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Power-law behavior frequently emerges in physical, biological, and social
systems, particularly near continuous phase transitions characterized by
diverging correlation lengths and universal scaling. The contact process is a
prototypical model for studying absorbing-state phase transitions, typically
belonging to the directed percolation (DP) universality class in its clean form.
In this study, we investigate how quenched disorder influences the absorbing-
state transition of the contact process on a one-dimensional comb lattice, a
minimal geometry that incorporates structural inhomogeneity while remaining
analytically and computationally tractable. In our model, activity spreads over a
fraction of the branches g and is blocked in the rest. Without disorder, the system
belongs to the directed percolation (DP) universality class. Introducing quenched
disorder leads to significant changes in the critical dynamics. For g<0.15, the
system develops a Griffiths phase characterized by algebraic decay away from the
critical point and logarithmic scaling at criticality, indicating a transition to the
activated scaling universality class. In contrast, for g>0.15, the contact process on
the comb lattice shows power-law decay of the order parameter only at the
critical point, demonstrating a clean transition with standard critical dynamics and
no extended Griffiths region. The results show that quenched disorder induces
non-universal slow dynamics for small g, while larger values of q suppress the
disorder-driven effects, restoring standard DP-like criticality. This transition
underscores the role of lattice geometry and disorder strength in shaping
nonequilibrium phase transitions.

griffiths phase, activated scaling class, directed percolation, contact process, quenched
disorder, comb lattice

1 Introduction

The continuous phase transitions from a fluctuating phase to an absorbing state in
nonequilibrium systems have garnered significant attention over the years. Once the system
reaches the absorbing state, it cannot escape it. These transitions are classified into various
universality classes, with the directed percolation (DP) universality class being the most
prominent (Henkel, 2008). The ubiquity of the DP behavior was independently conjectured
by Grassberger (1981) and Janssen (1981), where any system with a single absorbing state, a
single-order parameter, short-range interaction in time and space, no translational
invariance, and an absence of multicritical points invariably falls into the DP

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fcpxs.2025.1678321/full
https://www.frontiersin.org/articles/10.3389/fcpxs.2025.1678321/full
https://www.frontiersin.org/articles/10.3389/fcpxs.2025.1678321/full
https://www.frontiersin.org/articles/10.3389/fcpxs.2025.1678321/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcpxs.2025.1678321&domain=pdf&date_stamp=2025-11-21
mailto:pribhoyar@gmail.com
mailto:pribhoyar@gmail.com
https://doi.org/10.3389/fcpxs.2025.1678321
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/complex-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/complex-systems
https://www.frontiersin.org/journals/complex-systems#editorial-board
https://www.frontiersin.org/journals/complex-systems#editorial-board
https://doi.org/10.3389/fcpxs.2025.1678321

Bhoyar and Gade

universality class. The order parameter follows conventional power-
law scaling behavior only at the critical point. Below this, the order
parameter decays exponentially to the absorbing state. Above the
critical point, the order parameter attains a steady, non-zero value.
The characteristic critical exponents of the one-dimentional DP
universality class are = 0.276, v, = 1.09, and v = 1.73. These
exponents are universal features that remain invariant under the
microscopic details of the model. The DP class exhibits remarkable
robustness even when several underlying assumptions are relaxed
(Bhoyar et al., 2022).

However, the experimental realization of the DP universality
class is limited, requiring an extreme fine-tuning of parameters. In
real systems, inhomogeneity and intrinsic defects can significantly
influence critical behavior, often causing the system to deviate from
DP universality. According to Harris criterion, the quenched
disorder is a relevant perturbation if the spatial correlation length
exponent satisfies the relation v, <§ for the pure (disorder-free)
system (Harris, 1974). This inequality holds for DP in all dimensions
d < 4; therefore, quenched disorder is relevant and may alter the
critical scaling.

Vojta (2006) provided a comprehensive review, including
nonequilibrium systems, and provided a theoretical foundation
and understanding of the change of universality class in
disordered systems, leading to the Griffiths phase. The concept of
the Griffiths phase was first introduced by R. B. Griffiths in
1969 within the framework of equilibrium statistical mechanics
(Griffiths, 1969). In the context of nonequilibrium systems
undergoing absorbing state transitions, such as the contact
process, the Griffiths phase originates as an effect of the presence
of rare regions. These locally ordered regions can persist near the
critical point, even when the overall system remains disordered.
Thus, activity may prevail in the rare region, although the system is
globally in the absorbing phase. This leads to a power-law decay in a
range of parameters in the absorbing phase. This power-law
exponent can be complex. Griffiths phase with a generic complex
critical exponent was reported in our earlier work (Bhoyar and
Gade, 2020; 2021). Logarithmic periodic oscillations are observed
over and above the usual power laws obtained over a parametric
range. We refer to this parameter range as the complex
Griffiths phase.

Here, we study the dynamic behavior of the contact process on a
comb lattice with topological disorder. The contact process is a basic
stochastic model in the DP class, which is widely used to describe the
spread of activity such as epidemics, forest fires, and opinions
(Pastor-Satorras and Vespignani, 2001; Henkel, 2008; Odor,
2000). A one-dimentional comb can be thought of as an infinite
backbone chain with finite side branches attached at each site.
Extending this idea, a two-dimentional comb is built by attaching
a chain at every point along the backbone. In our case, since the side
branches have finite lengths, the system effectively behaves like a
one-dimentional structure.

The comb lattice is an anisotropic geometry that is often used to
model branched or polymer-like systems. It has been applied to
problems such as anomalous transport (Méndez et al., 2015), drug
diffusion in biological tissues (Marsh et al., 2008), and materials with
dendritic or branched structures (Frauenrath, 2005). Its geometry
leads to subdiffusive motion along the backbone as particles are
temporarily trapped in the branches. Bénichou et al. (2015) showed
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FIGURE 1

One-dimensional comb lattice of length L with a finite branch
length K. The active and inactive sites are represented by red and
purple dots, respectively, while the arrows indicate possible
interaction pathways. The branch marked with a red cross
corresponds to an inactive branch, illustrating quenched disorder.

that a tracer particle in such a lattice exhibits subdiffusion along the
backbone, with normal diffusion restored at longer times. In Shang’s
studies of the hierarchical lattice, the different sites are connected,
with a probability dependent on the distance between the sites. In
one study, it decays as a power law with distance. In another, the
connections are also dependent on the weights assigned to each
vertex. The exact thresholds for critical percolation are obtained in
both cases. We do not consider distance-dependent connections or
connections dependent on weights assigned to each vertex. Instead,
we consider a nearest-neighbor connection on the comb lattice. We
study the
nonequilibrium phenomenon rather than simple geometric

contact process, which is a time-dependent
percolation.

Geometry-induced slow dynamics and anisotropic spreading are
closely linked to changes in scaling behavior seen in many systems.
Moreover, introducing quenched disorder in the form of random
but fixed variations in branch length or spacing can model structural
heterogeneities found in real materials. Examples include irregular
dendritic structures in biology, uneven branching in porous rocks,
and imperfections in microfluidic devices. Studying quenched
disorder helps us understand how structural variability affects
transport, diffusion, and search processes in such systems. The
inhomogeneity and anisotropic connectivity of the comb lattice
introduce naturally slow dynamics, which are further enhanced
when quenched topological disorder is introduced. In our model,
the activity is allowed in only a fraction of the branches g, while the
rest are blocked. We find that the dynamic behavior of the model
strongly depends on g. The structure of this study is as follows:
Section 2 describes the system and simulation details, Section 3
presents the results for different disorder strengths, and Section 4
summarizes the conclusions.

2 Model and simulation

We investigate the critical behavior of the contact process on a
one-dimentional comb lattice, a comb structure composed of a
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FIGURE 2
Time evolution of the order parameter p(t) for activation

probabilities p>pc, p = pc, and p <pc (top to bottom) on a log—-log

scale. (a) For g = 0 (one-dimensional chain), the system undergoes

power-law decay p(t) ~ t % at p. = 0.7055 with

§=0.153 + 0.000084. (b) For g = 1, the system undergoes power-law
decay at p. = 0.5851 with § = 0.161 + 0.000029. In both cases, the

dynamics are consistent with the directed percolation (DP) universality
class. In both cases, the system sustains a finite steady-state density
for p>pc, indicating an active phase. Similarly, for p <pc, the density
decays rapidly to zero, corresponding to the absorbing phase.

backbone of length L and teeth (or branches) of finite length K. We
consider the cellular automaton model of the contact process
proposed by Domany and Kinzel (1984). The state of each site at
time t is represented by v (¢) € {0,1}, where v = 0 is an inactive,
healthy, or dry site, and v = 1 is an active, infected, or wet site.

The update rules are symmetric: a site can be activated if either
of its neighboring sites is active. To explore the effect of quenched
disorder, we introduce topological defects into the lattice by
randomly allowing activity in the g fraction of the teeth and
blocking activity in the (1 — g) fraction of the teeth.

We initialize the system with a random configuration, where half
the lattice sites are set as active by using a pseudo-random number
generator. Figure 1 illustrates the comb lattice. The horizontal axis
i=1,2,3...L represents the backbone, and the vertical axis j =
1,2,3...K represents the teeth or branches. Red dot denotes active
sites, and purple dots denote inactive sites. The black cross denotes
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FIGURE 3

Evolution of the order parameter p(t) with time on the log-log
scale for activation probabilities p > p¢, pc and p < p¢ (top to bottom). A
power-law decay p(t) ~ t° is observed at p = p.. (a) For g = 0.75, pc =
0.6008 and § = 0.191 + 0.000038. (b) For g = 0.5, pc = 0.6205

and § = 0.145 + 0.000035. (c) For g = 0.25, p. = 0.647 and
§=0.142 + 0.000044. As q decreases, the critical activation
probability increases, reflecting reduced connectivity in the system.

the blocked branch (quenched disorder). A backbone site is
activated with probability p if at least one of its neighbors is
active (either to its immediate left or right on the backbone or
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on the first site of the associated branch, provided that activity is
allowed in that branch). A site within a branch where activity is
permitted updates its state with probability p if either of its adjacent
vertical neighbors is active. The conditional probabilities of sites on
the backbone and teeth Py and Py, respectively, are defined below.

Pp (xi1 (8 + Dlxi11 () + xip1,1 (8) + X2 (£))

and

Pr(x;,j (£ + D)xi je1 (8) + xi5-1 (£))

It should be noted that P5(1|0) = P5(0|1) = Pg(1]1) = p, and
Pr(110) = Pr(0|1) = Pr(1]1) = p and p#0. Of course, for
disordered case, if a branch is blocked, all sites on that branch
remain uninfected forever. The boundary conditions are
periodic: if i<1 then i=L; if i>L then i=1; if j>K then
j=1; if j—1=0, then j=K. Sites belonging to different
branches cannot directly influence each other’s state, only
neighboring sites within the same branch or on the backbone
can interact.

All simulations are carried out on a comb lattice having a
backbone length of L = 50000 and a branch length of K =100
over a long period of t = 10°. The average is computed over at
least 500 independent disorder configurations and initial
conditions. The order parameter is the fraction of active sites
at time t, given by p(f) = #Zfﬂi?ﬂxi,j (t), where N = L x K. We
present a detailed analysis of how the system’s dynamics evolve
for different values of g, revealing various critical regimes and
universality classes.

3 Results and discussion
31g=0andg=1

Let us first consider the two simple cases that are expected to
belong to the DP universality class:

Case (i) g = 0.

Here, all the branches are blocked. Activity is confined only to
the backbone. As a result, the comb lattice is a one-dimentional
lattice of length L with symmetric nearest-neighbor connections.
The system undergoes a continuous phase transition from the
fluctuating phase to the absorbing phase at the critical activation
probability p. = 0.7055. At the critical point, the order parameter
exhibits power law decay p(t) ~ t°, where the decay exponent § =
0.153. For p<p. the system relaxes to the absorbing phase,
p(t) — 0, and for p>p., a finite steady-state density p(co) is
observed (Figure 2a).

Case (ii) g = 1.

In this case, none of the branches are blocked. The comb lattice
resembles a rectangular lattice of finite width. Each branch site is
connected to one neighboring site above and below, while each site
on the backbone has symmetric connections to its lateral neighbors
and a connection to a branch site above. The system undergoes a
continuous phase transition at the critical point p. = 0.5851. At
criticality, the order parameter decays as p (t) ~ t ™, with § = 0.161
(Figure 2b). For p < p¢, p(t) — 0, and for p > p,, the system reaches
a steady state, p(00)>0. In both cases, the value of the decay
exponent § is consistent with the known value of one-
dimentional DP. Thus, the system belongs to the DP universality
class in both cases.
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(a) Plot of steady-state density p(co) vs. |p — pc| on log—log scale.

The obtained value of = 0.457 + 0.0119. (b) Off-critical scaling
analysis is shown by plotting tA™ vs. p(t)A’“ . The best collapse is
obtained with v, = 0.5 and & = 0.1422. (c) Finite-size scaling plot

t/N? vs. p(t)N“Z is shown for different sizes N =L X K. Here, L = 500,
600, 700, 800, and K = 100. The optimal collapse is obtained forz =1

3.2q=0.75,05,0.25

In this section, we examine cases in which activity is allowed in
at least 25% of the branches. For all g > 0.25, the system undergoes a
clean continuous phase transition from the fluctuating phase to the
absorbing phase. Figure 3 shows the time evolution of the order
parameter p(t) for several values of activation probabilities p > p.,
Ppe>and p < p. for g = 0.75,0.5,0.25. As g increases, the critical point
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(a) Evolution of the order parameter p(t) with time on a log-log
scale at various activation probabilities p in the range 0.662-0.658
(from top to bottom). The order parameter undergoes power-law
decay, p(t) ~ t for all p in this range. The decay is logarithmic at

the critical point p. = 0.662. (b) Plot of p(t)’a vs. log (t) for p<pe, pc
and p >p. (top to bottom). We observe linear behavior only at the
critical point with § = 0.381.

Pe decreases. This reflects enhanced connectivity due to more active
branches. We observe a clean critical transition to the absorbing
phase in each of these cases. The decay exponent § varies slightly;
however, its value remains close to the one-dimentional DP value
(6 = 0.158). Specifically:

for g = 0.75, p. = 0.6008 and § = 0.191.

for g = 0.5, p. = 0.6205 and § = 0.145.

for g = 0.25, p. = 0.647 and § = 0.142.

We explore the case g = 0.25 and calculate the critical exponents f3,
v, and z. To determine 3, we analyze the steady-state density p (co) for
several values of p > p.. In Figure 4a, the steady-state value p(co) is
plotted against |p — p.|. The obtained value of f§ = 0.457 + 0.0119.
This value is significantly higher than the one-dimentional DP value
and slightly lower than the two-dimentional DP value (8 = 0.583). The
errors have been calculated using the Gnuplot fitting function. This uses
the  nonlinear  least-squares  method,  specifically  the
Marquardt-Levenberg algorithm, to adjust the parameters in a user-
defined function so that it best fits the given data points. Off-critical
scaling yields the value of the temporal correlation length exponent vj.
We plot p(£)A™ versus tA” on log-log scale for several values of
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(a) Plot of P () vs. log (t) for p<pe, pe and p>pe (top to
bottom). Linear behavior is obtained only at the critical point with § =
0.381. (b) Plot of N ()" vs. log (t) for p>pc. pe and p <pc (top to
bottom). Linear behavior is obtained only at the critical point with

0 = 1.236. These values are consistent with those of the activated
scaling class.

p>pcand p < p.. Here A = |p — pc|. The best collapse is obtained for
v = 0.5 and § = 0.1422 (see Figure 4b). However, the hyperscaling
relation 3 # 0 is not satisfied, suggesting that simple scaling relations
may break down in this hybrid geometry.

To extract the dynamic exponent z, we perform finite-size
scaling. We plot t/N? versus p(t)N% on a log-log scale. Here,
N =L+K. We plot several lattice sizes L = 500,600,700,800
(Figure 4c). Here, K = 100. The best collapse is achieved for
z = 1, which indicates an almost linear spread of defects.

The steady-state density p (00) is a global time-averaged measure. It
indicates that the long-term exploration of both the backbone and side
branches results in quasi-2D behavior. The temporal correlation length
exponent ¥} is small and indicates strong correlations. The quenched
disorder and the anisotropic geometry of the comb lead to retention of
memory in the backbone. The value of z = v/v, = 1 implies that v, is
also small and that there are strong correlations over time. This occurs
because the particles are trapped in the teeth. At the same time,
trapped particles in the teeth produce a decay exponent close to the
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one-dimentional value. Overall, the rich critical behavior emerges from
the interplay between the backbone’s limited connectivity and the
increasing influence of side branches.

3.3q9=0.15

In this section, we present the results for g = 0.15, which exhibits
dynamic behavior that diverges from the DP universality class. At
this value of g, activity is allowed in 15% of the branches, while the
remaining 85% are blocked. A substantial obstruction of this kind
may lead to the formation of isolated regions in the lattice. These
regions may trap active sites and persist for a long time, even if the
bulk is in the absorbing phase. We find that the order parameter p (¢)
undergoes power-law decay p(t) ~t° over a range of activation
probability values p rather than exclusively at a single critical point.
This extended power-law decay over a range of parameter values is
known as the “Griffiths phase”. Figure 5a shows the temporal decay
of p(t) on a log-log scale for various values of p in the range
0.658-0.662. The decay exponent § varies continuously with p. The
decay is logarithmic at the critical point p. = 0.662.

In such a scenario, the transition to the absorbing phase is
expected to fall within the activated scaling universality class. This
class describes a distinct type of critical behavior that emerges in
nonequilibrium systems subjected to strong disorder. Unlike
conventional scaling, which features power-law relationships
between time and spatial scales, activated scaling is governed by
logarithmic scaling laws. It is characterized by the following three
scaling relations: )

p ()Y ~log(t), Py (1) ~ log(t), and N (£)? ~ log(t)

where p(t) denotes the order parameter, P, (¢) is the survival
probability, and N (t) is the average number of active particles in the
cluster originating from a single active seed. The survival probability
P, (t) is defined as the fraction of the cluster that survives until time
t. The values of the critical exponents of the activated scaling class
are § = 0.381 and 6 = 1.236 (Hooyberghs et al., 2003). p (¢) is measured
on the full lattice starting with a random initial configuration. The other
two quantities, P (¢) and N (), are obtained by initiating dynamics
with a single active site placed at the center of the backbone.

We present the analysis of the activated scaling behavior for
q = 0.15. We plot p(t)w as a function of log (¢) (Figure 5b). Linear
behavior is observed only at the critical point for § = 0.381. Figure 6a
shows the plot of P H4e
initialized with a single active seed at the center of the backbone.

as a function of log () for the comb lattice

Again, we obtain linear behavior only at the critical point for § =
0.381. Figure 6b shows the plot of N (£)""% as a function of log (t) for
several values of the activation probabilities p< p., p = p., and
P> pc. Linear behavior appears exclusively at the critical point
Ppe =0.662, for 8 = 1.236. The obtained values of 8 = 0.381 and
0 = 1.236 are in excellent agreement with those of the activated
scaling class. These results indicate that for g = 0.15, there exists a
range of the activation probability p that separates the active and
absorbing phases, within which the system exhibits a generic power-
law decay, which is characteristic of the Griffiths phase. The
topology of the comb lattice plays a crucial role in this behavior.
Due to the blocking of the majority of the branches, the lattice
fragments into spatially rare regions. These isolated clusters can trap
activity and persist for exponentially long times, even when the bulk
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of the system is in the absorbing phase. The natural formation of
these rare regions along the “teeth” of the comb leads to inherently
slow relaxation dynamics, reinforcing the classification of the
transition within the activated scaling framework.

4 Conclusion

Power-law behavior is ubiquitous in space and time. However, the
presence of quenched disorder can significantly alter this behavior.
Quenched disorder is inherent in any real system; therefore,
understanding how it influences the dynamic behavior of a system
has attracted much attention in statistical physics. In particular,
quenched disorder can induce a change in the universality class. In
this article, we studied the Domany-Kinzel model of the contact process
on a one-dimensional comb lattice with topological disorder. Comb
lattices are naturally inhomogeneous structures with anisotropic
geometry that slow down dynamic processes. By introducing
disorder in the form of missing branches, we increase structural
complexity and explore the combined effects of geometry and
quenched disorder on system behavior. We varied the fraction of
missing branches g and observed distinct dynamical regimes. The
cases q=0 and g =1 are simple. As expected, they showed a
continuous phase transition from the fluctuating to the absorbing
phase within the DP universality class. For g=>0.25, the order
parameter p(t), the fraction of active sites at time t, underwent a
continuous phase transition only at the critical point p.. Interestingly,
the exponent & was found to be close to the one-directional DP value,
but the exponents f3, vy, and z changed. This indicates that the disorder
in the structure is a meaningful perturbation and that the steady-state
properties do not depend solely on the backbone at this value of g.

As blocking was further increased, a clear departure from the DP
universality class was observed for g =0.15. We obtained the
Griffiths phase, which is characterized by power-law decay with
continuously changing exponents over a range of p values. At the
critical point, the order parameter decayed logarithmically in time.
The critical exponents obtained were § = 0.381 and 0 = 1.236, which
are consistent with the activated scaling class. The blockade in a large
number of branches led to the effective fragmentation of the lattice,
which eventually led to the rare region effect. Rare regions are locally
favorable clusters that remain active longer than the bulk. The
collective behavior of rare regions led to ultra-slow dynamics in
the Griffiths regime. Our results demonstrate that the interplay
between limited connectivity along the backbone and the increasing
influence of the side branches with increasing g leads to this rich
critical behavior.
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