AUTHOR=Zhu Changbo , Zhou Ke , Tang Fengzhen , Tang Yandong , Li Xiaoli , Si Bailu TITLE=A hierarchical Bayesian inference model for volatile multivariate exponentially distributed signals JOURNAL=Frontiers in Computational Neuroscience VOLUME=Volume 19 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2025.1408836 DOI=10.3389/fncom.2025.1408836 ISSN=1662-5188 ABSTRACT=Brain activities often follow an exponential family of distributions. The exponential distribution is the maximum entropy distribution of continuous random variables in the presence of a mean. The memoryless and peakless properties of an exponential distribution impose difficulties for data analysis methods. To estimate the rate parameter of multivariate exponential distribution from a time series of sensory inputs (i.e., observations), we constructed a hierarchical Bayesian inference model based on a variant of general hierarchical Brownian filter (GHBF). To account for the complex interactions among multivariate exponential random variables, the model estimates the second-order interaction of the rate intensity parameter in logarithmic space. Using variational Bayesian scheme, a family of closed-form and analytical update equations are introduced. These update equations also constitute a complete predictive coding framework. The simulation study shows that our model has the ability to evaluate the time-varying rate parameters and the underlying correlation structure of volatile multivariate exponentially distributed signals. The proposed hierarchical Bayesian inference model is of practical utility in analyzing high-dimensional neural activities.