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Recent advances in self-supervised learning have attracted significant attention
from both machine learning and neuroscience. This is primarily because
self-supervised methods do not require annotated supervisory information,
making them applicable to training artificial networks without relying on large
amounts of curated data, and potentially offering insights into how the brain
adapts to its environment in an unsupervised manner. Although several previous
studies have elucidated the correspondence between neural representations in
deep convolutional neural networks (DCNNSs) and biological systems, the extent
to which unsupervised or self-supervised learning can explain the human-like
acquisition of categorically structured information remains less explored. In this
study, we investigate the correspondence between the internal representations
of DCNNs trained using a self-supervised contrastive learning algorithm and
human semantics and recognition. To this end, we employ a few-shot learning
evaluation procedure, which measures the ability of DCNNs to recognize novel
concepts from limited exposure, to examine the inter-categorical structure of
the learned representations. Two comparative approaches are used to relate the
few-shot learning outcomes to human semantics and recognition, with results
suggesting that the representations acquired through contrastive learning are
well aligned with human cognition. These findings underscore the potential of
self-supervised contrastive learning frameworks to model learning mechanisms
similar to those of the human brain, particularly in scenarios where explicit
supervision is unavailable, such as in human infants prior to language acquisition.

KEYWORDS

contrastive learning, few-shot learning, human semantics, human recognition,
similarity, self-supervised learning

1 Introduction

Self-supervised learning has recently gained significant attention from both the
machine learning and neuroscience communities. Unlike supervised learning, which
requires explicit task-specific labels, self-supervised learning relies on inherent structures
within the data itself and does not require manual supervision. This property makes it
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particularly advantageous in machine learning, enabling models to
be trained on vast amounts of uncurated (unlabeled) data. Recent
studies have demonstrated the effectiveness of self-supervised
learning as a powerful method for representation learning (Arora
et al., 2019; Medina et al., 2020; Chen and He, 2020; Newell and
Deng, 2020; Ericsson et al., 2022; Nozawa and Sato, 2021; Shi et al.,
2021; Wang et al., 2021; Bao et al., 2022; Zhu et al., 2022; Hu et al,,
2024).

In neuroscience, it is equally important to investigate the
characteristics of neural representations that emerge from self-
supervised learning, as this can provide insights into learning
mechanisms in the brain. Given that self-supervised learning does
not require labeled input, it offers a plausible framework for brain-
like learning. In particular, since language is considered a major
source of supervision in humans (Knudsen, 1994; Glaser et al,
2019; Loewenstein et al., 2021), self-supervised learning may play
a central role in the brains of human infants before language
acquisition, as well as in non-linguistic animals. When applied
to the study of neural learning and information representation,
self-supervised learning may help explain empirical findings
showing that prelinguistic infants exhibit cognitive abilities—
such as categorical representation—similar to those of adults
(Carey and Bartlett, 1978; Quinn et al., 1993; Behl-Chadha,
1996; Freedman et al., 2001; Smith et al., 2002; Yang et al,
2016).

Deep convolutional neural networks (DCNNs) have frequently
been used as computational models of neural circuits to study
such neural representations. Earlier studies have shown that
DCNNSs trained with supervised learning exhibit representational
similarities to the visual systems of humans and animals (Lecun
et al.,, 1998; Kriegeskorte et al., 2008; Jarrett et al., 2009; Krizhevsky
et al, 2012; Yamins et al, 2013, 2014; Khaligh-Razavi and
Kriegeskorte, 2014; Majaj et al., 2015; Yamins and DiCarlo, 2016;
Rafegas and Vanrell, 2018; Rajalingham et al., 2018; Hebart et al.,
2020; Marques et al, 2021; Kawakita et al., 2024). Building
on this foundation, recent work has demonstrated that DCNNs
trained using self-supervised algorithms also show representational
similarities to biological visual systems (Bakhtiari et al., 2021;
Zhuang et al., 2021; Nayebi et al., 2021; Konkle and Alvarez, 2021;
Cadena et al., 2019; Konkle and Alvarez, 2022; Millet et al., 2022;
Prince et al., 2024), further supporting their plausibility as models
of the visual system.

In this study, we investigate the internal representations of
deep convolutional neural networks (DCNNs) through the lens
of inter-category relationship structures, as revealed by few-shot
learning performance. Few-shot learning refers to the ability to
recognize novel, previously unseen categories using only a limited
number of examples. While prior studies have highlighted the
similarity between DCNN representations and those of humans
and animals, the structure of category-level representations has not
been thoroughly explored. A recent study (Sorscher et al., 2022)
evaluated the few-shot learning capabilities of DCNNS trained with
both supervised and self-supervised methods. Building upon this
work, we compare the category structures revealed through few-
shot learning in DCNNs with human semantic organization and
recognition performance, aiming to further clarify the nature of
internal representations learned without explicit supervision.
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In this paper, we pursue three objectives: (i) to confirm that
DCNNs trained with self-supervised learning can perform few-
shot learning accurately, and (ii) to investigate their internal
representations by comparing them to human semantic
organization and (iii) human recognition performance. The
few-shot learning ability (i) is evaluated based on the linear
separability of categories within the neural representation
space. From this evaluation, we derive category-wise confusion
matrices for each trained DCNN. These matrices are then used
to analyze the inter-category structure of the representations
and to compare them to (ii) human semantic structures
and (iii) human recognition patterns. While prior studies
have investigated self-supervised DCNNs (Medina et al,
2020; Sorscher et al, 2022; Lu et al, 2022), our novel

contribution lies in the comparative analyses involving human-

level semantics and recognition-specifically, objectives (ii)
and (iii).

Our experimental results indicate that the internal
representations arising from  self-supervised learning in

DCNNs  closely resemble human semantic structures and

recognition patterns. These findings suggest that inter-
category structures similar to those found in human
cognition can emerge even before the application of

explicit supervision, thereby supporting both the biological
plausibility and practical utility of self-supervised learning in
brain-like systems.

2 Materials and methods

2.1 Overall evaluation procedure

This study evaluates the extent to which the internal
objects in DCNNs
framework

representations of visual trained by

self-supervised ~ learning resemble  human
perceptions of them. In particular, we focus on the categories
of objects. We

between the inter-categorical relationship

quantitatively ~ evaluate correspondence
structure within
learned internal representations of the DCNNs and human
semantics and recognition. The overall evaluation procedure
of the DCNNs (Figure 1A, top),
few-shot learning ability (Figure 1A,
bottom), and quantitative evaluation of the correspondences
(Figures 1B, C).

In the first step (Figure 1A, top), we pre-train a DCNN with
a self-supervised contrastive learning (Jaiswal et al., 2020; Kumar

et al., 2022). The objective function utilized for the contrastive

involves  pre-training

evaluation of their

learning framework does not require explicit supervision signals
over object categories. To assess the impact of the absence of
supervision, we also train a separate DCNN using a supervised
object classification task as a baseline for comparison. The
evaluation of few-shot learning performance is then conducted in
the next step.

In the second step (Figure 1A, bottom), we evaluate the
few-shot learning performance of the DCNNs, specifically the
linear separability of internal representations into the target
categories. During this evaluation, the synaptic weights of the
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FIGURE 1

human participants performing an object classification task.

Schematic illustration of the experimental procedure in this study. (A) A two-
DCNNSs. In Step 1 (pre-training), the network is trained using self-supervised contrastive learning. In Step 2, pairwise few-shot classification is
performed, and performance is assessed using error pattern matrices, where each cell represents the classification error rate between a pair of novel
categories. (B) Clusters of object categories derived from the error pattern matrices are compared to coarse-grained category groupings based on
human semantic relationships. (C) Similarity is evaluated between the error pattern matrices of the DCNNs and the confusion matrix obtained from

step methodology for evaluating the few-shot learning performance of

DCNNSs are kept frozen. The networks are presented with images
from novel object categories that were not included during pre-
training. A few exemplar images from each category are used to
compute “prototype” representations, and the remaining samples
are classified based on their similarity to these prototypes. The
classification results are summarized in confusion matrices, which
we refer to hereafter as error pattern matrices.

After obtaining the error pattern matrices, we perform analyses
to examine how closely the internal representation structures of the
networks resemble those of humans. To evaluate the similarity of
these structures in detail, we adopt the following two approaches.
The first approach (Figure 1B) evaluates how the grouping of object
categories in the internal representations of DCNNs aligns with
human semantic organization. Using the error pattern matrices
obtained from the few-shot learning task, we perform hierarchical
clustering to identify clusters of categories that are represented
closely together. We then quantify the extent to which the
categories within each cluster correspond to predefined coarse-
grained object categories. In the second approach (Figure 1C), we
quantitatively evaluate the similarity of error patterns between
human participants and DCNNs in object classification tasks.
Specifically, we use a dataset of object images and a confusion
matrix derived from human participants performing multi-
label classification of these images (see Section 2.2.2). We then
compare this human confusion matrix with confusion matrices
obtained from the multi-class few-shot learning evaluations of
the networks.
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2.2 Dataset

2.2.1 Image dataset: CIFAR-100

In the pre-training phase and evaluation of pairwise few-
shot learning performance, we utilized the CIFAR-100 dataset
(Krizhevsky, 2019). This dataset consists of 60,000 colored images
of objects each with a resolution of 32 x 32 pixels. In this dataset,
each image has two different labels to annotate which category the
object in the image belongs to, namely fine category and coarse
category. The number of fine categories defined in the dataset is 10,
and each fine category belongs to one of 20 coarse categories. The
number of included fine categories in each coarse category is 5. For
instance, the coarse category large carnivores include bear, leopard,
tiger, wolf, and lion. The number of image samples in each category
is equal; each coarse category contains 3, 000 images, and each fine
category contains 600 images.

2.2.2 Human visual classification task dataset:
CIFAR-10H

The dataset used to evaluate the similarity of error patterns
between the DCNNs and human participants is CIFAR-10H
(Battleday et al., 2020). This dataset was collected in a behavioral
experiment in which 2,750 human participants classified images
from the well-known CIFAR-10 (Krizhevsky, 2019) dataset into
10 object categories. Participants were instructed to select the
object category for each image as quickly as possible after its
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presentation. Although humans are expected to perform this task
more accurately than machines, some misclassification errors were
inevitably observed.

The dataset provides the results of the behavioral experiment,
with the number of human participants classifying each image
into each of the 10 categories. By averaging the histograms of
these classifications within each ground-truth object category, we
generate a misclassification pattern histogram for that category.
These misclassification histograms were then arranged to form a
confusion matrix representing behavior of human participants. In
particular, given the misclassification histogram for each image
sample, averaging the histograms over all images belonging to a
certain object category yields a confusion histogram of a certain
object category into others. The confusion matrix is obtained
by stacking the confusion histogram for different categories.
Assuming that this confusion matrix reflects the similarity
relationship between object categories in human recognition, we
later compare it with the error pattern matrices obtained from
the DCNNGs to assess the correspondence between the DCNNs’
internal representations and those of humans (see Section 3.3 for
the results).

2.2.3 Categories in the datasets

To evaluate few-shot novel category discrimination, we first
define “known categories” as those present during the pre-training
phase, and “novel categories” as those absent in it. For the CIFAR-
100 dataset, we randomly divided the 20 coarse categories into
two subsets (10 coarse categories for each) and then assigned
the corresponding fine categories based on this division. Pre-
training (either contrastive or supervised) was conducted using
only input images belonging to the known categories. This ensures
that none of the novel categories used during the evaluation
of few-shot discrimination were encountered by the network
during pre-training.

In addition, we conducted a separate few-shot discrimination
test to generate error pattern matrices for comparison with
human semantics and recognition. For this purpose, CIFAR-100
categories could not be used, as the human confusion matrices
were constructed based on the category definitions of the CIFAR-
10 dataset. Importantly, the category and image sets of CIFAR-10
are completely disjoint from those of CIFAR-100. This guarantees
that the CIFAR-10 images also represent novel categories from the
perspective of the pre-trained network.

2.3 Pre-training

In the first step, we train DCNNs f: X — ) using self-
supervised contrastive learning, and also train a separate model
with supervised object classification as a baseline. Both models
share the same encoder architecture g: X — Z, which maps an
input image to a common latent space. From this latent space,
distinct projection heads proj: Z — ) are used, such that
f = projog. Note that the projection heads differ between the
two models, and consequently, the dimensionality of ) is not
the same across them. Since we aim to evaluate whether the
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learned representations apply to discrimination between novel
object categories which are unseen in the pre-training, both
networks are trained on the “known” half of CIFAR-100 dataset (see
Section 2.2.3).

2.3.1 Self-supervised contrastive learning

In this work, we adopt self-supervised contrastive learning as
a representative framework of learning rules that do not rely on
explicit supervision signals. In contrastive learning, a network
is trained such that the internal representations of semantically
similar inputs (positive pairs) are brought closer together, while
those of dissimilar inputs (negative pairs) are pushed apart in
the network’s latent space. Specifically, we use SimCLR (Chen
et al, 2020) as a standard contrastive learning algorithm. We
also include SimSiam (Chen and He, 2020) as an additional
contrastive method to evaluate the robustness of our findings (see
Supplementary material and Supplementary Figure SI).

SimCLR applies a randomly selected combination of
augmentations to each input image and treats two differently
augmented views of the same image as a positive pair during
training. Figure 2 provides a schematic illustration of instances
of such augmentations, including random cropping, rotation,
color distortion, and grayscaling. Table 1 outlines the specific
augmentation rules and parameters we used.

Suppose an augmentation function a € A is sampled from
a probability distribution p,g € P(A), and an input image
x € X is sampled from another distribution pi, € P(X). Here,
a: X — X represents a single composition of randomly applied
augmentations listed in Table 1. The neural network f: X — RY
is trained on those augmented input samples. The informative
neighborhood contrastive estimation (InfoNCE) loss function for
SimCLR is defined as

Lcir(f)
= _Ex,{x;1~p{§:‘,{ak1~p§u§2
[letr (k41 (0); g2 (0, {ar () Y15 )] (1)
lewr (%6575, 4% iy f)
exp (f® - J:9)
exp (J@ 7)) + TI exp (70 - 75,))

= log

@

where {xk}f:1 ~ pK indicates that {xi,...,xx} are independently
sampled from the same distribution p, and f‘(-): = fO/NIFOI
denotes the normalized internal representation. Here, %, xT, and
{fc]: }Ik<:1 represent the anchor, the positive, and the negative
samples, respectively. As shown in Equation 1, positive pairs are
generated by applying different random augmentations to the same
image. In Equation 2, the symbol - denotes the inner product
between two vectors. Minimizing Equation 2 can be interpreted as
maximizing similarity of representations within the positive pair
(x,x1), while minimizing the similarity of them to the negative
samples {Fc;}szl. Note that computing the exact expectation
in Equationl is computationally infeasible due to multiple
integrals over continuous random augmentations. Therefore, we
approximate it using the empirical mean over a minibatch.
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Schematic illustration of SIMCLR contrastive learning. During SImCLR training, the DCNN is provided with a large number of image inputs, each
generated from an original image by applying random augmentations such as cropping, rotation, or color distortion. In SImCLR, the network is
trained so that internal representations of augmented views from the same original image (i.e., positive pairs) are mapped close together in the latent
space, while representations of all other combinations (negative pairs) are pushed farther apart.

Positive pair

TABLE 1 Augmentation rules and corresponding parameters.

Name of augmentation = Parameters

Scale: [0.08, 1.0]

Random cropping
Ratio: [0.75, 1.25]

Horizontal flipping Probability: 0.5

Strength: 0.5
Color jittering

Probability of grayscaling: 0.2

2.3.2 Supervised object classification learning

For comparison with the network trained using the contrastive
learning algorithm, we also consider supervised object classification
learning. This approach requires explicit supervision signals that
specify the object category to which each input image belongs. The
network is trained such that its output, interpretable as estimated
probabilities over the object categories, closely matches the ground-
truth labels provided by the supervision signals.

The loss function for the network f: X — RIC is defined as

Laupe(f) = —E(xyyep Y _ yelog softmax. (f(x)), 3)

ceC

where D: = {(x;, y,»)}fi | denotes the dataset, C is a pre-defined set
of object categories in the training —> data, and f indicates the
network being trained. The subscript ¢ denotes the index of a |C|-
dimensional vector. y is an element of a probability simplex AlCl,
and is typically a one-hot vector, i.e., {y € {0, 1}/°/| ¥ .o ye =1} C
Al€l, The softmax function, which outputs the probability that x
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belongs to category c, is defined as

exp (fc(x))
Yoecexp (o)

softmax,(f(x)) = (4)

Optimization is performed using gradient descent with error
back-propagation (Rumelhart et al., 1986). To improve robustness
to noise, we also applied random augmentations to the input
images. The set of augmentations was identical to that used in
the self-supervised contrastive learning setting (see Table 1). As
in the contrastive learning case, the expectation in Equation 3
is approximated by empirical average over minibatches due to
computational constraints.

2.4 Few-shot learning

One of the main goals of this study is to investigate
whether DCNNs trained with self-supervised learning algorithms
can accurately perform few-shot classification of novel object
categories. To this end, we follow the approach (Sorscher et al,
2022) and formalize few-shot learning as the linear separability of
internal representations of the novel categories.

The details of the few-shot learning evaluation procedure are
as follows. Let {cy,...,c,} be the novel fine object categories that
have not been used for the pre-training phase. From each category
¢j, we randomly sample m training examples (with m = 10 in
(¢j)
1
network output is computed as f(x) = (proj og)(x), where g is the
encoder and proj is the projection head. In contrast, for few-shot

this study), denoted as x;”" (i = 1,..., m). During pre-training, the

evaluation, we extract representations from the I-th layer of the
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encoder, denoted r = gj(x), where g = gz o ... 0 g1. For each novel
category cj, we compute a “prototype” representation by averaging
the internal representations of its training samples:

m
RGY Z rfcj). (5)
i=1

Given these prototypes, a test sample £ is classified into the category
¢ defined by

= argjmin H #a) SHZ . (6)

This procedure evaluates whether the DCNN organizes internal
representations such that inputs from the same category are
embedded closely, while those from different categories are
well separated.

In particular, when n = 2, this procedure admits an alternative
geometric interpretation. Given the prototypes 71 and 7 for the
two categories ¢; and ¢, we can define a linear decision boundary
as follows:

w =) _ ;.(62)’ (7)
1
B = EW. (;(Cl) +;(Cz))’ (8)

For a test sample with representation &, the predicted category is
C1 if

h=w-§—-p )

is greater than zero, and ¢, otherwise. Since this yields exactly the
same classification result as the prototype-based method described
in the previous paragraph for n = 2, this procedure can
equivalently be interpreted as constructing a linear discrimination
hyperplane between a pair of novel object categories and evaluating
its generalizability to test samples.

Hereafter, we refer to the case of n = 2 as pairwise few-shot
learning, and the case of n > 2 multi-class few-shot learning. In pair-
wise few-shot learning evaluation, a confusion matrix is generated
by iteratively conducting evaluations for all possible pairs of novel
categories, whereas is multi-class few-shot learning, a confusion
matrix is constructed from a single evaluation involving all novel
categories as candidate object classes. The results of the pairwise
few-shot learning evaluation are presented in Section 3.1. The
multi-class few-shot learning evaluation is used to compare the
error patterns of DCNNs with those of human participants, and the
corresponding results are shown in Section 3.3.

Practically, we also add a several conditions to the evaluation
procedure. First, this evaluation is done independently at each
layer with different dimensionality of internal representation and
different representational nature. Hence, the results can vary
between different layers. Second, since the result varies for different
random choices of the training samples and test samples, we
show averaged value over different choices for each element of the
resulting error pattern matrices. This can lead to robust and general
tendency of how the trained models differentiate between novel
object categories. Third, in order to guarantee that the categories
and samples used for this evaluation is unseen during the pre-
training step, we use the novel subset of CIFAR-100 dataset in this
evaluation (see Section 2.2.3).
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2.5 Comparison between the models and
human semantics and recognition

The primary objective of this study is to evaluate the similarity
between the inter-categorical structure of internal representations
in DCNNs and that of human semantics and recognition. To this
end, we employed two complementary methods of evaluation. The
following subsections describe these methods in detail.

2.5.1 Clustering-based evaluation: comparison
with human-defined categorical aggregation

This analysis examines whether the emergent similarity
structure among object categories in the learned representations of
DCNNS s reflects the categorical organization of human semantics.
To investigate this, we use the coarse categories from the
CIFAR-100 dataset, which defines two levels of object categories
(Section 2.2.1 and Figure 3A): fine (e.g., wolf, lion, leopard, bear,
and tiger) and coarse (e.g., large carnivores). Focusing on the
10 coarse categories within a novel subset of the dataset, our
analysis evaluates the extent to which these pre-defined fine-to-
coarse inclusion relationships are mirrored by the aggregations
that emerge within the similarity structure of the DCNN’s
internal representations.

To extract these similarity-based groupings, we perform
hierarchical clustering on the error pattern matrices derived from
a pairwise few-shot learning evaluation (Figure 3B). We term
the resulting groups representational clusters. Since the few-
shot evaluation is conducted at the fine-category level, the error
pattern matrix can be interpreted as a dissimilarity matrix between
fine categories. Hierarchical clustering progressively merges the
most similar fine categories or lower-level clusters, producing a
dendrogram that illustrates the groupings at various levels of
dissimilarity. To align our analysis with the semantic structure
in the dataset, we cut the dendrogram at the level that yields 10
top-level clusters, matching the number of coarse categories.

We then quantify the consistency between the predefined
coarse categories and the representational clusters using mutual
information. The goal is to evaluate the similarity between the two
partitioning schemes of the fine categories, or in other words, to
measure “how well one can predict the coarse category of a fine
category given its representational cluster”, and vice versa. Mutual
information is well-suited to measure this relationship, and we
compute it between the set of representational clusters, #, and the
set of coarse categories, C“°%"¢, as follows:

I[H; coarse]
_ S(Ccoarse) + Z P(H)) Z
i j

P(CE™"% | Hj) log, PG| H) (10)
Here, P(H;) is the proportion of fine categories assigned to
representational cluster H;, and P(C{°**°|H;) is the conditional
probability that a fine category from cluster H; belongs to the
coarse category C;**"¢. These probabilities are estimated from
the observed frequencies of coarse categories and representational
clusters that fine categories belong to (Figure 3C). S(C°*"*¢) denotes
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the entropy of the coarse-category distribution. Since each of the 10
coarse categories contains the same number of fine categories, this
distribution is uniform, and its entropy is log,(10) ~ 3.32 bits.
Note that the mutual information estimates computed using
this procedure can be highly biased and could be inaccurate
(Paninski, 2003; Laparra et al., 2025). In the condition used in this
work, the number of samples for estimation (50 fine categories)
is much smaller than the number of bins in the joint distribution
(10 coarse categories times 10 representational clusters = 100 bins).
In such sparse sampling regimes, this procedure is expected to
provide inaccurate estimates. To further ensure the reliability of
effects of pre-training suggested by the results of this evaluation
including such naive and potentially biased estimates of mutual
information, we also show the values computed for randomly
initialized networks to compare against those for the trained
models in the Results section. We also conducted a simulation on
the extent to which these naive estimates of mutual information
could potentially be biased under an assumption of parameterized
categorical joint distribution of the coarse object categories and the
representational clusters in the model (Supplementary Section 3).

2.5.2 Matrix similarity evaluation: comparison to
human confusion matrix on CIFAR-10

In this evaluation, we compare the classification performance
of the networks with that of human participants, based on the
CIFAR-10H dataset (Battleday et al., 2020) (see Section 2.2.2). This
dataset contains results from a behavioral experiment in which
human participants were asked to classify images from the CIFAER-
10 dataset into 10 object categories. Using these experimental data,
we constructed a pseudo-confusion matrix that reflects the “average
human perception” for this categorization task.

To evaluate the similarity between the internal representations
of the models and human recognition, we computed Spearman’s
rank correlation between the human pseudo-confusion matrix and
the error pattern matrices produced by the networks in the multi-
class few-shot learning. This analysis quantifies the correspondence
between inter-category similarity as perceived by humans and the
representational similarity of categories in the neural networks.

2.6 Network architecture

In the present study, we employ a modified ResNet-18 (He
et al,, 2015) as the encoder backbone for the neural networks.
The original ResNet-18 architecture consists of 18 layers, including
residual connections. To stabilize the learning process, particularly
for SimCLR, we added a fully connected layer followed by a
ReLU activation, batch normalization, and a second fully connected
layer (Figure 4). Note that in both the supervised and contrastive
learning settings, the function f appearing in the loss definitions
refers to the output of this final additional module. Accordingly,
the output dimensionality of the final fully connected layer is set to
d for contrastive learning and |C| for supervised learning settings.

Overall, the network consists of four residual blocks, each
stack
(Figure 4, left), followed by three fully connected layers with

comprising a of convolution-normalization modules
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nonlinear transformations. In this article, we refer to the outputs
of the residual blocks as “convn” outputs, where conv denotes
convolution and the index n increases with network depth
(Figure 4, right bottom). The output of the first fully connected
layer is referred to as the “fc1” output, where fc denotes fully
connected. Likewise, we denote the output of the subsequent batch
normalization layer after the second fully connected layer as “fc2”,
and the final network output as “fc3” (Figure 4, right top).

3 Results

Before presenting the evaluation results, we briefly review
the evaluation procedure introduced in Section 2 and Figure 1.
To examine whether the DCNNSs acquire internal representations
of objects resembling human semantics and recognition through
a learning objective that does not require explicit supervision
over object categories, we first pre-trained the DCNN with
self-supervised contrastive learning (Figure 1A, top; Figure 2),
using a ResNetl8-based architecture (Figure4). Because this
learning framework does not explicitly use supervision over object
categories, it does not necessarily guarantee that the learned
representations will be organized categorically or align with human
semantics and recognition. The learned representations were then
evaluated on a downstream pairwise few-shot learning task with
novel object categories not included in pre-training (Figure 1A,
bottom). The results of this evaluation are presented in Section 3.1.
Next, in Section 3.2, we show evaluation of whether the inter-
category similarity structure reflects the semantic organization
of categories in humans, using hierarchical clustering based on
the error pattern matrices obtained from the pairwise few-shot
learning evaluation (Figure 1B, Figure 3). Finally, we evaluated
the extent to which the object category representations in the
trained DCNN resemble the confusion patterns observed in human
recognition (Figure 1C). The results of this evaluation are presented
in Section 3.3.

3.1 Performance on few-shot novel
category discrimination

First, we evaluated the performance of a DCNN trained with
self-supervised learning (SimCLR) on the task of pairwise few-shot
discrimination of novel object categories, and constructed error
pattern matrices from the results. As a baseline for comparison,
we also evaluated a DCNN trained with supervised learning. In
the pre-training phase, both networks were trained on image
samples from 50 known object categories out of the 100 pre-defined
categories in the CIFAR-100 dataset. After pre-training, we assessed
few-shot discrimination performance using image samples from
the remaining 50 novel categories.

We first present the error pattern matrices for the few-shot
discrimination task involving the novel object categories, computed
from the internal representations at two layers: convolutional
layer 2 (conv2) and fully connected layer 1 (fcl) (Figure 5).
These layers are those in which the minimum value of average
error rates were achieved in the self-supervised and supervised
models, respectively. Each element in the matrix indicates the
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Schematic illustration of clustering-based evaluation procedure. (A) The evaluation adopts the coarse category definitions provided by the
CIFAR-100 dataset. The dataset for evaluation includes 10 coarse categories, each containing 5 fine categories. (B) An example of hierarchical
clustering of fine categories based on the error pattern matrix obtained from the pairwise few-shot learning evaluation. Given that the error rates can
be interpreted as the representational dissimilarities, hierarchical clustering merges the fine categories at different levels of dissimilarities. We find the
dissimilarity threshold at which the number of highest-level clusters is 10, matching the number of coarse categories provided by CIFAR-100. (C) An
example of a joint histogram of which representational clusters / coarse categories a fine category is assigned to. Each element represents the
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FIGURE 5
Error pattern matrices of the networks in representative layers. (A, B) show the results on the network trained by contrastive learning, and (C, D) are
the results of the supervised baseline. The panels on the left (A, C) and right (B, D) show the results from the shallower conv2 layer and deeper fcl
P! p 9 Y/ P
layer, respectively. While the supervised baseline model showed slightly lower accuracy in the shallower layer, the DCNN trained by contrastive
learning exhibited accurate discriminations of novel object categories in both layers.

error rate for discriminating a pair of novel categories, averaged
over multiple trials using different few-shot samples. Bluish
elements correspond to category pairs with error rates below
approximately 15% (i.e., accuracy above 85%), whereas reddish
elements indicate near-chance-level performance (~ 50%). In
the DCNN trained with self-supervised contrastive learning, most
category pairs were discriminated with accuracy exceeding 80%.
The average accuracies in conv2 and fcl were approximately 89%
and 86%, respectively. Although there was a slight difference
in performance between the two layers, no drastic degradation
or improvement was observed. In contrast, the baseline DCNN
trained with supervised learning exhibited a higher accuracy
at the deeper fcl layer (approximately 90%) compared to the
shallower conv2 layer. For more detailed results across all layers,
see Supplementary Figure S4.
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For a more detailed comparison between the self-supervised
and supervised models in terms of layer-wise performance
differences, we present the average error rates computed across
all layers in each model in Figure 6. Each point in the graph
represents the mean value of an error pattern matrix, excluding
the diagonal elements, calculated from the representations at a
specific layer of the network. In the self-supervised model, the
accuracy of few-shot novel category discrimination did not show
strong dependence on layer depth; performance remained relatively
stable across the hierarchy. In contrast, the supervised model
exhibited a clear trend: the average error rate was higher in the
shallower layers and gradually decreased in the deeper layers.
Although the self-supervised model outperformed the supervised
model in the shallower layers, both models achieved similar levels
of accuracy at their respective best-performing layers. We also
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evaluated a DCNN trained using SimSiam, another contrastive
learning algorithm. The results were qualitatively similar to those
of SImCLR, although the overall accuracy of the SimSiam model
was lower (see Supplementary Figure S1A).

3.2 Correspondence between
unsupervised clustering of the DCNN's
representations and human semantic
object categories

To examine whether the representations in the DCNNs
reflect the human-like semantic organization of object categories,
we conducted the clustering-based evaluation (Section 2.5.1) to
assess the correspondence between the representational similarity
structure of novel fine categories in the DCNNs and the
semantic relationships among categories defined by humans. The
hierarchical relationships between lower- and higher-level object
concepts are provided by the fine and coarse categories defined
in the CIFAR-100 dataset. The procedure consists of three steps:
extracting representational clusters of fine categories, constructing
a joint histogram (probability distribution) indicating how fine
categories are assigned to each pair of coarse category and
representational cluster, and evaluating the mutual information
between coarse categories and representational clusters.

First, we extracted representational clusters using the error
pattern matrices obtained from the pairwise few-shot learning
evaluation. These matrices (Figure5) indicate the error rates
in discriminating each pair of novel categories, which can be
interpreted as measures of similarity between categories from
the perspective of the DCNN representations. We converted
the similarity matrices into representational distance matrices
by taking their complements (1 — similarity) and performed
hierarchical clustering on them. Examples of the resulting
dendrograms are shown in Figure 7, derived from the conv2 layer
of the self-supervised network (Figure 7A) and the fcl layer of
the supervised network (Figure 7B), which are the layers with the
lowest average error rates in pairwise few-shot learning for each
model as in Figure 5. For each dendrogram, we identified the
dissimilarity level (vertical axis) at which the number of highest-
level clusters matched the number of novel coarse categories (10)
in the CIFAR-100 dataset. We refer to the clusters obtained at this
threshold as the representational clusters of the DCNNG.

Given the representational clusters, we constructed a joint
histogram representing the probability that a fine category
belongs simultaneously to a coarse category and to one of the
representational clusters. Each entry in the histograms shown
in Figure8 indicates the number of fine categories assigned
to a particular coarse category (column) and representational
cluster (row). Thus, horizontal summation and normalization of
a histogram yield P(H), while extracting a single row corresponds
to computing P(C®**°|H) in Equation 10. Each matrix entry
therefore reflects how many fine-grained categories in a cluster are
associated with each coarse category. For detailed layer-wise results,
see Supplementary Figure S3.

In the self-supervised model (Figure 8A, conv2), diagonal
elements had consistently higher values than off-diagonal ones,
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FIGURE 6

Mean error rate of the networks in different layers on the pairwise
few-shot learning task. The green line indicates the error rates in the
DCNN trained with self-supervised contrastive learning. In contrast,
the red line corresponds to error rates in the supervised baseline.
The horizontal axis represents the layer indices. conv layers consist
of convolutional processing, while fc layers are fully-connected
layers. While the supervised baseline model provided higher
accuracy in the deeper layers, the contrastive model also exhibited
high accuracy along the hierarchy of the network.

suggesting that most clusters were highly aligned with specific
coarse categories. Even in clusters with weaker correspondence
to coarse categories, the included categories were semantically
coherent, for instance, clusters rarely mixed coarse categories
like “artifacts” and “natural objects”. These results indicate that
the self-supervised DCNN grouped novel categories in ways that
are consistent with human semantic similarity. The supervised
model showed a broadly similar pattern, except that a clear cluster
corresponding to the “reptiles” category, which was observed in the
self-supervised model, was missing.

To quantify the consistency between representational clusters
and human semantics, we computed the potentially biased
naive mutual information estimates between clusters and coarse
categories in each layer (see Section 2.5.1). Figure 9 shows the layer-
wise mutual information estimates for both networks. The green
line shows the mutual information in the self-supervised model
at each layer, while the red dashed line is that in the supervised
model. Here, as mentioned in Section 2.5.1, the procedure of
computing the mutual information values shown in Figure 9
includes estimation of the joint distribution in a sparse sampling
regime, and such an estimation is often considered positively biased
(Paninski, 2003; Laparra et al., 2025). To provide a baseline to
be compared to such biased estimates of mutual information, we
also show 95% percentile intervals of mutual information estimates
computed for 20 randomly initialized neural networks (Figure 9,
gray band).

Our primary finding is that the self-supervised network
achieves a high structural consistency with human semantics, a
level that is not only substantially above the chance-level baseline
but also comparable to that of the supervised network. This
reference allows us to identify two robust observations. First,
the self-supervised model maintains high mutual information
estimates consistently across all layers. Second, the supervised
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Dendrograms resulting from hierarchical clustering on error pattern matrices of pairwise few-shot learning. (A) conv2 layer of the self-supervised

network. (B) fcl layer of the supervised network
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Derived relationships between hierarchical clusters on error pattern matrices of the networks and coarse labels. Rows correspond to clusters,
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model also performs well above chance, with the only exception
being its early layers, where performance is close to the chance
level before increasing significantly in deeper layers. While these
broad patterns are clear, the potential variance of the estimates
prevents a more fine-grained comparison, such as definitively
concluding which model performs better globally or interpreting
the significance of minor layer-to-layer fluctuations.
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Opverall, our main conclusion is that a self-supervised network
can develop internal representations with a categorical structure
that is significantly aligned with human semantics, reaching a
level of consistency comparable to a supervised model. Conversely,
a significant drop of the mutual information estimates in the
deeper layers were observed in the SimSiam-trained DCNN (see
Supplementary Figure S1B). This implies that the consistency of
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FIGURE 9

Estimates of mutual information between hierarchical clusters and
coarse categories. The green line indicates the results from the
self-supervised model, whereas the red line represents the results
from the supervised model. The gray band in the figure represents
the chance-level mutual information, with 95% percentile interval of
the values, computed from 20 randomly initialized models. The
results showed that both of the trained models comparably showed
mutual information estimates substantially above the chance-level
values, implying that the self-supervised learning can develop
internal representations of object categories with the structure
consistent with the human semantics at the same level as the
supervised model. Note the estimated mutual information
potentially have biases and variances due to the number of fine
categories being smaller than the number of entries in the empirical
joint histogram. Hence, the mutual information estimates should be
interpreted in terms of the variance associated to similar scenarios
(e.g., Supplementary Section 3).

the representations to human semantics can be dependent on the
specific variants of objectives within self-supervised learning.

3.3 Similarity between the error patterns of
classification in the DCNNs and human
behavioral data

Based on the findings from the previous subsections, we next
investigated whether the similarity between object categories in
DCNNs was consistent with human perception or recognition.
To this end, we used the CIFAR-10H dataset (Battleday et al,
2020), which contains behavioral data from human participants
performing a 10-class object classification task on the CIFAR-
10 dataset. We compared the confusion matrices derived from
DCNNs performing multi-class few-shot learning on CIRFAR-10
images with the confusion matrix computed from human responses
provided by CIFAR-10H (see Section 2.2.2 for a detailed procedure
to compute the human confusion matrix). Similarity was quantified
as the Spearman rank correlation coefficient. Note that the CIFAR-
10 object categories do not overlap with those in CIFAR-100 used
for training the DCNNs, guaranteeing that the object categories in
this dataset are also novel to the networks.

The confusion matrices computed from the self-supervised
and supervised DCNNs showed qualitatively similar pattern of
confusion to the human recognition. Figure 10 (left) shows the
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confusion matrix generated from human behavioral data. As adult
participants generally performed this task with high accuracy, the
resulting confusion matrix exhibits relatively small error values.
When comparing this to the confusion matrix of the self-supervised
model (Figure 10, middle), we observe similar global patterns. In
particular, characteristic confusion structures present around the
center and at the four corners of both matrices. These patterns
suggest that object category pairs which are difficult for humans
to perceptually discriminate are also similarly represented in the
self-supervised model. The supervised baseline model (Figure 10,
right) also produced a confusion matrix resembling the human
pattern, but with generally higher error rates. This increase in
errors obscured finer details in the confusion structure, resulting
in a weaker alignment with both the human and self-supervised
model matrices.

A precise evaluation of the similarity between the categorical
relationship structures in the DCNNS’ representations and human
recognition revealed high similarities of the representations in
the self-supervised network to human recognition throughout the
network hierarchy, the supervised model showed similarities that
increase particularly in the deeper layers (Figure 11). In the self-
supervised model (Figure 11, green line), correlation coeflicients
ranged from approximately 0.8 to 0.9 across the network hierarchy.
This indicates that the model trained by the self-supervised learning
acquires the representations of visual objects that strongly and
stably align with humans’ perceptual similarities between the
categories of them. In contrast, the supervised model (Figure 11,
red line) showed lower correlations in its early layers. The
correlation coefficients increased along the network hierarchy, to
the same level as the self-supervised model in the layers deeper
than conv3.

Similarly to the quantification of the similarity of fine-coarse
categorical inclusion between the models and humans (Section 3.2),
the Spearman rank correlations are also potentially biased. In this
particular evaluation, the bias is considered to be the inductive bias
induced by the convolution-based network architecture. To clarify
the relevance of the quantitative evaluations under the potential
biases, we also showed the 95% percentile intervals of the results of
the same analyses performed on 20 randomly initialized networks
with the same architecture (Figure 11, gray band).

The trend observed in the random networks were different
from the self-supervised and supervised models. First, the overall
correlation coefficients were lower (in an approximate range
between 0.5 to 0.65) than the levels of the self-supervised (0.8-0.9)
and the supervised (0.7 to 0.9) models. In addition, the trend of the
values were opposite; while the trained models tend to show higher
correlation coefficients in the deeper layers, the random networks
showed lower correlation values in those layers.

Overall, the results suggest that both the self-supervised and
supervised models obtained the representations of object categories
resembling the similarity structure in human recognition. In
particular, both models constantly showed the correlation level
above that of the random networks. Furthermore, the trends
of the correlations were opposite between the random and
trained networks; the deeper layers of the random networks
showed decreasing correlation, while those of the trained networks
exhibited increasing correlation coefficients. These opposing trends
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FIGURE 10

Confusion matrices on 10-class object categorization of the CIFAR-10 dataset. (A) Average performance of 2,750 human participants. (B) Confusion
matrix of the contrastive model. (C) Confusion matrix of the supervised model. In shallower layers, we observed a higher similarity to human error

patterns in the contrastive model.
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FIGURE 11

The Spearman rank correlations between models' confusion
matrices and that of human participants computed from CIFAR-10H
annotations. The self-supervised (green line) DCNN exhibited high
values in both shallower and deeper layers, while the supervised
model (red line) showed lower similarity to human behavioral data in
the shallower layers. The gray band shows 95% percentile interval of
the same quantities computed for 20 randomly initialized networks.
The random networks exhibited an opposing trend to the trained
networks in which the deeper layers shows relatively lower
correlation coefficients.

further clarify that the trained models have higher similarity
of inter-categorical confusion structure to human recognition
especially in the deeper layers.

4 Discussion

In this study, we investigated whether deep convolutional
neural networks (DCNNs) trained with self-supervised learning
could acquire internal representations that resemble those of
human semantic understanding and perceptual recognition. To this
end, we evaluated the networks’” performance on few-shot learning
tasks involving novel object categories.
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Our findings revealed three main results. First, internal
through
learning (1) enabled accurate few-shot classification of novel

representations learned self-supervised contrastive
object categories. Second, these representations (2) exhibited
inter-categorical structures that closely mirrored human semantic
organization. Third, they (3) produced error patterns in few-shot
classification tasks that were similar to those observed in human

object recognition.

4.1 Internal representations of
self-supervised learning

Here, we discuss the non-trivial aspects of the internal
representations obtained through self-supervised learning. Our
findings that self-supervised contrastive learning can yield internal
representations enabling accurate few-shot classification, and that
the inter-categorical structure of these representations aligns with
human semantic and perceptual recognitions are far from obvious.

This is because contrastive learning, particularly in the SimCLR
framework, is designed to pull together positive pairs and push
apart negative pairs, without any access to object category labels
(as reflected in the objective function; Equations 1, 2). Therefore,
there is no explicit reason why such training should result in
representations that are both categorical and aligned with human
semantics. In fact, the emergence of categorical structure through
self-supervised learning may appear even more non-trivial than
in supervised learning, where explicit category information is
provided and thus encourages such structure. It is worth noting,
however, that even in supervised learning, the acquisition of
categorical representations for novel, unseen categories is not
guaranteed or trivial (Sorscher et al., 2022).

Furthermore, our comparisons between DCNNGs trained via
self-supervised and supervised learning revealed additional non-
trivial findings. Across both few-shot learning performance and
correspondence to human perception, we observed qualitative
similarities (e.g., error patterns in Figures5, 10; clustering
structures in Figures 7, 8) as well as quantitative ones (e.g., mean
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error rates in Figure 6, mutual information in Figure 9, and rank
correlations with human confusion matrices in Figure 11).

Given the substantial difference in training objectives between
self-supervised and supervised learning, these converging results
are highly non-trivial and suggest a remarkable similarity in
the internal representations learned by both approaches. While
several theoretical connections between supervised and self-
supervised objectives have been proposed (Arora et al., 2019;
Bao et al.,, 2022; Nozawa and Sato, 2021), there is currently no
comprehensive theoretical explanation for the observed alignment
in representations between models trained with these distinct
objectives. Further theoretical investigation is needed to clarify
why and how such similarities emerge between contrastive and
supervised learning.

These insights raise the possibility that aspects of human
semantic understanding may emerge in the absence of explicit
external supervision. This idea naturally leads to the discussion in
Subsection 4.2, where we explore the implications of these findings
for language acquisition and development.

4.2 Formation of semantics in humans

Although we focused on the visual processing in the
DCNNs and their internal representations of images and objects
acquired through different learning mechanisms, the results
can be interpreted in relation to the structure of human
language. Specifically, our pairwise few-shot learning evaluation
in Section 3.1 was conducted using category labels from the
CIFAR-100 dataset, which are based on English vocabulary.
From this perspective, the experiment can be interpreted as a
test of whether visual object categories referred to by different
English terms are linearly separable within the network’s internal
representation. Our results demonstrated that the self-supervised
DCNN performed few-shot learning successfully, implying that the
internal representations contain categorical structures aligned with
human linguistic categorization.

Additionally, the comparison of the clusters in the networks’
internal representations with coarse-grained category labels
(Section 3.2) also provided an implication for understanding
the human languages. These coarse categories used in the
investigation, also derived from the English language, were found
to correspond well with the clusters formed in the DCNN’s
internal representations. This again suggests a correspondence
between the structure of language-based categories and the internal
representations formed through self-supervised learning.

Based on these findings, we speculate that the categorical
structure of language might, at least in part, emerge from the
separability of object representations in the brain-representations
that may be shaped through self-supervised learning. While the
precise structure of these representations can vary depending on
the learning environment and input statistics, it is plausible that
self-supervised learning yields common, structured representations
across individuals, which in turn inform the emergence of
linguistic categories.

Conversely, the reverse direction of influence, where language
shapes perceptual recognition and even neural representation, has
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also been widely discussed. A prominent example is the Sapir-
Whorf hypothesis (Whorf, 2012; Brutyan, 1969; Kay and Kempton,
1984), which posits that the structure of language can shape and
even constrain cognitive perception. For instance, the conflation
of “butterflies” and “moths” under the single French term papillon
may, under this hypothesis, blur perceptual distinctions for native
French speakers. Empirical studies have shown that native speakers
of different languages may differ in their perception of objects,
time, color, and other aspects of experience that are linguistically
encoded (Boroditsky, 2001; Lupyan et al., 2020). Although we did
not directly address this reverse effect in our study, it remains an
important direction for understanding how language influences the
development of neural representations.

Taking both directions into account, it seems reasonable
to hypothesize that neural representations are initially formed
through self-supervised learning during early development such
as infancy, and subsequently fine-tuned by language-based
supervision. Most computational studies to date have focused
on the outcome of a single learning rule. To better understand
brain-like learning mechanisms, future research should consider
how the interplay between self-supervised learning and supervised
fine-tuning models the developmental progression of neural
representations from infancy to adulthood.

4.3 Toward a more biologically plausible
learning mechanism

Here, we discuss the implications of our findings for
understanding the formation of categorical representations in
biological neural systems. The central result of this study is
that a DCNN trained with self-supervised contrastive learning
can develop internal representations of visual objects closely
resembling human perceptual recognition and semantic
organization. If a similar mechanism operates in biological
brains, abstract categorical representations might be naturally
formed prior to language-based learning. Below, we first address
how contrastive learning might be biologically implemented
through prediction-based learning mechanisms and then discuss
how biologically plausible visual input augmentations naturally
arise from such mechanisms.

A plausible implementation of contrastive learning in biological
brains would be prediction-based learning, a central component
in many theoretical neural processing frameworks (Rao and
Ballard, 1999; Friston, 2010). Prior studies have formalized
contrastive learning using predictive paradigms by defining
temporally proximal events as positive pairs and distant events
as negative pairs (van den Oord et al.,, 2018; Lowe et al., 2019;
Illing et al, 2020). Unlike SimCLR, which explicitly contrasts
positive and negative pairs within the same batch, prediction-based
learning naturally distinguishes positive and negative pairs through
temporal proximity without explicit negative sampling or specific
architectural constraints. Despite these differences, both SimCLR
and biologically plausible prediction-based learning fundamentally
share the principle of forming structured representations by
comparing related and unrelated experiences, highlighting the
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biological relevance of the computational principles demonstrated
by SimCLR in our study.

Furthermore, if we regard prediction-based learning as a
plausible candidate, the visual input augmentations integral to
contrastive learning such as image rotations or random cropping
can naturally occur through bodily movements and sensorimotor
interactions, in addition to natural temporal changes in the
input from the external environment. Although the artificial
augmentations used in this study include those that might
not exactly correspond to natural conditions (color distortion,
grayscaling, or random blurring), the remaining transformations
commonly occur in biological contexts through movements such
as head rotations, locomotion, and saccadic eye movements.
For instance, neck rotations cause corresponding rotations in
retinal images, and moving closer to an object results in a visual
effect analogous to cropping. Thus, sensorimotor experiences
encountered in early development inherently provide the biological
basis for visual augmentations that parallel those used in
computational contrastive learning.

Taken together, our finding that abstract, human-like
categorical representations can emerge from self-supervised
contrastive learning provides a promising basis for understanding
how such representations may form in the human brain
without explicit supervision. If biologically plausible learning
mechanisms—such as prediction-based learning shaped by natural
sensorimotor experience—can approximate contrastive learning,
as discussed above, then our results suggest that conceptual
representations could arise through self-supervised processes
alone. Rather than claiming that the brain implements contrastive
learning per se, our study identifies a representational target and
computational principle that future biologically grounded models
can aim to approximate. This offers a concrete step toward linking
the unsupervised emergence of conceptual structure in artificial
systems to that in biological neural systems.
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