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Brain activities often follow an exponential family of distributions. The
exponential distribution is the maximum entropy distribution of continuous
random variables in the presence of a mean. The memoryless and peakless
properties of an exponential distribution impose difficulties for data analysis
methods. To estimate the rate parameter of multivariate exponential distribution
from a time series of sensory inputs (i.e., observations), we constructed
a hierarchical Bayesian inference model based on a variant of general
hierarchical Brownian filter (GHBF). To account for the complex interactions
among multivariate exponential random variables, the model estimates the
second-order interaction of the rate intensity parameter in logarithmic space.
Using variational Bayesian scheme, a family of closed-form and analytical update
equations are introduced. These update equations also constitute a complete
predictive coding framework. The simulation study shows that our model has
the ability to evaluate the time-varying rate parameters and the underlying
correlation structure of volatile multivariate exponentially distributed signals. The
proposed hierarchical Bayesian inference model is of practical utility in analyzing
high-dimensional neural activities.

KEYWORDS

online Bayesian learning, hierarchical filter, Brownian motion, exponential distribution,
adaptive observation

1 Introduction

Decoding of the states of neural systems is a critical task for many applications in
neural engineering, ranging from cognitive assessment, brain–machine interface to deep
brain stimulation (Haynes and Rees, 2006; Qi et al., 2019; Yousefi et al., 2019; Xu et al.,
2021; Zhang et al., 2022; Pan et al., 2022; Li and Le, 2017). However, there are several
critical challenges faced by mental state decoding methods. First, brain activities are highly
non-stationary, often showing transient dynamics. Second, responses of different brain
regions are correlated, due to the dense complex anatomical connectivity patterns. Third,
imaging processes of brain activities imposed additional spatial temporal transformations
on neural signals, calling for appropriate inference methods to uncover the underlying
brain states. To tackle these difficulties, methods that are capable of tacking and inferring
multi-dimensional dynamic brain signals are indispensable.
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Brain activities are shown to follow particular types of
distributions that are distinctive from Gaussian distributions
(Roxin et al., 2011). Extracellular recordings of brain voltage signals
of various brain regions from different animals could be described
by an exponential family of distributions, with tails falling off
according to exponential distributions (Swindale et al., 2021). The
distributions of the electromyography and electroencephalography
signals from human subjects are found to have fatter tails than
that of a Gaussian distribution and are fitted well by a generalized
extreme value distribution (Nazmi et al., 2015). The innate statistics
of the measured neural activities lead the direct application of
classic tracking and inference methods, such as Kalman filtering,
to be suboptimal (Li et al., 2009; Malik et al., 2010). It is therefore
a valuable research direction to develop inference methods that
closely match the characteristics of brain activities.

Exponential distributions well describe empirical data in
neuroscience. Neurons in many regions, such as middle temporal
and medial superior temporal visual areas in monkeys, fire in
a Poisson-like fashion, with exponential distributed interspike
intervals (Maimon and Assad, 2009; Ouyang et al., 2023). The
sleep episode durations of human and other mammals, such
as cats and rats, follow exponential distributions (Lo et al.,
2004). The locomotion activity of cells in vitro displays a
universal exponential distribution (Czirók et al., 1998). In addition,
exponential distribution provides a good description of waiting
times in the physical world, including lifespans, counts within
a finite time period and so on. Therefore, researchers employ
exponential distribution as lifetime distribution model to describe
the lifetimes of manufactured products (Davis, 1952; Epstein and
Sobel, 1953; Varde, 1969) and the survival or remission times in
chronic diseases (Shanker et al., 2015). In physics, an exponential
distribution is the best model of the times between successive flaps
of a flag for a variety of wind speeds (McCaslin and Broussard,
2007). In finance, accumulating evidences have suggested that
financial data can be quantified by exponential distributions. A
study of tax and census data shows an exponential distribution of
individual income in the United States (Drăgulescu and Yakovenko,
2001). An exponential distribution also agrees well with income for
families with two earners (Drăgulescu and Yakovenko, 2001).

In this article, we aim to develop an inference model
particularly to deal with the problem of volatility and multi-
dimensionality in data space. Importantly, we assume that the data
follow a multivariate exponential distribution, capturing the fat tail
characteristics of neural signals. The proposed model can be applied
to state estimation tasks in psychophysics, brain activity analysis, as
well as other non-linear time series modeling tasks.

In probability theory, exponential distribution is a maximum
entropy distribution of a continuous random variable with a
bounded mean (Jaynes, 1982; Conrad, 2004; Stein et al., 2015).
The exponential distribution has several interesting and important
properties (Johnson et al., 2002; Ibe, 2014; Marshall and Olkin,
1967b):

Abbreviations: GHBF, general hierarchical Brownian filter; STD, standard

deviation; iid, independently identically distribution; SI, sampling interval; PDF,

probability density function.

• An exponential distribution is governed by a rate parameter
(interpreted as the inverse of average waiting time). The mean
of an exponential random variable is equal to the standard
deviation (std).

• Exponential distribution is peakless. The probability density
function of an exponential distribution is monotonously
decreasing. The expectation of an exponential random
variable is not at the maximum point of its probability density
function. This means that samples drawn from an exponential
distribution contain high noise, resulting in a fat tail.

• An exponential random variable is memoryless, i.e.,

P(x > t + ε | x > ε) = P(x > t), ∀t, ε > 0.

In a Poisson process, this memoryless property means that
the probability of waiting time until the next event is not
affected by start time (Kingman, 1992). All waiting times are
independently identically distribution (iid).

Due to these characteristics, fitting models of multivariate
exponential distribution is a difficult problem encountered in
various disciplines. The Marshall–Olkin exponential distribution is
introduced based on shock models and the constraint that residual
life and age are independent (Marshall and Olkin, 1967a). An
exponential distribution with exponential minimums provides a
model to describe the reliability of a coherent system (Esary and
Marshall, 1974). A bivariate generalized exponential distribution is
also introduced to analyze lifetime data in two dimensions (Kundu
and Gupta, 2009). However, these models are complex in form
and are not robust for non-stationary data. More importantly, the
interactions among the components of a multivariate exponential
variable are not trivial to estimate. These classical studies took
the assumption of static distributions, without considering the
dynamic changes of the underlying distributions. Robust methods
for the estimation of multivariate exponential distribution in
volatile environments are still sparse.

“Observing the observer” is a meta Bayesian
framework (Daunizeau et al., 2010b,a) and furnishes a unified
programming and modeling framework that unites perception
and action based on the variational free energy principle (Beal,
2003; Friston, 2010; Mathys et al., 2011; Friston et al., 2017).
Perceptual and response models are two major parts of this
framework. Inversion of the perceptual and response models can
map from sensory inputs (i.e., observations) into response actions.
Following this framework, the general hierarchical Brownian filter
(GHBF) was proposed as a model for state estimate in dynamic
multi-dimensional environments with Gaussian distribution
assumption (Zhu et al., 2025). An important function of this model
is to capture temporal dynamics of lower order interactions among
sensory inputs (i.e., observations).

In this article, we extend the general hierarchical Brownian filter
to non-Gaussian case and develop an inference model for volatile
multivariate exponentially distributed signals. The inference model
incorporates a hierarchical perceptual model and a response model
into the “observing the observer” framework. The model receives
a series of multidimensional sensory inputs or observations and
is asked to infer rate parameter of a multivariate exponential
distribution in a complex volatile environment. The perceptual
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model represents rate parameter and covariance of the logarithm
of rate parameter. The response model is a stochastic mapping
to reproduce a series of sensory inputs. Compared with previous
hierarchical Bayesian methods (Beal, 2003; Friston, 2010; Mathys
et al., 2011; Friston et al., 2017), the proposed model is able to
deal with multidimensional signals and dynamically uncover the
potential correlation structure in the data.

The contribution of this article is two-fold. First, we develop
a hierarchical Bayesian model to estimate the parameters of
multivariate exponential distributions which are subject to dynamic
changes. Through variational Bayesian learning, the model infers
the rate parameters and the pairwise correlations of multivariate
exponentially distributed signals at the same time; therefore, it is
able to robustly track the distribution dynamically. The proposed
model is valuable for its potential applications in estimating neural
and behavioral responses. Second, the efficiency and the robustness
of the proposed inference model is tested in simulations with
synthetic dynamic data. Compared with a simplified model of
constant volatility parameters, the proposed model is better in
explaining the data, demonstrating the importance role of higher
order variables, such as correlations, in estimating the parameters
of the signal.

The rest of this article is structured as follows. The
mathematical notations used in this study is defined in Section 2.
Section 3 introduces the hierarchical Bayesian perceptual model
in multivariate exponential distribution environment. Section 4
derives a set of closed form update equations for perceptual
inference. Simulations results are given in Section 6. Finally, the
article is concluded after discussions.

2 Notations

Throughout this article, we use the following conventional
mathematical notations:

• A bold capital letter is a matrix while a bold lowercase letter is
a vector.

• A hollow capital letter denotes a set, which is also denoted
by {}.

• A probability density function (PDF) is denoted by q(·) or p(·).
• A multivariate Gaussian PDF of x is denoted by N (x;μ, �)

with mean μ and variance �, while a multivariate Gaussian
random vector is denoted by x ∼ N (μ, �).

• An multivariate exponential PDF of x can be denoted
by E(x; r) with a rate parameter r, while an multivariate
exponential random vector is denoted by x ∼ E(r).

• A sequence of variables over time are denoted by “:,"
for example,

o1 :K = o(t1), o(t2), · · · , o(tK ).

• Eq(x)(v) means the expectation of v under the distribution q(x).
• The operator � is the Hadamard product, the operation

diag(v) is to transform a vector v into a diagonal square matrix
with the elements of v on the principal diagonal.

• The function vec(Mm×n) is the vectorization of a matrix M, a
linear operation, to obtain a column vector of length m × n

by concatenating the columns of the matrix M consecutively
from column 1 to column n. The operator ⊗ is the Kronecker
product.

• The function lvec(L) is to transform a lower triangular matrix
L into a column vector lvec(L) obtained by stacking columns
without zero elements in the upper triangle part of the matrix.

3 Hierarchical Bayesian perceptual
model

3.1 Parameterization of multivariate
exponential distribution

Given a random multivariate exponential variable x0 without
cross dimension interactions among components, we can easily get
the joint probability of all components by directly multiplying all
marginal exponential distributions:

E(x0; r0) =
d0∏

i=1

r(i)
0 exp(−r(i)

0 x(i)
0 ) = exp(−rT

0 x0)
d0∏

i=1

r(i)
0 , (1)

where x(i)
0 is the i-th component (i.e., random exponential variable)

of x0. The rate parameter r(i)
0 is the expectation of the i-th random

exponential variable x(i)
0 . r0 is the expected rate vector of random

vector x0. The integer d0 is the number of dimensions of the
random vector x0. However, this independent model is incapable
of capturing the pairwise probabilistic correlation among the
components of x0. If we introduce non-independent exponential
model with interactions among the components of x0, it will
lead to high model complexity. Since the rate parameter r0 is of
primary interest, we aim to learn the rate parameter by explicitly
considering the pairwise interactions among the components of r0.
To keep the positive constraint of the rate parameter, we convert
the constrained learning problem into an unconstrained learning
in logarithmic space. More specifically, the rate r0 is mapped from
a point x1 in its log-space

r0(t) = exp(W1x1(t) + b1), (2)

where the notation exp(·) denotes the element-wise exponential
function. The coefficient matrix W1 is a diagonal matrix with
positive elements on the principal diagonal. This matrix represents
the coupling strength between x0 and x1. The bias b1 is a
shift parameter.

3.2 Perceiving tendency and volatility of
the rate parameter

Volatile signals fluctuate over time, showing variations. The
fluctuations of the signals are again subject to changes, and so
forth. The nested nature of volatility is a hallmark of collective
phenomena as observed in many complex systems like brain
network, animal swarm and financial market. To quantitatively
describe volatility and pairwise correlations of multi-dimensional
signals, general hierarchical volatility model could be constructed
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FIGURE 1

Overview of the hierarchical perceptual model.

based on nested Brownian motions (Zhu et al., 2025). The
basic idea is that the variable of interest is represented by a
Brownian motion, while the changes of the variable is predicted by
higher order variables that are again subject to Brownian motions.
Following this framework, we develop a hierarchical perceptual
model to estimate the tendency and volatility of multivariate
exponentially distributed signals (Figure 1). More specifically, the
logarithms of rate parameters x1 of the underlying multivariate
exponential distribution is modeled by a general Brownian motion
with diffusion matrix �1 ∈ R

d1×d1

x1 = B(t;�1). (3)

This Brownian motion captures the tendency of the learned
parameter vector x1. The volatility (i.e., uncertainties and pairwise
correlations) in x1 is given by �1 ∈ R

d1×d1 , which is a symmetric
positive definite matrix by definition. Considering the fact that the
diffusion matrix �1 is a symmetric positive definite matrix, it could
be uniquely represented by a lower triangular matrix L1 ∈ R

d1×d1

according to Cholesky decomposition (Tanabe and Sagae, 1992;
Jung and O’Leary, 2006):

�1 = L1L1
T .

To further evaluate the volatility �1 in x1, we assume that
its decomposition L1 is modeled by a general Brownian motion
in its parameterized space. To be exact, the elements of L1 is
parametrized by a d2 = d1(d1 + 1)/2 dimensional vector y2, which
results from concatenating the lower triangle elements of L1 in a
column-wise fashion. The element in i-th row and j-th column of
L1 is parameterized by

L1
(i,j) = l(i,j)

1 =⎧⎨
⎩2 sinh(y( (2d1−j+2)(j−1)

2 +i−j+1)
2 ), 1 ≤ j < i ≤ d1

exp(y( (2d1−i+2)(i−1)
2 +1)

2 ), j = i
(4)

where sinh(·) denotes the hyperbolic sine function. Note that
Equation 4 transforms L1 into logarithmic space, while conserving
non-negativity for diagonal elements and allowing arbitrary values
for off-diagonal elopements of L1.

The vector y2 represents the volatility of the signal in
logarithmic space, therefore constitutes a parameterization of the
volatility. y2 is given by the following mapping in the second level
of the model:

y2 = W2x2 + b2, (5)

where b2 and x2 ∈ R
d2 represent the trend and time-varying

fluctuation in log-volatility of x1, respectively. The coefficient
matrix W2 is a d2-by-d2 diagonal matrix representing the coupling
strength from level two to level one. W2 can simply take the form
of a diagonal matrix spanned from a column vector w2 with all
positive elements

W2
(i,i) = w(i)

2 .

We can rewrite the coupling (Equations 4, 5) as

L1 = F2(x2;w2, b2).

In the second level of the model, we further assume that x2
evolves as a general Brownian motion with diffusion matrix �2 ∈
R

d2×d2

x2 = B(t;�2). (6)

The diffusion matrix �2 is chosen as a diagonal matrix for
simplicity. Let L2 ∈ R

d2×d2 be the unique Cholesky decomposition
of �2. We simply assume that L2 is a constant diagonal matrix
spanned by vector λ ∈ R

d2 with all elements being positive.
Figure 1 shows an overview of the hierarchical perceptual

model. With this model, a Bayesian agent receives a series of
sensory inputs or observations o1 :T . At time tk, the sensory input
ok to the agent is determined by a delta distribution δ(·)

P(ok | x0,k) = δ(ok = x0,k). (7)

The initial priori states p(x1,0, x2,0) are Gaussian distributions
as follows:

q(xh,0) =N (xh,0;μh,0, Ch,0), h = 1, 2. (8)

In summary, the hierarchical perceptual model constitutes a
generative model for sensory observations o(t) based on hidden
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representations of the tendency (x1) and the volatility (x2) of
the observations. . To simplify the notations, we introduced the
notation X to denote the set of all hidden states, P for the
hyperparameters and the prior states of the model:

X ={x0, x1, x2} ,

P = {
w1, b1, w2, b2, λ, μ1,0, C1,0, μ2,0, C2,0

}
where μ1,0, C1,0, μ2,0, and C2,0 are the prior states of the model
defined in Equation 8 and Supplementary material Section 2.

4 Perceptual inference approximated
by variational approximation

The aforementioned hierarchical perceptual model is
constructed based on general continuous Brownian motions.
It remains to derive update rules to estimate the posterior
distributions for the hidden representations x1 and x2. In order to
derive a family of analytical and efficient update rules, we discretize
continuous Brownian motions by applying the Eulerian method.
The sampling interval (SI) εk = tk − tk−1 is defined by the time
that elapses between the arrival of consecutive sensory inputs ok−1
and ok.

We use the variational Bayesian method (Beal, 2003; Friston,
2010; Daunizeau et al., 2010b; Mathys et al., 2011) to reach an
approximation to the posterior distributions of x1(t) and x2(t)
given the sensory input o(t) (i.e., observation). To this end, we
maximize the negative free energy, which is the lower bound of log-
model evidence, to yield variational approximation posterior (cf.
Supplementary material Section 1):

q(xh,k) = 1
Zh

exp(Vh(xh,k)), h = 1, 2, (9)

where Zh is a normalization constant. Vh(xh,k) is the variational
energy given by

Vh(xh,k) = Eq(X\h,k)
[
ln p(Xk, ok | P, εk)

]
. (10)

Here we introduced the notation X\h,k for excluding xh,k from
the set Xk, Then under Brownian and Gaussian assumptions, the
approximation variational posterior (Zhu et al., 2025) is

xh,k | ok,P ∼ N (μh,k, Ch,k),

h = 1, 2.
(11)

Under this approximation, the inference of the posterior
distributions of xh is reduced to the estimation of the mean μh,k
and the covariance matrix Ch,k, or equivalently the precision matrix
Ph,k ≡ (Ch,k)−1. Following (Zhu et al., 2025), the update rules for
the posterior distributions of x1 and x2 are derived.

At the bottom (zeroth) level of the hierarchical perceptual
model, we can directly determine multivariate exponential
distribution q(x0,k) with the expectation:

μ0,k = ok. (12)

At the first level, following Equation 10, V1(x1) is calculated as

V1(x1,k) = Eq(X\2,k)[ln p(Xk, ok | P, εk)]

= ln p(ok | x0,k) + Eq(x0,k)[ln p(x0,k | x1,k)]

+ Eq(x2,k)[ln p(x1,k | x2,k, W2, b2, εk)]

≈1T(W1x1,k + b1) − μT
0,kexp

(
W1x1,k + b1

)
− 1

2
(x1,k − μ1,k−1))T(εk�̂1,k + C1,k−1)−1(x1,k − μ1,k−1)

+ const (13)

where 1 is a d0 dimensional column vector in which all elements
are 1. Here we use the approximation

(
εk�1,k + C1,k−1

)−1 ≈
(
εk�̂1,k + C1,k−1

)−1
, (14)

with �̂1,k computed from the second level

�̂1,k = L̂1,kL̂
T
1,k,

L̂1,k = F2(μ2,k−1;w2, b2).
(15)

The variational energy V1(x1,k) is not a standard Gaussian
quadratic form, so we have to employ a Gaussian quadratic form
to approximate it (Zhu et al., 2025). To obtain this approximation
form, we give the gradient and Hessian matrix of V1(x1,k)
as follows:

∇V1(x1,k) =WT
1

[
1 − μ0,k � exp

(
W1x1,k + b1

)]
− (εk�̂1,k + C1,k−1)−1(x1,k − μ1,k−1), (16)

and

∇2V1(x1,k) =− WT
1 diag

(
μ0,k � exp

(
W1x1,k + b1

))
W1

− (εk�̂1,k + C1,k−1)−1, (17)

Under the Gaussian quadratic form approximation, which is based
on a single step Newton method (Zhu et al., 2025), the tendency of
x0,k is captured by

μ1,k = μ1,k−1 + C1,kWT
1 PE0,k, (18)

where PE0,k is the prediction error:

PE0,k = 1 − μ0,k � r̂0,k. (19)

r̂0,k ≡ [r̂(1)
0,k , r̂(2)

0,k , · · · , r̂(d0)
0,k ]T is the prediction given by the mapping

in Equation 2:

r̂0,k = exp
(
W1μ1,k−1 + b1

)
. (20)

Unpacking prediction error PE0,k results in a
meaningful formula,

PE(i)
0,k = 1 − μ

(i)
0,kr̂(i)

0,k = 1 − μ
(i)
0,k
1

r̂(i)
0,k

.
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The inverse of the predicted rate 1
r̂(i)

0,k
gives the expectation of

sensory input, and the ratio
μ

(i)
0,k
1

r̂(i)
0,k

measures the accuracy of the

prediction. If the ratio is greater than 1 (i.e., the predicted
expectation of sensory input is less than the actual sensory input),
the prediction error is negative, and the agent should decrease
μ

(i)
1 . If the ratio is less than 1, the prediction error is positive,

the agent should increase μ
(i)
1 , so that the predicted expectation

of sensory input could be decreased. Ideally, the ratio is equal to
1,and the prediction error vanishes, which means that the predicted
expectation of the sensory input is equal to the actual sensory input.

In Equation 18, the prediction error is scaled and rotated by the
covariance matrix C1,k of the approximate Gaussian distribution,
which is converted from the precision matrix:

C1,k ≡ (
P1,k

)−1 ,

P1,k = �̂1,k + WT
1 diag

(
μ0,k � r̂0,k

)
W1.

(21)

Here prediction precision �̂1,k is given by

�̂1,k = (εk�̂1,k + C1,k−1)−1. (22)

Note that the off-diagonal elements of the inverse prediction
precision matrix �̂1,k give the prediction correlations.

At the second level, the volatility, consisting of the uncertainties
and pairwise correlations in natural parameters, is inferred by
similar variational approximation method (Zhu et al., 2025). The
mean is updated by

μ2,k = μ2,k−1 + εkC2,kWT
2 L̂g1,k

(
�̂1,k ⊗ Id1

)
vec

(
�T

1,k

)
. (23)

Here �1,k is given by

�1,k =
[

C1,k + PE1,kPET
1,k

]
�̂1,k − Id1 . (24)

The constant matrix Id1 is a d1-by-d1 unit square matrix. PE1,k is
the prediction error on the hidden state x1

PE1,k = μ1,k − μ1,k−1. (25)

L̂g1,k is given by

L̂g1,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

exp
(

(W(1)
2 )Tμ2,k−1 + b(1)

2

)
eT

2 (1)

2 cosh
(

(W(2)
2 )Tμ2,k−1 + b(2)

2

)
eT

2 (2)

exp
(

(W(3)
2 )Tμ2,k−1 + b(3)

2

)
eT

2 (3)

2 cosh
(

(W(4)
2 )Tμ2,k−1 + b(4)

2

)
eT

2 (4)
...

exp
(

(W(d2)
2 )Tμ2,k−1 + b(d2)

2

)
eT

2 (d2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (26)

where the constant vector e2(d2) is a d2
1-dimension column vector.

The j-th component in eT
2 (d2) is 1 if j = i or 0 if j �= i. The column

vector W(i)
2 is the i-th row in the coefficient matrix W2. �̂1,k is

defined as

�̂1,k = L̂
T
1,k�̂1,k. (27)

FIGURE 2

Overview of the ablation model.

The precision matrix is updated by

P2,k =�̂2,k + WT
2 L̂g1,k { ε2

k Kd1d1[
�̂

T
1,k ⊗ [�̂1,k�1,k] + [�T

1,k�̂
T
1,k] ⊗ �̂1,k + �̂

T
1,k ⊗ �̂1,k

]
+ε2

k

[
[L̂T

1,k�
T
1,k�̂

T
1,k] ⊗ �̂1,k + [L̂T

1,k�̂
T
1,k] ⊗ [�̂1,k�1,k]

+ [L̂T
1,k�̂

T
1,k] ⊗ �̂1,k

]
− εk

[
Id1 ⊗ [�̂1,k�1,k]

]
}

L̂
T
g1,kW2 − WT

2 diag
(
lvec

(
δ1,k

))
W2,

(28)

where

δ1,k = εk[�T
1,k�̂

T
1,k] � L̂1,k

The precision matrix of the prediction �̂2 is given by

�̂2,k = (εk�2 + C2,k−1)−1. (29)

The notation Kmn denotes a mn-by-mn commutation
matrix (Magnus and Neudecker, 1979).

5 Variational Bayesian learning

A model M with a set of parameters P receives and encodes
sensory input o(t). We can arrange all elements of P into a vector
ξ . Here, we introduce the following mean field approximation to fit
the parameters of the model with the sensory inputs o1 :K

q(P) =q(ξ ) = q(w1)q(b1)q(w2)q(b2)q(λ)

· q(μ1,0)q(C1,0)q(μ2,0)q(C2,0).
(30)
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A

B

FIGURE 3

Time-varying rate parameter and sensory inputs of volatile multivariate exponentially distributed signals. Panels (A, B) represent two dimensions of
input signal. In each panel, blue dots are the sensory inputs o(i) of the i-th dimension of the signal. Red lines represent the expected rate r(i)

0 (t). The
black dashed lines are the expectation of the sensory input o(i) , i.e., the inverse of the expected rate r(i)

0 (t). Note that the expected rate in the two
dimensions fluctuates in time, synchronously before and anti-synchronously after trial 200.

Then

ln p(o1 :K |M) = ln
∫

p(o1 :K , ξ |M)dξ

= ln
∫

p(o1 :K , ξ |M)q(ξ )
q(ξ )

dξ

≥
∫

q(ξ ) ln(
p(o1 :K , ξ |M)

q(ξ )
)dξ

=
∫

q(ξ ) ln p(o1 :K , ξ |M) − q(ξ ) ln q(ξ )dξ

� FM(ξ )

. (31)

We use the Lagrange multiplier method to work out the optimal
variational posterior as follows:

q(ξ ) = 1
Zξ

exp(V(ξ ))

V(ξ ) = ln p(o1 :K , ξ |M).
(32)

Then we execute a Laplacian approximation to determine a
Gaussian approximation of the variational posterior solution
(Equation 33)

μξ = arg max
ξ

V(ξ ) = arg max
ξ

ln p(o1 :K , ξ |M)

= arg max
ξ

ln p(o1 :K |ξ ,M)p(ξ )

= arg max
ξ

K∑
k=1

ln p(ok|ξ ,M) + ln p(ξ )

= arg max
ξ

K∑
k=1

ln p(ok|r̂0,k, ξ ,M) + ln p(ξ ),

Cξ =− ∂2V(μξ )

∂ξ∂ξT ,

(33)

where ln p(ok|ξ ,M) is the logarithm of the predictive distribution
ok ∼ E

(
r̂0,k

)
and is given by

ln p(ok|r̂0,k, ξ ,M) = 1T ln r̂0,k − oT
k r̂0,k. (34)

Finally, the maximum value FM(μξ , Cξ ) of the negative free
energy FM(ξ ) is given by

FM(ξ ) ≤ FM(μξ , Cξ ) = V(μξ ) + dξ

2
ln 2πe + 1

2
ln det(Cξ ).

(35)

6 Simulation study

To verify the effectiveness of the proposed model, we conducted
simulations on synthetic data to assess the model’s ability to
capture time-varying rate parameters of multivariate exponential
distribution. The purpose of using simulation is to validate the
model on precisely defined data, so that the results given by the
model could be compared with ground truth.

6.1 An ablation model

To assess the ability of our hierarchical Bayesian model M,
we define an ablation model Ma as a baseline model to evaluate
the role of the top (volatility) level of the hierarchical Bayesian
model M. Put simply, an ablation model Ma is the simple version
of the hierarchical Bayesian model M with a constant volatility
x2(t) = μ2. In this case, we can remove the variable x2,k and keep
a constant likelihood matrix �1. The model Ma can be defined
by Equations 1–3. Figure 2 shows the overall framework of the
ablation model Ma.
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TABLE 1 Parameters of the hierarchical Bayesian model.

Name Description Initial value Fixed or free

Parameters of the hierarchical Bayesian model

do Dimension of o 2 Constant

d1 Dimension of x1 2 Constant

d2 Dimension of x2 3 Constant

εk Sampling interval εk 1 Constant

αλ Upper bound on λ 0.04 · 1 constant

λ Volatility of x2 Fixed

μλG Mean of λG 0

CλG Covariance of λG Id2

αw2 Upper bound on w2 1 constant

w2 Coupling strength Fixed

μwG
2

Mean of wG
2 0

CwG
2

Covariance of wG
2 Id2

b2 Coupling bias 0 Fixed

μb2 Mean of b2 0

Cb2 Covariance of b2 O3

μ2,0 Prior mean of x2 Free

μμ2,0
Mean of μ2,0 [0, 0, 0]T

Cμ2,0 Covariance of μ2,0 1 × 10−1 · I3

C2,0 Prior covariance of x2 Fixed

μcG
2

Mean of cG
2 [0, 0, 0]T

CcG
2

Covariance of cG
2 Id2

μ1,0 Prior mean of x1 Free

μμ1,0
Mean of μ1,0 [25, 25]T

Cμ1,0 Covariance of μ1,0 Id1

C1,0 Prior covariance of x1 Free

μcG
1

Mean of cG
1 0

CcG
1

Covariance of cG
1 Id1

w1 Coupling strength Fixed

μwG
1

Mean of wG
1 [ln(0.06), ln(0.06)]T

CwG
2

Covariance of wG
1 Od1

b1 Coupling bias 0 Fixed

μb1 Mean of b1 0

Cb1 Covariance of b1 Od1

All parameters of the proposed hierarchical Bayesian model are listed in the table. Parameters
labeled by “Free" are optimized by the inversion of the model. Fixed parameters are constant
and were not optimized. The notation 1 is a constant column vector in which all components
are 1. 0 is a zero vector. The bold letter Od represents a d by d constant matrix in which all
elements are 0. Given all the initial priors, we can search the optimal priors on all optimized
parameters μξ according to free energy principle (Equations 31, 33).

The update equations for the ablation model are similar to
Equations 12, 18–22 with �̂1 = �1. Put simply, we assume that
�1 is a diagonal matrix with positive diagonal elements. Therefore,
�1 can be determined by a vector σ 1 with positive elements. The

TABLE 2 Parameters of the ablation model.

Name Description Initial value Fixed or free

Parameters of the ablation model

do Dimension of o 2 Constant

d1 Dimension of x1 2 Constant

εk Sampling interval εk 1 Constant

σ 1 Volatility of x1 Fixed

μσ G
1

Mean of σ G
1 [ln 0.01, ln 0.01]T

Cσ G
1

Covariance of σ G
1 Id1

μ1,0 Prior mean of x1 Free

μμ1,0
Mean of μ1,0 [25, 25]T

Cμ1,0 Covariance of μ1,0 Id1

C1,0 Prior covariance of x1 Free

μcG
1

Mean of cG
1 [ln 0.25, ln 0.25]T

CcG
1

Covariance of cG
1 Id1

w1 Coupling strength Fixed

μwG
1

Mean of wG
1 [ln(0.06), ln(0.06)]T

CwG
2

Covariance of wG
1 Od1

b1 Coupling bias 0 Fixed

μb1 Mean of b1 0

Cb1 Covariance of b1 Od1

All parameters of the ablation model are listed in the table. Parameters labeled by “Free"
are optimized by the inversion of the model. Fixed parameters are constant and were not
optimized. The notation 1 is a constant column vector in which all components are 1. 0 is a
zero vector. The bold letter Od represents a d by d constant matrix in which all elements are
0. Given all the initial priors, we can search the optimal priors on all optimized parameters μξ

according to free energy principle (Equations 31, 33).

prior distribution of �1 is defined by

q(�1) = q(ln σ 1) = N (ln σ 1;μln σ 1 , Cln σ 1 ) (36)

where μln σ 1 , Cln σ 1 are the parameters of the prior
distribution. Other parameters of this model are the same
prior model with the above hierarchical Bayesian model (cf.
Supplementary material Section 2).

6.2 Simulation setup

In detail, simulations were carried out in four steps
as follows:

1. Generating synthetic sensory inputs. We randomly generated
a sequence of bivariate exponential variable o1 :K =
o(t1), o(t2), o(t3), · · · , o(tK ) (K = 400) (Figure 3):

p(o(t)) = E(o(t), r0(t)), (37)
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FIGURE 4

Temporal dynamics of the tendency μ1 of the log-rate vector x1(t) at the first level. Panels (A, B) represent two dimensions of the expectation μ1. In
details, each panel shows one component of μ1 in red, and PE1 in blue. The light-red shaded area represents the uncertainty of each component

(i.e., μ(i)
1 (t) ±

√
C(i,i)

1 (t), i ∈ {1, 2}). The red markers 
, ◦ represent the priors on the standard deviation and the mean of each component respectively.

where the time-varying rate vector r0(t) was governed by
cosine waves and was defined by

r(1)
0 (tk) = 2.5 + 2 cos(

7π

K
tk),

r(2)
0 (tk) =

{
2.5 + 2 cos( 7π

K tk) k ≤ 200

2.5 − 2 cos( 7π
K tk) k ≥ 201

.

2. Initializing the sufficient statistics of all random parameters.
We must choose particular initial sufficient statistics of a
parameter vector ξ (Table 1 for the hierarchical Bayesian
model and Table 2 for the ablation model) to make the
models work well on a sequence of sensory inputs. Then
we determined the prior distribution of ξ . All parameter
configurations for the two models (Figures 1, 2) are shown in
Tables 1, 2.

3. Maximizing negative free energy. We employed optimization
methods to obtain the optimal sufficient statistics

(
μξ , Cξ

)
of the prior parameter ξ . The quasi-Newton Broyden-
Fletcher-Goldfarb-Shanno method based on a line search
framework (Nocedal and Wright, 2006) was adopted to
maximize negative free energy (Equations 31, 33, 34) (Beal,
2003; Friston, 2010).

4. Generating the optimal trajectories of all states. We use the
optimal prior parameters μξ to characterize a particular model
(Figures 1, 2). The two models are compared on inference and
decision-making tasks.

6.3 Perceiving volatile multivariate
exponentially distributed signals

The proposed hierarchical Bayesian inference model endowed
with the optimal parameter μξ constitutes a hierarchical Bayesian
agent. We asked the hierarchical Bayesian agent to perceive volatile
multivariate exponentially distributed signals as shown in Figure 3.

The dynamic tendency μ1(t) of the log-rate vector x1(t) is
tracked online by the hierarchical Bayesian agent (Figure 4). μ1
follows the varying trend of the expected rate in logarithmic
space. The uncertainty of μ1(t) is stable (light-red shaded area in
Figure 4). The prediction error PE1 fluctuates around a baseline
(blue line in Figure 4).

Overall, the agent perceives the expected rate vector well
(Figure 5). For a majority of the trials, both of the belief
expectations μ

(1)
0 , μ(2)

0 (solid lines in Figures 5A, C) fluctuates
around the expected rate (dashed lines in Figures 5A, C). In the
initial stage, the agent quickly adjusts itself to adapt to the input
signal and tracks the expected states. Due to the stochasticity, the
sample rate intensity in sensory inputs deviates from the expected
rate intensity, leading to the estimated belief rate intensity μ

(i)
0 , i =

0, 1 to deviate from the expected rate intensity. From trial 120 to
trial 165, the sample rate intensity in sensory inputs o(1) is larger
than the expected rate intensity in Figure 3A. The agent’s belief is
higher than the expected rate (Figure 5A). From trial 116 to trial
158 (trial 296 to trial 308), the sample rate intensity in sensory
inputs o(2) is greater than the expected rate intensity in Figure 3B,
leading the agent to have higher belief of the rate intensity than the
expected rate value.
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A C

B D

FIGURE 5

Temporal dynamics of the expectation of the logarithm of volatility μ2 in the state x1 at the second level. Panels (A–C) represent three dimensions of
the expectation μ2. Each panel shows the evolution of one element of μ2 in red and the corresponding element of PE2 in blue. Light-red shaded area

represents the uncertainty of each dimension (i.e., μ(i)
2 (t) ±

√
C(i,i)

2 (t), i ∈ {1, 2, 3}). The red markers 
, ◦ represent the priors of the standard deviation
and mean of each dimension.

FIGURE 6

Temporal dynamics of the expectation of the logarithm of volatility μ2 in the state x1 at the second level. Each panel shows the evolution of one
element of μ2 in red and the corresponding element of PE2 in blue. Light-red shaded area represents the uncertainty of each dimension (i.e.,

μ(i)
2 (t) ±

√
C(i,i)

2 (t), i ∈ {1, 2, 3}). The red markers 
, ◦ represent the priors of the standard deviation and mean of each dimension.

The expectations of log-volatilities in the logarithms of the
rate vector (μ(1)

2 and μ
(2)
2 , i.e., internal representation of the

expected states) has notable changes, stabilized for most of the
time (Figure 6). From trial 1 to trial 200, changes in rate r(1)

0 are

consistent with changes in rate r(2)
0 (Figure 3). In theory, they are

positively correlated during this period. From trial 1 to trial 186,
the prediction correlation ρ̂1 continues to increase (Figure 7). From
trial 187 to trial 200, asynchronous local fluctuations (or noise)
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FIGURE 7

Prediction correlation ρ̂1(t) is extracted from the inverse prediction
precision �̂1(t) generated by the second (log-volatility) level.

lead to a decrease in prediction correlation ρ̂1. From trial 201 to
trial 400, changes in rate r(1)

0 are the opposite with the changes in
rate r(2)

0 (Figure 3). The two dimensions of the signal are negatively
correlated during this period. As a result, the prediction correlation
ρ̂1 of the agent continues to decrease from trial 201 to trial 359.
From trial 359 to trial 365, prediction errors PE(1)

1 andPE(2)
1 are

positive numbers, and drive prediction correlation ρ̂1 to jump to a
larger value (Figure 7). The hierarchical Bayesian agent therefore is
able to uncover the correlation structures of the signal dynamically.

6.4 Bayesian model selection

To compare the performance of the proposed hierarchical
Bayesian model M and the ablation model Ma, we performed 100
independent simulations for each model using different seeds of
random number generators. Based on these simulations, Bayesian
factors were calculated. Figure 8 shows the histogram of the
Bayesian factors BF(M,Ma). According to the criteria suggested
by Harold Jeffreys (cf. Supplementary material Section 4), M is
better than Ma.

7 Discussion

7.1 Contributions of this study

In this article, we developed a hierarchical Bayesian model to
infer and track online the tendency and volatility in multivariate
exponential signals. The bottom level of the hierarchical Bayesian
model is to learn the expected rate parameter vector of
the multivariate exponential signal. The logarithm of the rate
parameter vector x1 is modeled to evolve as a general Brownian
motion at the first level. Under the Brownian and Gaussian
assumption on x1, the volatility in x1 can be computed by
the Cholesky decomposition of the diffusion matrix of the
Brownian motion x1. Therefore, we introduce a parameterization
of the volatility in x1 in logarithmic space after the Cholesky
decomposition of the diffusion matrix of x1. The volatility in x1 can
be represented by x2, which again evolves as a Brownian motion.
The low-order interactions among the components of the log-rate
parameter vector and uncertainties are captured by x2 at the second
level of the model.

FIGURE 8

Histogram of Bayesian factors. Bayesian factor with the Bayesian
information criterion BF(M,Ma).

The hierarchical Bayesian model assumes that the log-rate
parameter vector x1(t) evolves as a general Brownian motion and
can be updated by Equation 18, where prediction error PE0,k drives
the agent to diminish the difference between the agent’s belief and
the sensory input. The coefficient matrix W1 plays the role of
scaling factors to weight prediction error PE0,k. The covariance C1,k
functions as complex adaptive learning rate in Equation 21.

In principle, the proposed model could be easily generalized
to a Bayesian framework for decision making in high-dimensional
volatile environments by defining appropriate form of response
models (Berger, 2013; Mathys et al., 2014; Zhu et al., 2022). In
this article, we define a simple random response model based on
bivariate exponential distribution. For other problems of interest,
it is sufficient to construct a compatible response model addressing
the particular optimization criteria of the question.

7.2 Limitations and strengths

The peakless and memoryless properties of the exponential
distribution bring difficulties for an online agent to predict, since
historical sensory inputs can only provide weak evidence for a
prediction. The proposed hierarchical Bayesian agent internally
integrates historical sensory inputs and the current sensory input
to infer the changes in the signal. The agent estimates the dynamic
volatility in the sensory inputs and adjusts the learning rate based
on the evidence of the volatility, so that the information from the
signal is integrated into the internal states efficiently. The proposed
hierarchical Bayesian agent is able to efficiently and accurately
capture the characteristics of volatile multivariate exponentially
distributed signals.

In the simulation, we observed that the proposed hierarchical
Bayesian agent has good suppression effect on small volatility, but
it is also swayed by the local variation of the rate intensity caused
by the stochasticity of the signal. The prediction correlation is not
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only determined by changes in the trend of the sensory inputs
but is also affected by volatility. Large local fluctuations can also
cause jumps in prediction correlations. Asynchronous persistent
small local fluctuations will also reduce the prediction correlation,
while synchronous persistent small fluctuations will increase the
prediction correlation.

In this study, we simply considered simulated data, which aims
to capture dynamic and multidimensional aspects of nonstationary
multivariate exponential signals and cannot cover other important
features observed in real data set. The results obtained from
simulations pave ways for further investigations of many estimation
problems in neuroscience research. The possible applications of the
method include firing rate estimation, functional brain connection
estimation, etc.

8 Conclusions

We have introduced the mathematical basis of a hierarchical
Bayesian model for inferring and tracking rate intensity parameter
of multivariate exponential signals and illustrated its functionality.
A family of interpretable closed form update rules were derived.
In particular, we provided a full theoretical scenario that consists
of inference in the perceptual model and learning optimal hyper-
parameters by inversion of the hierarchical Bayesian model. The
proposed theoretical framework was validated on synthetic data,
and it turned out that the hierarchical Bayesian model worked
well in tracking volatile multi-variate exponential signals. The
preliminary study here points to the practical utility of our
approach in analyzing high-dimensional neural activities, which
often follow as distributions in exponential family.
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