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The perennial debate about the possible directionality of evolution, as indicated
by the apparent increase in the complexity of living systems over time, has
recently witnessed renewed arguments in favor of the growth of complexity
being “entropic,” that is, consistent with the growth of entropy as it is construed in
thermodynamics. Here, I offer a brief review of formal treatments of complexity
and of evolutionary mechanisms that are capable of causing it to increase. I then
propose that both the evolutionary emergence and the individual learning of
basic phenomenal awareness, a type of consciousness, are characterized by the
same time-asymmetrical dynamics. Like life itself, biological consciousness
arguably evolves towards greater complexity, and for the same reasons.
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1 Introduction

The enormous number of animals in the world depends of [sic] their varied structure
and complexity.— hence as the forms became complicated, they opened freshmeans of
adding to their complexity. — but yet there is no necessary tendency in the simple
animals to become complicated although all perhaps will have done so from the new
relations caused by the advancing complexity of others.

Notebooks on transmutation of species, Part IV, Fourth notebook [E] (October
1838 – 10 July 1839).

— Charles Darwin (1960, note 95, emphasis in the original).

Does evolution tend to lead to an increase in the complexity of living systems? The
terse note quoted in the epigraph shows that Darwin believed that it does—but not
necessarily across the board.1 Here, I revisit the question of the evolutionary dynamics
of complexity, including the relationship between complexity and entropy, about which
much has been written in recent years. I then take up a hitherto seldom discussed
possibility that the evolutionary tendency towards increasing complexity might extend
to basic consciousness, the latter exemplified by simple perceptions, such as that of the
taste of a wine or the smell of a flower. As an advocate of Dynamical Emergence Theory
or DET (Moyal et al., 2020; Edelman, 2023), I construe basic consciousness as the
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1 Regarding the importance of the choice of word “tend”: see (Brandon and McShea, 2020, p.7).

Mumford and Anjum (2018) introduce a formal notion of tendency as a modality, supplementing the

Aristotelian four.
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process of autodiagnosis, or intrinsic discernment, by a
dynamical cognitive-computational system of its own
representational states.

With Darwin’s informal observation as the starting point, I
argue that evolution does encompass processes that tend to increase
complexity. Several distinct mechanisms have by now been
identified that can explain this tendency—which, again as noted
by Darwin, need not result in a unidirectional or universal
complexification. My survey of the literature yields at least three
such mechanisms: two neutral drift-like and one adaptational. I will
introduce these mechanisms here and present them in more depth
later (Sections 3, 4).

The first of these mechanisms consists in an obligatory
tendency, in any evolutionary system characterized by
variation and heredity alone, of complexity to increase (which,
however, can be masked, or amplified, by selection; McShea and
Brandon, 2010; McShea et al., 2019). The second mechanism too
is, as a matter of principle, independent of selection (but may still
be modulated by it as well). Specifically, an increase in the
complexity of an evolving system can go hand in hand with
an increase in the volume of the “phase space” available to it for
evolutionary exploration—and therefore with the entropy of its
configurations (e.g., Wicken, 1979; Brooks and Agosta, 2012;
Jeffery et al., 2019). If that is the case, the direction of increasing
complexity becomes “entropic” — that is, subject to the same
probabilistic asymmetry that underpins the Second Law of
thermodynamics. As we shall see, this is related to the idea in
Darwin’s note, which may be captured by the slogan complexity
breeds complexity.

The third family of mechanisms are selectional “ratchet effects”
(e.g., McElreath et al., 2018; De Castro and McShea, 2022) that can
amplify random complexity increases driven by the first two types of
mechanisms. If complexity is defined by the number of the system’s
components (more about which in the next section), then the
following argument, due to [Saunders and Ho (1976),
p.381], applies:

[C]onsider a system which is at or near a local peak of fitness, i.e.
which has achieved a locally optimal organization. Then the
random removal of a component must tend to make the system
less fit than before, since otherwise the optimal organization
would have been that in which the component in question was
disconnected from the system. But the random addition of a
component, while it too may (and probably usually does) lead to
a decrease in fitness, also allows the possibility of an increase.

An accumulation of the increases in complexity stemming from
this dynamic would result in their effective acceleration — “ratcheting
up the ratchet” (Tennie et al., 2009).

The remainder of this paper is structured as follows. Section 2 is
an overview of some applicable definitions of complexity and of the
different senses in which it can be said to increase. In Sections 3–5, I
discuss previous work on the evolutionary tendency toward
increasing complexity. Section 6 then seeks to extend those ideas
to the complexity of cognition and consciousness, construed as self-
diagnosing brain dynamics, on both evolutionary and
developmental time scales. Finally, Section 7 offers concluding
remarks and mentions some open questions.

2 Preliminaries

The notion that evolution tends to turn out progressively more
complex life forms has always held great intuitive appeal. After all,
are not we, a latecomer species, so much more complex than the
bacteria in our gut? Making this notion formal and precise enough to
be empirically assessed and incorporated into evolutionary theory is,
however, a difficult undertaking. A basic requirement is that the
definition of complexity not be circular (as in “that, which increases
over evolutionary time”; McShea, 1997). Further, care must be taken,
lest the claim of increasing complexity reduces to the pre-scientific
concept of the Great Chain of Being (McDonald Pavelka, 2002;
Brandon and McShea, 2020).2 Much progress has been achieved in
the last several decades in formalizing and quantifying complexity so
as to meet both these requirements. In this section, I synthesize what
I perceive to be the key proposals from the literature.

2.1 How should complexity be defined?

In computing and information sciences and, by extension, in the
science of complex systems, there are several accepted definitions of
complexity (see Aaronson et al., 2014 for an overview). Choosing
among these depends on the nature of the system or the task at hand.
A key measure, Kolmogorov complexity, which applies to formal
expressions such as a string drawn from a fixed alphabet, is defined
as the length of the shortest computer program that generates it.

It is unclear, to say the least, how to apply such measures to a
living system; as [McShea (1997), p.84] puts it, “How would we
calculate the length of the shortest algorithm that will generate a
sponge?”3 Consequently, discussions of complexity in biology have
traditionally tended to be informal [exemplified byMaynard Smith’s
(1972), p.205] equating complexity with “high degree of
improbability” in a passage quoted in Section 3 below), or else to
postulate simple formal measures that are arguably applicable to
living systems.

2 The concept of the Great Chain of Being has long been amainstay of “race

science” and eugenics (Landau, 1997; Quintyn, 2023). Indeed, the

increasing complexity thesis has been invoked by eugenicist J. S.

Huxley, who claimed that “evolution is a . . . process, directional in time

and therefore irreversible, which in its course generates ever fresh novelty,

greater variety, more complex organization, higher levels of awareness,

and increasingly conscious mental activity” (Huxley, 1955, p.4). Using the

complexity thesis to justify racism or eugenics is a misapplication of

science (McDonald Pavelka, 2002). Whether or not consciousness does

in fact have an evolutionary tendency to become more complex is a

question that I consider in section 6.

3 Kolmogorov complexity is difficult to estimate. Because it is conceptually

related to compressibility, [Aaronson et al. (2014), p.12] has suggested the

following workaround: “The estimated complexity of the state, K(S), is the
file size of the thresholded, coarse-grained array after compression [by

gzip]. Analogously, the estimated entropy of the automaton state is the

compressed file size of the fine-grained array.”
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One such measure of complexity is the number of distinct part
types (in the case of metazoans, these can be cell types) that comprise
the system. [Saunders and Ho (1976), p.377] saw it as
uncontroversial, citing von Neumann (1966), who “defined the
complexity of an automaton to be the number of components it
contains and there does not appear to have been any serious
disagreement with this choice, although for biological systems a
better measure is the number of different types.” [Von Neumann
(1966), p.36] had in fact sounded less decisive: “It is not completely
obvious how to measure the complexity of an automaton.”4 A few
pages later, he comes close to conceiving of a measure that sounds a
lot like Kolmogorov’s: “You see that you can produce circuits which
look complicated, but which are actually quite simple from the point
of view of how they are synthesized and which have about the same
complexity that they should have, namely, the complexity that
grammar has” (von Neumann, 1966, p.46).

More recently, using the number of a system’s part types as an
estimate of its complexity has been endorsed as a reasonable
compromise (McShea, 1997) and proved to be useful in practice
(Fleming and McShea, 2013). Bailly and Longo (2009) include it as
one of three components in their definition of complexity (the other
two being morphological and functional complexity).5 It serves as
the basis for the quantitative formulation of a proposed law that
captures the evolutionary trajectory of complexity, called by its
developers “biology’s first law” (McShea and Brandon, 2010; see
also McShea et al., 2019; Brandon and McShea, 2020), to be
discussed in Section 3. Meanwhule, I accept the definition of
complexity as the number of distinctive parts in a system.

2.2 In what sensemight complexity increase,
and by what means?

The existence of mechanisms that cause system complexity to
increase over evolutionary time does not imply that the complexity
of all evolving systems will always grow. On the one hand,
metazoans clearly are more complex than their single-cell
ancestors under any reasonable definition of genetic,
morphological, and behavioral complexity. On the other hand,
ever since their appearance on the evolutionary scene hundreds
of millions of years ago, metazoans have always coexisted with

“simple”microbial life-forms such as bacteria and archaea, many of
them free-living in the environment and others host-associated,
living in and on multicellular organisms.

Still, asserting a universal rise in complexity is not out of the
question, as long as we are precise about what it is that we assert.
Specifically, the claim that complexity rises over evolutionary (or
developmental) time may pertain to the minimal, mean, or maximal
complexity of the systems in question (McShea, 1997). Thus,
Darwin’s (1960) remark that “there is no necessary tendency in
the simple animals to become complicated” may be interpreted as
making the claim to be about the maximum complexity, estimated
over the various species in question. This would exempt the
proponents of the thesis of rising complexity from having to
account for the metazoans having joined, rather than replaced,
unicellular life forms in the arena of life, as well as for the down-
and not only up-swings of complexity in specific
evolutionary lineages.

Evolutionary changes in complexity can in principle be caused
by a variety of mechanisms. A key distinction can be made between
two kinds: driven, characterized by a bias in the direction of either
increasing or decreasing complexity; and passive, characterized by
an absence of any bias or driving force (McShea, 1997). In the next
section, I begin with an overview of the passive causes of
evolutionary complexity increase.

3 The growth of complexity in the
absence of bias

By what means might the complexity of life forms increase over
evolutionary time, if there is no bias in favor of higher complexity?
In this section, I briefly mention two passive (non-biased)
mechanisms, one rooted in the basic mathematical consequence
of heritable variation and the other having to do with entropy and a
probabilistic dynamics of the same kind that underlies the Second
Law of thermodynamics.

3.1 Complexity and heritable variation

Let us consider first a mechanism that Maynard Smith did not
think much of. In the same paragraph where he casually equates
complexity with improbability, [Maynard Smith (1972), p.205]
offers the following answer to the question of increasing complexity:

The obvious and uninteresting explanation of the evolution of
increasing complexity is that the first organisms were
necessarily simple, because the “origin of life” is the origin,
without natural selection, of entities capable subsequently of
evolving by natural selection, and without selection there is no
mechanism for generating a high degree of improbability— i.e.
complexity. And if the first organisms were simple, evolutionary
change could only be in the direction of complexity.

Immediately after invoking selection, Maynard Smith states that
any “evolutionary change” will increase complexity, given that the
first organisms were simple. Indeed, such an increase need not
depend on selection and can be entirely passive: as long as

4 The continuation of this quote is instructive: “For computing machines,

probably the reasonable way is to count how many vacuum tubes are

involved. This is somewhat ambiguous, because certain current types of

vacuum tubes are in reality two vacuum tubes inside one envelope, in

which case one is never quite sure which one of the two he is talking

about. Another reason is that a great deal enters into computing machine

circuitry aside from vacuum tubes: electrical equipment like resistors,

capacitances, and possibly inductances. Nevertheless, the ratio of these to

the vacuum tubes is tolerably constant, and therefore the number of tubes

is probably a reasonable measure of complexity.”

5 In cultural anthropology too, a combination of number of parts and

functional context is used to define complexity (Read and

Andersson, 2020).
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complexity is bounded from below, the average complexity of
randomly evolving systems can be expected to grow, simply
because a random walk in such a complexity space can in the
long run only result in a net drift in the direction of increasing
complexity [see (McShea, 1997; Figure 3B) for an illustration and
(Bailly and Longo, 2009; Longo and Montévil, 2012) for an
independently developed, mathematically explicit version of this
argument, motivated by the work of S. J. Gould (1994)].

While McShea’s 1997 paper had been skeptical about the
hypothesis of increasing complexity, his subsequent work fully
validated it. The passive drift explanation of the evolutionary
increase in complexity (as measured by the number of part
types) turned out to be far from “uninteresting.” Indeed, it led to
a quantitative formulation of “biology’s first law” (McShea and
Brandon, 2010; McShea et al., 2019; Brandon and McShea,
2020).6 [McShea and Brandon (2010), p.2] explain what they call
the Zero-Force Evolutionary Law, or ZFEL, as follows:

[R]ising diversity and complexity are the null expectation, the
predicted outcome for evolution in the total absence of selection
and other forces. They are the zero-force expectation. The
reason is simply that variation arises in biological systems,
and when heritable it accumulates, with the result that
variances tend to increase.

In a later publication, [Brandon and McShea (2020), p.7] state
the ZFEL as follows:

ZFEL (general formulation): In any evolutionary system in
which there is variation and heredity, there is a tendency for
diversity and complexity to increase, one that is always present
but may be opposed or augmented by natural selection, other
forces, or constraints acting on diversity or complexity.

Very importantly, [Brandon and McShea (2020), p.7] note that
the ZFEL, which is a passivemechanism for complexity growth, can
be counteracted by active ones: “The critical word . . . is ‘tendency.’
When forces or constraints are present, diversity and complexity
have a tendency to increase” (rather than increasing necessarily, as
per the ZFEL).7 I discuss this issue further in Section 4.

3.2 Complexity and entropy

I now consider a second passive cause of complexity growth.
Like the ZFEL, it takes the form of a probabilistic tendency, which in
this case is analogous to that, which underwrites the Second Law of
thermodynamics. Specifically, complexity growth can be entropic in
the sense that complexity increases concomitantly with increasing

entropy, the latter being the probable direction of the system’s
progression through its configuration space,8 as described by the
Second Law (Saunders and Ho, 1976; Wicken, 1979; Saunders and
Ho, 1981; Wiley and Brooks, 1982; Collier, 1986; Aberle, 1987;
Brooks and Agosta, 2012; Jeffery et al., 2019). Note that we need not
invoke the Second Law as such: as explained by Jeffery et al. (2019),
the probabilistic dynamics in question is more broadly applicable
and does not require that the system be closed or approach
equilibrium.

My focus here is on Boltzmann entropy, in terms of which the
Second Law of thermodynamics is formulated (Lesne, 2014). For
this entropy to be well-defined, one must classify the system’s states
into categories, or macrostates, such that all the (micro)states

FIGURE 1
A toy example illustrating the concepts of micro- and
macrostates and the dynamics of entropy and complexity in the space
of three-symbol strings over a two-symbol alphabet, {A,B}.
Microstates correspond to specific strings. Random transitions
between these are precipitated by single-symbol changes (A to B or B
to A) and are assumed to be equiprobable. Assuming left-right mirror
symmetry, there are six distinct microstates, indicated by small circles
in (a,b). These belong to two macrostates: R, which comprises
microstates that may contain symbol repeats, as shown on the right in
(a,b); and �R, which comprises microstates without symbol repeats, as
shown on the left. The Boltzmann entropy (see Section 3.2) of R is
higher than that of �R, which makes the transitions �R → R and R → R
jointly more probable than R → �R. If one defines the complexity
associated with a macrostate as the number of distinct bigrams
encountered in itsmicrostates, as in (c), then R has a higher complexity
than �R, namely, 3, compared to 1.

6 The title of (Brandon and McShea, 2020) — “The Missing Two-Thirds of

Evolutionary Theory” — refers to adaptation, diversity, and complexity, of

which they claim only the first has been properly accounted for in the

literature.

7 This clarification fits precisely the spirit of Darwin’s original remark on the

evolution of complexity.

8 A biologically relevant configuration space could be, for instance, the

space of genomes (Jeffery et al., 2019, p.12).
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belonging to a given macrostate are equivalent according to some
criterion (which must be non-arbitrary; Brooks and Agosta, 2012,
pp.502-503). The entropy of a macrostate is then proportional to the
logarithm of the number of microstates that belong to it (that is, have
the same macroscopic properties). Assuming the probabilities of
transition between any two microstates are all the same,9 it then
follows that the succession of the system’s macrostates over time is
likely to proceed in the direction of increasing entropy. The reason
for this is straightforward: an entropic transition—from a
macrostate that contains fewer microstates to one that contains
more—is more probable (see Figure 1 for an illustration of
this argument).

A few clarifications gleaned from the literature should help us
understand how complexity, entropy, and the Second Law are
related to each other:

• Entropy is not the same as complexity. [McShea (1997), p.88]
points out that “Entropy is a relationship between microstates
and macro states, while complexity is a property of a single
microstate, of one specific composition and configuration, and
involves no such relationship (Wicken, 1987). Complexity is
not entropy.” For a discussion and an explicit computational
model of the two, see (Aaronson et al., 2014).

• Entropy is not simply disorder. [Lesne, (2014), p.56] explains:
“Rather than a measure of disorder, entropy is a measure of the
typicality of the disorder, that is, a measure of degeneracy: how
many configurations share the same macroscopic observables
and constraints.”

• The foundation of the Second Law is probabilistic (as noted
above, it is only this foundation that I invoke here). This key
fact is, unfortunately, not recognized by McShea and Brandon,
(2010), who write (p.12): “We advise readers against [making a
leap from the ZFEL to the second law of thermodynamics], for
their own safety. We are concerned that on the other side of
that leap there may be no firm footing. Indeed, there may be an
abyss . . . [W]e think the foundation of the ZFEL lies in
probability theory, not in the second law or any other law
of physics.” In fact, though, while the ZFEL is indeed not the
same as the Second Law, they both are probabilistic.

• The Second Law does not contradict the growth of entropy
within biological systems. Brandon and McShea (2020),
p.25 write: “If left to its own, the second law predicts a
cold gray uniform wasteland.” Living systems stave off the
action of the Second Law by acquiring and spending energy
to maintain their structure, in a process that is commonly
seen as the opposite of entropic. However, as Brooks and
Agosta (2012), p.504 note, “It is more complete to recognize
that biological systems maintain low-entropy states relative
to their surroundings, but not relative to their own
previous states.”

This latter observation is key in understanding how complexity
growth in a biological system can be entropic. The following
intuition has been offered by [Wicken (1979), p.362]:

We know the Second Law to be a disordering principle which
establishes the directions of all natural processes. How can the
ontogenic or evolutionary development of these “ordered”
biological structures be explained by the action of a
disordering directive in nature? This apparent paradox
evaporates once the word “order” is confined to its proper
denotative realm. Biological structures are not “ordered” in the
sense prescribed by information theory; they are “organized.”
The Second Law acts to dissipate order, not organization; indeed
the latter tends to accumulate at the expense of the former.

Wicken’s formal analysis of organization, which he applied to
the complexity of evolving molecular structures, is too technical to
recount here, but its bottom line is clear:

[T]he [complexity-increasing] tendency in evolution can be
derived from the overall randomizing operation of the
Second Law, that, given the particular set of physicochemical
constraints under which it operates, the Second Law leads
naturally to progressively higher levels of complexity.
(Wicken, 1979, p.361)

Brooks (Wiley and Brooks, 1982; Brooks, 2001; 2011; Brooks
and Agosta, 2012) has made the formal case for this explanation in a
general evolutionary setting, using the same parts-based notion of
complexity as McShea and Brandon (2010). [Brooks and Agosta
(2012), p.505] further explain that one of the classes of processes that
generate entropy is

. . . expansion of the realm of possibilities (the phase space) in
which the system resides, increasing its number of accessible
microstates (possible configurations). System organization
increases so long as equilibration (equiprobable distribution
of the system over its microstates) occurs at a slower rate than
the expansion of the phase space . . . So long as the phase space
expands faster than the system can fill it up, increasing entropy
can be accompanied by the emergence of organized structure10.

A discussion, and a formal connection, between the intuitive
concepts of “organized structure” and complexity can be found in

9 This corresponds to my assumption in this section that the system’s

traversal of its configuration space is due to drift and is not biased

or forced.

10 This passage continues as follows (Brooks and Agosta, 2012, p.505): “In

cosmology, this argument explains the spontaneous and irreversible

emergence of stars, solar systems, galaxies, and other organized

structures, in which fundamental forces linking material bodies, like

gravity, slow down the entropic diffusion of matter in the universe to

such an extent that organized structures emerge as a result of increasing

entropy.” These ideas are related to the anthropic principle in cosmology

(Giudice et al., 2019; Wallace, 2019) and to Smolin’s (1997) Cosmic

Natural Selection (CNS) framework, which posits that the fine-tuning

of cosmological parameters is selected for (across universes) by the

appearance of a conscious observer.
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(Aaronson et al., 2014). For a recent restating of the idea that
evolutionary complexity growth can be entropic, along with an
accessible discussion of the probabilistic foundation of the Second
Law, see (Jeffery et al., 2019).

To summarize the materials that I have reviewed so far, passive
evolution (in the absence of selection) has a tendency to increase the
complexity of the systems that are subject to it, through at least two
distinct mechanisms: the combination of variation with heritability
(per the ZFEL) and the entropic dynamics of complexity (per the
Second Law of thermodynamics). In the next section, I consider how
selection forces can facilitate (or thwart) the passive evolution of
complexity.

4 The effects of selection

Like passive random-drift evolution that I have just surveyed,
selection-driven evolution too can give rise to increasingly complex
systems through several distinct mechanisms. One of these is
entropic drift that happens when the number of microstates
grows faster than they can be randomly visited. [Collier (1998),
p.136] points out the analogy and explains how it results in a non-
equilibrium (in the thermodynamic sense) and entropic
evolutionary growth of complexity under environmental selection:

One possibility involves entropic increase of information, along
the lines described by Brooks and Wiley . . . in the absence of
adaptation. If we assume that the environment contains genetic
variation, much as a bell jar contains a gas, then we have a source
of cohesion that allows us to distinguish genetic macrostates
(the environmentally constrained state) from genetic
microstates (all of the variant states permitted by a particular
environment). . . . One reason to expect non-equilibrium is
[that] as new variants are selected, the genome becomes
more highly adapted, constraining the genetic phase space
more severely. On the other hand, the same process often
opens up new possibilities for adaptation, which constitutes a
release of constraints, possibly making more genetic
information potentially adaptive. This would increase the
effective genetic phase space.

Note how this argument echoes Darwin’s remark (quoted in the
epigraph), to the effect that all species stand to gain complexity “from
the new relations caused by the advancing complexity of others.”

Another selection-based mechanism that can contribute to the
growth of genomic complexity of organisms over consecutive
cycles of replication with mutations has been described by
Adami et al. (2000). These authors define the complexity of a
(fixed-length) genome as its length minus the sum of entropies for
each of its sites. In a simulated evolution experiment, complexity
thus defined has been shown to grow monotonically, except for
occasional drops associated with those mutations that precipitate
major evolutionary transitions. Given that such mutations amount
to the environment performing a fitness measurement, the increase
in complexity can be understood in terms that are familiar from
thermodynamics: “. . . because natural selection forces genomes to
behave as a natural “Maxwell Demon,” within a fixed environment,
genomic complexity is forced to increase” (Adami et al., 2000,

p.4463). A recent book-length synthesis by Adami likewise focuses
on the effects of selection on “functional complexity” (Adami,
2024, ch.5)11.

5 Emergent signatures of evolution:
directionality and historicity

I now proceed to outline a common conceptual framework for the
different types of complexity-increasing mechanisms discussed so far.
By definition, a common characteristic of all evolutionary processes,
whether passive or driven, that contribute to the growth of complexity is
directionality. Passive processes, which depend on random changes in
complexity over time, must incorporate a mechanism that makes a
decrease in complexity less likely than an increase, or else the average
complexity will remain stable. Thus, for systems that are subject to the
ZFEL, the directionality is a (perhaps counterintuitive) consequence of
the mathematics of heritable random variation. For unbiased entropic
systems, characterized by distinct levels of micro- and macro-states and
a fast proliferation of the former, it is a consequence of the probabilistic
basis of the Second Law of thermodynamics. An analogous argument
(see the above quote from Collier, 1998) applies also to the evolution of
entropic systems that are selection-driven. Lastly, the Maxwell Demon
analogue that arises out of the combination ofmutations and selection is
inherently directional.

The directionality of the evolutionary change of complexity has
been described as a ratchet effect (e.g., Tennie et al., 2009; Brooks
and Agosta, 2012; McElreath et al., 2018; De Castro and McShea,
2022; Scerri andWill, 2023).12 This name is somewhat misleading: as
we have seen, directionality does not require a dedicated, explicitly
one-way mechanism (a ratchet). Rather, it can emerge from the
dynamics of the evolving system—as is the case in all the examples
discussed so far in this paper and summarized in the opening
paragraph of this section.13 A general characterization of ratchet-

11 Adami’s notion of genomic complexity is functional in that it defines

complexity in terms of the amount of information that a genome stores

about its environment. With this definition in place, simulated

evolutionary dynamics of populations of digital organisms show that

selection acts as an effective filter that “prefers” higher-over lower-

complexity organisms (thus the analogy with Maxwell’s Demon, a

celebrated thought experiment in thermodynamics; see Maroney,

2009). Wong et al. (2023) have likewise offered arguments for the

evolutionary increase of what they term “functional information.” For a

review of Adami’s book, see (Kampourakis, 2025).

12 By analogy with the class of mechanical devices in which a spring-loaded

tooth allows a rotary or linear gear to move in one direction, while

preventing the reverse motion.

13 Additional examples of ratchet-like processes include Collier’s (1998)

“generative entrenchment” and “constructive neutral evolution” of

[McShea et al. (2019), p.1111]. McElreath et al. (2018) distinguish

between primary and secondary ratchet mechanisms. Scerri and Will,

(2023) argue that a “critical mass” is needed for the ratchet dynamics to

pick up. Ratcheting of cultural transmission in humans, compared to

chimpanzees, is discussed by Tennie et al. (2009).
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like dynamics offered by Brooks and Agosta (2012), p.504) is helpful
here: “There is no distinction between ratchet irreversibility and
temporal irreversibility—ratchet irreversibility is the establishment
of temporal correlations strong enough to limit the options the
system can explore.”

The other emergent signature of evolution, arising out of its
directionality and irreversibility, is path dependence or historicity.
This is the feature that prompted some authors to refer to the
creatures of evolution as “victims of history” (Wiley and Brooks,
1982)14 or, less ominously, “children of time” (Brooks and Agosta,
2012). Historicity consists in the observation that any particular
configuration, such as the distribution of traits in a population or
species in an ecosystem, is necessarily constrained by the sequence of
steps whereby it emerged from an earlier state. These serve to jointly
“explain” the present state, the scare quotes being due to the general
impossibility of projecting the explanation into the future:
postdiction may be possible, but prediction, in typical complex
evolutionary systems, is not (Annila and Salthe, 2010; Longo,
2018; Ereshefsky and Turner, 2020; Tahar, 2022)15.

The not-quite-explanatory nature of historical accounts
underlies the problematicity of some of evolution theory’s key
tenets, whose popular phrasing makes them appear circular.
Thus, evolution by natural selection is tautological when reduced
to the familiar slogan “the survival of the fittest,” as the best answer
to the question it begs — “Which are the fittest?” — would seem to
be “Those that survive.”Of course, as Ernst [Mayr (1976b), p.13] has
explained, Darwin’s actual formulation involved no tautology.

Morgan (1910), p.210 invokes a similarly structured popular
sentiment (italics mine): “The mechanism of survival (if I may be
pardoned the expression) is such that it insures success where it is
most called for. To repeat a familiar epigram: In evolution nothing
succeeds like success.”16 [Mayr (1976a), p.34] unpacks this latter
expression:

We have a proverb that is applicable here, “Nothing succeeds
like success,” and this is the secret of natural selection. Success,
in this case, means leaving offspring. But what is it that
determines this success? If success were determined by blind
chance, as are most processes that lead to genetic variation, we
would not be justified in speaking of natural selection, for
selection implies discrimination. But, and this is the
cornerstone of the evolutionary theory since Darwin, it is
justifiable to refer to differential reproduction as natural
selection because individuals differ from each other in their

genetic endowment, and it is, at least in part, the nature of this
genetic endowment that determines reproductive success.

Thus, it is the dependence of evolutionary success on the
inherited genetic endowment that underscores the historicity of
evolution and at the same time ensures that the central thesis of
evolutionary theory is not circular.

The various mechanisms I have reviewed so far, which explain
how complexity of living systems can increase over time, suggest that
on top of the characteristic of evolution as a process in which
“nothing succeeds like success” one might add another one:
“complexity breeds complexity” (McDonald Pavelka, 2002;
Andersson et al., 2014). This slogan, which fits well the quote
from Darwin’s notebooks that opened this paper, can also serve
as a bridge to the next section, in which I take up the question of
complexity as applied to consciousness.

6 Complexity and the evolution and
learning of consciousness

The mass revival of scientific interest in consciousness in the
1990s included proposals for quantifying the complexity of brain
activity, under the assumption that the neural substrate of
consciousness is necessarily complex. A prominent proposal, due
to Tononi and Edelman (1998), introduced a measure of “neural
complexity” that combined integration and differentiation of brain
activity—the former because of the phenomenal unity of conscious
experience, and the latter because of its richness depending on
discernment among various possible experiences (in other words,
consciousness is differentiated because it involves and discerns
many varied experiences).

Two decades later, a comprehensive review by Sarasso et al.
(2021) revealed a general acceptance in consciousness studies of the
tenet stating that “the presence of consciousness is invariably
associated with high brain [activity] complexity” (p.3). The
validity of this sweeping generalization can, however, be
questioned, in view of the wide variety of cognitive processes that
are subsumed under the rubric of consciousness. These range from
the basic phenomenal awareness of certain aspects of the world as
represented in a cognitive system, to self-awareness and the
awareness of awareness. It is the latter varieties that are most
often referred to as consciousness in informal discussions17.

14 “History as evolution” is the title of (Nunn, 2021).

15 The course of evolution is impossible to predict, as noted among others

by Annila and Salthe (2010), p.307: “The simple equation of evolution

(Equation 5). . . is surprisingly insightful. To begin with, it cannot be

solved.” Likewise, Doulcier et al. (2021) write that “. . . a general value

of fitness that is both explanatory and predictive cannot be attained.”

16 Compare this to [Quine’s (1969), p.124] remark about the course of

science: “In induction, nothing succeeds like success.” See also

(Edelman, 2023, p.39).

17 For an illustration, see (Edelman, 2023, Figure 1.1). An extensive list of the

different meanings of the term “consciousness” can be found in

(Natsoulas, 1981). More recently, [Metzinger (2003), p.3] has remarked

that “it is simply not true that everyone has a rough idea of what the term

‘consciousness’ refers to. In my own experience, for example, the most

frequent misunderstanding lies in confusing phenomenal experience as

such with what philosophers call ‘reflexive self-consciousness,’ the

actualized capacity to cognitively refer to yourself, using some sort of

concept-like or quasi-linguistic kind of mental structure. According to

this definition hardly anything on this planet, including most humans

during most of their day, is ever conscious at all.”
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In contrast, here I focus on phenomenal awareness,
encompassing basic qualities of ongoing experience, such as salty
or red. Very importantly, basic phenomenal awareness can become
relatively more complex (over evolutionary time or due to learning),
as when more shades of red become discernible, without the system
supporting it being necessarily complex in absolute terms, in the
sense of Sarasso et al. (2021).

6.1 Basic phenomenal awareness as
autodiagnosis

Basic phenomenal awareness always involves discernment, as in
telling apart salty from sweet, bitter, etc.,; or red from green, yellow,
and so on. According to my working hypothesis, the Dynamical
Emergence Theory or DET (Moyal et al., 2020), this simplest variety
of consciousness consists in dynamically emergent diagnosis by the
system in question of its own representational states—what may be
called autodiagnosis. I stress that basic consciousness, on this
account, does not “arise” out of this dynamics: rather, it is (the
process of) autodiagnosis18.

Importantly, this level of phenomenal awareness does not
require a brain as complex as that of humans and is arguably
present in insects (Edelman et al., 2016) and even single-cell life
forms (Edelman, 2023, ch.1-2).19 At the same time, the emergence of
autodiagnosis does seem to reflect an increase of some measure of
the diagnostic system’s complexity. Such an increase may happen (i)
over evolutionary time, and/or (ii) over the lifetime of the system in
question, as it learns to discriminate among its own states.

The capacity for diagnosis has already been explicitly linked to
the thesis of the evolutionary increase of complexity by Collier,
(1998), Collier, (2000). [Brooks and Agosta (2012), p.503] explain
the connection as follows:

Collier (1998), Collier (2000) related information to the causal
capacity of a system, its ability to impose distinctions on its
surroundings. Collier proposed that physical (material)
information systems occur as arrays, or multi-dimensional
messages, in which the information has . . . a real (non-
arbitrary) macrostate/microstate distinction [my emphasis].

Interestingly, a non-arbitrary macrostate/microstate distinction
is central also to the DET account of phenomenal awareness, which
identifies the “stream” of awareness with the succession of emergent
metastable macrostates (cf. Crutchfield, 1994) in the system’s state
space (Moyal et al., 2020). It is important to note that for this
explanation of phenomenal awareness to hold, the delineation of

macrostates cannot be arbitrary (hence my emphasis in the above
reference to Collier’s work). Nor can it be up to an external observer:
the only diagnosis that is relevant to consciousness is autodiagnosis
(by the system of its own states). In DET the macrostates are non-
arbitrary because they are, by definition, equivalence classes of
future predictability (in other words, a macrostate bundles
together microstates whose successors are also likely to be
bundled together). Macrostates are thus causal (rather than
merely epiphenomenal) in that they render the system’s future
trajectory through sequences of macrostates conditionally
independent of its past (Crutchfield, 1994, p.26).

6.2 How basic phenomenal awareness can
become more complex

Any opportunity for refining such trajectories through the
modification of the system’s dynamics may open an entropic (in
the sense spelled out earlier in this paper) path towards increasing
complexity of phenomenal awareness. Such an increase can happen
as the system’s architecture changes over evolutionary time, or
during the lifetime of an individual, as the system learns.

The former type of change is exemplified by the increasing
capacity for discernment, and the concomitant growth in
complexity, in the evolution of visual systems (see, e.g., Feinberg
and Mallatt, 2013).20 The scale of evolutionary complexity here can
be illustrated by a side-by-side comparison of (1) simple
photosensitivity, which allows for the distinction between light
and dark and the detection of a passing shadow, as in the ocelli
eyespots of planarian flatworms (2) the emergence of an imaging
“camera” eye, allowing the discrimination of moving spots and edges
and much more, as in frog vision; (3) complex shape perception
afforded by cortical processing, as inmammalian visual systems; and
(4) color perception, which adds extra nuance and discernment.
(The present coexistence of all these types of visual systems shows
that evolutionary complexification is a tendency, rather than an
“across the board” process, as already noted in this paper).

Consider now complexification due to learning, illustrated by
the following progression in the development of expertise in wine
tasting: wine/red wine/red Rioja/red Coto de Imaz/red Coto de Imaz
2016. As tasters learn to tell apart samples that hitherto appeared to
them indistinguishable, intuition suggests that the complexity of
their phenomenal experience of the taste of each sample should
grow—say, from the simple two-way distinction between red wine
and white wine to the experience of the sample as a wine of specific
variety, vineyard, and vintage, as distinguished from hundreds of
others that the taster is now capable of identifying.

On an abstract computational level, both evolutionary and
learning-induced complexification are accounted for by DET in
the same manner. Consider the cognitive system’s trajectory space,
in which each entire trajectory through its state space corresponds to
one point. DET equates the complexity of a system’s experience with
the topological complexity of this trajectory space (Fekete and

18 To be clear, the consciousness-related parts of the present paper are not

intended to defend the DET (let alone to compare it with other theories of

consciousness). Rather, I argue that, from within the DET framework,

complexity of the system’s dynamics identified with consciousness tends

to increase.

19 For discussions of cognition in single-cell organisms, see (e.g.,

Tagkopoulos et al., 2008; Lyon, 2015; Godfrey-Smith, 2016; Lyon and

Kuchling, 2021).

20 I thank a reviewer for suggesting this example of complexification of

(visual) awareness over evolutionary time.
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Edelman, 2011; Moyal et al., 2020).21 The higher the topological
complexity of this space,22 the more intrinsically distinct
points—that is, trajectories—it contains and, correspondingly, the
richer its repertoire of phenomenal experiences (which is what the
trajectories are)23.

A similar conclusion regarding the complexification of a
phenomenally aware system’s dynamics through learning can be
reached by considering its entropy as defined classically, in terms of
micro- and macrostates. Learning of better discernment from
experience involves an increase in the number of microstates, as
newly encountered items come to be represented in the system’s
memory, and in the number of macrostates, as the creation of new
categories becomes possible (per the wine hierarchy example). This
makes the process whereby an individual system acquires expertise
entropic, in that the system’s total entropy (as measured by a sum
over its macrostates of the logarithm of corresponding numbers of
microstates) increases with learning. We may thus conclude that as
the acquisition of exemplars and categories proceeds, the system is
unlikely to revert through mere random drift in the configuration
space to a lower-expertise configuration—which, according to DET,
corresponds to less-discerning awareness.

I note that reinforcement learning could modulate this process,
either amplifying or countering it. Likewise, on the evolutionary
level, selection may effectively amplify it (if expertise proves to be
adaptive), or not—as discussed above in the context of the
interaction of neutral and selection effects. Note that both the
individual- and the evolutionary-level processes that make
phenomenal awareness more complex work not just for wine
expertise, but also for any other experiential quality that is
amenable to refinement through learning (as well as for sets of
such qualities that are mutually commensurable, that is, belong in
the same psychological space in the sense of Shepard, 1987). Thus,

the hypothesis stated in the opening paragraph of the present
paper—that the evolutionary tendency towards increasing
complexity might extend to what I call basic
consciousness—seems to be compatible with my analysis both of
the notion of complexity itself and of its application to the evolution
and learning of conscious discernment (by the system of its
phenomenal states).

6.3 A possible test case: entropy and
complexity in a reservoir computing model
of insect olfactory discrimination

As a setting for exploring the relationship between basic
phenomenal awareness and complexity, I propose to consider
reservoir computing (RC), also known as an echo state or liquid
state machine (Natschläger et al., 2002; Maass and Markram, 2004;
Maass, 2007; Cucchi et al., 2022). An RC machine consists of (1) a
“reservoir” of coupled neurons (biological or not) characterized by
nonlinear dynamics, which may be perturbed by an external input,
and (2) a linear readout circuit, which sets the system’s output to a
weighted sum of the neurons’ activities. The connections among
reservoir neurons may be fixed, or they may be subject to learning so
as to optimize its dynamics. The readout weights are always trainable
and can be adjusted to produce desired outputs in response to
certain inputs. The computational power of the RC architecture is
well-understood (see the many references in Seoane, 2019). Here, I
focus on its capacity for intrinsic discernment, which DET equates
with basic phenomenal awareness.

An RC machine responds to inputs by tracing out trajectories
within the volume of the state space spanned by its units’ activities.24

If the system is subject to metabolic constraints, the reservoir
neurons will tend by default to be largely quiescent, such that the
(micro)states accessed by these trajectories cluster near the origin,
comprising just one macrostate. Through reinforcement learning
(Pack Kaelbling et al., 1996) or evolution (Watson and Szathmáry,
2016; Frank, 2023), the trajectories begin to venture away from the
origin (drawing on an energy resource). As finer and finer
discernment is attained, the number of intrinsically distinct
macrostates grows, resulting in higher entropy (as noted earlier)25.

The RC architecture naturally maps onto that of the key circuit
in the olfactory system in insects such as the locust (Mazor and
Laurent, 2005; Broome et al., 2006) or fruit fly (Kennedy, 2019;
Gkanias et al., 2022). Specifically, the nonlinear dynamics is
implemented by a reservoir of recurrently interconnected
projection neurons in the antenna lobe. These project to Kenyon
cells in the mushroom body, which carry out linear readout
(Buzsáki, 2010). The several experiments proposed in the
appendix would capitalize on the RC interpretation of this neural
circuit, making it possible to test the thesis of the present paper on a
real-life example.

21 An alternative definition of the complexity of phenomenal experience is

part of the Integrated Information theory of consciousness (Oizumi et al.,

2014); for a critique of the latter, see (Fekete et al., 2016).

22 Intuitively, the number of connected components, holes, etc.,; see

(Carlsson, 2009) for a formal introduction. Examples of the application

of computational topology in quantifying the complexity of brain activity

can be found in (Singh et al., 2008; Fekete et al., 2009). Topological

complexity is not to be confused with topological entropy, which

“describes how many trajectories are required to span the phase

space with a prescribed resolution” (Lesne, 2014, p.39).

23 Two trajectories are qualitatively distinct just in case the two points

representing them in the trajectory space belong to topologically

distinct (disconnected) subsets of the set of all trajectories that can be

realized by the system. The emergence of a new discernment in the

trajectory space proceeds as follows. In a system that does not

implement discernment, the set of all trajectories is a simply

connected region of the trajectory space. The emergence of a

two-way discernment corresponds to this set being split into two

mutually exclusive ones, such that no continuous deformation maps a

trajectory in the first subset into a trajectory in the second one.

Trajectories in the two subsets are now (intrinsically)

qualitatively different.

24 Notably, in evolutionary biology the phase space is not “given” (Longo,

2020; Tahar, 2022).

25 Evolutionary paths to (and from) RC are discussed and illustrated in

(Seoane, 2019, Figure 4).
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7 Concluding remarks

In the opening paragraph of his paper The law of evolution as a
maximal principle, [Lotka, (1945), p.167] dismisses complexity increase
as a poor candidate for a general law, arguing that “If . . . it is stated that
evolution proceeds from simpler to more complex forms, . . . the
direction of evolution is but poorly defined, for the rule is one with
disturbing exceptions, andwhatwe seek is not an empirical rule, but a law
of nature that brooks no exceptions.” My conclusion from the present
review is that if one follows [Darwin (1960), note 95] in seeking a general
tendency rather than a universal law, then complexity increase does
emerge as a non-trivial principle of evolution, underwritten by several
distinct mechanisms. Moreover, this principle seems to apply not just to
the evolution of species’morphologies— “endless forms, most beautiful”
— but also to the evolution and learning of their capacity for phenomenal
discernment, which constitutes the most basic level of consciousness26.

Given how controversial the hypothesis of evolutionary increase
in complexity has been over the decades (and still is), it is not
surprising that its empirical assessment is not often attempted. Some
experiments in simulated evolution did yield support for this
hypothesis (e.g., Adami et al., 2000; Yaeger, 2014; Beslon et al.,
2021). Particularly interesting are the study of the evolution of
complexity in Drosophila under weak selection (Fleming and
McShea, 2013) and a much broader-scope investigation of the
evolution of complex multicellularity, for which the authors
offered a nonadaptive explanation (Bingham and Ratcliff, 2024).

Assuming that complexity increase is a common enough
evolutionary tendency, one may ask whether its rate remains steady
or grows with time (as suggested by Darwin in the note quoted in the
epigraph). The growth of complexity is indeed expected to accelerate in
cases in which greater complexity facilitates evolvability (Watson and
Szathmáry, 2016; Fields and Levin, 2020). It can also accelerate if biology
co-evolves with culture—a well-known catalyst of change that is
cumulative (e.g., Tennie et al., 2009; Szathmáry, 2015; McElreath
et al., 2018) and therefore self-reinforcing. To repeat a phrase that
came up earlier in the present paper, “complexity breeds complexity”
— as anthropologists have been arguing for a while (Andersson et al.,
2014, p.162) (a computational modeling study (Kolodny et al., 2015)
suggests, however, that cultural complexity may increase exponentially,
or polynomially, or asymptotically, depending on conditions)27.

Further exploration of this and related topics should proceed
in full recognition of the applicability of the idea of evolutionary
growth of both entropy and complexity across what Aberle,
(1987) called “historical sciences”: his own disciplines of
anthropology and sociology—where full-blown human
consciousness and not just basic phenomenal awareness is of
critical importance (Edelman, 2023, ch.7) — as well as
evolutionary biology, geology, and cosmology. Citing Layzer,
(1972) and Brooks and Wiley (1985), Aberle endorses an
approach that “makes culture a part of nature—of the
biosphere and the cosmos” (Aberle, 1987, p.561). Broad as it
is, the scope of such an approach to the evolutionary dynamics of
complexity can be extended even further by taking up the
cosmological selection hypothesis (e.g., Smolin, 1997; Giudice
et al., 2019), according to which evolution applies also across
universes. That extension will, however, have to await
future research.
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26 Lotka’s proposed law stated that “Evolution, in these circumstances

[available mass and energy] proceeds in such direction as to make the

total energy flux through the system a maximum compatible with the

constraints” (1945, p.187). On the same page, Lotka remarks that “One is

inclined here to give at least qualified assent to the saying of Herodotus:

‘If one is sufficiently lavish with time, everything possible happens.’ ”

(1945, p.187, footnote 30). Of course, one thing that evolution does not

lack is time. When combined with the various ratchet mechanisms (recall

section 5), this realization may help us understand why complexity does,

after all, tend to increase over the eons.

27 The notion that complexity breeds complexity appears also in sociology,

economics, andmanagement works (e.g., Venkataraman and Van de Ven,

1988), as well as jurisprudence, where its connotations are typically

negative (e.g., Haddon-Cave, 2021).
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Appendix: proposed experiments

The four experiments outlined below involve a reservoir
network model of the projection neuron / Kenyon cell circuit in
insect olfaction.

Experiment 0

Initialize a reservoir network (no linear readout is needed in this
experiment) with close-to-zero weights. Perform a random walk in
the weight space, corresponding to neutral evolution. Define
microstates by quantizing the trajectories, and macrostates by
clustering the microstates. With the Zero-Force Evolution Law in
mind, I predict that both the entropy of the reservoir and the
topological complexity of its dynamics (as measured by persistent
homology; see above) will increase.

Experiment 1

Repeat experiment 0, but initialize the RC with random weights,
uniformly distributed in the interval between zero and a maximum
weight. The tendency of the entropy and complexity of the RC’s

activity to grow should now be less pronounced than in
experiment 0.

Experiment 2

Use a genetic algorithm (Booker et al., 1989) to conduct an
evolutionary search in the parameter space of a reservoir network,
combined with reinforcement learning of the weights of the linear
readout, the objective being discernment among multiple “odorants,”
carrying positive, neutral, or negative rewards. As before, define
microstates by quantizing the trajectories, and macrostates by
clustering the microstates. I predict that over evolutionary time both
the entropy of the system and the complexity of its dynamics will tend
to increase, subject to interaction with other variables in the system.

Experiment 3

As in Experiment 2, but drive the RC weights and the linear read-
out weights by performance in a prediction task (cf. Morales et al.,
2021). This experiment is motivated by the apparent link between
prediction and entropy (Still et al., 2012), as well as its central role across
all of cognition (Friston, 2010) and, arguably, life itself (Friston, 2013).
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