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Neuronal synchronization refers to the temporal coordination of activity
across populations of neurons, a process that underlies coherent information
processing, supports the encoding of diverse sensory stimuli, and facilitates
adaptive behavior in dynamic environments. Previous studies of synchronization
have predominantly emphasized rate coding and pairwise interactions between
neurons, which have provided valuable insights into emergent network
phenomena but remain insufficient for capturing the full complexity of temporal
dynamics in spike trains, particularly the interspike interval. To address this
limitation, we performed in vivo neural ensemble recording in the primary
olfactory center—the antennal lobe (AL) of the hawk moth Manduca sexta—by
stimulating with floral odor blends and systematically varying the concentration
of an individual odorant within one of the mixtures. We then applied machine
learning methods integrating modern attention mechanisms and generative
normalizing flows, enabling the extraction of semi-interpretable attention
weights that characterize dynamic neuronal interactions. These learned weights
not only recapitulated the established principles of neuronal synchronization but
also facilitated the functional classification of two major cell types in the antennal
lobe (AL) [local interneurons (LNs) and projection neurons (PNs)]. Furthermore, by
experimentally manipulating the excitation/inhibition balance within the circuit,
our approach revealed the relationships between synchronization strength
and odorant composition, providing new insight into the principles by which
olfactory networks encode and integrate complex sensory inputs.

KEYWORDS

neural synchronization, bio-inspired neural networks, generative model, attention-
mechanism, antennal lobe

1 Introduction

Interconnected neural populations construct a meaningful perception of the sensory
features of the complex external world (Hopfield, 1995; Reiter and Stopfer, 2013).
Neural representations of the sensory world are temporally structured, and this temporal
organization drives the selective behaviors by influencing which neurons are recruited,
when they are activated, and how intensely they fire in the central brain (Hopfield,
1995; Laurent, 2002). The coordinated timing of neural activity of these neurons—
referred to as synchronization—is thought to enhance sensory perception, sharpen neural
representation, and enable complex sensory discrimination. This allows the foraging
species to exhibit fast and effective decisions by facilitating effective transmission of
information to the downstream targets (Riffell et al., 2009a, 2014).
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Sensory signals are dynamic and multidimensional, requiring
the brain to integrate the information across both time and
space through distributed neuronal populations to generate
meaningful representations (Laurent, 2002; Wachowiak et al.,
2025). These spatial-temporal properties of the neurons necessitate
the synchronization among neurons to encode identity, intensity,
and valence of different sensory stimuli, including odors (Stopfer
et al., 2003; Bitzenhofer et al., 2022). Odor processing involves the
synchronization of the neural activity across multiple levels of the
brain. In mammals, neural synchrony occurs in the olfactory bulb
(OB). It may drive activity through sets of mitral and tufted cells
in higher brain centers, such as the piriform cortex, entorhinal
cortex, and amygdala (Laurent, 2002; Wilson and Sullivan, 2011).
Similar processes may be at play in insects, where neural synchrony
occurs in the primary olfactory center, the antennal lobe (AL),
and activates downstream neurons in the higher brain centers,
including the lateral horn and mushroom body, thought to be
involved in valence and learning and memory, respectively (Riffell
et al., 2009b). The synchronized activities of neurons in higher brain
centers are represented not only by firing rate but also by the precise
timing of neuronal activity among tens of thousands of neurons.
The interaction between these neurons remains an open question
(Laurent, 2002; Stopfer et al., 1997).

The insect olfactory system provides a tractable
neuroanatomical model for examining the functional bases
of olfactory processing. Olfactory detection starts with the
activation of the olfactory sensory neurons, and axons of these
neurons terminate in the distinct anatomical structures called
glomeruli in the primary olfactory center, the antennal lobe (Chu
et al., 2020; Kymre et al., 2021; Lei et al., 2011). Each glomerulus
is innervated by several projection neurons (PNs) that relay
information from the AL to the higher brain areas (Homberg
et al., 1988; Kymre et al., 2021). The odor-activated PNs interact
with each other via a dense network of inhibitory neurons, local
interneurons (LNs) spanning throughout the AL (Hoskins et al.,
1986). Several studies have shown that odorants evoke strong
synchronous firing of the PNs in several species (Christensen
et al., 1987; Heinbockel et al., 2004; Lei et al., 2002; Martin et al.,
2013; Nagel and Wilson, 2016; Tsai et al., 2018; Wilson et al.,
2004), providing odorï£¡specific representations and encoding
(Mazor and Laurent, 2005; Stopfer et al., 1997). However, studies
have typically used monomolecular odorants or binary mixtures,
which do not represent the complexity of the natural olfactory
environment (Riffell et al., 2009a; Wachowiak et al., 2025).

Natural odors are complex mixtures made up of tens to
hundreds of compounds (Bisch-Knaden et al., 2022; Riffell et al.,
2009a). The proportion of odorants in the mixture is critical in
odor encoding, particularly in a dynamic environment. Previous
studies have shown that changing the concentration of only one
compound significantly affects an insect’s ability to discriminate
and track the floral odor (Riffell et al., 2009b). However, the
cellular and computational bases by which the olfactory system
binds specific features of the complex odor mixture—including the
critical odorants—are not known, and neuromorphic principles
that are involved in such processes are still uncertain, given the
diverse physiological and morphological properties of these neuron
types (Biederlack et al., 2006; Carlsson et al., 2007; Guerrieri et al.,
2005).

Despite advances in modeling either spatial or temporal
neural dynamic patterns, current methods fall short in jointly
capturing spatiotemporal dynamics due to computational and
structural limitations. Previous methods for temporal [recurrent
neural network (Laurent et al., 1996), Hebbian plasticity (Delahunt
et al., 2018)] or spatial aspects of neural responses have been
investigated. In these established methods, either a paired or a
subset of the neurons (Stopfer et al., 2003) were commonly utilized
in investigating the temporal dynamics, but the interaction of
the neurons at the population level has been broadly overlooked.
Generally, the correlation between neurons is a common strategy
to investigate the sensory encoding in population codes based on
the tuning similarities, stimulus effects, and the presence of higher
order correlations (reviewed in Panzeri et al., 2022). In previous
studies, responsive neurons were considered for investigation,
whereas non-responsive units, often excluded from analysis, are
frequently encountered during experiments (Fiscella et al., 2015;
Ni et al., 2022; Pasupathy and Connor, 2002). However, the
non-responsive units could play an important role in population
coding through synergy with the responsive neurons (Haggard and
Chacron, 2025). The mechanism by which individual neurons in
a population selectively weigh the stimulus and influence other
neurons has not been investigated.

In this study, we address how an olfactory neural population
encodes complex odor information for decision making. Through
in vivo neural ensemble recordings and computational analyses,
we treat the spiking of neurons as a point process in time.
Instead of assuming the arrival time of spikes follows a canonical
distribution (e.g., Poisson distribution), we use the highly flexible,
non-parametric, deep normalizing flow to model the probability
distribution of interspike intervals (ISIs: Kobyzev et al., 2021).
During the modeling process of the spike train of a specific
neuron in the AL, we introduce a novel spatial-temporal attention
module to learn how individual neurons synchronize with the
rest of the neuron population (spatial) and are affected by
population spike trains dynamically (temporal). This spatial
attention weight module accounts for the higher order interactions
across a population of neurons, allowing us to analyze complex
population-level synchronization beyond the pairwise analyses
of Ensemble Synchronization Index (Riffell et al., 2009b) and
Kernelized binless methods (Martin et al., 2013). We found
that our method outperforms in the classification of odors,
considering both the interactions within and between LNs and
PNs in the AL. In addition, our study indicates that increasing the
proportion of a compound in the mixture—thereby altering the
excitation/inhibition balance in the AL—could reduce the pattern
of neural synchrony.

2 Data curation

2.1 Insect preparation

Adult male moths (Manduca sexta; Lepidoptera: Sphingidae)
were reared in the laboratory on an artificial diet under a long-
day (17/7-h light/dark cycle) photoperiod. The moths (3 days old,
post-eclosion) were secured in a 10 ml plastic pipette (Thermofisher
Scientific, USA) with dental wax (Kerr Corporation, Romulus,
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FIGURE 1

Overview of methods applied in this study. (A) Schematic of the insertion of the 16-channel multielectrode recording array (MR; 4 sites × 4 shanks) in
the antennal lobe (AL) of the male moth, where the odor is delivered on the antennae. The three-dimensional (3D) model of the male moth brain is
acquired from (https://www.insectbraindb.org; Heinze et al., 2021). Images are not to scale. (B) Each site on a given shank is assigned the same color
to indicate tetrode grouping during spike sorting. (C) A representative spike raster plot of the units, color-coded with multielectrode probes
stimulated with B23. The first trial of the stimulation was presented out of the five trials. The gray bar represents the stimulation duration of 400 ms. (D)
Peristimulus time histograms, superimposed by different units. The darker line indicates the stronger response, and the lighter color indicates weaker
responses. (E) Maximum-intensity projection of the AL demonstrates the location of the probes within the AL. The scale bar is 100 μm. Each shank is
represented with the arrows corresponding to the channel color in B. The 3D reconstruction of the probes and glomerulus that is impeded by these
probes in the AL in dorsal (E1) and lateral (E2) orientations. (F) Architecture of the spatial-temporal attention normalizing flow. The spike trains are
first passed through a Long Short-Term Memory (LSTM) unit and linear embedding modules to obtain the spatial-temporal attention weights for
reweighting the spike train. The reweighted spike train is then passed through a second LSTM module, and its final hidden representation of the
reweighted spike train is used as the context vector to train the conditional normalizing flow for learning distributions of the interspike intervals (ISIs)
and generate realistic spike trains. The x, y in the Normalizing flow denotes the input and output of an affine coupling layer (Dinh et al., 2016); the
subscripts 1, 2 denote different parts of the latent variable; t and s denote two different neural networks. OL, optic lobe; D, dorsal; L, lateral; V, ventral.

MI, USA), leaving the head and antennae exposed. The cuticle
on the head was carefully cut to expose the brain, and all the
muscles, trachea, and neural sheath were carefully removed with
fine forceps (Fine Science Tool, USA). The restrained moth was
mounted to a recording platform attached to the vibration isolation
table. The preparation was placed such that the ALs are orientated
dorsofrontally. The brain was superfused slowly with physiological
saline solution [150 mM NaCl, 3 mM CaCL2, 3 mM KCl, 10 mM
N-Tris(hydroxymethyl) methyl-2 aminoethanesulfonic acid buffer,
and 25 mM sucrose, pH 6.9] throughout the experiment.

2.2 Odor stimulation

Pulses of air (100 ml/min) were pushed through a glass
cartridge containing a piece of Whatman filter paper (Millipore
Sigma, USA) loaded with 10 ul of floral odorant and injected into a
constant air stream (1 L/min) directed toward the moth’s antennae
(Figure 1A). The stimulus was pulsed through a solenoid-actuated

valve controlled by an RZ2 bioamplifier processor (Tucker-Davis
Technologies, Inc., FL, USA). The outlet of the stimulus cartridge
was positioned 2 cm from and orthogonal to the center of the
antennal flagellum. Stimulus duration was 400 ms, and five pulses
were separated by either a 5-s interval or a 10-s interval. The
interstimulation duration was approximately 1 min. The tested
stimuli were categorized as behavioral (B, green colored) and
non-behavioral (purple and light purple colored; Figures 2C1,
C2, 3A–C, 4C, D, 5C–F). Different odor stimuli under each
category are annotated with the subscripted number. We classify
the blend as a behavioral one if it contains all three compounds:
Benzaldehyde (O1), Benzyl alcohol (O2), and Linalool (O6). For our
first sets of an experiment, we tested behavioral stimuli including
extracts of Datura flowers (B15), five artificial mixtures (B16–
B19) containing the behavioral components, three dilutions of B19
[10 times dilution(B20), 100 times dilution (B22), 10,000 times
dilution (B22)] and non-behavioral stimuli include mineral oil
(control, no odor), five mixtures of non-behavioral components
(NB10 - NB14), and nine individual non-behavioral components
(O1–O9). In the second experiment, to determine how modifying
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the ratio of compounds in the mixture modified the encoding of
floral odor, we used an odor cartridge containing the behavioral
mixture (B23) and a second odor cartridge containing increased
concentrations of Benzaldehyde (O1) with 10-, 100- or 1,000-
fold higher concentrations (B24, B25, and B26). The odors from
the two odor cartridges were released simultaneously into the
airway, allowing them to mix before reaching the flagellum. In this
manner, the ratio of compounds in the behavioral mixture (B23)
could be dynamically altered. See Table 1 for the stimuli and their
compositions.

2.3 Ensemble antennal lobe recording

Odor-evoked responses were obtained from 80 units in
seven male moths. Recordings were made with 16-channel
silicon multielectrode recording (MR) arrays (A4X4-3 mm-50-177;
NeuroNexus Technologies). These probes have four shanks (each
of 15 μm in thickness) spaced 125 μm apart, each with four
recording sites 50 um apart, and have a surface area of 177 μm2

indicating the distinct spatial activity patterns across the different
regions in the antennal lobe (Figures 1B–E) (Lei et al., 2004). The
MR was positioned under visual control with a stereo microscope
(Narishige, Japan). As demonstrated in Figures 1A, E, the four
shanks were oriented in a line parallel to the antennal nerve. The
MR was advanced slowly through the AL with a micromanipulator
(Narishige, Japan) until the uppermost recording sites were just
below the surface of the AL. Thus, the four shanks of the MR
were recorded from four regions of glomerular neuropil across the
AL. Ensemble activity was recorded simultaneously from the 16
channels of the MR array by using TDT amplifiers (Tucker-Davis
Technologies, Inc., FL, USA). The recorded signal was digitized
at 25 kHz per channel by using Synapse software (version 98,
Tucker-Davis Technologies, Inc., FL, USA).

2.4 Localization of recording probes in the
AL

The head was excised, and the brains were dissected in
Manduca saline. The brain was washed with 0.01 M phosphate-
buffered saline (PBS) (2 times: each for 20 min) and then
submerged in the solution consisting of 4% PFA and 0.03%
glutaraldehyde) to facilitate tissue fixation. The preparation was
kept overnight at 4◦C and then dehydrated in a series of ethanol
(50%, 70%, 90%, 96%, 100%, and 100%: each for 20 min).
Finally, it was cleared in methyl salicylate (Millipore Sigma, USA).
The whole-mount preparation is scanned with a laser scanning
microscope (Nikon, A1R, Nikon Instruments, Inc., USA) equipped
with a CFI Plan Apo 10× Air objective, which is scanned with a
488 nm line of an argon laser. The high-resolution confocal images
with 1,024 × 1,024 pixels at a distance of 2–4 μm in the z-direction
were obtained. The image was imported in AMIRA version 6.5.0
(Thermofisher Scientific, USA) and the glomerular structures were
reconstructed (Figure 1E). The shank impaled in the AL was also
reconstructed and visualized.

2.5 Spike sorting

The continuous waveforms are exported to an offline sorter
(Offline sorter, Plexon, Version 4.7.1). The spike data were digitized
at 25 kHz per channel. The filter setting (0.6–5 kHz and system
gain of 1,000 were software adjustable on each channel. Spikes
were sorted by tetrode configuration using a clustering algorithm
based on the method of principal components (PCs) (Off-line
Sorter; Plexon). We used dual thresholds, between 2 and 3
standard deviations (SD) above the baseline. The highest and
lowest thresholds will eliminate the voltage deflections deriving
from movement artifacts that are misinterpreted as spikes. The
groups that were separated in the 3D space (PC1–PC3) after
statistical verification (multivariate analysis of variance (ANOVA);
p < 0.05) were selected for further analysis (7–19 units were
isolated per ensemble; Figures 1C, D). Each spike in each cluster
was time-stamped, and these data were used to create raster plots
and calculate peristimulus time histograms (PSTHs). Preliminary
analyses were performed with Neuroexplorer (Nex Technologies,
version 5.4) using a bin width of 5 ms unless otherwise stated.

3 Model

In this section, we present Spatial-Temporal Attention
Normalising Flow (STAN-Flow), a generative framework for
modeling neuronal spike train dynamics through the distribution
of interspike intervals (ISIs). Our approach combines a spatial-
temporal attention module, which encodes both neuronal
interactions and temporal spiking history, with a conditional
normalizing flow that flexibly models ISI distributions without
restrictive parametric assumptions. This integration enables us
to capture stimulus-driven synchronization and timing patterns
in a principled and interpretable manner. We then conclude the
section with an introduction to the different methods and metrics
we compute and compare in the results section.

3.1 Problem formulation and notation

We denote spike train Sq ∈ R
N×T for a total of N neurons,

T timesteps, and q ∈ 1, . . . , Q different stimuli. For the n-th
neuron, we denote the time of the i-th spike timing as tqn

i , hence the
previous spike’s timing as tqn

i−1. Then the interarrival time between
these two spikes is τ

qn
i = tqn

i − tqn
i−1. The goal is to model the

interarrival time distribution τ
qn
i for arbitrary spike i.

Let [�] denote the window size and denote a windowed spike
train as Si[�]; we assume the interspike intervals of neuron n are
conditionally independent given the stimuli q, the �-windowed
history of last spike, and time of the last spike to reduce the problem
into modeling the distribution of interarrival time presented in
Equation 1. For ease of notation, we drop the superscript q and
focus on an arbitrary stimulus; we also drop the superscript n and
focus on an arbitrary neuron.

P(τi|Si−1[�], q, ti−1) (1)

Our generative modeling approach consists of two main
components: (1) the spatial-temporal attention units that encode
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TABLE 1 Odor stimulation and the mixture composition.

Stimuli class Stimuli Name Composition

Single odorants O1 Benzaldehyde

O2 Benzyl alcohol

O3 Farnesene

O4 Geraniol

O5 Caryophyllene

O6 (±)Linalool

O7 Methyl salicylate

O8 Myrcene

O9 Nerol

Non-behavioral blend NB10 Benzaldehyde + Benzyl alcohol

NB11 Methyl salicylate + Caryophyllen + Farnesene

NB12 Methyl salicylate + Caryophyllen + Farnesene+Myrcene

NB13 Methyl salicylate + Caryophyllen + Farnesene + Myrcene + Geranoil

NB14 Methyl salicylate + Caryophyllen + Farnesene+ Myrcene + Geranoil + Nerol

Behavioral blend B15 Datura extract

B16 Benzaldehyde + benzyl alcohol + linalool

B17 Benzaldehyde + benzyl alcohol + linalool+nerol

B18 Benzaldehyde + benzyl alcohol + linalool+ nerol + geraniol

B19 Benzaldehyde + benzyl alcohol + linalool + nerol + geraniol + myrcene + methyl
salicylate + caryophyllene + farnesene

B20 10× dilution of B19

B22 100× dilution of B19

B22 10,000× dilution of B19

B23 Benzaldehyde + benzyl alcohol + linalool + nerol+geraniol + methylsalicylate +
methylbenzoate

B24 10× increase of Benzaldehyde

B25 100× increase of Benzaldehyde

B26 1000× increase of Benzaldehyde

Control Ctl Mineral oil

the windowed spike history to latent space; and (2) a conditional
generative model learned with a normalizing flow that models
the target distribution presented in Equation 1. Beyond the
goal of learning the conditional ISI distribution, the attention
weights learned by this conditional generative system can be
extracted for further analysis. We present the full spatial-
temporal attention normalizing flow (STAN-Flow) architecture in
Figure 1F.

3.2 Spatial-temporal attention

The spatial-temporal attention mechanism combines the vision
attention mechanism in computer vision (Dosovitskiy et al., 2021)
and temporal attention in natural language processing (Bahdanau
et al., 2016; Vaswani et al., 2023). Synchronization can be viewed

as interactions between neurons, which can be characterized
through spatial attention, where a higher spatial attention weight
corresponds to a stronger interaction between neurons. The
importance of particular spike timing and the general spiking rate
is characterized by the temporal weights that scan through the
spiking history: the higher the temporal weight, the more important
a specific time is. Therefore, neurons can be synchronized in their
activity even if they have different individual temporal dynamics.

The spatial-temporal attention module consists of Long Short-
Term Memory (LSTM) layers and a few linear layers. The LSTM
layers effectively summarize spike train time series into lower
dimensional hidden states, which are then projected by the
linear layers to obtain semi-interpretable attention weights. The
windowed spike train Si−1[�] is passed through the first LSTM (f1)
and a linear spatial-embedding layer parameterized as We and be,
outputs the hidden representation hi−1 and d-dimensional spike
train spatial embedding Ei ∈ R

N×d. For the temporal attention,
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we further reduce hi−1 through another linear layer parameterized
as Wα and bα to obtain the temporal weights, αt

i ∈ R
[�].

Ei = We(Si−1[�]) + be =
[
e1

i , . . . , eN
i
]T

hi−1 = f1(Si−1[�])

αt
i = softmax(Tanh(Wαhi−1 + bα))

Additionally, Riffell et al. (2009a) shows that stimuli
information is also encoded by the ensemble firing of neurons.
Hence we concatenate the last hidden states of the LSTM, denoted
as h∗, the spatial embedding of a particular neuron’s activity
em

i , m ∈ 1 . . . N, and the stimuli q to pass through a linear layer
parameterized as Wβ and bβ and obtain the spatial weights
βm

i ∈ R. The vector that contains the spatial weights of all neurons
is denoted as βi ∈ R

N . To isolate the higher-order ensemble
patterns, we replace the traditional softmax of the attention
mechanism with its sparsifying counterpart sparsemax (Martins
and Astudillo, 2016) which directly projects logit values onto the
simplex. Applying the sparsemax allows some attention weights
to be reduced to zero, amplifying the effect of those synchronized
neurons.

βm
i = sparsemax(Tanh(Wβ

[
h∗; em

i ; q
] + bβ ))

βi =
[
β1

i , . . . , βN
i

]T

Usual applications of attention weights obtain a context vector
through a weighted average of latent variables (Bahdanau et al.,
2016; Vaswani et al., 2023). However, a weighted average of
each neuron’s representation dilutes the synchronization identified
through the spatial attention weight as the resulting weighted
representation becomes less identifiable. Hence, we reweight
the windowed spike train with the mean-normalized spatial-
temporal weights and feed the reweighted windowed spike train
(S′i−1[�]) through a second LSTM layer (f2) to obtain the final
hidden representation h′i−1. The symbol × denotes element-wise
multiplication.

S′i−1[�] = βi[αt
i ]T × Si−1[�] (Reweighting Spike Train)

h′i−1 = f2(S′i−1[�]) (Obtain final hidden representation)

The output of f2, h′i−1, can be seen as a context vector derived
from the reweighted spike train. This context vector combines
the temporal dynamic spike train, the neuron interaction, and the
influence of different stimuli into a continuous representation to
inform the conditional generative model.

It is worth noting that the attention mechanism introduced in
this section is inspired by the attention mechanism first introduced
in translation tasks, rather than the more well-known self-attention
mechanism for transformer-based architectures (Bahdanau et al.,
2016; Vaswani et al., 2023). This modeling choice is due to
several practical concerns. First, the self-attention mechanism
offers limited interpretability. The transformer architecture linearly
embeds data into uninterpretable lower dimensions, then applies
the attention mechanism on the value matrix; this limits the
interpretation of the attention matrix compared to our formulation,
which directly applies the attention weights to modify the spike
trains. Second, fitting self-attention mechanism on the temporal

and spatial dimensions through the transformer architecture
requires two transformer modules; this will induce much more
computation overhead and is less efficient. Finally, due to the
size of transformer-based architecture, a large amount of data is
usually required to leverage its ability to process diverse contexts;
however, neural datasets generally lack this level of diversity to train
a transformer without heavy regularization (Ye and Pandarinath,
2021).

3.3 Conditional normalizing flow

Once we learn the synchronization and timing information,
we build a modeling module to accurately reflect the ISI
distribution based on synchronization and temporal dynamics.
While traditionally the modeling of spike trains follows the
Poisson Process, this assumes the spike train is rate-coded and
the ISI distribution follows an exponential distribution. These
assumptions are not always realistic and constrain the modeling
process. Instead of a model based on the Poisson assumption,
we build a non-parametric deep generative model conditioned
on the final hidden representation h′i−1 to learn the probability
distribution of interspike intervals given the learned history.

We chose to apply a conditional normalizing flow that directly
optimizes the negative log-likelihood of the density. A normalizing
flow is usually defined by a transformation of a standard Gaussian
distribution into a more complex distribution (Kobyzev et al.,
2021). This transformation typically involves a sequence of
invertible, tractable, and differentiable mappings, enabling the
evaluation of a sample’s value in the simple distribution or its
likelihood.

We concatenate the stimuli q, the last hidden representation
of attention-reweighted spike train h′i−1, and the time of last spike
ti−1 into a context vector denoted as xi. We propose a normalizing
flow that is conditioned on xi; the likelihood takes the following
form, where Z is drawn from a conditional Gaussian distribution.
Extending recent neural network architecture (Kobyzev et al., 2021;
Dinh et al., 2016), a loss through log-likelihood can be written as:

xi = [h′i−1; q; ti−1] (2)

log P(τi|xi) = log P(zi|xi)det
∣∣∣∣ ∂z
∂τ

∣∣∣∣ = log P(fθ (τi, xi))

+ log
(

det
∣∣∣∣∂fθ (τi, xi)

∂τ

∣∣∣∣
)

(3)

We specifically applied the real-valued non-volume-preserving
normalizing flow architecture (RealNVP) in our study (Dinh et al.,
2016), where the fθ is characterized through a series of neural
networks that construct an upper triangular Jacobian, simplifying
the determinant computation of the Jacobian to be the trace.

log P(τi|xi) = log P(fθ (τi, xi)) + Tr log
(∣∣∣∣∂fθ (τi, xi)

∂τ

∣∣∣∣
)

(4)

This framework considers the spiking history, the
interaction between neurons, and the stimulus effect, and
learns the ISI distribution without assuming it follows some
canonical, parametric distribution. Hyperparameters related
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to the architecture and training process are listed in the
Supplementary material.

3.4 Identifying synchronization

A crucial part of our analysis is establishing a higher
order non-linear method to analyze neuron synchronization. We
propose the spatial attention weight method and compare it with
two previously reported neuron synchronization methods, the
Ensemble Synchronization (ESI) proposed in Lei et al. (2004),
and the Kernelized Binless Method (KB) applied in Martin et al.
(2013); we then discuss the synchronization analysis process of our
proposed spatial-attention weights method.

3.4.1 Ensemble synchronization
The traditional analysis of ensemble patterns utilizes the cross-

correlation coefficient between pairs of neurons (Lei et al., 2004). In
particular, the synchronization index (SI%) is calculated as

SI%ensemble =
[CE]δraw − [CE]δshuffle

C1(T) + C2(T)
× 100% (5)

where [CE]raw is the number of coincident events in the cross-
correlogram peak centered around t = 0 with width δ, [CE]shuffle is
the number of coincident events after trial shuffling (shift predictor
method) to correct for coincidences attributable to chance and an
increased firing rate. The corrected correlograms were calculated by
averaging four trial shifts and subtracting the result from the raw
correlogram. T is the total response time over which spikes were
counted, and C1 and C2 are the number of spikes recorded from
units 1 and 2 during time T (Lei et al., 2004).

We calculated the ensemble SI% for all stimuli using one trial
as the raw trial and corrected it by shuffling the other four trials.
We applied the parameters δ = 5 and T = 1, 000 (ms) after the
onset of the stimuli as suggested in Riffell et al. (2009a). In the
Supplementary Figure S1, we explore a variety of hyperparameters
for δ and T.

3.4.2 Kernelized binless method
A more recent method for analyzing the synchronization of

neuron firing is through the kernelized binless method (Martin
et al., 2013). While it remains a pairwise synchronization analysis,
it applies an exponential function kernel to smooth out the
spike train. Specifically, the exponential kernel is denoted h(t) =
exp(−t/φ)×u(t) where u(t) is the heavy side function, φ is a kernel
parameter to aggregate spikes over time; a similarity index (see
Equation 6) is then calculated between a pair of neurons’ kernelized
spiking.

SI%binless =
s1 · s2

||s1||||s2|| (6)

We compute SI%binless with the time constant φ = 5(ms)
similar to previous synchronization analysis (Martin et al.,
2013). Trial shuffling is also applied for the kernelized binless
method. In the Supplementary Figure S2, we explore a variety of
hyperparameters for φ.

3.4.3 Spatial-attention method
There are a total of five trials for each stimulus in the dataset.

Therefore, we train a conditional normalizing flow for each neuron
by applying a cross-validation scheme, in which we rotate three
trials to form the training set, while the other two form the
validation and test sets. The validation set is used for model
selection, which ensures that the STAN-Flow will not be overfit
to the training data. The spatial-attention module (see Section
section 3.2) is learned jointly with the conditional normalizing flow
through the loss function (Equation 4). For an arbitrary spike i
of an arbitrary neuron n, and arbitrary stimuli q, our modeling
process would determine a set of attention weights that determines
the importance of each neuron in the neuron population. During
our analysis, we concatenate the spatial-attention for each stimulus,
then average the spatial-attention weights over all spikes, all
neurons, and all runs during evaluation to output a synchronization
summary matrix B. The specific calculation is shown in Equation 9.

βqn =
∑

i

β
qn
i βqn ∈ R

N (7)

Bn = [
β1n · · ·βQn] Bn ∈ R

Q×N (8)

B = 1
N

N∑
n

Bn (9)

Each column of B can be seen as the “strength" of neuron for
the Q different stimuli. If a subset of neurons with elevated spatial-
attention weights for a particular stimulus q, it suggests that these
neurons are determined to be synchronized by the neural network.
An example of this matrix is provided in Supplementary Figure S7.

3.5 Classification of neurons into putative
PN and LN

Although our ensemble recorded neuronal data does not
allow us to identify the neuron types, we follow the classification
procedure described in Lei et al. (2011) to classify PNs and LNs
in our spike-sorted units. This classification method relies on the
observation that the spontaneous spiking activity of PNs and LNs is
different: PNs are more likely to have bursts of spiking activity while
LNs fire regularly. It adopts the criterion in Legendy and Salcman
(1985) to detect potential bursts in spontaneous activities (5s) in
the full spike train from Poisson Surprise (Poisson S) rates, which
characterizes the abrupt changes in spiking rates compared to the
mean spike rate.

Poisson S = rT − log[
∞∑

j=n

(rT)j

j!
] (10)

The Poisson Surprise rate for a set of spikes is computed from
the time span T of the set and the mean firing rate r, which is the
number of spikes O in the set divided by T. The burst is detected
by first finding a pair of successive spikes whose interspike interval
(ISI) is less than the mean ISI of the spike train multiplied by a
designated coefficient p(0 < p < 1). Subsequent spikes are added
to the pair of spikes to formulate a spike set with the largest possible
Poisson Surprise value, and the earliest spikes are pruned from the
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set if that further increases the Poisson Surprise of the spike set.
Finally, the spike set is regarded as a burst if it consists of at least 3
spikes.

With all burst occurrences detected throughout the spike train,
we use them to calculate nine burst-related features for a particular
neuron (Lei et al., 2011). A logistic regression is finally fitted with
the nine burst-related features as covariates to classify the type of
neurons as PN or LN.

We train a similar logistic regression model based on the
spontaneous spike train obtained from intracellular recordings
and staining in Lei et al. (2011), with a validation accuracy of
around 85%. Then, using this logistic regression model, we classify
the neurons collected through Section 2. During our initial data
analysis, we found that the distribution of the average spike rate in
the data from Lei et al. (2011) differs from that in our spike-sorted
data. The difference in distribution resulted in scale differences in
the 9 burst-related features (Supplementary Figure S5). To resolve
the difference in the features, we applied the following processing
steps:

1. We tune the p parameter in the procedure for detecting potential
bursts to obtain burst-related features on a similar scale. We
used p = 0.2 while p = 0.5 is defaulted in Lei et al. (2011).
The p parameter defines the ratio between the mean spike rate
(rmean) and the spike rate of potential burst segments (rburst) and
classifies the segment as a burst when rmean/rburst < p.

2. We remove three of the nine features for which significant scale
differences cannot be resolved by tuning p. The six features
we used to classify the neuron types are the within-burst
maximum spiking frequency, the within-burst number of spikes,
the percentage of burst spikes, the burst frequency, the mean
Poisson Surprise, and the maximum Poisson Surprise.

3. We apply two different min-max scalers to the training data
(Lei et al., 2011) and the testing data (described in Section 2),
respectively.

Once the neurons are classified, we supply our predicted labels
to human experts to assist in the annotation of true neuron types.
We refer the readers to Lei et al. (2011) for the details regarding the
classification method.

3.6 Peristimulus time histograms

To see how the individual neurons responded to an odor, we
compute a peristimulus time histograms (PSTHs) averaged across
five trials for a given odorant stimulus, binned at 20 ms, and
smoothed with a Gaussian of 3 standard deviations (Figures 1D,
5B). We generate the response maps of the odor-evoked population
response by Equation 11. Here, we z-scored the PSTHs for each
neuron by subtracting its average baseline firing rate (measured 200
ms before a stimulus onset) and dividing by the standard deviation
of the baseline. The response maps indicated changes in firing rate
in units of the standard deviation of spontaneous activity. The
(Figures 1D, 5B) are used for visualization purposes only.

PSTHz(t) = (PSTH − μbaseline)/σbaseline (11)

3.7 Response index

The Response Index was computed in our study to investigate
the response of different units to the odor stimuli and to assess the
similarity of generated and real spike trains under different stimuli
for each unit (Riffell et al., 2009a). The response index is calculated
as follows:

RIodor =
(rodor − rcontrol) − rmean

SD

where the rodor is the firing rate of a specific odor; rcontrol is the firing
rate of control (mineral oil); rmean is the mean firing rate averaged
over all stimuli, and SD is the standard deviation of the firing rate
across all stimuli. Firing rate in this RI computation specifically
means the average firing rate over the stimulation period (0–
600 ms after the onset of stimuli). The response indexes of other
preparations are shown in Supplementary Figure S3.

3.8 Euclidean distance

Euclidean distance is applied in our study to understand the
difference between spatial-attention vectors of different stimuli. For
two vectors v1, v2 ∈ R for an arbitrary dimension d, with v1i, v2i
denoting the ith element of the corresponding vector, the Euclidean
distance is defined as

Euclidean distance =
√√√√ d∑

i=1

(v1i − v2i) (12)

4 Results

By leveraging well-known biological principles of the spiking
and interaction between neurons in the primary olfactory center,
we designed STAN-Flow to model the fundamental neuron spiking
mechanism and neuron interactions in the AL (Figure 1F). We
validate STAN-Flow from three different perspectives: (1) Can
it generate realistic spike trains that replicate the statistical
distribution of recorded data? (2) Can it distinguish between
behaviorally relevant and irrelevant stimuli using spatial-attention
weights that reflect neural synchronization patterns? (3) Can
it infer interactions among distinct neuronal subtypes in the
AL? After validating that the STAN-Flow effectively learns the
spiking mechanism and network dynamics, we apply it to
investigate whether synchronization is affected when component
odorant concentrations diverge from those found in natural,
behaviorally significant mixtures (e.g., floral blends that drive
foraging behavior).

4.1 Antennal lobe network dynamics and
spike train generations

One major aspect of validating the STAN-Flow architecture
is examining how similar the generated spike trains are to the
empirical neuron recordings. In Figure 2A, we present five trials of
the spike train of a specific unit in response to a behavioral blend
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FIGURE 2

STAN-flow learns the generating distribution of interspike interval (ISI). (A) A representative odor-evoked spike train of a particular neuron across five
trials that are empirically generated (blue). The spike train generated by the model for the same neuron (magenta) is placed on the lower panel. The
gray bar indicates the stimulation window of odor blend (B19); the generated spike train is sampled by conditioning on the test set during
cross-validation. (A1) Violin plot of ISI of empirical and generated spike train in (A) under B19 stimuli, the dashed line indicates the 25%, 50%, and 75%
quartiles. (A2) Comparison of the average firing rate of empirical vs. generated spikes. (B1) Empirical spike trains of 14 neurons stimulated with B16

(blue) and control (gray). (B2) Generated spike trains of the same neuron stimulated with B16 (magenta) and control (gray); the gray bar indicates the
stimulation window. (C1) Response Index of the empirical recordings of population of neural responses of the same preparation in B and the
model-generated neural responses (C2) to the single odorants (O1–O9; purple), non-behavioral blends (NB10–NB14; light purple), and behaviorally
relevant blends (B15–B22; green). ns, not significant.

odor (B19) and a generated spike train given this odor. Visually,
the generated spike train (magenta, Figure 2A), which is generated
conditioned on data in the test set, realistically captures the
temporal dynamics of the spiking pattern of spontaneous baseline
activity, stimulation period, and post-stimulation corresponding to
the empirical spike train.

We conclude that there are no differences in the empirical and
generated distribution of ISI (Kolmogorov–Smirnov (KS) Test1, K
= 0.08, p = 0.98; Two One-Sided T-Test (TOST) for distribution
mean2 (Lakens, 2017) (t = 1.29, p = 0.09). We also found no
significant differences in the average firing rate of a neuron for
empirical and generated spike trains (two-sided t-test, t = 0.65,
df=8, p = 0.53), indicating that the generated spikes are similar to
the empirical ones (see Figures 2A1, A2).

1 The KS-Test will reject the null hypothesis if two distributions are

statistically different.

2 Also known as the test of equivalence for two independent samples; the

TOST will reject the null hypothesis if the means of the two distributions are

within the ±� region. We choose � = 2 ms.

We also examine the generated spike trains across an
ensemble. We present the empirical and generated spike trains
of 14 units stimulated with behavioral odor B16 and control,
respectively (Figures 2B1, B2). Surprisingly, the response index
(RI; Figures 2C1, C2, Supplementary Figure S3) shows strong
correspondence between empirical and STAN-Flow-generated
spike trains across all neurons and stimuli. This close match
indicates that STAN-Flow effectively captures the average spiking
patterns observed in empirical recordings. The consistency of this
alignment across multiple neurons and stimuli further highlights
STAN-Flow’s state-of-the-art capability in modeling the spiking
dynamics of neurons within the antennal lobe (AL) region.

4.2 Spatial-attention weights classify
stimuli

The AL relies on different cell pairs synchronizing with one
another, or a specific subset of critical neurons, to encode both
behavioral and non-behavioral stimuli (Riffell et al., 2009a; Lei

Frontiers in Computational Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fncom.2025.1655462
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Yang et al. 10.3389/fncom.2025.1655462

FIGURE 3

Clustering behavioral and non-behavioral stimuli through different synchronization methods. (A) spatial-attention weights separate the behavioral
stimuli (green) from the non-behavioral stimuli (purple) by forming two distinctive clusters in the 2D TSNE-reduced space. The behavioral stimuli
cluster is highlighted with a brown rectangle. (B, C) 2D TSNE plot of Binless synchronization (KB) and Ensemble Synchronization Index (ESI),
respectively. (D) The bargraph represents the accuracy of the 2-class K-means algorithm across various window sizes. The window used in our
analysis is shown against the light green background. While STA(20ms) is significantly better than other window sizes, the STA generally outperforms
traditional methods. (E) The bargraph represents the 2-class K-means algorithm with the spatial-temporal attention (STA) method, repeated with 100
different initializations. K-means accuracies of the Kernel Binless (KB) and Ensemble Synchronization index (ESI) are significantly less accurate than
STA. ∗∗∗p-value < 0.001 and ns is non-significant.

et al., 2016). Our method captures this synchronization mechanism
through the spatial attention module. The spatial-attention module
assigns an attention weight to each of the units of the spike train
input. Each row of the synchronization summary matrix B (see
Equation 9) represents a stimulus, and the columns represent the
relative importance of each unit. The spatial-attention method
takes all neurons into account during the modeling of spike trains,
thus offering the ability to characterize the synchronization of
multiple neurons beyond pairwise analyses.

We first apply t-distributed Stochastic Neighbor Embedding
(TSNE) to reduce the dimensionality of B. Our result demonstrates
that the spatial-attention weights distinctly separate the stimuli into
two clusters: one includes all the stimuli mixtures that contain
all the behavioral components (green), and the other cluster
includes the individual odor molecules (purple) as well as mixtures
containing non-behavioral components (light purple) (Figure 3A,
Supplementary Figure S4). Two exceptions are grouped with the
behavioral relevant stimuli space: the single odor (Benzylalcohol:
O2) and non-behavioral blend (NB10 (mixture containing (O1 and
O2): Riffell et al., 2009a). These results suggest that O1 and O2
could be essential to the behavioral responsiveness of complex
odors. To ensure reproducibility of our result, we retrained
STAN-Flow with the same configuration using 100 different
random initializations, then applied a 2-class K-means algorithm

(behavioral vs. non-behavioral), STA yields around 80 (±4.5)%
classification accuracy.

We next compute the pair-wise synchronization matrix for two
previously known methods: the Ensemble Synchronization Index
(ESI) (Riffell et al., 2009a) and the Kernelized binless method
(KB) (Martin et al., 2013). We first extract the upper triangular
synchronization matrix of ESI and KB, then apply TSNE to
reduce its dimension. We do not observe obvious patterns of
clustering in these methods (Figures 3B, C). Compared to the
STA results (STAN-Flow trained with 100 different initializations),
both of these methods yield around 20% less accuracy (One-
sided z-test; ESI: z = 4.67, p-value < 0.01; KB: z = 4.67, p-value
< 0.01), indicating that STA consistently outperforms ESI and
KB (Figure 3E). As ESI and KB were previously only applied to
populations of projection neurons (Riffell et al., 2009a; Martin
et al., 2013), we conjectured that ESI and KB failed to separate
the stimulus types in this neural population because both LNs
and PNs are present. This enhanced performance in separating
the behavioral and non-behavioral stimuli when different types of
neurons exist in the neuron population propels us to understand
how the spatial-attention models the interaction of different neuron
categories in the AL.

We also compare the effect of different window sizes [�]
in extracting neural synchronization. Similar to our comparison
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before, we apply TSNE on the STA generated from models
trained with different window sizes, then apply K-means on
the dimension-reduced STA and compute K-means accuracy
(Figure 3D, highlighted with light green). We found that while a
20 ms window performs the best, synchronization can be captured
with a window size as low as 5 ms. STAN-flow trained a wide
range of window sizes continue to outperform traditional methods,
suggesting that STA is a robust tool to measure synchronization at
any level.

4.3 Detecting the interaction between PNs
and LNs

The antennal lobe consists of broadly two types of neurons,
PNs and LNs. As Lei et al. (2004, 2016) and Tanaka et al.
(2009) suggested, LNs modulate the PNs synchronization, and
the PNs synchronize among themselves (Martin et al., 2013) to
encode behavioral and non-behavioral stimuli. While STAN-Flow
is trained without the knowledge of neuron types, we investigate
if STAN-Flow can recover the interaction between LN and PNs
through modeling the spiking process. Hence, we need to label
the neurons to their corresponding neuron types. However, with
the electrophysiological recordings in the AL with the current
method, we cannot morphologically classify PNs and LNs. To
classify the neurons, we utilize previous results that found the
PNs and LNs have distinctively different spontaneous patterns of
spiking activities (Figures 4A, B) (Lei et al., 2011). The PNs burst
from time to time during spontaneous baseline firing, while the
LNs spike regularly. Based on this observation, Lei et al. (2011)
developed a simple method to classify the neurons based on their
spontaneous spiking dynamics.

We refer readers of the details of this classification process to
Section 3.5. The classification accuracy computed against expert
label was 78% while the validation accuracy using data from Lei
et al. (2011) is about 75%. Since there could be more PNs than LNs
in the AL region of the moth (Homberg et al., 1988; Reisenman
et al., 2011), we also compute the recall (0.73) and precision (0.73),
showing that the classification method obtained a reliable result
under this imbalance classification scenario.

With the neuron labels, we continue to study the essential
question in this analysis to understand the interaction between
the PNs and LNs. To better understand the functional roles of
local neurons (LNs) and projection neurons (PNs), we trained
our model on the full population of recorded neurons, then
separately visualized the synchronization learned by STA of PNs
(Figures 4C, C1) and LNs (Figures 4D, D1) using 2D TSNE. The
PNs’ embeddings showed clear clustering of behavioral vs. non-
behavioral stimuli (highlighted with a gray background rectangle,
while the LNs lacked any discernible pattern. When we trained the
model using only the annotated PNs or LNs, the PNs alone still
exhibited visible clusters corresponding to behavioral stimuli, with
partial overlap from non-behavioral stimuli, suggesting inherent
synchronization among PNs. One notable feature is that the
individual odors are distinctly cluster (Figure 4D). Importantly,
training on PNs extracted from the full model resulted in a mean
classification accuracy approximately 12.5% higher than training

on PNs alone (one-sided z-test, z = 20.77, p-value < 0.001). This
enhancement suggests that the optimal stimulus separability may
be modulated by LNs, which could suppress responses to non-
behavioral stimuli. Collectively, these results highlight the critical
role of LNs in refining PN synchronization and emphasize their
importance in the encoding of behavioral stimuli within the AL and
the STAN-Flow model.

Our previous result has highlighted that LNs are critical for
odor classification, but could there be a core neuronal unit in an
ensemble that accounts for the segregation of behavioral and non-
behavioral stimuli? As we showed that spatial-attention consistently
clusters the behavioral and non-behavioral odors, we now test the
K-means clustering accuracy by removing each unit in an ensemble.
We found one LN significantly lower than the classification
accuracy (86% before removal vs. 78% after removal). This neuron
responds to both behavioral compounds and non-behavioral
compounds (Figure 2C1), unit 14. In addition to single neuron
analyses, we removed a combination of up to 3 neurons (data not
shown) in an ensemble. We found a specific combination including
the LN (Figure 2C1, unit 14; Supplementary Figure 3) and two
other PNs (units 2 and 5, Figure 2C1; Supplementary Figure 6) will
lower the clustering accuracy to 52%. These PNs responded to
the majority of the behavioral compounds (broadly tuned). These
results also further indicate that broadly tuned LNs could be core
neurons for odor classification (Wilson et al., 2004; Olsen et al.,
2010) in combination with the PNs, which are responsive to the
behavioral compound (Figure 2C1).

4.4 Altering the excitatory drive attenuates
synchronization

STAN-Flow preserves the fundamental spiking dynamics and
functional architecture of the AL by capturing the synchronization
patterns of projection neurons to the behavioral mixture,
including behaviorally relevant odor diluted by several magnitudes
(Figure 3A, odors (B20, B22, and B22) in the behavioral clusters). To
test the robustness of our model in capturing this synchrony, we
increased the concentration of a single component, benzaldehyde
(O1), within the behavioral odor mixture B23 to 10-fold (B24),
100-fold (B25), and 1,000-fold (B26). Visually, the stimulus
concentration-dependent response was prominent. The PSTHs
show the sustained activity after the stimulation, forming a plateau-
like PSTH to the increased O1 ratio as compared to the original
B23, indicating the weak or delayed inhibitory input to this neuron
(Figures 5A, B, E). These dose-dependent increases in the O1 ratio
led to a transient suppression in neuronal response patterns, which
may be due to the inhibition of inhibitory neurons involved in
encoding odor identity/intensity (Figures 5B, E).

We retrained STAN-Flow using neural activity. We then
repeated the TSNE analysis on the summary matrix (see Figure 5C).
The TSNE clustered individual components toward the top-
right quadrant, grouped the behavioral mixture B23 variants with
elevated O1 concentrations centrally, and positioned the control
stimuli to the far left. Also, the response index of the generated
heatmap (Figure 5D, Supplementary Figure S6) is similar to the
empirical response index.
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FIGURE 4

Spatial-attention module learns the interaction between two neuron populations in the antennal lobe. (A) Representative morphology and
physiological features of the local interneurons (LNs) and Projection neurons (PNs). LN spikes more regularly while PN spikes in a burst pattern. (B)
Selected electrophysiology features to classify neuron types; the difference between PN and LN is consistent with previous analysis of Lei et al.
(2011). (C) The spatial-attention of PNs and LNs (C1) was separately extracted from a joint model (trained with both PNs and LNs) and then reduced
to two dimensions through TSNE. The behavioral cluster of stimuli is highlighted with a light-shaded gray rectangle. (D) TSNE reduced
two-dimensional (2D) scatter plot of spatial-attention with the model trained with PNs only and with LNs only (D1).

To evaluate how ensemble synchronization changes with
increased O1 ratio in the mixture, we calculated the dissimilarity of
odor-evoked synchrony patterns using a normalized dissimilarity
index (normalized by the mean, moth = 3, units = 43). This analysis
compared B23 with 10×, 100×, 1000× increase of O1 (B24- B26)
and also with individual odorants. As shown in Figure 5F, there
is an increasing trend of the dissimilarity with B23, but it is not
statistically significant among the group (one-way ANOVA, F =
0.642, p = 0.673). These findings could suggest that elevated O1
concentrations in the behavioral components may shift the neural
representation toward a non-behavioral classification.

Our results underscore the role of synchrony in the AL as a
critical coding mechanism for odor classification. This synchrony
is finely tuned to both the identity and the concentration of
odor components, enabling flexible and accurate recognition of
behaviorally relevant odors in dynamic natural environments.

5 Discussion

Here in the current study, we elucidated the effects of
network dynamics in the antennal lobe (AL) to classify behavioral
and non-behavioral relevant odors. We developed the spatial-
temporal attention normalizing flow (STAN-Flow), an accurate
computational model representing the spiking ensemble dynamics
of the AL. We adopt this model to extend the characterization

of the AL network beyond the experimental possibilities. The
model effectively reproduced the AL responses’ key features
concerning the odor classification, through detailed neuron-level
interactions. This model also agrees with the previous results that
local interneurons play critical roles in the temporal encoding of
odor stimuli, enabling the classification of odors into behavioral
and non-behavioral stimuli. Shifting the concentration of one
of the behavioral components in the odor mixture—by altering
the excitation/inhibition balance in the AL—causes the neuronal
representation of this stimulus to change. This computational
model can be easily modified to be applied in various fields for
accurately modeling and reliably interpreting complex interactions
for biological and non-biological systems.

5.1 Neurophysiological computation in the
AL

The AL is one of the most extensively studied neural structures
in the insect brain, particularly in terms of its detailed cellular
and circuit-level architectures for sensory encoding. Over the last
two decades, behavioral, physiological, and modeling research
have made significant strides in understanding the circuit basis
of processing complex odor mixtures, their intensities, and their
relationship to odor classification. Understanding the role of
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FIGURE 5

Changes in synchronization pattern with increased Benzaldehyde (O1) ratio in behavioral mixture. (A) Hypothetical neural circuits mediating the role
of local inhibition by the Local interneurons (LN, black color) to the olfactory sensory neurons (OSNs) relaying three different floral odors
(Benzaldehye (O1), Benzylalcohol(O2), and Linalool(O6) at naturalistic odor blend and floral odor with increased O1 ratio. The arrowhead besides O1

indicates the increased concentration. The PNs are synchronized, and olfactory information is relayed from the AL to the higher brain centers. The
thicker line of the LNs, when presented with increased O1 ratio, could indicate the involvement of the modulatory effect. (B) Odor-evoked activity of
a single neuron to the increased (O1) ratio in the behavioral mixture for five trials (top row: natural behavior concentration (B23), second row (10×
increase in (O1) ratio–(B24)), third row (100× increase in (O1)–(B24)), and fourth row (1,000× increase in (O1)–(B25)). The bottom row represents the
control (Ctl). Spike raster plot, right side; peristimulus histogram with light shaded present mean±sem, left side. The vertical bar represents the firing
rate of 20 spikes per second. (C) Two-dimensional scatterplot of the TSNE reduced spatial-attention weights. (D) Response index of the generated
spike showing B23 odor, with increased ratio of O1 and individual odorants. (E) z-scored odor-evoked activity of 43 neurons from 3 moths of
B23–B26. (F) Dissimilar index of odor B23 computed against different ratios of increased O1 in B23 and individual odorant.

the AL in odor perception has been the focus of a variety of
theoretical and computational models. The dynamic and complex
stimuli necessitate utilizing the computational models to extract
the features of interest from the spike trains (Triplett and
Goodhill, 2019). The STAN-Flow developed in this study serves
this purpose: its flexibility simulates the spike train generation
process and successfully discriminates and classifies complex
odors. This model could be beneficial in identifying future odors,
whether or not they could be relevant to insects, predicting
the population response, and simulating the spike trains of the
neurons.

This computational model can cluster the odors into
behaviorally relevant and non-behaviorally relevant groups
(Figures 3, 5). Our approach enhances clustering into behavioral
and non-behavioral odor stimuli, and it is highly efficient. It could
potentially facilitate further processing in the higher brain centers
such as the lateral horn (LH) (Lazar et al., 2023; Strutz et al.,
2014). Given the extensive knowledge of neuromorphic processing
in downstream neurons from the AL and its circuits, it remains

unknown to date how this spatiotemporal information is processed
within the AL and in higher brain centers.

5.2 Local interneurons necessitate the PNs’
synchronous activity

Olfactory information is encoded as spatial-temporal patterns
in the neural population of the AL, and through the activity
of different cell types, such as LNs and PNs. A benefit of the
model and resulting analyses is a dissection of the contribution of
different cell types in how the complex odor stimuli are classified
into behavioral and non-behavioral (Figures 3, 5). However,
the glomerular processing of the behaviorally relevant odor is
putatively identified in the anterior lateral regions of ordinary
glomeruli in the AL investigated through measuring the calcium
activity of sensory neurons in the moth (Figure 1 in Bisch-Knaden
et al., 2018; Bisch-Knaden et al., 2022). It appears that the region
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processing the three components of behaviorally relevant odors is
colocalized in a similar position within the ordinary glomeruli in
the AL. However, the PNs and Lns involved in these colocalized
glomeruli are not known, even though diverse morphological PNs
and LNs are reported in different insect species (Kymre et al.,
2021; Matsumoto and Hildebrand, 1981; Kuebler et al., 2012;
Reisenman et al., 2011; Chu et al., 2020). Future experiments with
simultaneous recording from the selective recordings will answer
the neural circuit involving such behavioral valence. Unlike some
specific glomeruli (particularly pheromone processing glomeruli),
which may not require specific connectivity between the glomeruli
(or sparse connection) for the PN response, some floral odor
processing glomeruli (ordinary glomeruli) and PNs arising from
these glomeruli may involve the LNs that have heterogeneous
branching pattern in these glomeruli and could channel to the
behavioral relevance odor. Of 1,100 PNs, we were only able to
identify 78% of the PNs. Even with extensive sampling of LNs and
PNs through intracellular recordings and staining in the other moth
species (Helicoverpa armigera: out of 176 reported neurons, 61%
are PNs (Kymre et al., 2021). Our method also relies on validation
techniques from intracellular recordings of neuron categories in
the AL of the Manduca sexta (Lei et al., 2011), and the number
appears to be comparable. We have not subcategorized the different
subclasses of LNs and PNs due to a lack of staining data. The
existence of subcategories of the PNs with the distinct physiogical
properties during the spontaneous (Capurro et al., 2014) and
after the stimulus offset and explain why we cannot achieve 100
percent accuracy. In line with other studies on response properties
of PNs on the fruit flies (Wilson et al., 2004). The majority of
the PN responses are dynamic under different odors; some are
activated, and some are inhibited with no responses (Figure 2C,
Supplementary Figure S3) due to the interaction of the olfactory
sensory neurons (OSNs) and LNs. The excitatory feedforward
information from OSNs activates PNs, which in turn indirectly
activate LNs.

The inhibitory LN connecting the defined subsets of the
glomeruli could play a crucial role in understanding perceptual
constancy in the olfactory circuits, especially in understanding
the synchronized activity of the PNs in response to the
behaviorally relevant mixture. Previous studies have shown
that pharmacological receptor antagonists, targeting the GABA
receptors, abolished the synchronized activity of AL neurons and
affected the olfactory behavior of the moths (Lei et al., 2011; Riffell
et al., 2014). The LNs modulate the temporal patterns of PNs’
spiking responses, resulting in odor-evoked activity which can
enhance the synchrony of sister PNs within the same glomerulus as
well as the synchrony of co-activated PNs from the other glomeruli
(Lei et al., 2002; Martin et al., 2013). However, the structural
connectivity information is still lacking in Manduca sexta, which
limits our understanding of the synaptic-level connections between
neurons. Electron microscopical studies in fruit flies have shown
that the OSNs contribute 75% of the synaptic input to PNs, and
the remaining 25% is contributed by the LNs (Tobin et al., 2017).
It is possible that the LN that makes specific synaptic connections
with a given glomeruli could provide the postsynaptic inhibition
to the PNs that are processing the non-behavioral relevant odors
and receiving information from the subset of behaviorally relevant

neurons. This can be ecologically relevant in inhibiting the input of
the non-behavioral stimulus pathway, as it may be the background.
In various organisms, such as moths and fruit flies, the LNs
contain both pre- and postsynaptic synapses, and the density of
these synapses is biased across different glomeruli. This bias could
eventually affect the extent of lateral inhibition processing in the
mixture (Hong and Wilson, 2015; Silbering and Galizia, 2007).

5.3 Concentration varying effects on AL
network dynamics

Navigating through the complex and dynamic olfactory
environment, the moth is challenged with fluctuating odor
concentrations. The moth should evaluate the odor and its
intensity. Behaviorally, Manduca has been shown that a subset of
the behaviorally relevant odorants is processed in a quick (<500
ms) and reliable manner (Riffell et al., 2009b). Suppose if the ratio
of one of these compounds is changed in the behavioral mixture,
then they could be evaluated as a different floral compounds
and the neural population responses could vary for those altered
composition and could be clustered outside the neighborhood of
the behavioral mixture (Figures 3A, 5C) (Riffell et al., 2009a, 2014).
The behavioral compound such as Benzaldehye (O1) which is one
of the important constituents in the behavioral mixture is clustered
with the non-behavioral mixture (NB10) that contains Benzaldehye
(O1) and Benylalcohol (O2) could play a significant role in the
discrimination of odors in behavioral or non-behavioral and thus
affect the olfactory navigation.

The decreasing intensity of the floral mixture, diluted upto
10,000-fold clustered with the behavioral mixture in the previous
study (Riffell et al., 2009a) and this study (Figure 3) could be due
to gain control of the LNs (Sachse and Galizia, 2002). Altering
the ratio of (O1) in the behavioral floral mixture (B23), we noticed
that different ratios are clustered outside the neighborhood of the
B23. The concentration of the same odor may have different or
even opposite values (Semmelhack and Wang, 2009), and this odor
could modify the quality of the odor (Laing et al., 2003). At the
presentation of increased ratio of an odorant in the behavioral floral
odor, the LNs may modulate (Supplementary Figure S5) and fine-
tune the PNs for synchronization, therefore clustering the neural
responses into the behavioral and non-behavioral components
(Clifford and Riffell, 2013). However, upon increasing the ratio
of one of the components, the GABAergic neurons may be
recruited (Laurent, 2002) thus the presynaptic inhibition of sensory
neurons by these neurons (disinhibition) could play a role in
odor discrimination. However, how the modification to the odor
panel influences the molecular mechanism or alters the plasticity
within the AL remains unknown. In our experiments, we present
moths to an elevated ratio of benzaldehyde within the natural
concentration range. In Datura wrightii flowers, benzaldehyde is
emitted at about 0.23 ng/h (Riffell et al., 2009a). Increasing this
concentration by the 1,000-fold (230 ng/h) still falls below the
natural emission rate observed in other putative hawkmoth-visited
flower, such as Petunia hybrida: 8,000 ng/h (Boatright et al., 2004)
and in blossoms and branches of Crabapple (Malus sp: 5,580 ng/h)
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(Baghi et al., 2012). These comparisons indicate that the moths in
our study were stimulated within ecologically relevant, naturally
occurring ranges.

5.4 Limitations

There remain a few limitations in the STAN-Flow architectures
and related analysis. One main limitation is the interpretability
of the neural networks. Although through post hoc analysis, we
showed that the spatial-attention weights can be interpreted to a
great extent, there are limited theoretical analyses on the attention
module to guarantee the interpretability of the attention weights.
There are, however, ways to improve the credibility of the result:
one can cross-validate with established results to check if the
interpretability matches expectations, as we did with PN and
LN classification. In addition, one could repeat the experiments
many times (e.g., 100 different initializations) and across subjects
to verify the consistency of the result. Another drawback of
this current architecture is its scalability. The current training
scheme of STAN-Flow for performing group-wise synchronization
analysis requires neuron-specific STAN-Flow. While the number
of models scales linearly with the number of interacting neurons,
it remains challenging to analyze a larger population of neurons
at a greater scale. Given different modeling scenarios, however,
this could be resolved by a more intricate STAN-Flow that
can be modified to model synchronization hierarchically when
dealing with neurons from different regions; it could also be
easily adapted to model a multidimensional time series instead
of modeling each neuron at a time. Finally, the recent rise
of diffusion generative modeling techniques can be applied to
improve the normalizing flow (Song et al., 2020; Hasan et al.,
2023). There also exist ways to directly connect the interaction
between neurons with the generative component. For example,
the interaction between neurons can be modeled as interacting
particle systems characterized by a McKean–Vlasov diffusion,
which can be applied as a latent process to significantly enhance the
interpretability of the machine learning system (Yang et al., 2024).
Despite these limitations, our machine learning approach offers a
broader impact.

5.5 Significance and broader impact

Our STAN-Flow explores a new, computational avenue
to study interactions within neural systems. The interaction
of multiple sensory systems is common in many biological
organisms, allowing them to respond swiftly and efficiently to
complex and dynamic environments. For instance, in other
animals and humans, multiple peripheral, central, and motor
systems work in concert to produce coordinated behaviors. One
prime application of the spatial-temporal attention module, a
significant focus of our ongoing research, is the modeling of
multisensory binding in the brain that is funneled downstream
via the descending neurons to the motor program. The neural
mechanism of integrating multisensory information in the brain

is not well understood, and how it drives the motor program
is still under investigation. The motor programs involve the
coordinated activity of individuals and groups of flight muscles
that interact dynamically to produce agile movements and abrupt
changes in behavior (Putney et al., 2019). Despite extensive
research, the interactive mechanisms that govern this muscle
dynamics remain largely unknown (Putney et al., 2023). The
spatial-temporal attention module has the potential to uncover
these mechanisms by providing a framework that captures the
intricate timing and spatial relationships involved in motor
coordination.

Another significant benefit of the STAN-Flow model is its
deep generative component. Biological interactions are inherently
stochastic and often do not conform to traditional statistical
distributions such as the Poisson or Gaussian distributions
(Lindner, 2006; Deger et al., 2012). This stochastic nature presents
challenges for conventional modeling approaches that rely on
these distributions. The introduction of a flexible generative model
through neural networks, as seen in STAN-Flow, allows for more
accurate modeling of natural phenomena with fewer assumptions
about the underlying distributions. This flexibility is particularly
important when exploring complex biological interactions that
may be high-dimensional and highly non-linear. By leveraging
the power of neural networks, STAN-Flow can capture the
rich and varied nature of biological data, providing deeper
insights into the interactions between multiple brain regions or
systems.

STAN-Flow’s success in modeling the antennal lobe region has
illuminated the potential of combining attention mechanisms
with deep generative neural networks to understand the
complex interactive relationships between organisms and
their environments. The ability of STAN-Flow to accurately model
the dynamic and non-linear interactions in the AL region suggests
that similar approaches could be applied to both biological and
non-biological systems. This attention module could be applied
to other sensory systems, such as the visual and auditory systems,
for stimulus discrimination (Wilsch et al., 2020). However,
whether one of the systems favors one of the modules (spatial
or temporal) is elusive. This opens up new avenues for research
in understanding how different neural systems interact and
adapt to their environments, ultimately contributing to a more
comprehensive understanding of biological complexity and
adaptability. Apart from its biological context, STAN-Flow can also
be applied in the digital field (Gao et al., 2023). The STAN-Flow can
be naturally applied to related tasks such as analyzing videos and
speech by summarizing the interaction of different graphic regions
and condensing the importance of different periods of videos. By
enforcing a set of constraints on the attention weights, it is also
possible to extend the module to track objects through space and
time. As many climatic phenomena also originate from interactions
of local climate (Saupe et al., 2019), STAN-Flow also provides a
generative predictive algorithm that allows explicit interaction
between local climates to forecast weathering trends in the future.
In general, the flexible, semi-interpretable neural network structure
of STAN-Flow offers a wide range of applications that can help
inform scientists with high-order interactions between groups or
individuals over time.
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