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Previous work has shown that the dynamical regime of Recurrent Neural
Networks (RNNs)—ranging from oscillatory to chaotic and fixed point
behavior—can be controlled by the global distribution of weights in
connection matrices with statistically independent elements. However, it
remains unclear how network dynamics respond to organizational regularities
in the weight matrix, as often observed in biological neural networks. Here, we
investigate three such regularities: (1) monopolar output weights per neuron, in
accordance with Dale’s principle, (2) reciprocal symmetry between neuron pairs,
as in Hopfield networks, and (3) modular structure, where strongly connected
blocks are embedded in a background of weaker connectivity. These regularities
are studied independently, but as functions of the RNN’s general connection
strength and its excitatory/inhibitory bias. For this purpose, we construct weight
matrices in which the strength of each regularity can be continuously tuned via
control parameters, and analyze how key dynamical signatures of the RNN evolve
as a function of these parameters. Moreover, using the RNN for actual
information processing in a reservoir computing framework, we study how
each regularity affects performance. We find that Dale monopolarity and
modularity significantly enhance task accuracy, while Hopfield reciprocity
tends to reduce it by promoting early saturation, limiting reservoir flexibility.
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1 Introduction

Over the past decades, deep learning has achieved remarkable progress (LeCun et al.,
2015; Alzubaidi et al., 2021), notably through the rise of large language models (Min et al.,
2023). These models are typically based on feedforward architectures, where information
flows unidirectionally from input to output layers. In contrast, Recurrent Neural Networks
(RNNs) include feedback connections, enabling them to function as autonomous dynamical
systems (Maheswaranathan et al., 2019) that sustain neural activity even without ongoing
external input.

RNNs exhibit certain “universal” properties—such as the ability to approximate
arbitrary functions (Maximilian et al., 2006) or general dynamical systems (Aguiar
et al., 2023)—which, alongside other strengths, have spurred interest in their fine-
grained behavior. For example, they can preserve information from temporally
extended input sequences (Jaeger, 2001; Schuecker et al., 2018; Büsing et al., 2010;
Dambre et al., 2012; Wallace et al., 2013; Gonon and Ortega, 2021) and learn effective
internal representations by balancing compression and expansion of information (Farrell
et al., 2022).

OPEN ACCESS

EDITED BY

Claudio Castellano,
Istituto dei Sistemi Complessi (ISC-CNR), Italy

REVIEWED BY

Gabriele Di Antonio,
Santa Lucia Foundation, Italy
Tobias Kühn,
University of Bern, Switzerland

*CORRESPONDENCE

Patrick Krauss,
patrick.krauss@fau.de

RECEIVED 27 May 2025
REVISED 28 November 2025
ACCEPTED 30 November 2025
PUBLISHED 05 January 2026

CITATION

Metzner C, Schilling A, Maier A and Krauss P
(2026) Organizational regularities in recurrent
neural networks.
Front. Complex Syst. 3:1636222.
doi: 10.3389/fcpxs.2025.1636222

COPYRIGHT

© 2026 Metzner, Schilling, Maier and Krauss.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Complex Systems frontiersin.org01

TYPE Original Research
PUBLISHED 05 January 2026
DOI 10.3389/fcpxs.2025.1636222

https://www.frontiersin.org/articles/10.3389/fcpxs.2025.1636222/full
https://www.frontiersin.org/articles/10.3389/fcpxs.2025.1636222/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcpxs.2025.1636222&domain=pdf&date_stamp=2026-01-05
mailto:patrick.krauss@fau.de
mailto:patrick.krauss@fau.de
https://doi.org/10.3389/fcpxs.2025.1636222
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/complex-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/complex-systems
https://www.frontiersin.org/journals/complex-systems#editorial-board
https://www.frontiersin.org/journals/complex-systems#editorial-board
https://doi.org/10.3389/fcpxs.2025.1636222


A further key research theme concerns the control of RNN
dynamics, including how internal and external noise shape network
behavior (Rajan et al., 2010; Jaeger, 2014; Haviv et al., 2019; Lutz
et al., 1992; Ikemoto et al., 2018; Krauss et al., 2019a; Bönsel et al.,
2021; Metzner and Krauss, 2022). RNNs have also been proposed as
models for neural computation in the brain (Barak, 2017). Notably,
sparse RNNs—with a low average node degree, resembling
biological circuits (Song et al., 2005)—have shown improved
capacity for information storage (Brunel, 2016; Narang et al.,
2017; Gerum et al., 2020; Folli et al., 2018).

In our earlier work, we systematically explored the interplay
between network structure and dynamics, beginning with three-
neuron motifs (Krauss et al., 2019b). We later showed how the
weight distribution’s width w, the connection density d, and the
balance b between excitation and inhibition can be tuned to control
the dynamics of large, autonomously active RNNs (Krauss et al.,
2019c; Metzner and Krauss, 2022). We also investigated noise-
induced resonance phenomena in such systems (Bönsel et al.,
2021; Schilling et al., 2022; Krauss et al., 2016; Krauss et al., 2019a;
Schilling et al., 2021; Schilling et al., 2023; Metzner et al., 2024).

Most studies—including our own—have assumed statistically
independent weight matrix elements, drawn from fixed distributions
and assigned randomly. While analytically convenient, this
assumption does not reflect the structural regularities seen in
biological networks. Real neural systems exhibit highly non-
random connectivity, shaped by development, functional
demands, and evolutionary constraints.

The potential benefits of incorporating structural regularities
into neural architectures have increasingly been recognized in the
literature. Several recent developments have explored this direction,
aiming to move beyond fully random or uniform connectivity. For
example, Capsule Networks introduced by Hinton and colleagues
(Sabour et al., 2017; Hinton et al., 2018) implement local groups of
neurons—capsules—that preserve part-whole relationships via
structured routing mechanisms. In transformer models,
architectural variants have been proposed that introduce explicit
modularity or routing constraints to enhance interpretability and
scalability (Rosenbaum et al., 2018; Shazeer et al., 2017; Rosenbaum
et al., 2019). Moreover, a number of studies have examined recurrent
networks with biologically inspired topology, exploring the impact
of modularity, reciprocity, or Dale-like constraints on network
dynamics and learning performance (Zador, 2019; Cornford
et al., 2020; Rodriguez et al., 2019).

Recent theoretical work has further deepened our understanding
of how structured connectivity influences recurrent network
dynamics. For instance, studies have examined how the number
of effective degrees of freedom and the resulting low-dimensional
organization of neural trajectories depend on architectural
constraints and coupling statistics (Hwang et al., 2019; Hwang
et al., 2020). Other analyses have characterized dynamical
regimes in structured or partially symmetric networks, including
glassy attractor states and transitions between ordered and chaotic
phases (Berlemont and Mongillo, 2022; Fournier et al., 2025).
Together, these works highlight that architectural regularities do
not merely stabilize dynamics, but can fundamentally shape the
computational landscape of recurrent systems.

These efforts highlight a growing consensus that structural
features—long regarded as biological idiosyncrasies—may in fact

play a functional role in shaping the computational behavior of
artificial neural systems. Against this background, we systematically
examine the isolated effects of three such regularities:

First, biological neurons follow Dale’s Principle, meaning each
neuron is either excitatory or inhibitory, but not both (Strata and
Harvey, 1999; Somogyi et al., 1998).

Second, neural circuits exhibit an increased likelihood of
reciprocal connections: if neuron A projects to B, B is more
likely to project back to A (Song et al., 2005; Perin et al., 2011).
This bidirectional coupling introduces local symmetries that may
stabilize attractor states and support mutual reinforcement.

Third, the brain is modular, comprising groups of neurons more
densely connected within than between groups (Sporns and Betzel,
2016; Meunier et al., 2010). Such organization appears across scales,
from cortical microcircuits to large-scale areas, and enables
specialized yet integrative processing.

In the following, we study how each of these biologically inspired
regularities affects the dynamical regime of RNNs, using a minimal
implementation in which their respective strength can be
continuously tuned (compare Figure 1).

The first regularity, called Dale Homogeneity, is controlled
via a continuous parameter h ∈ [0, 1], indicating the degree to
which a neuron’s outputs are consistently excitatory or
inhibitory. At h � 0, polarities are mixed; at h � 1, all neurons
are strictly monopolar.

The second regularity, Hopfield Reciprocity, is controlled by a
parameter r ∈ [0, 1]. For r � 0, weightswij andwji are independent;
for r � 1, they are identical, as in Hopfield networks.

The third regularity is Modularity, parameterized by m ∈ [0, 1].
A network with m � 0 lacks modular structure, whereas m> 0
introduces strongly connected quadratic blocks with standard
deviation wS >w, embedded in a weaker background with
wW <w. As the degree of modularity m increases, wS and wW

are adjusted so that the global width w remains constant.
While h, r, and m control the strength of structural regularities,

we assess their impact on network dynamics using deterministic
neurons with tanh activation and three dynamical measures: F, C,
and N.

The fluctuation F ∈ [0, 1] is the standard deviation of neuron
outputs, averaged over neurons and time. It quantifies spontaneous
activity; excessively large F would hinder reliable computation.

The covariance C ∈ [−1,+1] is defined as the product
ym(t) · yn(t + 1), averaged over neuron pairs and time. In a
globally oscillatory state, C ≈ − 1, in a chaotic state C ≈ 0, and in
a fixed point state C ≈ + 1.

Finally, the nonlinearity N ∈ [−1,+1] is the average operating
regime of neurons. AtN ≈ − 1, neurons operate linearly; atN ≈ + 1,
they are saturated and behave digitally.

While the primary focus of this study lies on how organizational
regularities shape the intrinsic dynamics of RNNs, it is natural to ask
whether these structural features also affect the network’s
information processing performance. To address this, we embed
the RNN into a reservoir computing framework and examine how
the accuracy A in simple benchmark tasks varies as a function of the
regularity control parameters.

The following sections describe the construction of the weight
matrices, the simulation setup for measuring dynamical indicators,
and the test tasks used to evaluate computational performance.
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2 Methods

2.1 General simulation setup

The overall workflow of our investigation consists of the
following steps:

First, we set the control parameters, including the distribution
parameters—width w, density d, and excitatory-inhibitory balance
b—as well as the regularity parameters: Dale homogeneity h,
Hopfield reciprocity r, and modularity m.

Second, we generate a set ofNR random square weight matrices
that satisfy these specifications. Their properties are verified by
empirically evaluating their statistical features.

Third, for eachmatrix, we simulate the spontaneous dynamics of
the corresponding RNN. The network is initialized in a random state
and then run freely for a large number of time steps. We refer to the
resulting time series of neural activations as the output stream.

Fourth, we compute the dynamical measures—fluctuation F,
covariance C, and nonlinearityN—for each output stream, resulting

in NR samples per measure. For visualization, we average these
values across the ensemble of NR networks.

In addition to analyzing intrinsic dynamics, we also examine
how the regularity parameters affect information processing.
For this, the RNN is embedded into a reservoir computing
framework: it receives input via a fixed input matrix, and
its output stream is passed to a trainable readout layer.
However, in the first part of the study, we set the input
matrix to zero, so the RNN runs autonomously without
external input, and the readout is not used. Nonetheless, we
describe the full reservoir architecture in the following for
completeness.

2.2 Design of reservoir computer (RC)

The RC consists of an input layer, a recurrent reservoir, and a
readout layer. The input data comprises E consecutive episodes,
each corresponding, for example, to a pattern to be classified. This

FIGURE 1
Example weight matrices. (a) A standard weight matrix of size 50 × 50, with density d � 1, balance b � 0, width w � 0.5, and all organizational
regularity parameters set to zero: r � h � m � 0. (b) With maximal Hopfield reciprocity r � 1 and all other parameters unchanged, the matrix becomes
symmetric about the diagonal, while preserving density, balance, and width. (c)Withmaximal Dale homogeneity h � 1, eachmatrix column (representing
a neuron’s output weights) adopts a uniform sign. (d) With modularity m � 0.3, block size S � 10, and probability fSB � 0.2, some blocks exhibit
significantly increased fluctuation width, while others become weaker. Note the different color bar in (d).
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data stream is fed into the reservoir and circulates through the
system while propagating toward the output.

At each time step t, the input layer receives M parallel signals
x(t)
m ∈ [−1,+1]. These are linearly transformed by the input matrix I

of size N × M and injected into the reservoir, as described by
Equation 1. Each input episode spans T time steps.

The input layer consists solely of the matrix I and is therefore
purely linear. Its elements Imn are drawn independently from a
normal distribution with zero mean and standard deviation wI. To
study autonomous RNN dynamics, we set wI � 0, effectively
decoupling the reservoir from external input.

The reservoir comprises N recurrently connected neurons with
tanh activation. At each time step, all neuron states yn are updated in
parallel. Each neuron receives a bias term bw,n, input from the external
signals via I, and recurrent input via the weight matrix W (see
Equation 1). Initial states y(0)

n are drawn uniformly from [−1,+1]
and kept fixed for repeated simulations of the same reservoir.
Different weight matrices receive independent initial states.

The readout layer performs an affine-linear transformation of
the reservoir states yn using a K × N output matrix O and a bias
vector bo, as in Equation 2. These parameters are trained via the
pseudoinverse method (see below).

In the sequence generation task, which serves as the main
information processing benchmark in this work, the continuous
outputs zk of the readout layer directly form the vectors of the
output sequence. In classification tasks, by contrast, the zk represent
soft votes that are converted into discrete predicted class labels c
using the argmax function (see Equation 3). This final step
introduces a nonlinearity that sharpens the class boundaries in
the output space.

In summary, the RC is governed by the following equations.

y t( )
n � tanh bw,n +∑

m

Inmx
t−1( )
m +∑

n′
Wnn′y

t−1( )
n′

⎛⎝ ⎞⎠ (1)

z t( )
k � bo,k +∑

n

Okny
t( )
n (2)

c t( ) � argmax z t( )
k{ } (3)

2.3 Sequence generation task

In this task, the reservoir computer functions as a deterministic
system that maps an input sequence X of real-valued vectors onto a
corresponding output sequence Z:

X ∈ −1,+1[ ]TI×M → Z ∈ −1,+1[ ]TO×K

Here, TI and TO denote the temporal lengths of the input and
output sequences, and M and K their respective vector dimensions.

At the beginning of each episode, a randomly chosen input
sequenceX from one ofNDC discrete classes is fed into the network,
driving it into a class-specific internal configuration or ‘priming
state’. After the input ends, the reservoir evolves autonomously
through a sequence of internal states Y, which the linear readout
layer is trained to map onto the corresponding target sequence Z.

Since the system is strictly deterministic, it will always produce
the same trajectory for each distinct priming state. Provided that the

induced trajectory is not a cyclic attractor with a period shorter than
TO, the readout should in principle be able to convert the trajectory
into the desired output sequence.

However, because the reservoir is not reset at the beginning of
each episode, residues of previous states may persist, such that the
priming state is not exactly identical every time a given class is
selected. If the reservoir operates in a chaotic regime, these small
differences can be amplified, producing an effectively unpredictable
trajectory that cannot be mapped to the correct target.

In practice, the target mapping also fails if the reservoir neurons
enter the saturated ‘digital’ state, since the resulting trajectory is
insufficiently rich and lacks the necessary high-
dimensional diversity.

Successful performance therefore requires a balance between
stability and richness: the reservoir must forget prior excitation
rapidly enough to respond reproducibly to identical inputs, while
still maintaining sufficient temporal and spatial diversity
across neurons.

To systematically explore the influence of network parameters
under controlled conditions, we employ a minimal task
configuration with M � K � 2, TI � 1, TO � 2, and NDC � 2.
The class-specific input sequences Xc and their target sequences
Zc are predefined, with all vector components drawn independently
from a uniform distribution over [−1,+1]. In each episode, one of
the NDC cases is selected at random.

2.4 Optimal readout layer using
pseudoinverse

The optimal weights and biases of the readout layer can be
efficiently computed with themethod of the pseudoinverse, based on
the sequence of reservoir states and the target output (Compare, for
example, Section 3.4. in (Cucchi et al., 2022)). Following these ideas,
we proceed as follows:

Let Y ∈ R(E−1)×N be the matrix of reservoir states directly after
each input episode, where E is the total number of episodes andN is
the number of reservoir neurons. Let Z ∈ R(E−1)×K be the matrix of
target output states, where K is the number of output units.

To account for biases in the readout layer, a column of ones is
appended to Y, resulting in the matrix Ybias ∈ R(E−1)×(N+1):

Ybias � Y 1E−1[ ]
where 1E−1 ∈ R(E−1)×1 is a column vector of ones.

The weights and biases of the readout layer are computed by
solving the following equation using the pseudoinverse of Ybias:

Wbias � Y+
biasZ (4)

where Y+
bias is the Moore-Penrose pseudoinverse of Ybias, and

Wbias ∈ R(N+1)×K contains both the readout weights and the biases.
To compute the pseudoinverse, we first perform a singular value

decomposition (SVD) of Ybias:

Ybias � USV⊤

where U ∈ R(E−1)×(E−1) is a unitary matrix, S ∈ R(E−1)×(N+1) is a
diagonal matrix containing the singular values, and
V⊤ ∈ R(N+1)×(N+1) is the transpose of a unitary matrix.
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The pseudoinverse of Ybias is computed as:

Y+
bias � VS+U⊤

where S+ ∈ R(N+1)×(E−1) is the pseudoinverse of the diagonal
matrix S. The pseudoinverse S+ is obtained by taking the
reciprocal of all non-zero singular values in S and leaving
zeros unchanged.

Finally, after inserting Y+
bias into Equation 4, the optimal readout

weights W ∈ RK×N and biases b ∈ RK are extracted from the
extended matrix Wbias as

W � W⊤
bias( )1: N, :

bw � W⊤
bias( )N+1, :

where the first N rows of W⊤
bias define the readout weights and the

last row defines the biases.

2.5 Generation of weight matrices with
homogeneity, reciprocity, or modularity

The generation of weight matrices is based on the six control
parameters defined in the Introduction. Depending on the
selected values of homogeneity h, reciprocity r, and modularity
m, different structural features are incorporated into otherwise
random matrices.

We begin by generating a matrix of magnitudes mij, where each
entry is drawn from a normal distribution with zero mean and
standard deviation w, then made positive via mij ≔|mij|.

A binary mask matrix nij ∈ {0, 1} is created, where each
element is set to 1 with probability d. This defines the
sparsity structure.

A sign matrix sij ∈ {−1,+1} is generated, with +1 assigned with
probability (b + 1)/2 to control the excitatory-inhibitory balance.

The elementwise product of magnitude, mask, and sign matrices
yields the pure weight matrixW(pure) � mij · nij · sij, which serves as
the default base.

To implement homogeneity (h> 0, r � 0), we generate a
Dale-conform matrix W(Dale) in which each column
(corresponding to one sending neuron) has a uniform sign.
The final weight matrix W is then obtained by stochastic
interpolation: wij ≔ w(Dale)

ij with probability h, and w(pure)
ij

with probability 1 − h.
The Dale matrix uses the same magnitudes mij and mask

nij as W(pure), but assigns each column a fixed sign (either all
+1 or all −1), again with (b + 1)/2 controlling the
excitatory fraction.

To implement reciprocity (r> 0, h � 0), we generate a
symmetric Hopfield-like matrix W(Hopf) by copying the upper
triangle and diagonal of W(pure) into the lower triangle. The final
matrix is again obtained via stochastic interpolation: wij ≔ w(Hopf)

ij

with probability r, and w(pure)
ij otherwise.

To implement modularity (m> 0), we divide theN × N matrix
into regular square blocks of size S × S, grouping theN neurons into
N/S modules. Each block is randomly assigned to the “strong” or
“weak” class, with the probability of “strong” given by fSB. The
realized fractions fs and fw � 1 − fs are determined empirically
after assignment.

Weak blocks are filled with Gaussian values of standard
deviation w · qw, where qw � 1 −m. Strong blocks use standard
deviation w · qs, with

qs �









1 − fwq2w

fs

√
�















1 − fw 1 −m( )2

1 − fw

√
to ensure that the total matrix standard deviation remains w.
For m � 0, both scaling factors are equal to one; for m � 1, the

weak blocks vanish and qs �





1/fs

√
.

Except for the extreme case m � 1, where the entries in all weak
blocks vanish, the resulting matrix is fully dense (d � 1). To impose
the desired balance b, all elements are made positive and then flipped
to negative with probability (1 − b)/2.

For clarity, we never apply homogeneity (h), reciprocity (r) and
modularity (m) simultaneously.

2.6 Evaluation of weight matrices

In addition to the control parameters d, b, h, r, we define
corresponding empirical parameters D, B,H, R that quantify the
actual density, balance, homogeneity, and reciprocity of a given
weight matrix W.

The empirical density D is computed as the fraction of non-
zero elements:

D � nnonzero
ntotal

, where nnonzero � # wij ≠ 0{ }
The empirical balance B measures the ratio of excitatory to

inhibitory weights:

B � npos − nneg
npos + nneg

, with npos � # wij > 0{ }, nneg � # wij < 0{ }
The empirical homogeneity H is computed column-wise. For

each column c, we calculate

Hc � |npos − nneg|
npos + nneg

where npos and nneg refer to the number of positive and negative
entries in column c. If all elements in the column are zero, we set
Hc ≔ 0. The global homogeneity is the mean over all columns:

H � 〈Hc〉c

The empirical reciprocity R is computed from all off-diagonal
pairs (i, j) in the upper triangle:

Rij � 1 − |wij − wji|
|wij| + |wji|

If both wij and wji are zero, we define Rij ≔ 1. The matrix-level
reciprocity is the average over all such pairs:

R � 〈Rij〉i< j

For each set of control parameters (d, b, h, r), we generate an
ensemble of weight matrices and compute the empirical parameters
D,B,H, R as averages over the corresponding values from each
individual matrix.
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2.7 Fluctuation measure

The neural fluctuation measure F quantifies the average
temporal variability of reservoir activations. For each neuron n,
we compute the standard deviation σn of its activation time series
y(t)
n . The global fluctuation is defined as the mean over the standard

deviations of the individual neurons:

F � 〈σn〉n

Since tanh-neurons produce outputs in [−1,+1], the fluctuation
F lies in [0, 1]. A value of F � 0 indicates a resting or fixed point
state, while F � 1 corresponds to perfect two-state oscillation (e.g.,
alternating between +1 and −1).

2.8 Covariance measure

To assess temporal covariances, we compute the average product
of the activation of neuron m at time t and neuron n at time t + 1:

Cmn � 〈y t( )
m · y t+1( )

n 〉t

Unlike the Pearson correlation coefficient, we deliberately
avoid subtracting the mean or normalizing by the standard
deviations. This ensures that the matrix elements Cmn remain
well-defined even when one or both signals are constant, as in a
fixed point state.

The global covariance measure is defined as the average over all
neuron pairs, without differentiating between diagonal and off-
diagonal elements:

C � 〈Cmn〉mn

Owing to the bounded output of the tanh neurons, the
covariance values C always lie within the range [−1,+1].

2.9 Nonlinearity measure

The shape of the activation distribution p(y) reflects whether
the reservoir operates in a linear or nonlinear regime. A central peak
at y � 0 indicates a linear regime; two peaks near ± 1 indicate
saturation and thus nonlinearity.

We define a nonlinearity measure

N � fA − fB + fC

based on the fractions of neural activations falling into the
following intervals:

fA ∈ −1,−0.5[ )
fB ∈ −0.5,+0.5[ ]
fC ∈ +0.5,+1( ]

The resulting measureN ∈ [−1,+1] distinguishes three regimes:
N ≈ − 1 for linear operation, N ≈ 0 for intermediate or flat
activation, and N ≈ + 1 for saturated, digital-like behavior.

This intuitive yet robust definition proved most effective among
several tested alternatives. It captures the essential qualitative
transition in p(y) from unimodal (linear) to bimodal (nonlinear)
distributions, as highlighted in earlier studies.

2.10 Accuracy measure

In the sequence generation task, we evaluate performance by
comparing the actual output sequencesZact of the readout layer with
the corresponding target sequences Ztar, and compute the root-
mean-square error ERMS. This error is normalized by the standard
deviation ΔZtar of the target sequences.

To obtain an accuracy measure A ∈ [0, 1], we define:

A � 1
1 + ERMS/ΔZtar( )

Note that A ≈ 0.5 when the RMS error is comparable to the
variability of the target data, and A � 1 when the output Zact

matches the target Ztar exactly.
In classification tasks, the accuracy A is simply defined as the

fraction of correctly predicted class labels.

3 Results

3.1 Validation of control parameters

As described in the Methods section, we generate weight
matrices with prescribed values for connection density d,
excitatory/inhibitory balance b, Hopfield reciprocity r, Dale
homogeneity h, and modularity m. To verify that the
generation procedures operate as intended, we compute the
corresponding empirical parameters directly from the
generated matrices. Throughout this paper, lowercase letters
d, b, r, h, m denote the prescribed control parameters, while
uppercase letters D, B, R, H refer to their empirically measured
counterparts. Validation of the modular structure—additionally
dependent on block size S and the fraction fSB of ‘strong’
blocks—is addressed separately (see below).

For validation, we first fix all control parameters d, b, r, h, m to
standard values. Then, one parameter x is varied across its entire
admissible range while the others remain fixed. During this one-
dimensional scan, we compute all empirical quantities D, B, R, H
as functions of x (Figures 2a–e). Ideally, each control parameter x
should primarily affect its corresponding empirical statistic X,
without significantly altering the others. However, certain
interdependencies are inevitable due to shared structural
properties.

As shown in panel (a), the prescribed density d directly controls
the empirical density D, with negligible effect on the balance B.
However, it also influences reciprocity R and homogeneity H to a
minor extent.

Similarly, the prescribed balance b determines the empirical
balance B, while leaving D unaffected (panel b). Nonetheless, R and
H increase as the system becomes more unbalanced. Even for
perfectly balanced matrices at b � 0, there exists a minimal,
unavoidable level of reciprocity and homogeneity due to the
Gaussian weight distribution.

Varying the prescribed Hopfield reciprocity r results in a nearly
linear increase of the empirical reciprocity R, while the other
measures remain unaffected (panel c).

Increasing the prescribed Dale homogeneity h leads to a
monotonic rise in empirical homogeneity H, along with a slight
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increase in balance B. Reciprocity R and densityD remain essentially
unchanged (panel d).

Finally, the prescribed modularity m has virtually no effect on
any of the empirical measures D,B, R,H, except at the extreme
value m � 1 (panel e).

To validate the modularity construction, we consider a
1000 × 1000 weight matrix with parameters w � d � 1 and b � 0.
The block size is set to S � 100, and the fraction of strong blocks to
fSB � 0.1. We then gradually increase the modularity parameter m
from 0.2 to 0.8, and compute the histogram of matrix elements for
each value (panel f).

A semi-logarithmic plot reveals that the resulting distributions
are mixtures of two Gaussians with distinct standard deviations. As
expected, the mixture preserves the global distribution width (STD),
which is explicitly shown in the legend of panel (f).

Note that the weight distribution of the connectivity matrix
becomes a true Gaussian mixture only for intermediate modularity
parameters 0<m< 1. In the one extreme case m � 0, the
distributions of the weak and strong blocks have identical
Gaussian widths, and thus no block structure exists. As m
increases, the distribution width of the weak blocks gradually

decreases relative to that of the strong blocks. In the opposite
extreme case m � 1, the weak blocks have zero distribution
width, which effectively means that these connections are no
longer present.

3.2 RNN phase diagrams

In this section, we examine an RNN consisting of 50 neurons,
each randomly connected to all others with a full connection density
of d � 1.We analyze how the network’s dynamical and information-
processing properties vary as a function of the excitatory–inhibitory
balance b and the widthw of the Gaussian distribution of connection
strengths. The results are presented as “phase diagrams”, where
selected quantities are color-coded in the b–w plane (see Figure 4).

The fluctuation measure F ∈ [0, 1] quantifies the mean
amplitude of the temporal variations in neural activation.

The nonlinearityN ∈ [−1, 1] indicates whether neurons operate
predominantly in the linear regime of the sigmoidal transfer
function (N ≈ − 1) or in the saturated nonlinear regime
(N ≈ + 1).

FIGURE 2
Prescribed and empirical control parameters. We use a weight matrix of size 50 × 50 with parameters initially set to standard values d � 1 and
b � r � h � m � 0. In each of the plots (a–e), one control parameter x is scanned through its full permissible range, while all others remain at their standard
values. The empirical measures D,B,R,H are evaluated as a function of the scanned parameter x. (a) Scan of the density d. (b) Scan of the balance b. (c)
Scan of the reciprocity r. (d) Scan of the homogeneity h. (e) Scan of the modularity m. (f) Probability distributions of weight matrix elements for
different degrees of modularitym, using a 1000 × 1000matrix withw � d � 1 and b � 0. Block size was S � 100, with a fraction of strong blocks fSB � 0.1.
The legend shows that the standard deviations of the distributions remain constant.
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The covariance measure C ∈ [−1, 1] is not a Pearson correlation
coefficient, since we deliberately avoid subtracting themeans and do not
normalize by the variances of the signals. For our specific network of
tanh neurons, this definition of C leads to a smooth transition from
C ≈ − 1 in a globally oscillatory regime, throughC ≈ 0 in a quiescent or
irregularly fluctuating regime, to C ≈ + 1 in a global fixed point regime
(compare Figure 8f). In combination with the fluctuation measure F,
this allows us to identify the dominant dynamical regime of the
reservoir, as shown previously (Figure 1 in (Metzner et al., 2025)).

The accuracy A ∈ [0, 1] quantifies the performance of the RNN
when used as the recurrent core of a reservoir computer (RC).
Although the result naturally depends on the specific task, we restrict
our analysis here to a single example (Figure 3), in which the RC is
driven by different input sequences and required to generate
predefined target output sequences. This task is particularly
sensitive to the dynamical regime of the RNN, since the state
trajectory must remain input-controlled and sufficiently regular
over multiple updates, without entering the saturation regime or
being dominated by spontaneous irregular fluctuations.

3.2.1 Free-running RNN
In the free-running RNN (upper row in Figure 4), we identify

four characteristic dynamical regimes, most clearly visible in the
nonlinearity phase diagram N(b, w):

In the lower central part of the phase plane lies the quiescent
regionQR, roughly shaped like ‘Mt Fuji’. In this region, atw ≈ 0, the
neurons are virtually unconnected. Therefore all activations remain
at very small values, determined only by the individual biases. As
indicated by the nonlinearity measureN ≈ − 1, the neurons operate
here in the linear regime, near the center of the tanh activation
function. The temporal constancy of the activations is reflected in
the fluctuation measure F ≈ 0. While the Pearson correlation
coefficient would diverge for constant zero signals, our non-
normalized covariance measure simply yields C ≈ 0 in this case.

In the right wing of the phase plane lies the fixed point regime
FR. Also marked by temporally constant activations, it exhibits
fluctuations F ≈ 0. However, due to strong coupling strengths
(w> 0) and predominantly excitatory weights (b> 0), a positive
feedback loop drives the network into high-activation global fixed
points, where each neuron becomes trapped in either the positive or
negative saturation of the activation function. As a result, the
nonlinearity measure N ≈ + 1 indicates that the neurons now
operate in a digital regime, and the covariance measure yields
C ≈ + 1, showing that the neurons retain the same digital
value over time.

In the left wing of the phase plane lies the oscillatory regimeOR.
Here, strong (w> 0), predominantly inhibitory (b< 0) coupling
leads to global periodic flips of all neurons between the two
saturation states. Consequently, the covariance C ≈ − 1 reflects
activation values of opposite sign between successive time steps.
The fluctuation F ≈ 1 indicates high-amplitude temporal variation,
and the nonlinearity N ≈ + 1 shows that the neurons
operate digitally.

In the upper central part of the phase plane lies the chaotic
regime CR. The dynamics here are also driven by strong mutual
couplings (w> 0), but now the approximate balance between
excitatory and inhibitory connections (b ≈ 0) leads to much
more complex and irregular behavior—both over time and across
neurons. This is reflected in vanishing covariances C ≈ 0. The
neurons operate in a mixed linear, intermediate, or digital
regime, such that the nonlinearity measure N lies somewhere
between −1 and +1. The corresponding temporal fluctuations F,
on average, are smaller than in the oscillatory regime.

3.2.2 RNN with input signals
Next, while the RNN is continuously updating, we feed in two

time-dependent input signals related to a computational task. For
this purpose, we use a dense 50 × 2 input matrix I, so that every

FIGURE 3
Reservoir Computer (RC) and Sequence Generation Task. The RC is treated as a trainablemapping between sequences of real-valued vectors. In the
model task, all input sequences belong toNDC distinct classes. Center: The reservoir computer consists of a random inputmatrix (green nodes), a random
recurrent network (blue nodes), and a trained output matrix (orange nodes). Left: Three example input sequences, each comprisingM parallel channels
(color-coded) and a duration of TI time steps. Right: The corresponding output sequences, each with width K and duration TO, which the RC should
generate in response to the respective inputs.
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neuron receives both inputs. The elements of I are drawn from a
Gaussian distribution with zero mean and a standard deviation of
0.3. The two input signals range between −1 and +1, and all further
details are described in the Methods section.

We find that the injection of inputs has only a very weak effect
on the phase diagrams of N, F, and C (see second row in
Figure 4). Only the fluctuation level F in the quiescent regime
QR is slightly elevated compared to the input-free case, which is
to be expected.

We also add a readout layer, optimized by the method of the
pseudo-inverse, which transforms the global time-dependent states
of the RNN into output signals. In our case, the readout layer is
optimized for a sequence generation task (see Methods section for
details), and the performance of the resulting reservoir computer is
measured by an accuracy value A that ranges between zero and one
(right-most phase diagram in row 2).

We find that the accuracy remains close to one throughout the
entire quiescent regimeQR. As shown in a previous publication, this

regime is well-suited for many types of tasks, as the RNN states are
then primarily determined by the input, not by spontaneous
internal dynamics.

The accuracy drops considerably within the chaotic regime CR,
where the irregular and unpredictable dynamics of the RNN
interfere with the execution of the computational task.

A strong reduction in accuracy is also observed in the upper
and outer parts of the oscillatory (OR) and fixed point (FR)
regimes. There, the autonomous RNN dynamics are
predictable, but the neurons are driven so deeply into the
saturation regime that task-related computations can no
longer be carried out.

Remarkably, the accuracy remains close to one in the narrow
regions between the chaotic regime CR and the neighboring
oscillatory OR or fixed point FR regimes. These two ‘edges of
chaos’ thus prove suitable for task-related computation; however,
they become increasingly narrow as the recurrent coupling strength
w is increased.

FIGURE 4
Phase diagrams of RNN dynamics and computational performance, as functions of the balance b and the width w. In all cases, the RNN consists of
50 tanh-neurons, fully connected (density d � 1). The four columns of phase diagrams, from left to right, correspond to the nonlinearityN, the fluctuation
F, the covariance C, and the accuracy A in a sequence generation task (For details see Methods and Results). The top row corresponds to a free-running
(no input) RNN, with all regularity parameters set to zero. All plots below correspond to RNNs driven by inputs and used for computations. Second
row: All regularity parameters set to zero. Third row: Hopfield reciprocity parameter set to r � 0.9. Fourth row: Dale homogeneity parameter set to
h � 0.9. Fifth row: modularity parameter set tom � 0.9. Note that the phase diagram of the nonlinearity parameter in the free-running system (upper left)
shows four main dynamical regions characterized by quiescence (QR, blue dome at the bottom), chaos (CR, pale red stripe around the upper center),
oscillations (OR, red flank at the left side) and fixed points (FR, red flank at the right side). Turning on the regularity parameters r, h andm has a clear effect
on the dynamical variables N, F, C, as well on the accuracy A. In the third panel of the top row, three specific points in the b-w phase plane have been
marked with crosses. These parameter combinations (later called phase points A,B,C) are investigated in more detail in Figures 5, 6.
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3.2.3 Effect of strong hopfield reciprocity
Next, we leave the reservoir computer unchanged, with the only

modification being the introduction of a relatively strong degree of
Hopfield reciprocity, r � 0.9, into the RNN’s weight matrix (see
third row in Figure 4).

Comparing the nonlinearity phase diagram at r � 0.9 with the
corresponding diagram at r � 0, we observe a significant shrinking
of the quiescent regime QR and an increase in nonlinearity within
the chaotic regime CR.

No strong differences are observed between the fluctuation
phase diagrams F(b, w | r � 0) and F(b, w | r � 0.9) or between
the covariance phase diagrams C(b, w | r � 0) and C(b, w | r � 0.9).

Finally, the accuracy phase diagram A(b, w | r � 0.9) shows
that performance in the chaotic regime has dropped to levels
even below those of the r � 0 system. This suggests that
Hopfield reciprocity can, at least in certain computational
tasks, have a detrimental effect on the performance of a
reservoir computer.

3.2.4 Effect of strong dale homogeneity
Starting again from the standard case without any structural

regularities (r � h � m � 0), we now set the Dale homogeneity
parameter to h � 0.9 and recompute the four phase diagrams
(see fourth row in Figure 4).

The diagrams for nonlinearity, fluctuation, and covariance at
h � 0.9 resemble those observed at r � 0.9 more closely than the
standard case.

However, the accuracy diagram A(b,w | h � 0.9) shows that
Dale homogeneity improves task performance even beyond the

standard case A(b,w | r � h � m � 0). In particular, within the
chaotic regime CR, the reservoir computer can now tolerate
significantly higher coupling strengths w.

3.2.5 Effect of strong modularity
Finally, we set the modularity parameter to m � 0.9, using

block sizes of SNB � 10 neurons and a strong block fraction of
fSB � 0.1 (see Methods for details). Modularity exerts a
pronounced influence on all phase diagrams (see fifth row
in Figure 4):

The nonlinearity and covariance diagrams indicate that the
oscillatory and fixed point regimes now occupy only a narrow
region of phase space, restricted to highly unbalanced weights
|b|≈ 1 and strong coupling w> 0.25.

Meanwhile, the previously chaotic regime is replaced by a broad
region in which both nonlinearity and fluctuations remain
moderate, while low covariance values still suggest irregular
(non-repetitive) dynamics.

Most strikingly, the accuracy now reaches very high levels across
almost the entire phase diagram. This indicates that modularity
renders even formerly unproductive regimes—oscillatory, fixed
point, and chaotic—computationally useful.

3.3 Effect of gradually increasing regularity

We now examine how a gradual increase of the organizational
regularity parameters r, h, m affects the dynamical quantitiesN,F, C
and the computational performance A (Figure 6). All simulations

FIGURE 5
Neural activations in three selected points of phase space. Color-coded activation levels of all 50 neurons (horizontal) in the free-running RNN
without input or reset at the beginning of each episode, shown as a function of time step (vertical). The three plots correspond to the selected points in the
b–w phase plane, marked by crosses in the third panel of the top row in Figure 4. Phase point A (at w � 0.2, b � 0) represents a balanced network
located near the transition between quiescent and chaotic dynamics. After a short transient, the system settles into a periodic attractor. Phase point
B (at w � 0.2, b � 0.2) shares the same moderate connection width as point A but lies close to the border of the fixed point regime. Here, the system
converges to a fixed point attractor where each neuron remains frozen at an individual activation level. Phase point C (at w � 0.4, b � 0) is again
balanced but located deeper within the chaotic regime, showing irregular fluctuations of large amplitude.
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were performed using an RNN with N � 50 neurons. We selected
three representative combinations of the fundamental control
parameters, width w and balance b, corresponding to three
specific points in the w–b plane (indicated by crosses in the third
panel of the top row in Figure 4):

Phase point A (at w � 0.2, b � 0) represents a balanced
network located near the transition between quiescent and
chaotic dynamics.

Phase point B (at w � 0.2, b � 0.2) shares the same moderate
connection width as point A but is positioned close to the border of
the fixed point regime.

Phase point C (at w � 0.4, b � 0) is again balanced but lies
deeper within the chaotic regime.

The RNN is used throughout as a reservoir in the sequence
generation task.While one regularity parameter is varied over its full
range [0,1], the others are held at zero.

When the Hopfield reciprocity r is increased (panels a,b,c),
the most prominent effects—consistent across all three phase
points—are a pronounced rise in nonlinearity N (green) and a
small but significant decline in accuracy A (blue). It is also
noteworthy that in phase point C, the fluctuation F (orange)
decreases while the nonlinearity N (green) increases,
demonstrating that these two measures are not trivially
related. The covariance C (red) shows hardly any change with
reciprocity r.

Increasing Dale homogeneity h (panels d,e,f) leads to a clear gain
in accuracy A (blue) across all phase points, indicating that this
organizational regularity supports certain types of information
processing. The other dynamical quantities show minor, but not
entirely consistent, changes as a function of h.

Increasing modularity m with a block size S � 10 (panels g,h,i)
produces particularly strong effects: the nonlinearity N (green) is

FIGURE 6
Effect of increasing regularity on RNN dynamics and computational performance. We use an RNNwith 50 neurons in the sequence generation task.
The fluctuation F, the nonlinearityN, the covariance C and the accuracy A are computed as one of the regularity parameters r,h,m is scanned through its
entire permissible range. The left column of plots is for widthw � 0.2 and balance b � 0, the middle column forw � 0.2 and b � 0.2, the right column for
w � 0.4 and b � 0 (a–c) Scan of Hopfield reciprocity r. (d–f) Scan of Dale homogeneity h. (g–i) Scan of modularitym for block size S � 10. (j,k,l) Scan
of modularity m for block size S � 1. The fraction of strong blocks was fSB � 0.1 in all modularity scans.
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markedly reduced across all three phase points. At the same time, the
fluctuation F (orange) decreases in phase points A and B. Most
importantly, the accuracy A is significantly enhanced by modularity
in all cases.

When the block size is reduced to S � 1 (panels j,k,l), the weight
matrix no longer contains distinct blocks. In this case, increasing m
merely changes the weight distribution from a single Gaussian to a
mixture with unchanged total standard deviation. In phase point A,
this still yields a modest increase of accuracy A (blue), though the
dynamical changes are less pronounced compared to the block-

structured case. For the other two phase points, no further
improvement of accuracy is observed.

3.4 Effect of regularities on neuron
activations and pearson correlations

To examine how the regularity parameters influence reservoir
dynamics, we use the system in phase point C (without input) and
simulate the time series of neural activations (Figure 7, first row).We

FIGURE 7
Effect of regularities on neural activations and correlations. Each column corresponds to a different organizational regularity. The top row shows the
time evolution of neural activations (color-coded) for all 50 neurons of the free-running reservoir at phase point (c). The second row displays the
corresponding matrices of Pearson correlation coefficients (color-coded). The third row displays Pearson correlation coefficients when independent
Gaussian noise with a STD of 0.1 is added to each neuron’s input in every time step. Without regularities (a–c), the activations are highly irregular
across both neurons and time. As a result, the instantaneous correlations are weak. With Hopfield reciprocity (d–f), the network settles, after a short
transient, into an attractor state where many neurons oscillate with period two and large amplitudes (some out of phase with others), while some remain
in a fixed point state. The corresponding Pearson matrix (e) exhibits only values close to −1 or +1, but some are spurious including some spurious entries
due to neurons with near-zero variance. With added noise (f), these artifacts disappear. With Dale homogeneity (g–i), the neural activations display quasi-
periodic collective fluctuations. Most neurons tend to share similar activation signs within each temporal band, while phase shifts and irregularities
prevent perfect periodicity. Consequently, the Pearson matrix contains many moderately positive entries. With modularity (j,k,l), the system behaves in a
more heterogeneous manner. Groups of neurons exhibit longer-period, synchronous oscillations, whereas others show irregular activity. The Pearson
matrix now spans the full range of possible values between −1 and +1.
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then analyze the correlations between activations across the
reservoir. In contrast to the covariance measure C, which was
defined as the unnormalized average product of activations at
subsequent time steps (Δt � 1), we now compute the matrix of
instantaneous (Δt � 0) Pearson correlation coefficients. This means
that the mean activity is subtracted and the resulting products are
normalized by the variance. We perform the same computation for
systems with weak additive noise (third rows). The analysis is carried
out for the standard network as well as for each of the three
organizational regularities.

Without regularities, the activations are highly irregular across
both neurons and time (a). As a result, the instantaneous
correlations are weak (b).

With maximal Hopfield reciprocity, the network settles, after a
short transient, into an attractor state where many neurons oscillate
with period two and large amplitudes (some out of phase with
others), while others remain in a fixed point state (d). All
corresponding Pearson matrix elements exhibit values close to −1
or +1, including some spurious entries when neurons have near-
zero variance (e).

With maximal Dale homogeneity, the neural activations display
quasi-periodic collective fluctuations. Most neurons tend to share
similar activation signs within each temporal band, while phase
shifts and irregularities prevent perfect periodicity (g).
Consequently, the Pearson matrix contains many moderately
positive entries (h).

Finally, with strong modularity, the system behaves in a more
heterogeneous manner. Groups of neurons exhibit longer-period,
synchronous oscillations, whereas others show irregular activity (j).
The Pearson matrix (k) now spans the full range of possible values
between −1 and +1.

We now repeat the correlation analysis while adding noise to
the reservoir. As we have demonstrated in earlier work (Metzner
et al., 2024), this prevents the reservoir from becoming
permanently trapped in a single attractor throughout the
simulation. For this purpose, statistically independent Gaussian
random values with zero mean and a standard deviation of 0.1 are
added to the total input of each individual neuron in
each time step.

The added noise has hardly any effect on the system with Dale
homogeneity (i) and causes only a slight reduction in the amplitudes
of the correlation coefficients in the system without regularities (c)
and in the modular system (L). In contrast, for the Hopfield-like
system, the variability introduced by the noise eliminates the
spurious perfect correlations previously seen in (f). It now
becomes apparent that this regularity induces strong
correlations—of either sign—between specific pairs and blocks
of neurons.

3.5 Supplemental analyses

3.5.1 Patches classification task
We also tested how modularity affects performance in a

completely different type of task. For this purpose, 36 patches
from two distinct classes were randomly distributed within a two-
dimensional input plane (Figure 8a). The coordinates of a
random point (x1, x2) in this plane were fed into the reservoir

at the beginning of each episode. The goal of the reservoir
computer was to predict the class label of the continuous
input point, and the accuracy was computed as the fraction of
correctly classified labels.

Although the performance gain is not as strong as in the
sequence generation task, the accuracy increases monotonically
from near chance level to a significantly higher value when the
modularity parameter m (at block size S � 10) is tuned from zero to
one (Figure 8b), focusing on phase point C.

3.5.2 Larger reservoir
Returning to the standard sequence generation task, we verified

the performance gain due to modularity also in a larger reservoir,
again focusing on phase point C. As the number of neurons N was
doubled from 50 to 100, we made both cases more comparable by
reducing at the same time the connection width w by a factor
of 1/



2

√
.

Recomputing the dynamical quantities and the accuracy as
functions of the modularity parameter m, we found the
same trends as in the smaller reservoir: the nonlinearity N
(green) and the fluctuation F (orange) are again strongly
reduced, while the accuracy A is significantly enhanced by
modularity (Figure 8c).

3.5.3 Chaotic regimes
To demonstrate that within the ‘chaotic regime’ (CR) of

phase point C, the temporal evolution of the reservoir exhibits
sensitive dependence on initial conditions, we compare the
neural activations for two slightly different starting states
(Figure 8d). In the second run (middle panel), the initial
activation of neuron 0 is increased by 10−6, while all other
activations remain identical to those in the first run (left
panel). The first noticeable differences (right panel) appear
after approximately 45 time steps, after which the two state
trajectories diverge rapidly.

3.5.4 Sequential updates
The original motivation of Hopfield networks was to create an

attractor landscape of fixed points, each representing a stored
pattern. In contrast, our networks with Hopfield-like reciprocal
connections predominantly exhibit oscillatory behavior. This
difference arises from our use of simultaneous updates of all
neuron states at each time step, whereas the original Hopfield
model employs sequential updates. To demonstrate this effect, we
repeated the simulation shown in Figure 7d, where the RNN was at
phase point C with a Hopfield reciprocity parameter of h � 1, yet
this time with sequential updates. As expected, changing the update
scheme results in fixed point rather than oscillatory
attractors (Figure 8e)

3.5.5 Diagonal and off-diagonal covariances
In our definition of the covariance measure C, we do not

distinguish between diagonal and off-diagonal contributions. To
illustrate that both behave similarly, we simulated a reservoir of
50 neurons with coupling width w � 0.4 and varied the excitatory/
inhibitory balance b from −1 to +1, thereby moving the system
from the oscillatory through the chaotic into the fixed-point
regime. As expected, the covariance measure C shifts from a
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plateau near −1, through one around 0, to one near +1 (Figure 8f).
The covariance computed only from diagonal terms (orange)
follows the same trend as that based on off-diagonal (green) or
all terms combined (blue).

4 Discussion

In this work, we investigated how three distinct organizational
regularities—Hopfield reciprocity, Dale homogeneity, and

FIGURE 8
Supplemental Analyses. (a) Patches task: 36 patches from two different classes are randomly distributed within the 2D input plane. (b) Dynamic
measures and accuracy versus the degree of modularity in the patches classification task. (c) Dynamic measures and accuracy versus the degree of
modularity in the sequence generation task, using a rescaled 100-neuron network. (d) Comparing neural activations in phase point C, starting from
minimally different starting conditions: In themiddle plot, the initial activation of neuron 0was increased by 10−6. Significant differences between the
two system evolutions (right plot) appear after about 45 time steps. (e) Neural activations of a network with Hopfield reciprocity h � 1, as in Figure 7d, but
with neurons updating sequentially rather than simultaneously. This leads to fixed point attractors. (f) Covariance C as a function of the excitatory/
inhibitory bias b, evaluated in a reservoir of 50 neurons with coupling widthw � 0.4. The purely diagonal contributions inC (orange) show the same basic
trend as the off-diagonal contributions (green) or the full covariance (blue).
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modularity—affect the dynamical behavior and computational
performance of recurrent neural networks (RNNs).

4.1 Prior expectations and
numerical findings

4.1.1 Hopfield reciprocity
Hopfield-type reciprocity introduces symmetry into the weight

matrix by increasing the probability that any connection from
neuron A to B is mirrored by an equal connection from B to A.
In classical Hopfield networks, such symmetry is instrumental in
stabilizing fixed point attractors, corresponding to stored patterns.
With some notable exceptions (Kühn and Bös, 1993), these
networks normally use binary units and asynchronous updates,
enabling the system to settle gradually into one of the
memorized configurations. The symmetric weights ensure that
the energy landscape has defined minima, guiding the dynamics
toward stable fixed points.

In our model, the situation differs in several respects. The
neurons are continuous-valued with tanh activation, and all
updates occur synchronously. Nonetheless, it was natural to
expect that increasing Hopfield reciprocity r might exert an
ordering influence on the network dynamics - possibly reducing
chaotic fluctuations and thus enhancing information processing
capabilities.

The numerical results only partially confirm this expectation.
As r increases, the most consistent effect across the three phase
points is a strong rise in nonlinearity N. This indicates that the
reservoir is increasingly driven into a saturated, quasi-digital
regime, which is generally disadvantageous for many
computational tasks. The neural activations reveal
subpopulations of neurons that settle into fixed points, while
others exhibit period-two oscillations. Moreover, the
instantaneous Pearson correlation matrices (Figures 7d–f) show
that reciprocal coupling induces strongly correlated neuron pairs
or groups, often displaying nearly perfect positive or negative
correlations that persist even under added noise. Overall, these
effects tend to reduce the computational performance.

4.1.2 Dale homogeneity
Dale’s principle, a key feature of biological neural networks,

stipulates that each neuron maintains a fixed output polarity—either
excitatory or inhibitory—across all its targets. In our model, this
principle is implemented by the homogeneity parameter h ∈ [0, 1],
which controls the consistency of output signs within each column
of the weight matrix. At h � 0, neurons send mixed excitatory and
inhibitory outputs; at h � 1, every neuron acts strictly as a
monopolar sender.

From a theoretical perspective, one might expect that Dale
homogeneity introduces a more directional and interpretable
signal flow through the reservoir. Specifically, we anticipated that
increasing h would suppress high-frequency or erratic fluctuations
by enforcing more coherent influence patterns among neurons,
which might also be reflected in their mutual instantaneous
correlations.

Indeed, as the homogeneity parameter h increases, the initially
very small instantaneous Pearson correlations observed in the

chaotic phase point C are replaced by much stronger,
predominantly positive correlations. An unexpected feature was
that neural activations now exhibit quasi-periodic collective
oscillations with longer periods and noticeable phase shifts
between individual neurons. Nevertheless, the accuracy in our
test task clearly improves when Dale regularity is introduced.

4.1.3 Modularity (Block size S � 1)
In the case S � 1, the modularity parameterm does not produce

distinct structural blocks in the weight matrix. Instead, increasingm
gradually transforms the underlying weight distribution from a
single Gaussian to a mixture of two Gaussians—one narrower
(weaker weights) and one broader (stronger weights)—with the
total standard deviation kept constant. This results in a
heterogeneous distribution of connection strengths with a much
broader tail.

We expected that such broader-tailed weight distributions might
have a beneficial effect on the network’s information-processing
capacity. In biological neural circuits, especially within the human
cortex, synaptic connection strengths are known to follow heavy-
tailed, approximately log-normal distributions, where a small subset
of strong connections coexists with a majority of weak ones (Song
et al., 2005). This structural heterogeneity has been suggested to
support both robustness and dynamic richness by combining stable,
high-impact pathways with a flexible background of weaker
connections.

Indeed, we find in our simulations a clear rise in task accuracyA,
despite the absence of actual modular structure.

4.1.4 Modularity (Block size S � 10)
In biological neural networks, modular organization is a well-

established principle observed across spatial scales—from cortical
microcircuits to large brain regions. Modules, typically defined as
groups of neurons with strong internal connectivity and weaker
coupling to the rest of the network, are thought to support functional
specialization while preserving global integration. From this
perspective, introducing modularity into artificial RNNs could
plausibly enhance their computational capacity by enabling
localized processing and buffering against global instabilities.

In our model, modularity is implemented via the control
parameter m ∈ [0, 1], which adjusts the variance of intra- and
inter-module connection strengths while keeping the overall
standard deviation constant. When the block size is set to S � 10,
the resulting matrix exhibits clearly defined patches of stronger
weights embedded in a weaker background. However, these high-
variance patches may lie on or off the diagonal. Diagonal modules
imply recurrently coupled local groups, whereas off-diagonal
modules encode directional connections from one group of
neurons to another, without necessarily reciprocal feedback.
While the former can stabilize local loops of activity, the latter
may implement feedforward-like interactions across functionally
distinct subnetworks. Though less intuitively interpretable, these
asymmetric modules still contribute to shaping constrained, layered
dynamics within the recurrent architecture.

Prior to numerical investigation, we expected that such modular
organization could lead to partial functional segregation, a
dampening of chaotic fluctuations and possibly more
reproducible activity patterns within modules.

Frontiers in Complex Systems frontiersin.org15

Metzner et al. 10.3389/fcpxs.2025.1636222

https://www.frontiersin.org/journals/complex-systems
https://www.frontiersin.org
https://doi.org/10.3389/fcpxs.2025.1636222


Indeed, these expectations are supported by the simulations. As
m increases, we observe a pronounced reduction in both fluctuation
F and nonlinearity N, indicating that the reservoir dynamics
become more stable and less saturated. This effect is especially
clear in balanced networks (b � 0), which otherwise tend to exhibit
chaotic behavior. The drop in F suggests that spontaneous
overactivation is strongly suppressed, while the lower N points to
a shift away from digital-like saturation toward a more linear or
intermediate regime.

The Pearson correlation matrices (Figures 7j–l) provide a
complementary view of this effect: they reveal substructures of
internally coherent neuron clusters with weaker, mixed-sign
couplings between modules. The correlations are neither too
weak (as in chaotic regimes) nor too strong (as in fixed point or
short-period states) but distributed across the full [−1,+1] range.
This balanced structure appears to create particularly favorable
conditions for reservoir computing.

Most strikingly, both in reservoirs of 50 and 100 neurons, the
accuracy A in the sequence generation task increases sharply and
reaches near-maximal levels across a wide range of m. The
improvement in computational performance surpasses that
achieved with Dale homogeneity. A very similar general effect of
this organizational regularity was found in the patches
classification task.

4.2 Work limitations and future perspectives

The present study has focused almost exclusively on one specific
computational task: the generation of predefined output sequences
from class-specific input stimuli. While this task is well-suited for
evaluating the internal stability and reproducibility of reservoir
trajectories, it represents only one of many possible functional
challenges an RNN might face. Future studies will systematically
explore how the three structural regularities—Hopfield reciprocity,
Dale homogeneity, and modularity—affect other task types,
including classification, prediction, temporal integration, and
generative modeling. These tasks may impose different demands
on the reservoir, potentially favoring entirely different
dynamical regimes.

Several further limitations of the current setup should be noted.
Our networks use a fixed, pointwise tanh activation function
throughout, with no mechanism for adapting nonlinear response
properties during training or evolution. Moreover, the recurrent
connections are entirely fixed, without plasticity or learning
mechanisms. While this simplification allows us to isolate the
impact of architectural regularities, it remains unclear how the
observed effects extend to systems with ongoing synaptic
adaptation. Likewise, our networks are relatively small and
shallow, lacking hierarchical depth or multi-scale processing
pathways. It is an open question whether similar regularities
exert comparable influences in large-scale architectures with
layered structure, where modularity and reciprocity might
interact differently with gradient propagation and
representational abstraction.

A further important direction concerns the interaction between
structural regularities. In this study, we varied each regularity
parameter in isolation while keeping the others fixed. However,

real biological systems typically exhibit several regularities at once. It
remains an open question whether combinations of regularities act
synergistically or interfere with each other. For instance, it is
conceivable that modularity and Dale homogeneity together
enhance performance more than either alone—or that reciprocity
counteracts the benefits of modular organization.

A separate line of inquiry could explore the relevance of the
observed effects for biological computation, although in this context,
it would be more realistic to interpret each of our RNN units not a
single neuron, but as a homogeneous neuronal assembly of a cortical
network (Knight, 2000; Mattia and Del Giudice, 2002). For example,
it could be further investigated whether biological circuits show
anything resembling Hopfield symmetry at the level of neuronal
assemblies. So far, while exact synaptic reciprocity is not observed,
cortical microcircuits consistently exhibit an overrepresentation of
bidirectional connections (Song et al., 2005; Felix and Triesch, 2017)
and population dynamics with attractor-like stability. These features
suggest that, on a coarse-grained assembly level, biological networks
may display approximate or statistical reciprocity, even though the
precise Hopfield topology is not realized.

Since the structural regularities studied here are motivated by
neurobiological observations, it is worthwhile to compare their
dynamical implications to actual brain circuits. This could
involve applying the same dynamical and performance metrics to
empirically derived connectomes—such as those of C. elegans,
Drosophila, or the zebrafish larva—and seeing how they perform
on comparable tasks.

Beyond empirical validation, the theoretical understanding of
how structural regularities shape network dynamics remains
incomplete. For instance, it is still unclear why modularity so
reliably suppresses fluctuation and nonlinearity, or why Dale
homogeneity improves accuracy without driving the system into
linearity. While it may be tempting to invoke classical tools such as
the spectral radius or eigenvalue spectra of the weight matrix, such
linear measures often fail to capture the complex behavior of
nonlinear, recurrent systems. In our view, a more fruitful
approach would be to characterize how the structural parameters
influence the geometry of the state space, the stability of trajectories,
or the repeatability of state sequences under repeated input.
Concepts such as state convergence, divergence under
perturbations, and the reproducibility of internal trajectories may
provide more robust and interpretable metrics than traditional
eigenvalue-based criteria. A related approach was proposed by
Legenstein and Maass (Legenstein and Maass, 2007), who linked
the computational performance of neural microcircuits to their
dynamical regime near the edge of chaos, using measures of
kernel quality and generalization capability to predict functional
performance. Developing such diagnostics could help formulate a
more general understanding of how structural constraints give rise
to functional dynamics in RNNs.

Another promising direction lies in allowing structural
regularities to vary dynamically over time. Instead of statically
imposed homogeneity or modularity, one could investigate
networks in which these properties emerge or change through
learning or adaptation. This would connect structural regularities
more directly to plasticity rules and functional demands, potentially
offering new models of task-dependent reconfiguration in
neural circuits.
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