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Sleep is known to support memory consolidation through a complex interplay
of neural dynamics across multiple timescales. Using intracranial EEG (iEEG)
recordings from patients undergoing clinical monitoring, we characterize
spectral activity, neuronal avalanche dynamics, and temporal correlations across
sleep-wake states, with a focus on their spatial distribution and potential
functional relevance. We observe increased low-frequency power, larger
avalanches, and enhanced long-range temporal correlations—quantified via
Detrended Fluctuation Analysis—during N2 and N3 sleep. In contrast, REM sleep
and wakefulness show reduced temporal persistence and fewer large-scale
cascades, suggesting a shift toward more fragmented and flexible dynamics.
These signatures vary across cortical regions, with distinctive patterns emerging
in medial temporal and frontal areas—regions implicated in memory processing.
Rather than providing direct evidence of consolidation, our results point to a
functional neural landscape that may favor both stabilization and reconfiguration
of internal representations during sleep. Overall, our findings highlight the utility
of iEEG in revealing the multiscale spatio-temporal structure of sleep-related
brain dynamics, offering insights into the physiological conditions that support
memory-related processing.

KEYWORDS

sleep, memory consolidation, intracranial EEG, neural dynamics, multiscale analysis,
cortical regions, temporal correlations, avalanche dynamics

1 Introduction

Understanding the neural dynamics that characterize different states of consciousness,
such as wakefulness, non-rapid eye movement (NREM) sleep, and rapid eye movement
(REM) sleep, is crucial for elucidating how the brain establishes conditions conducive
to memory consolidation. Previous work has established hallmark electrophysiological
signatures across vigilance states—posterior dominant alpha during restful wakefulness,
slow waves and sleep spindles in NREM (especially N2/N3), and REM-specific patterns
such as sawtooth waves and regionally localized delta activity (Berry et al., 2012; Troester
et al., 2023; Steriade et al., 1993; De Gennaro and Ferrara, 2003; Fernandez and Lüthi,
2020; Frauscher et al., 2020). Yet most studies isolate a single domain or scale; a unified
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framework that jointly quantifies spectral content, scale-dependent
temporal structure, and spatial organization within the same
intracranial dataset remains under development.

This work investigates how neural signals across wakefulness
and sleep exhibit state-specific dynamics that may create a
functional environment favorable for memory-related processes,
employing a multiscale and multimodal approach. Using
intracranial EEG (iEEG) recordings from the Multicenter iEEG
Sleep Atlas (von Ellenrieder et al., 2020), we apply complementary
methods—including spectral analysis, neuronal avalanche
statistics, and detrended fluctuation analysis (DFA)—to examine
how brain activity patterns, as operationally defined by sleep stages,
vary across time scales and anatomical regions.

Studies have demonstrated that sleep stages exhibit distinct
neural features. For instance, slow oscillations in the delta
band during NREM sleep have been associated with synaptic
downscaling, potentially facilitating the stabilization of neural
circuits involved in declarative memory (Diekelmann and Born,
2010; Rasch and Born, 2013). Sleep spindles, characteristic of
NREM sleep, have been implicated in the facilitation of synaptic
plasticity, thereby supporting the consolidation of motor skills and
procedural memories (Fogel and Smith, 2011). Conversely, REM
sleep has been associated with the reactivation and reorganization
of memory traces—processes that may contribute to the integration
of emotional content and the refinement of neural representations
(Walker, 2009).

Beyond traditional spectral methods, neuronal avalanche
analysis enables the characterization of spontaneous cascades
of activity across time and space. Empirical observations
show that avalanche size and duration distributions display
approximate scale-invariant behavior across wake, NREM, and
REM sleep (Ribeiro et al., 2010; Wilting and Priesemann, 2019).
These patterns have been interpreted in various theoretical
frameworks, but here we focus on characterizing how avalanche
properties vary empirically across states.

In addition, Detrended Fluctuation Analysis (DFA) is
introduced here as one of three principal analytical techniques to
quantify long-range temporal structure in iEEG signals, providing
complementary insights into the scale-dependent dynamics of
neural activity.

By integrating frequency-specific spectral signatures, neuronal
avalanche statistics, and DFA-derived temporal structure, this
study offers a multiscale characterization of brain dynamics across
sleep–wake states, with potential implications for sleep-dependent
memory processing and neural organization.

2 Materials and methods

2.1 The atlas dataset

In this study, we utilized data from the Multicenter iEEG Sleep
Atlas (ATLAS). This international collaboration has compiled a
comprehensive open-access dataset of intracranial EEG (iEEG)
recordings from patients with drug-resistant focal epilepsy.
Importantly, these recordings encompass both wakefulness and
various sleep stages, curated to reflect physiologically normal
activity (von Ellenrieder et al., 2020).

The iEEG Sleep ATLAS provides an opportunity to examine
cortical dynamics during NREM (N2, N3), REM, and waking
states across 38 distinct brain regions, including frontal, temporal,
parietal, occipital, and insular cortices. Through precise anatomical
localization and expert sleep scoring, this dataset enables the
exploration of how different cortical areas contribute to state-
dependent neural activity patterns associated with sleep processes.

The recordings consist of artifact-free, 60-second epochs
selected during resting wakefulness (eyes closed) and each
annotated sleep stage. Signals were resampled at 200 Hz and
filtered (0.5–80 Hz). Note that these preprocessing steps are part
of the ATLAS pipeline; infra-slow activity (< 0.5 Hz) is therefore
unavailable. Analyses are reported in 0.7–75 Hz to ensure robust
estimates within the 0.5–80 Hz acquisition bandwidth (fs = 200 Hz).
The standardized ATLAS format facilitates reproducibility and
integration with computational pipelines, supporting analyses of
local and distributed activity patterns.Representative raw iEEG
examples across wake, N2, N3, and REM are available from the
ATLAS reference used here (e.g., Figure 1A in Kalamangalam et al.,
2021).

The richness and granularity of this dataset are particularly
suited for investigating neural dynamics at multiple spatiotemporal
scales. Specifically, it allows for comparisons of regional activity by
means of measures such as power spectra, neuronal avalanches, and
temporal correlations across sleep–wake states, particularly those
implicated in memory consolidation.

Table 1 summarizes the number of channels per brain region
and lobe across sleep and waking conditions. While electrode
coverage varies across subjects—particularly during sleep—this
variability is addressed by conducting the analysis at the population
level. This approach allows us to identify region-specific trends and
explore how different cortical areas may contribute to the neural
dynamics associated with memory processes.

2.2 Spectral analysis

In this section, we provide a brief overview of the spectral
analysis technique applied in this work. The primary tool utilized
in this section is the power spectral density (PSD), which is defined
as the Fourier transform of the autocorrelation function (Semmlow
and Griffel, 2014). For discrete signals, such as those found in the
ATLAS, denoted as x[n],

PSD[m] =
N∑

n=1
rxx[n] exp

(
− i2πmn

N

)
, m = 0, 1, . . . , N/2, (1)

in which N is the total number of samples and rxx[n] is the
autocorrelation function for a discrete-time signal. This function
indicates the similarity of a signal with a delayed copy of itself as a
function of the delay time k. It is defined by

rxx[k] = 1
N

N∑
n=1

x[n]x[n − k]. (2)

Alternatively, the spectral power PSD[m] can be calculated
using the Parseval relation
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TABLE 1 The 38 regions classified by brain lobes, and the number of channels per region for the non-REM N2, N3, and REM sleep states, and the waking
state.

No. Reg Brain region Lobe No. channels W-N2-N3-R

1 Superior and middle occipital gyri Occipital 21 - 16 - 16 - 14

2 Inferior occipital gyrus and occipital pole Occipital 23 - 22 - 22 - 17

3 Cuneus Occipital 19 - 18 - 18 - 18

4 Calcarine cortex Occipital 12 - 10 - 10 - 8

5 Lingual gyrus and occipital fusiform gyrus Occipital 29 - 21 - 21 - 12

6 Postcentral gyrus (including medial segment) Parietal 64 - 43 - 43 - 31

7 Superior parietal lobule Parietal 53 - 40 - 40 - 36

8 Parietal operculum Parietal 41 - 31 - 31 - 10

9 Supramarginal gyrus Parietal 70 - 65 - 65 - 39

10 Angular gyrus Parietal 53 - 52 - 52 - 42

11 Precuneus Parietal 43 - 37 - 37 - 32

12 Posterior cingulate Parietal 29 - 25 - 25 - 14

13 Anterior insula Insular 71 - 54 - 54 - 35

14 Posterior insula Insular 35 - 25 - 25 - 14

15 Gyrus rectus and orbital gyri Medial frontal 45 - 41 - 41 - 28

16 Anterior cingulate Medial frontal 31 - 31 - 31 - 19

17 Middle cingulate Medial frontal 40 - 31 - 31 - 21

18 Supplementary motor cortex Medial frontal 47 - 37 - 37 - 28

19 Medial frontal cortex Medial frontal 19 - 15 - 15 - 10

20 Central operculum Medial frontal 63 - 46 - 46 - 29

21 Frontal operculum Lateral frontal 29 - 24 - 24 - 18

22 Opercular part of inferior frontal gyrus Lateral frontal 38 - 30 - 30 - 20

23 Triangular part of inferior frontal gyrus Lateral frontal 47 - 41 - 41 - 29

24 Orbital part of inferior frontal gyrus Lateral frontal 19 - 17 - 17 - 13

25 Middle frontal gyrus Lateral frontal 173 - 149 - 149 - 106

26 Superior frontal gyrus and frontal pole Lateral frontal 89 - 78 - 78 - 64

27 Medial segment of superior frontal gyrus Medial frontal 16 - 16 - 16 - 13

28 Medial segment of precentral gyrus Medial frontal 18 - 13 - 13 - 11

29 Precentral gyrus Lateral frontal 123 - 82 - 82 - 60

30 Superior temporal gyrus Temporal 79 - 69 - 69 - 46

31 Middle temporal gyrus Temporal 126 - 115 - 115 - 73

32 Inferior temporal gyrus Temporal 41 - 40 - 40 - 29

33 Temporal pole and planum polare Temporal 22 - 16 - 16 - 7

34 Transverse temporal gyrus Temporal 14 - 12 - 12 - 4

35 Planum temporale Temporal 43 - 29 - 29 - 15

36 Fusiform and parahippocampal gyri Temporal 45 - 41 - 41 - 29

37 Hippocampus Temporal 36 - 30 - 30 - 13

38 Amygdala Temporal 6 - 6 - 6 - 5

Counts are pooled across the entire dataset, considering all available 60-s epochs in each state.
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PSD[m] = |X(m)|2, (3)

where X[m] is the discrete Fourier transform (Semmlow and
Griffel, 2014):

X[m] = 1
N

N−1∑
n=0

x[n] exp
(
− i2πmn

N

)
, m = 0, 1, . . . , N−1, (4)

in which 2π
N is the spacing between samples.

In general, when dealing with biosignals, we typically have only
a sample of a longer signal; therefore, spectral analysis becomes
an estimation process. A commonly employed approach is to
compute the Power Spectral Density (PSD) over multiple segments
of the sample. These segments can then be averaged to generate
a spectrum with improved overall characteristics. When the PSD
is computed directly using the Fourier Transform (FT) followed
by averaging, it is referred to as a periodogram. One of the most
widely used methods for calculating the average periodogram is the
Welch technique (as seen, for example, in Semmlow and Griffel,
2014). In this approach, overlapping segments are employed, and a
shaping window (i.e., a non-rectangular window) is applied to each
segment. Traditional periodograms typically average the spectra
of overlapping segments, usually with a 50% overlap. Averaging
introduces a trade-off between spectral resolution, which decreases
with averaging, and statistical reliability. We report results both
with and without frequency-wise normalization. In the normalized
case, the PSD at each frequency are rescaled by the corresponding
across-epoch mean, which emphasizes relative shifts and crossover
points across conditions. The unnormalized PSD, in contrast,
preserve the absolute power distribution.

To estimate band-specific features, we followed the procedure
of Kalamangalam et al. (2020). For each 60 s epoch, the power
spectrum was smoothed with a Savitzky–Golay filter to reduce
high-frequency noise while preserving local spectral structure
(Virtanen et al., 2020). The smoothed spectrum was then modeled
as the sum of five Gaussians (delta, theta, alpha, beta, gamma),
fitting amplitude, center frequency, and bandwidth (σ ) for each
component. Fits were accepted only if R2 ≥ 0.95. All spectral
estimates were restricted to 0.7–75 Hz; bands were defined as
delta (0.7–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–
30 Hz), and gamma (30–75 Hz). This procedure yields robust,
reproducible estimates while minimizing contamination by noise
or non-oscillatory features.

2.3 Neuronal avalanches

In terms of iEEG activity, a neuronal avalanche is defined as a
consecutive series of time slots with a width of �t that contains
at least one active electrode (Beggs and Plenz, 2003; Plenz and
Thiagarajan, 2007). Each avalanche is preceded and followed by
at least one time slot without activity. The size of an avalanche
is determined by the sum of the absolute amplitudes of the iEEG
signal at the active electrodes or simply by the number of active
electrodes (s). An electrode is considered active when the signal
exceeds a certain threshold. In this study, we identify avalanches in

the iEEG signals of the Atlas using the number of active electrodes,
separated by periods of inactivity, as a measure of avalanche size.

Specifically, for each electrode, the signal was normalized
by subtracting its mean and dividing by its standard deviation,
resulting in a z-scored signal with zero mean and unit variance.
Discrete events were defined as individual time points where
the normalized signal crossed below a threshold of −2.0
standard deviations. This thresholding strategy is widely used to
detect statistically significant deflections from baseline activity,
while minimizing the influence of background fluctuations and
noise (Plenz and Thiagarajan, 2007; Beggs and Plenz, 2003).

Binary event trains were constructed from these threshold
crossings, and the activity was subsequently binned into
consecutive, non-overlapping 10 ms time windows—a commonly
used window size in the literature for capturing scale-invariant
neuronal dynamics (Beggs and Plenz, 2003). A bin was considered
active if at least one electrode registered an event within that
window. A neuronal avalanche was then defined as a sequence of
contiguous active bins, bounded before and after by at least one
empty bin. The avalanche size was computed as the total number
of events (across all electrodes) occurring within the sequence.

The distribution of avalanche sizes is a key indicator of scale-
invariant behavior in complex systems. Empirical distribution of
avalanche sizes allows the characterization of scaling behavior in
brain activity. Previous empirical work shows that avalanche sizes
often follow approximate power-law distributions across species
and human data (Ribeiro et al., 2010; Priesemann et al., 2013).
In this work we focus on the operational definition and empirical
estimation of avalanche statistics.

We analyzed the statistical properties of avalanche sizes and
durations by fitting their probability density functions (PDFs) to
power-law models. Specifically, the PDF of avalanche sizes, P(s),
was fitted to:

P(s) ∝ s−τ , (5)

where τ is the exponent governing the decay pattern of the size
distribution. Similarly, the PDF of avalanche durations, P(T), was
fitted to:

P(T) ∝ T−α , (6)

where α is the exponent shaping the duration distribution.
In addition, we examined the scaling relationship between the

average avalanche size, 〈s〉(T), and its corresponding duration T:

〈s〉(T) ∝ Tγ , (7)

where γ is the scaling exponent that relates size and duration
(Friedman et al., 2012). The value of γ was obtained via linear
regression on logarithmically transformed data.

To estimate this exponent, we fitted the avalanche size
distributions using the discrete maximum likelihood method
implemented in the powerlaw Python package (Alstott et al.,
2014), which provides robust estimation for power-law exponents
in empirical datasets. The value of xmin, defining the lower cutoff
above which power-law behavior is assumed, was selected as the
one that provides the best compromise between the distributions
of avalanche exponents across all sleep states, aiming to minimize
systematic biases in the comparison between them.
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A fixed temporal binning was used to discretize the neural
activity time series, independent of the overall activity level. This
approach ensures consistent time resolution across different sleep
stages, avoiding potential biases introduced by adaptive binning
methods that may conflate changes in activity rate with changes
in the temporal structure of avalanches. In addition, we quantified
the mean activity per active bin, defined as the total number of
detected events divided by the number of bins in which at least one
channel registered an event, thereby capturing the average event
rate conditional on periods of activity.

Note that we use τ for the avalanche size exponent and α for
the avalanche duration exponent. The symbol α is also used in
Sections 2.4–3.3, 4.3 for the DFA scaling exponent; meanings are
disambiguated by context (avalanche duration vs. DFA) and by
explicit references in captions and text.

Finally, we use the compact format x = a(b) to denote x = a±b
in the last digit(s). For example, α = 0.84(2) means 0.84 ± 0.02.
Unless noted otherwise, b is one standard error of the estimate. The
same notation is employed for DFA scaling exponent estimations.

2.4 Detrended fluctuation analysis

In this study, we use Detrended Fluctuation Analysis (DFA)
to assess temporal correlations in iEEG signals from the ATLAS,
particularly focusing on scaling properties.

The steps for calculating the DFA in this work are as follows
(Hardstone et al., 2012):

- Calculate the cumulative sum (signal profile): The cumulative
sum {Xi} is computed by successively summing the values of
the iEEG signal {xj} and subtracting the mean value 〈x〉:

Xi =
i∑

j=1

(xj − 〈x〉). (8)

In Equation 8, xj denotes the j-th sample of the demeaned
discrete iEEG signal within a 60-s epoch; Xi is the cumulative-
sum (profile) up to index i. Here i ∈ {1, . . . , N} is the running
index of the profile, j is the summation index, and N is the
number of samples in the epoch.

- Define windows: A set of window sizes, denoted as �t, is
defined. These sizes are evenly distributed on a logarithmic
scale, ranging from a minimum of four samples to the length
of the signal.

- Divide the cumulative sum into N overlapping windows: A
window of length �t is chosen, and a series of consecutive
windows {wn(�t)} of the same size is created from the signal
profile, with a 50% overlap.

- Remove linear trend in each window: For each window wn(�t),
fit a straight line (trend) using a least-squares fit and subtract it
from the window to create the detrended window wnD(�t):

wnD(�t) = wn(�t) − Linear-Trendn. (9)

- Calculate the standard deviation of detrended windows: For
each detrended window wnD(�t), calculate the standard

deviation (Fluctuation Function F(�t)):

F(�t) =
√√√√ 1

N

N∑
n=1

[
wnD(�t) − 〈wnD(�t)〉]2. (10)

- Repeat for different window sizes: Iterate the above steps for all
window sizes �t.

- Plot log(F(�t)) vs. log(�t): The slope of this log-log plot
(estimated via linear regression) yields the DFA exponent α.

The scaling exponent α characterizes the scaling properties
of mean fluctuations across time scales in the iEEG signal. As
described in Hardstone et al. (2012):

α < 0.5: Anti-correlated time series (smaller fluctuations at
larger scales).
α = 0.5: Uncorrelated (random) process.
0.5 < α < 1: Positively correlated time series.
1 < α < 2: Non-stationary process.

In this work, we use the term long-range temporal correlations
(LRTC) strictly for the stationary regime 0.5 < α < 1 (Hardstone
et al., 2012). Values α ≈ 1 correspond to 1/f -like (pink) scaling,
whereas α > 1 indicate non-stationary, integrated dynamics; in
the latter case, long-range dependence typically characterizes the
increments of the process rather than the raw signal itself (Poil et al.,
2012; Dalla Porta and Copelli, 2019). This convention is adopted to
avoid conflating stationary LRTC with non-stationary persistence.

3 Results

3.1 Spectral analysis of wake and sleep
stages

To assess how different stages of the sleep-wake cycle modulate
brain dynamics we performed spectral analysis on iEEG data
using power spectral density (PSD) estimates computed via Welch’s
method (600-sample windows, 50% overlap). Both absolute and
normalized PSDs were analyzed globally and by cortical region.
Details of the preprocessing and spectral estimation pipelines are
provided in Section 2.2.

3.1.1 Global spectral profiles
Figure 1 summarizes the global spectral patterns across

vigilance states. Figure 1A displays the grand-average PSDs (log–
log scale), obtained by averaging across all 60-s epochs in the
dataset. Figure 1B shows the same spectra after normalizing each
curve by the across-epoch mean at each frequency, emphasizing
relative shifts and crossover points.

As expected, non-REM sleep stages—particularly N3—exhibit
a marked increase in delta power around 1 Hz, with differences
exceeding an order of magnitude compared to wakefulness. Theta
activity is most pronounced in wakefulness near 7–8 Hz. A distinct
peak around 12 Hz, corresponding to sleep spindles, emerges
during N2 and N3. REM sleep shows a broadband reduction in
power between alpha and low beta bands (8–20 Hz). In the gamma
range, all sleep stages display lower power than wakefulness, though
with smaller effect sizes.
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FIGURE 1

(A) Grand-average power spectral density (PSD) for each vigilance state (log–log scale), obtained by averaging across all 60-s epochs in the dataset;
the green line shows the across-epoch mean at each frequency (pooled across states). (B) Same spectra as the left panel, after normalizing each
curve by the across-epoch mean at each frequency, highlighting relative shifts and crossover points. During sleep, there is a significant increase in
delta band power around 1 Hz, indicating non-REM sleep. Theta band activity increases during wakefulness, particularly in its higher range.
Additionally, REM sleep shows a reduction in spectral density between 8 and 20 Hz. Furthermore, non-REM N2 and N3 stages exhibit a distinct peak
around 12 Hz in the spectral profile, followed by a drop in the beta band, distinguishing them from wakefulness and REM sleep.

3.1.2 Regional spectral features
To assess spectral differences across brain states at the local

level, we conducted independent (unpaired) Mann–Whitney (U)
tests (Virtanen et al., 2020) on Gaussian-fitted amplitudes for
canonical frequency bands (delta, theta, alpha, beta, and gamma)
across predefined lobes (see Table 1). We compared (i) Wake vs
REM and (ii) N2 vs. N3. To control for multiple comparisons over
band–lobe combinations, we applied the Benjamini–Hochberg
false discovery rate (FDR) procedure (Benjamini and Hochberg,
1995) at α = 0.05.

The contrast between Wake and REM revealed focal differences
mainly in alpha amplitude in temporal, parietal and occipital
cortices, and delta differences in frontal regions. Conversely, the
N2 vs. N3 comparison exhibited more widespread and robust
differences, especially in beta and gamma bands, with temporal,
frontal, and parietal regions showing strong modulation. All
reported differences correspond to statistically significant contrasts,
with FDR-corrected p-values below 0.05.

To further explore spatial heterogeneity in spectral
organization, we examined region-specific PSDs. Several
representative cases are highlighted below.

Figure 2 illustrates Gaussian-fitted alpha-band amplitudes in
the calcarine cortex (primary visual area). Black points denote
single-epoch (60 s) Gaussian fits, and violins summarize their
distribution across epochs for each state. A clear separation is
observed, with higher alpha during wakefulness and reduced
amplitude during REM. The same plotting convention is used in
Figures 3–5.

On the other hand, Figure 3 shows that Gaussian-fitted delta-
band amplitudes in the medial frontal cortex increase in N3 relative
to N2. This elevation reflects enhanced slow-wave synchrony in
frontal-medial regions during deep sleep.

Interestingly, the amygdala exhibits a different spectral pattern.
As shown in Figure 4, delta amplitude is lower during REM than
during wakefulness, diverging from the cortical trend. This result

aligns with previous reports of limbic-specific modulation during
REM, potentially related to emotional processing and memory
reorganization (Kalamangalam et al., 2021).

A similar divergence is found in the hippocampus (Figure 5),
where delta amplitude is higher during REM than during
wakefulness. This contrasts with most cortical and subcortical
areas and supports the view that the hippocampus exhibits unique
REM-related dynamics. Prior studies have linked such patterns
to memory consolidation mechanisms and the replay of waking
experiences (Kalamangalam et al., 2021; von Ellenrieder et al.,
2020).

We present a lobe-level overview with selected, illustrative
region-level PSDs, emphasizing the most challenging contrasts
(Wake vs. REM; N2 vs. N3). An exhaustive region-by-region survey
is beyond the scope of this work.

3.2 Neuronal avalanches across
wakefulness and sleep states

Here, we investigate neuronal avalanches—spontaneous
cascades of neural activity—across wakefulness and sleep stages
using intracranial EEG data from the iEEG Atlas. Our analysis
focuses on quantifying how avalanche size distributions vary
systematically with vigilance state, without assuming a specific
underlying dynamical regime.

3.2.1 Neuronal avalanche results
Neuronal avalanches were identified using a discrete event-

based approach, following the established methodology of binning
thresholded neural activity in short time windows (Section 2.3).

Given the variability in the number of implanted electrodes
across patients, we observed that the power-law scaling of avalanche
size distributions was often disrupted in subjects with lower
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FIGURE 2

Gaussian-fitted alpha-band amplitudes in the calcarine cortex (primary visual cortex) during wakefulness and REM sleep. Higher alpha power in
wakefulness reflects the characteristic occipital alpha rhythm, attenuated in REM. Black points indicate individual single-epoch (60 s) Gaussian fits;
violin plots summarize their distribution for each state. Group differences were assessed with a two-sided Mann–Whitney U test; multiple
comparisons were controlled via FDR. The same plotting convention is used in Figures 3–5.

FIGURE 3

Gaussian-fitted delta-band amplitudes in the medial frontal cortex across sleep stages N2 and N3. Delta amplitude increases significantly in N3
relative to N2 (two-sided Mann–Whitney U; FDR-controlled). This pattern reflects enhanced cortical slow-wave synchrony during deep sleep in
frontal-medial regions.

electrode coverage. To mitigate the inevitable bias introduced by
spatial sub-sampling, only patients with at least 16 electrodes were
included in the analysis. For each selected patient, a uniform
subset of 16 electrodes was considered; in cases where more than
16 electrodes were available, a random selection was performed
to ensure comparability across subjects. This approach reduces
variability due to differences in electrode coverage and allows for
a more consistent estimation of avalanche statistics across patients.

Avalanche size distributions were fitted using the discrete
maximum likelihood method implemented in the powerlaw
package, which estimates the power-law exponent τ and the
exponential cutoff parameter λ. To ensure consistency across all
conditions and avoid statistical instabilities associated with very
small avalanches, the lower cutoff xmin was fixed at 3. This choice
excludes the smallest events, which are often dominated by noise
or are undersampled due to the temporal discretization, and
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4FIGURE

Gaussian-fitted delta-band amplitudes in the amygdala across wakefulness, REM, N2, and N3. A relative decrease in delta power is observed during
REM compared to wakefulness, suggesting distinct modulatory dynamics in this limbic structure.

FIGURE 5

Gaussian-fitted delta-band amplitudes in the hippocampus across wakefulness, REM, N2, and N3. Unlike most cortical regions, delta amplitude is
higher during REM than wakefulness.

focuses the analysis on more reliable segments of the avalanche
size distribution. Similar fixed thresholds have been employed in
previous studies to enhance the robustness of power-law fitting and
cross-condition comparisons.

The analysis used Patient 20 as an example of the statistical
procedure, showing distinct avalanche dynamics across sleep stages
in Figure 6. The probability density function (PDF) of avalanche
sizes (s) followed power-law distributions with exponents τ as
follows: Wake [τ = 2.30(7), KS = 0.1], REM [τ = 2.12(7), KS
= 0.06], N2 [τ = 2.00(7), KS = 0.03], and N3 [τ = 1.78(6), KS
= 0.08], with Kolmogorov-Smirnov (KS) distances indicating fit
quality. The PDF of avalanche durations (T) also showed power-
law behavior with exponents α: Wake [α = 2.70(9), KS = 0.06],
REM [α = 2.40(9), KS = 0.03], N2 [α = 2.32(9), KS = 0.03],
and N3 [α = 1.95(7), KS = 0.06], supported by KS distances. The
scaling relation between mean avalanche size (〈s〉) and duration (T)

in log-log scale was linear, with slopes γ : Wake [γ = 1.15(1), R2 =
0.95], REM [γ = 1.17(1), R2 = 0.95], N2 [γ = 1.18(1), R2 = 0.95],
and N3 [γ = 1.16(1), R2 = 0.97], and R2 values confirming a
consistent trend across sleep states. These results suggest varying
neural avalanche properties depending on sleep stage.

The scaling exponent τ—estimated as the slope of the fit in log–
log space—indicates a higher frequency of large avalanches during
non-REM sleep relative to REM and wakefulness.

Extending this analysis to the entire cohort, Figure 7 shows
histograms of the scaling size exponent τ (upper left panel) and
duration exponent α (middle left panel) across all patients and
vigilance states. Avalanche size exponent (τ ) values decreased
progressively from wakefulness W (M = 2.21, SD = 0.11, n = 44)
and REM (M = 2.12, SD = 0.09, n = 29), to N2 (M = 1.94,
SD = 0.09, n = 41) and N3 (M = 1.78, SD = 0.084, n = 41). A
similar pattern appeared for the duration exponent (α): W (M =
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FIGURE 6

Representative avalanche statistics across sleep stages for Patient 20. (Left) Probability density function (PDF) of avalanche sizes (s), fitted to
power-law distributions with exponents τ and Kolmogorov-Smirnov (KS) distances quantifying the goodness-of-fit for each sleep stage: Wake (W),
REM (R), N2, and N3. (Middle) PDF of avalanche durations (T), similarly fitted to power laws with exponents α and corresponding KS distances. (Right)
Scaling relation between mean avalanche size (〈s〉) and duration (T) in log-log scale, with linear regression fits yielding slopes γ (indicating the scaling
exponent) and R2 values assessing the fit quality.

2.58, SD = 0.15), REM (M = 2.39, SD = 0.14), N2 (M = 2.13,
SD = 0.13), and N3 (M = 1.90, SD = 0.11).

Prior to applying one-way ANOVA, assumptions were
confirmed: Shapiro–Wilk tests within groups (n ≈ 29–44) yielded
p > 0.05, indicating no departures from normality; Levene’s test
confirmed homogeneity of variances (p ≥ 0.14), conditions under
which ANOVA is robust for balanced designs (Zhou et al., 2023;
Agbangba et al., 2024; Shaw and Mitchell-Olds, 1993). One-way
ANOVA results were highly significant: size exponent (F = 175.34,
p = 0.0000) and duration exponent (F = 200.08, p = 0.0000),
indicating a systematic shift in avalanche dynamics with increasing
sleep depth.

To assess the scaling relationship between avalanche size (τ )
and duration (α), we calculated the scaling exponent γ from the
slope relating τ and α (Figures 7a, b). Across vigilance states, γ

values ranged from approximately 1.10 in N3 sleep, increasing
through N2 and REM, and reaching about 1.40 during wakefulness.
The points followed a clear positive association between τ and
α, with all states falling within the reference band (1.10–1.40;
Figure 7c).

The KS distance (Figure 7d), quantifying deviations from
power-law dynamics in neuronal avalanches, varied significantly
across sleep/wake states (Figure 7). N3 exhibited the strongest
deviation (median KS = 0.104, IQR: 0.072–0.116), suggesting the
poorest fit to power-law scaling. In contrast, N2 showed the closest
alignment (median KS = 0.063, IQR: 0.053–0.075), followed by
R (0.076) and W (0.079). The broader distribution in N3 (SD =
0.032, max = 0.167) implies state-dependent variability in neuronal
dynamics, with deeper sleep stages (N3) departing most markedly
from scale-free dynamics.

The bottom row of Figures 7e–h shows the dependence of
avalanche measures on temporal binning within the restricted
range of 10–20 ms. For the size exponent τ (Figure 7e), mean values
changed only slightly across bin widths, with relative variations
below 5% in all states (maximum ≈ 4.8% in N3). The duration
exponent α (Figure 7f) showed larger shifts in mean values, with the
strongest variation in N3 (≈ 8.8%) compared to smaller changes in
W, R, and N2 (< 6%).

Mean activity per active bin (Figure 7g) exhibited clear
state differences in average levels: N2 (1.514-1.585) showed

the highest mean activity, followed by N3 (1.457-1.512),
whereas W (1.340-1.490) and R (1.326-1.456) were lower
(N2 > N3 > W ≈ R).

For the threshold dependence of τ (Figure 7h), relative
variations were modest in N2 (≈ 5.6%) and N3 (≈ 5.9%), but
substantially larger in R (≈ 16.1%) and W (≈ 19.2%). Despite this
increased sensitivity, the relative ordering of states was preserved
across thresholds, indicating that the state-dependent hierarchy in
τ remains robust to moderate changes in detection criteria.

3.3 Detrended fluctuation analysis of sleep
and wake states

We applied Detrended Fluctuation Analysis (DFA) to
intracranial EEG (iEEG) recordings from the Multicenter iEEG
Sleep ATLAS to investigate long-range temporal correlations
(LRTCs) across wakefulness and sleep stages. DFA quantifies
the presence of LRTCs by estimating a scaling exponent (α),
where α = 0.5 indicates uncorrelated noise, 0.5 < α < 1
denotes persistent correlations, and α > 1 suggests non-stationary
behavior. Detailed methodological parameters are provided in
Section 2.4.

We focused on the intermediate scale range (0.04 s–2.5 s),
which shows the highest variability (as will be shown below) and
physiological relevance, in line with previous studies (Hardstone
et al., 2012; Meisel et al., 2017; Zhang et al., 2021). Other regions,
while potentially interesting, are not the focus here: besides the
uniformity of behavior observed both below and above this range,
for scales above 2.5 s the behavior not only becomes more uniform
but also yields poorer statistics due to the limited number of
available window sizes inherent to the method. This intermediate
range therefore provides sufficient richness to explore meaningful
state-dependent differences.

Each of the 5,720 available iEEG channels (60 s epochs sampled
at 200 Hz) was analyzed individually. Figure 8 shows the fluctuation
function F(�t) for a representative 60 s epoch. While short time
windows (< 0.04 s) and very long ones (> 2.5 s) display relatively
uniform patterns across vigilance states, the intermediate range
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FIGURE 7

State-dependent modulation of avalanche scaling exponents across sleep stages. (a) Probability density functions (PDFs) of avalanche size exponents
(τ ) for vigilance states Wake (W, red), N3 (yellow), N2 (cyan), and REM (purple). Group means (M), standard deviations (SD), and sample sizes (n) are
shown in the inset, together with one-way ANOVA results (F = 175.34, p < 0.0001), indicating significant differences across states. (b) PDFs of
avalanche duration exponents (α) for the same states as in (a). Both means and ANOVA results (F = 200.08, p < 0.0001) show a systematic decrease
in α with increasing sleep depth. (c) Relationship between α and τ for all subjects, color-coded by vigilance state. Theoretical predictions
α = 1 + (τ − 1)γ for γ = 1.10 (red dashed) and γ = 1.40 (blue dashed) are plotted, with the shaded region covering 1.10 < γ < 1.40. The exponent γ

increases from ∼ 1.10 in N3 and N2, through intermediate values in REM, to ∼ 1.40 in Wake, reflecting a state-dependent shift in scaling. (d)
Distributions of Kolmogorov–Smirnov (KS) distances for avalanche size fits across states. Boxplots display medians, interquartile ranges, whiskers, and
individual data points. Fits are best (lowest KS) during N2, intermediate in W and R, and poorest in N3, with deeper sleep stages showing stronger
deviations from power-law scaling. (e–h) Dependence of avalanche measures on analysis parameters. (e) The size exponent τ shows modest
variation with bin width (10–20 ms), with changes below 5% across all states. (f) The duration exponent α is more affected, particularly in N3, where
variations approach 9%. (g) Mean activity per active bin displays state-dependent differences, being higher in W and R and lower in N2 and N3. (h)
Changes in detection threshold (−2.2, −2.0, −1.8 SD) shift the absolute values of τ , but the relative ordering of states is preserved, with W and R
consistently above N2 and N3.

clearly reveals the strongest and most distinctive state-dependent
differences, making it the central focus of our analysis.

3.3.1 DFA global features
We computed grand-average fluctuation functions by pooling

all available 60 s epochs and channels within each state, and then
estimated global α exponents by fitting a line in the intermediate
window range (0.04 s–2.5 s). Results are displayed in Figure 9.
Wakefulness and REM sleep exhibited α values between 0.8 and
1.0, consistent with stationary LRTC. In contrast, N2 and N3
showed α > 1, indicating non-stationary, integrated dynamics
with strong temporal persistence, in line with the predominance
of slow oscillations in NREM. To avoid terminological ambiguity,
we reserve “LRTC” for the stationary regime 0.5 < α < 1; α > 1

reflects non-stationary persistence (with long-range dependence in
the increments), rather than stationary LRTC (Hardstone et al.,
2012).

3.3.2 DFA variability across regions
To better understand how temporal dynamics distribute across

brain regions and sleep stages, we first inspect the spatial patterns of
the DFA exponent (α). From Figure 10, it is evident how the DFA
exponent reflects the transition from wakefulness and REM to non-
REM sleep states, where correlations are positive, moving toward
non-stationary states. Only in the wakefulness state can values near
0.5 be observed, indicating a lack of correlations and a tendency
toward randomness in the signal. The electrode contact locations
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FIGURE 8

DFA results for wakefulness and sleep stages from channel 1 of a
representative patient (9). Short windows (<0.04 s) and long
windows (>2.5 s) show relatively uniform slopes across states. In
contrast, the intermediate range (0.04-2.5 s) displays the largest
variability and the most distinctive state-dependent differences,
making it the focus of our analysis. The legend reports the fitted α

values for each state within this range.

FIGURE 9

Global DFA curves for each vigilance state (grand-averaged across
all channels and all available 60-s epochs per state). The
intermediate range (0.04-2.5 s) shows the greatest variability across
states, with α highest for N3, followed by N2, REM, and wakefulness.
The legend reports the fitted α values for each state within this
range.

(aligned in a straight line) are also discernible, particularly in cases
where data are obtained from a single patient.

To quantify these observations, we then calculated, for each
lobe and state, key dispersion metrics of the DFA exponent (α),
specifically: mean standard deviation (SD), and interquartile range
(IQR). SD highlights regions showing greater variability across
epochs or subjects, while IQR serves as a robust spread measure less
sensitive to outliers. Particularly during deep sleep (N3), regions
with elevated SD or IQR may indicate functional heterogeneity or
state-dependent modulation.

Figure 11 illustrates the distribution of α across brain lobes
and sleep states (Wakefulness, REM, non-REM N2, and non-REM
N3). As sleep deepens, α increases monotonically across all lobes,
reflecting enhanced temporal persistence and integration.

To evaluate the statistical significance of these inter-state
differences, paired Mann–Whitney U tests (Virtanen et al., 2020)
were conducted for each lobe comparing Wake vs. REM and N2
vs. N3, with False Discovery Rate (FDR) correction using the
Benjamini–Hochberg method (Benjamini and Hochberg, 1995).
Table 2 presents the resulting − log10(p)-values.

These results indicate that differences between Wake and REM
are generally less significant compared to those between N2 and
N3. Notably, the insular lobe does not show a significant difference
between Wake and REM (denoted “n.s.”), whereas the N2 vs.
N3 comparison reveals highly significant differences across most
lobes—especially in temporal and frontal lateral regions. This
pattern suggests that while deeper sleep stages involve substantial
reorganization of cortical temporal dynamics, particularly in
medial and temporal areas, the differences between Wake and REM
are more subtle and regionally stabilized.

Finally, although a full regional analysis is not the main
objective here, to obtain a more complete picture of the DFA
exponents α variability across different brain regions, the data from
all analyzed channels were categorized by region and plotted in
Figure 12. Each colored data point represents the exponent α in a
specific brain region. The mean value (depicted by a white-centered
circle) and the standard deviation (represented by the bounds of the
shaded area) were calculated for each sleep and wakefulness state.

In Figure 12, the data are displayed from left to right in
ascending order according to the mean standard deviation of the
DFA alpha across the four states, calculated per region using all 60-
s epochs and channels. Each region’s data is presented in vertical
blocks, including the region’s name and states (Wakefulness, non-
REM N2, N3, REM). Corresponding colored squares beneath each
block indicate the lobular region. The color-region association is
shown in the extended bar below the figure.

Upon inspecting Figure 12, notable variability in DFA exponent
values is prominent in the precentral and postcentral gyri regions,
associated with the motor and sensory cortices, respectively.
Subsequently, is the cuneus region, which is situated in the
posterior part of the occipital lobe, and stands out for its
involvement in fundamental visual processing. At the opposite
extreme of Figure 12 lies the hippocampus within the temporal
lobe, which plays a pivotal role in behavior inhibition, memory, and
spatial perception.

4 Discussion

4.1 Spectral dynamics across vigilance
states

Consistent with established sleep physiology, we observed a
marked increase in low-frequency (especially delta-band) power
during NREM sleep compared to wakefulness. These slow
oscillations (below 5 Hz) are hallmark features of deep NREM
sleep and are most prominent in frontal–medial cortex, consistent
with widespread synchrony observed in intracranial recordings
(Brancaccio et al., 2020).

In parallel, sleep spindles (12–15 Hz), were particularly elevated
in N2 (and attenuated in N3). Sleep spindles are characteristic
of stage-N2 thalamocortical architecture (Staresina et al., 2023).
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FIGURE 10

Brain mapping of the DFA exponent (α) depicted in a transverse plane of the brain. The color bar indicates the value of the exponent α. (a) Waking
state, (b) REM, (c) non-REM N2, and (d) non-REM N3 sleep states. The exponent values across the brain, reveal transitions from wakefulness and REM
to non-REM sleep states. Positive correlations characterize wakefulness, while non-REM states show non-stationary behavior. Values near 0.5
represent randomness, with distinct electrode contact locations visible, especially in single-patient data.

FIGURE 11

Boxplots showing the distribution of the Detrended Fluctuation Analysis (DFA) exponent α across six brain lobes (Temporal, Frontal Medial, Frontal
Lateral, Insular, Occipital, Parietal) and four sleep states (Wakefulness, REM, non-REM N2, non-REM N3). Each box represents the interquartile range
(IQR), with the central line showing the median and whiskers extending to 1.5×IQR; outliers are plotted individually. Colors denote sleep states as
indicated in the legend. Across most lobes, α increases progressively from wakefulness to deep non-REM sleep (N3). An exception is the insular lobe,
which shows no significant difference between Wake and REM.

TABLE 2 FDR-corrected significance levels (− log10 p) for DFA exponent α

comparisons between sleep states by brain lobe.

Brain lobe Wake vs.REM N2 vs.N3

Temporal 4.60 32.14

Frontal medial 5.01 21.92

Frontal lateral 7.55 33.45

Insular (n.s.) 3.74

Occipital 6.10 7.00

Parietal 5.75 24.94

Although we did not assess memory behaviorally, the delta–sigma
distribution we observed matches canonical stage-specific spectral
profiles.

Wakefulness, in contrast, was dominated by faster theta and
alpha oscillations, with reduced delta power. This spectral profile
reflects an externally oriented brain state, engaged in sensory
processing and encoding of new information (Klimesch, 1999).
REM sleep displayed a hybrid profile. Higher-order cortical areas
showed fast activity, while primary sensory regions remained in a
delta-rich state, consistent with the idea of sensory disconnection
during REM (Hobson et al., 2000). This REM profile—fast
activity in higher-order cortices alongside persistent limbic delta—
is consistent with accounts that REM may protect internally
generated reactivation from external interference while permitting
the integration of recently acquired information (Hobson et al.,
2000; Diekelmann and Born, 2010). In our data, visual regions such
as the calcarine cortex showed reduced α-band power during REM
stage, compared to wake, suggesting diminished visual input, while
limbic areas behaved differently. The amygdala showed decreased
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FIGURE 12

DFA exponent α values across various brain regions are depicted in the figure. Each colored data point corresponds to the α exponent in a specific
state: wakefulness (red), non-REM N2 (light blue), non-REM N3 (yellow), and REM (dark blue). The mean value is represented by a white-centered
circle, and the standard deviation is indicated by the bounds of the shaded area, calculated for each sleep and wakefulness state. The data is arranged
from left to right in ascending order based on the mean standard deviation of the DFA alpha across the four states, computed per region from all
60-s epochs and channels. Within the figure, data related to each region is organized into vertical blocks. Each block, arranged from left to right,
includes the region’s name along with the states Wakefulness, non-REM N2, non-REM N3, and REM. Below each block, there is a corresponding
square in a distinct color, signifying the lobular region to which it belongs. Beneath each square, there is a number that identifies the region
according to Table 1. The association of each color with its respective lobular region is depicted in the horizontally extended bar beneath the figure.
The most significant variations are observed in the precentral and postcentral gyri, linked to motor and sensory functions. The cuneus region,
associated with visual processing, also exhibit notable differences. The hippocampus displays the least variation, with REM sleep showing higher α

values than non-REM states. Wakefulness α values are close to 1, while non-REM N2 and N3 states surpass 1.

delta power in REM (relative to wake), whereas the hippocampus
maintained elevated delta power, hinting at continued internal
replay or integration (von Ellenrieder et al., 2020).

These differences between wakefulness and REM sleep are
particularly relevant—not only because they reflect distinct
functional roles, but also because they may serve as robust,
physiologically grounded spectro-anatomical markers for
distinguishing the two states. Our findings—highlighting, for
example, elevated alpha power in the primary visual cortex and
increased delta activity in the amygdala during wake, as well as
enhanced delta power in the hippocampus during REM—suggest
that anatomically specific spectral features (e.g., occipital alpha
versus limbic delta) could improve physiologically informed state
classification in iEEG datasets.

Importantly, the observed elevation of medial-frontal delta
in N3 relative to N2 aligns with findings by Bernardi et al.
(2019), who documented source-localized slow-wave amplitude
increases in frontal regions during deep sleep. This suggests
regional slow-wave amplification as a marker of sleep depth
rather than tissue-specific dysfunction. Similarly, the persistence
of high delta power in the hippocampus during REM—
contrasting with cortical desynchronization—parallels intracranial
observations (Moroni et al., 2007; Ferrara et al., 2012), emphasizing

a unique hippocampal signature of REM characterized by tonic
delta synchronization.

Moreover, the decrease in amygdala delta during REM mirrors
findings from emotion-related intracranial studies, where REM
selectively attenuates amygdala reactivity overnight (e.g. Wassing
et al., 2019). Such limbic divergence exemplifies functionally
heterogeneous spectral modulation across subcortical structures.

Finally, the band-specific differences observed in beta and
gamma between N2 and N3—particularly their reduction in N3
over fronto-parietal cortices—are consistent with Brancaccio
et al. (2020). Taken together, these findings underscore that
transitions from N2 to N3 are accompanied not only by slow-
wave augmentation but also by broadband desynchronization
of higher-frequency activity, possibly reflecting global
network downscaling.

4.2 Neuronal avalanches

We analyzed neuronal avalanche size distributions across
wakefulness, REM, and NREM sleep stages. A key finding was
that the fitted power-law exponent τ varied systematically with
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vigilance state. Avalanche scaling analysis was performed using
a fixed binning approach with a consistent detection threshold
of −2.0 standard deviations. The size exponent (τ ) ranged from
1.6–2.0 during N2/N3 sleep to 2.0–2.4 in wakefulness and REM
states. This indicates a relative increase in the frequency of larger
avalanches during wakefulness and REM compared to NREM
sleep. Duration exponents (α) showed a clear progression, from
1.7–2.1 in NREM sleep to 2.3–2.9 in REM and wakefulness,
reflecting longer avalanche lifetimes in more activated brain
states. Spatial scaling (γ ) exhibited state-dependent variations,
with values of 1.1 in N3 sleep and 1.4 during wakefulness,
consistent with increased spatial propagation and integration
of avalanches during wakefulness. Furthermore, the increased
Kolmogorov–Smirnov (KS) distance observed in power-law fitting
during N3 indicates that in this state, avalanche size distributions
deviate more significantly from an ideal power-law, suggesting
reduced adherence to scale-free dynamics. These quantitative
changes in scaling exponents reflect systematic modulations in the
spatiotemporal organization of neuronal avalanches across sleep–
wake states.

Our results align with prior intracranial and EEG
studies showing that vigilance state modulates avalanche
statistics (Priesemann et al., 2013).

Limitations in spatial sampling inherently bias the estimation
of scaling exponents toward higher values, as previously reported
studies (Priesemann et al., 2009). Despite this systematic upward
shift, the relative differences in scaling exponents between vigilance
states remain preserved and are more reliably distinguished due
to the consistent sampling methodology applied across conditions.
Consequently, spatial undersampling, while affecting absolute
exponent values, does not compromise the comparative analysis of
state-dependent avalanche dynamics.

That said, cortical networks during deep sleep are strongly
shaped by slow oscillations and synchrony—features that can
yield similar scaling without fine tuning. Empirical and modeling
work on driven or adaptive networks shows that scale-invariant
avalanche patterns can emerge without invoking a phase transition
(Priesemann et al., 2014; Martinello et al., 2017; Lombardi et al.,
2023). Accordingly, we keep our interpretation descriptive—as
state-dependent variation in scaling—without committing to a
specific underlying mechanism or operating regime.

Wakefulness and REM sleep showed higher τ values and fewer
large avalanches, consistent with more fragmented scaling. This
matches observations from MEG and EEG studies (Shriki et al.,
2013) and may reflect a functional preference for adaptability and
responsiveness over large-scale synchronization.

Our findings are also consistent with longitudinal rodent
studies, which have reported a re-expansion of avalanche
size distributions during sleep following wake-related shifts in
scaling (Xu et al., 2024). These patterns are consistent with
sleep-dependent network recalibration, but do not, on their own,
demonstrate fine-tuned operation in any specific regime.

Neuronal avalanches have been proposed as signatures of scale-
free activity in cortical networks, motivating extensive theoretical
and empirical work (Chialvo, 2010; Beggs and Plenz, 2003). Our
aim here is not to adjudicate between competing frameworks, but
to characterize how avalanche size distributions vary systematically

across sleep stages and how these shifts relate to state-dependent
processing.

More recent models show that scale-invariant avalanche
statistics can emerge in driven, neutral, or adaptive networks
without fine tuning (Martinello et al., 2017; Matin et al., 2021;
Lombardi et al., 2023). In light of this, we keep our interpretation
descriptive—reporting empirical scaling relationships—without
assigning them to a particular dynamical context.

4.3 Temporal correlations and information
integration windows

DFA revealed state-dependent organization of neural
dynamics. At intermediate timescales (0.04-2.5 s), wakefulness and
REM typically showed 0.6 < α < 1.0, consistent with stationary
long-range temporal correlations (LRTC). In contrast, N2 and N3
exhibited α > 1, reflecting non-stationary, integrated persistence
consistent with the predominance of slow oscillatory activity in
NREM. These scale-dependent patterns align with previous EEG
studies (Lee et al., 2002, 2004; Goshvarpour et al., 2013; Ma et al.,
2018), and the iEEG dataset used in this study confirms their
robustness across cortical and subcortical territories. We keep our
analysis descriptive, without interpreting α within any particular
theoretical framework.

These temporal regimes reflect a shift in the intrinsic
correlation structure of neural dynamics across vigilance states. In
wakefulness and REM, moderate long-range correlations suggest
persistent but stationary activity patterns. The similarity between
REM and wake in short-scale DFA profiles highlights shared
dynamic features, despite their different sources of activation.

In NREM, α > 1 denotes non-stationary, integrated
persistence, consistent with stronger slow-timescale
autocorrelation during deep sleep (Zhang et al., 2021; Meisel
et al., 2017).

Our region-specific DFA analysis further revealed
heterogeneous modulations of temporal dynamics. While
sensory and prefrontal cortices showed marked shifts in α

between wakefulness and NREM, the hippocampal α remained
comparatively stable across states (Tagliazucchi et al., 2013), a
pattern compatible with uninterrupted internal reactivation in
two-stage accounts, although we did not assess replay or behavioral
memory outcomes.

These findings align with intracranial studies showing
asynchronous NREM to REM transitions, starting in occipital
regions before reaching frontal areas (Peter-Derex et al., 2023).
They also reflect known increases in DFA variability during deep
sleep (Goshvarpour et al., 2013). The current results provide a
refined anatomical granularity, identifying specific regions with
functionally meaningful dynamics.

Overall, our DFA findings demonstrate that sleep influences not
only the spectral and spatial organization of neural activity, but
also the intrinsic temporal architecture of cortical and subcortical
dynamics. The scaling exponent α provides a compact summary
of state-dependent changes in temporal structure, highlighting
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enhanced persistence during deep sleep and dynamic variability
across brain regions.

4.4 Integration of multiscale dynamics and
implications

By combining oscillatory analysis with avalanche statistics and
scaling measures, this work highlights how multiple levels of
neural organization collectively contribute to cognitive function
across vigilance states. The convergent picture that emerges
is that sleep is not a quiescent period, but rather an active
neurophysiological process of reorganization—one that potentially
lays the groundwork for memory consolidation and brain-
wide plasticity.

Slow-wave sleep, in particular, appears to create the necessary
conditions for stabilization and integration of new memory
representations: strong delta oscillations could synchronize
widespread networks, neuronal avalanches skew toward large-scale
coactivations, and non-stationary, integrated persistence. These
features are those expected to support the repeated reactivation
of recently learned neuronal assemblies and the strengthening of
synaptic connections according to Hebbian principles (Tononi and
Cirelli, 2003; Diekelmann and Born, 2010).

REM sleep, on the other hand, appears to share many
dynamical traits with wakefulness, yet it operates in an isolated
environment shielded from external perturbations. This unique
combination in REM may allow the brain to autonomously
explore and refine neural representations—potentially integrating
new memories with older networks, resolving interference, and
modulating emotional tone—while maintaining a high level of
network plasticity (Fagerholm et al., 2015).

Such a role is consonant with hypotheses that REM sleep
supports memory consolidation in a complementary fashion to
NREM (Diekelmann and Born, 2010).

4.5 Limitations

It is important to recognize the limitations of our
interpretations. The links we draw between the observed
neural signatures and memory functions are based on consistency
with prior empirical and theoretical work (e.g., Tononi and Cirelli,
2003; Diekelmann and Born, 2010; Shew et al., 2009; Tagliazucchi
et al., 2013). We thus refrain from making definitive claims that
“memory consolidation occurred” in our participants; rather,
we argue that the brain states we characterized are compatible
with the neurophysiological requirements of consolidation as
established in the literature. Notably, extensive research in animals
has demonstrated causal connections between specific sleep
phenomena and memory—for example, the work of Girardeau
et al. (2009) showing that disrupting hippocampal ripples in
NREM sleep impairs spatial memory, and evidence that enhancing
slow oscillation–spindle coupling in humans can improve recall
(Staresina et al., 2015).

These studies bolster the interpretation that the patterns we
observe (e.g., abundant NREM slow oscillations with spindles, and

an active hippocampus during REM) are indeed meaningful for
memory processing. However, future studies should explicitly link
our multiscale metrics to behavioral memory performance in order
to confirm their functional significance.

Second, our data were obtained from individuals with drug-
resistant epilepsy who had intracranial electrodes implanted for
clinical monitoring. Although epileptic spikes and seizures were
carefully excluded and focused on periods of normal sleep, the
generalizability of the findings to healthy brains must be made with
caution. Prior work suggests that many of the phenomena we report
(such as spectral signatures of sleep stages and avalanche dynamics)
have also been observed with noninvasive recordings in healthy
populations (Tagliazucchi et al., 2013).

Nonetheless, the potential influence of pathological
hyperexcitability or medication effects cannot be completely
ruled out. We acknowledge this caveat and view our findings as a
first step that should be replicated in further datasets, including
those from healthy sleepers if intracranial recordings become
available (e.g., during presurgical mapping in non-epileptic tumor
cases or with emerging minimally invasive techniques).

Third, our conclusions on temporal correlations and avalanche
distributions are based on empirical results validated by statistical
significance tests. Linking these patterns to specific theoretical
models is beyond the scope of this work.

In all cases, we emphasize a cautious approach: the multiscale
descriptors we report are robust and novel characterizations of
sleep–wake states, but their exact roles in memory processing
remain to be fully determined.

4.6 Conclusions and future directions

This work demonstrates the power of a multiscale analytic
approach to sleep neurophysiology, combining spectral, temporal,
and network-level assessments to reveal how the sleeping brain
balances the demands of information storage and responsiveness.

Beyond physiological interpretation, our findings also highlight
opportunities for feature-engineered sleep staging. Region- and
band-specific spectral signatures (e.g., posterior alpha in primary
visual cortex; delta modulation in limbic and frontal areas)
provide physiologically grounded inputs that can aid automated
discrimination—particularly for the challenging pairs Wake
vs. REM and N2 vs. N3. Complementing these with local
temporal descriptors from DFA—specifically the intermediate-scale
exponent α (0.04–2.5 s) computed per region, which tends to
be ∼0.6-1.0 in Wake/REM and >1 in N2/N3—yields a compact,
interpretable feature set. Integrating (i) Gaussian-fitted band
amplitudes and (ii) region-wise DFA α (optionally alongside spatial
co-activation metrics) could improve classifier performance while
keeping models grounded in neurophysiology and tractable on 60-s
epochs.

On the other hand, future studies should aim to link these
multiscale neural signatures with behavioral measures of memory
performance, and extend these analyses to larger and more
diverse populations, including healthy individuals. Furthermore,
collaborative efforts between clinical researchers, computational
neuroscientists, and sleep specialists will be essential for uncovering
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the full cognitive relevance of these dynamic sleep states. The
integration of iEEG with interventional techniques such as
stimulation or pharmacological modulation may help establish
causal links between the observed neural patterns and memory
outcomes.

Looking ahead, future efforts could focus on patient-
specific modeling and predictive analysis, particularly in clinical
contexts where disrupted sleep impacts cognitive function.
Establishing direct links between iEEG dynamics and behavioral
or memory task performance will be key to clarifying their
functional relevance. Additionally, incorporating spatially-
aware machine learning methods—such as graph neural
networks—may enhance our ability to decode inter-regional
interactions. Extending these approaches to longitudinal and
developmental datasets could provide new insights into how
sleep-related neural representations evolve across the lifespan or in
pathological conditions.
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