stabilizing feature 
importance and yielding a robust 10-feature subset (Figure 2). RFE 
further refines the set, consistently identifying gait speed, cadence, 
stance–swing ratio, and stance variability as clinically relevant predictors, 
while discarding less informative stride-timing metrics. This streamlined 
input improves generalization and helps simpler models like KNN and 
DT approach ensemble performance (Figure  3). SMOTE balances 
within training folds and corrects class imbalance, particularly boosting 
recall and F1-score in multiclass severity grading. Confusion matrices 
(Figure 7) confirm fewer adjacent-grade errors and perfect recall for 
Stage 3 after CRISP. Collectively, these stages produce more compact, 
stable, and clinically interpretable models. The ROC curves (Figure 6) 
shift decisively toward the upper left, indicating higher discriminability 
and reduced classifier variance. Moreover, the t-SNE projection 
(Figure 8) reveals that CRISP reshapes the latent probability space to 

FIGURE 8

t-SNE visualization of the 4-class probability space generated by the top three models. The top row shows (a) Random Forest (RF) (b) Gradient 
Boosting (GB) and (c) Extreme Gradient Boosting (XGB) baseline models; the bottom row (d-f) shows the same classifiers after the proposed CRISP 
pipeline. Each dot is a single gait cycle, colour-coded by the true Hoehn & Yahr severity grade (0 = blue, …, 3 = red). CRISP tightens intra-class 
cohesion and enlarges inter-class gaps particularly between the mild (grade 0, blue) and severe (grade 3, red) clusters, indicating cleaner decision 
boundaries in the calibrated probability manifold.
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enhance inter-class separation, an essential property for trustworthy 
probabilistic output in diagnostic systems.

4.2 Subject-wise protocol and personalized 
diagnostics

CRISP’s strongest performance gains emerge under the subject-
wise evaluation protocol, which collapses cycle-level predictions into 
a single patient-level decision. This approach mimics real clinical 
workflows, where physicians act on per-subject diagnoses rather than 
per-stride classifications. As demonstrated in Table 1 and Figure 4 
(bottom row), CRISP leads to substantial improvements in recall and 
specificity across classifiers particularly for XGBoost and Gradient 
Boosting. Subject-level confusion matrices (Figure 7) confirm lower 
false-negative rates, while radar plots (Supplementary Figure S1) 
reinforce the robustness of gains across patient cohorts. This person-
aware evaluation also helps detect systematic misclassification patterns 
that might be obscured in pooled cycle-level metrics. CRISP’s ability 
to sustain high subject-wise accuracy, without sacrificing sensitivity, 
positions it as a viable tool for personalized, real-time 
Parkinson’s screening.

4.3 Clinical deployment potential

Beyond accuracy, real-world deployment demands lightweight 
models with low inference latency. In this respect, Gradient Boosting 
and XGBoost offer an optimal balance between predictive 
performance and hardware feasibility. The GB model occupies 
approximately 10 MB and yields predictions in a few milliseconds on 
a standard smartphone CPU. Such efficiency makes it viable for 
in-shoe microcontrollers or wearable gait-monitoring platforms. The 
ability to passively record walking data and output a single, daily PD 
probability score could revolutionize remote monitoring. This daily 
score could trigger telehealth consultations, medication adjustments, 
or fall-risk interventions, bringing Parkinson’s care closer to 
continuous, ambient diagnosis.

4.4 Limitations and future work

Several limitations must be acknowledged. First, the study is based 
on a curated, cross-sectional dataset acquired in semi-controlled 
environments. The PhysioNet Gait in Parkinson’s Disease dataset, 
however, remains one of the most widely used public benchmarks in 
this domain due to its rich composition of gait conditions (normal, 
rhythmic, and treadmill), repeated sessions, and clinically verified 
severity scores. This diversity enables robust modeling of inter- and 
intra-subject variability, making it well-suited for preliminary clinical 
evaluation pipelines. While it does not fully replicate real-world gait 
settings, its depth and accessibility justify its continued use in model 
development and benchmarking. Although the PhysioNet dataset is 
widely used and includes diverse walking conditions, it remains a 
single-source, lab-controlled dataset. This limits external 
generalizability, particularly to free-living settings. While large-scale, 
clinically labeled VGRF datasets from real-world environments are 

rare due to privacy and ethical constraints, we are actively initiating 
our own IMU-based free-living gait data collection. Such external 
validation remains an essential direction for future work to ensure 
clinical robustness and deployment readiness. External validation on 
free-living IMU datasets and multi-site cohorts is needed to ensure 
generalizability. While this study is based on VGRF signals from force 
plates, IMU-based systems are more commonly used in wearable gait 
analysis and free-living contexts. Validating CRISP on IMU data is a 
crucial next step to assess its modality-agnostic performance and 
enable broader real-world deployment. Additionally, because this 
work uses cross-sectional data, it cannot capture temporal dynamics 
of Parkinson’s disease progression or treatment effects. Future work 
should include longitudinal studies that correlate daily gait fluctuations 
with medication cycles, symptom severity, and clinical follow-ups. 
Such efforts would enable real-time, in-shoe monitoring of disease 
evolution in naturalistic settings. Second, the Hoehn & Yahr severity 
labels were obtained within 48 h of the gait recordings, introducing a 
mild risk of temporal mismatch that may affect grading fidelity. Third, 
while CRISP is model agnostic, its feature set and SMOTE parameters 
may require adaptation for different sensor configurations or 
clinical settings.

CRISP models on resource-constrained hardware such as 
in-shoe microcontrollers. Our final XGBoost pipeline uses only 10 
features, enabling a compact model footprint. Recent studies have 
demonstrated that gradient-boosted decision trees, including 
XGBoost, can be efficiently quantized and optimized for on-device 
use. For instance, (Saha et al., 2022; Zhou et al., 2025) report low 
inference latency and memory requirements for tree-based models 
deployed on embedded systems. While we have not yet implemented 
on-device deployment, these findings suggest that CRISP can 
be feasibly adapted for wearable clinical applications in the near 
future. One key limitation of this study is its reliance on cross-
sectional data, which provides only a static view of patient status. 
This restricts our ability to model intra-individual changes or 
disease progression over time. Future work should pursue 
longitudinal data collection using wearable sensors to capture 
repeated gait measurements over extended periods (e.g., 
6–12 months). Such data would enable more robust tracking of PD 
progression, facilitate early detection of deterioration or relapse, 
and better assess treatment effects enhancing the clinical utility of 
the CRISP framework.

Additionally, the demographic composition of the PhysioNet 
dataset may introduce bias. The dataset skews toward older adults, 
with limited representation from younger age groups and unclear 
ethnic diversity. Such imbalances could restrict the generalizability of 
our findings and potentially lead to model overfitting to dominant 
demographic groups. Future studies should validate CRISP on more 
demographically diverse datasets to ensure robustness across 
populations. Another limitation concerns the incomplete 
demographic and clinical metadata in the PhysioNet dataset. While 
we  have included age, gender, and severity stage distributions, 
important factors such as detailed medication status and ethnicity are 
not available. The absence of such information may introduce 
unmeasured biases and limits our ability to assess the full 
generalizability of the CRISP pipeline across more diverse populations 
and clinical contexts. While the PhysioNet dataset offers a range of 
walking conditions including treadmill, normal pace, and rhythmic 
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walking, these settings do not fully replicate the complexities of real-
world PD gait, such as staircase climbing. This constraint may limit 
generalizability to free-living contexts. To partially address this, 
we  employ a subject-wise evaluation strategy, which aggregates 
predictions at the participant level rather than per recording, reducing 
overfitting to session-specific artifacts. Nonetheless, future validation 
on ambulatory IMU-based datasets from free-living settings is 
essential for establishing ecological validity and clinical robustness. 
Beyond traditional feature-based models, recent studies have shown 
the potential of multiscale entropy (MSE) in capturing non-linear and 
multi-timescale gait dynamics in Parkinson’s disease. For example, 
(Amisola et al., 2025) apply MSE to quantify gait complexity and 
variability, offering complementary insights to ML-driven feature 
selection. Integrating such signal-level descriptors with CRISP is a 
promising direction for future work.

Future work will address these issues through longitudinal 
tracking, domain adaptation across shoe types and surfaces and 
multi-modal fusion with inertial signals. A six-month pilot study 
is designed to correlate daily gait scores with medication cycles, fall 
incidents and symptom diaries. This will help translate CRISP from 
proof-of-concept to clinical practice, ultimately enabling real-time, 
in-shoe Parkinson’s monitoring. As a step forward, we are actively 
pursuing new data collection efforts within our lab to assemble a 
free-living IMU-based PD dataset, although this process is 
resource-intensive and subject to ethical approvals. We view this as 
a crucial direction for future work to establish broader real-
world applicability.

5 Conclusion

This study introduced CRISP: A Correlation-filtered Recursive 
Feature Elimination & Integration of SMOTE pipeline for robust gait-
based detection and severity grading of Parkinson’s disease (PD). 
Using vertical ground-reaction-force signals from over 160 
participants, CRISP demonstrated significant improvements over 
baseline approaches across multiple classification models, under both 
overall and subject-wise evaluation protocols. The pipeline’s efficacy 
stems from its principled design: correlation pruning reduces 
redundancy and improves generalizability, RFE (Recursive Feature 
Elimination) isolates biomechanically meaningful features and 
SMOTE (Synthetic Minority Oversampling Technique) balances class 
distributions for fairer learning. Together, these enhancements yield 
higher accuracy, better class separation, and more interpretable 
predictions, as evidenced by metric gains (Tables 1, 2), radar plots 
(Figure  4), and reduced misclassification in confusion matrices 
(Figure 7). Beyond its analytical rigor, CRISP offers practical benefits 
for clinical deployment. Ensemble models like Gradient Boosting 
(GB) and Extreme Gradient Boosting (XGBoost) deliver near-instant 
inference and compact storage, supporting future integration into 
wearable, in-shoe monitoring systems. By outputting a single, daily 
diagnostic score, CRISP has the potential to align with clinical 
workflows and enable continuous, personalized care for PD patients. 
Future directions include external validation on wearable IMU data, 
domain adaptation, and longitudinal studies correlating gait-derived 
scores with medication cycles and fall risk. Ultimately, CRISP 
represents a step toward real-time, data-driven neurology where 
personalized movement analytics inform timely clinical interventions.
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