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Introduction: This work presents an adaptive ant colony (AdCO) framework for
dynamic task management in heterogeneous Non-Terrestrial Network—Internet
of Things (NTN-IoT) systems integrating Unmanned Aerial Vehicles (UAVs) and
Low Earth Orbit (LEO) satellites. The framework addresses key challenges such as
stochastic mobility, intermittent connectivity, and latency-sensitive operations
common in large-scale loT deployments.

Methods: The proposed approach employs adaptive pheromone learning,
heuristic control, and multi-timescale scheduling. It follows a hierarchical co-
optimization strategy, where UAV swarms perform edge-side task allocation
while LEO satellites handle relay scheduling during orbital passes. Event-
triggered pheromone resets and distributionally robust cost modeling are
introduced to maintain stability and adaptability under dynamic network
conditions.

Results: Simulation results demonstrate superior performance compared to
classical Ant Colony Optimization (ACO) and recent meta-heuristic methods.
The proposed model achieves higher task completion ratios, reduced end-to-
end latency, and enhanced energy-normalized throughput across different
orbital configurations, traffic patterns, and link failures.

Discussion: The findings confirm the efficiency and resilience of the proposed
framework in NTN-1oT operations. Its adaptability makes it suitable for critical
applications such as disaster response, precision agriculture, and maritime
monitoring, where real-time coordination and reliability are essential.

non-terrestrial loT, UAV swarms, LEO satellites, adaptive colony optimization, dynamic
task allocation, scheduling, edge computing, connectivity-aware orchestration

1 Introduction

Non-terrestrial IoT (NTN) enhances the terrestrial based internet of things (IoT) using
unmanned aerial vehicle (UAV) swarms and LEO satellite constellations. It is showing
growing potential as a scalable technology for wide-area IoT applications. NTN provides an
opportunity for on-demand sensing, in-situ edge computing and beyond-line-of-sight data
relaying in areas with such limited or disrupted terrestrial infrastructure (Kahraman et al.,
2023). However, several challenges exist. Dynamic link topology, time-varying link budgets,
fragmented orbital pass windows, and the trade-offs between energy, latency, and reliability
render global coordinated tasking across multiple timescales a challenging optimization
problem. Classical swarm intelligence techniques like ant colony optimization (ACO) can
cope with static or slowly changing routing problems. However, the fixed parameterization
and the narrow detection range of changes usually leads to pheromone stagnation or late re-
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System overview of UAV-LEO-ground segments, data flows, scheduling layers, control loop

planning when the environment changes suddenly (Deng et al,
2022). To address this issue, an adaptive colony (AdCO)
optimization model is presented to tackle these shortcomings.
The work has been compared with three kinds of coordinated
standard ACO with fixed powers and
evaporation, (ii) bounded-pheromone variants (such as MAX-
MIN ACO for better control of exploitation), and (iii) a policy
heuristic scheduler that combines deadline-aware prioritization and
2025). This analysis
decouples the impact of the event-triggered adaptation, the

approaches: (i)

proximity-based assignment (Zhang et al,

connectivity-aware heuristics, and the robust cost shaping on
timeliness, energy efficiency, and tail-latency robustness for
realistic UAV and low Earth orbit (LEO) dynamics.

Combining LEO satellite constellations with UAV Swarm
provides a solution to resilient and large area IoT service. Such
integration is needed in territories where the terrestrial
infrastructure is not possible, or is not reliable, or is too costly
(Mai et al.,, 2023). Disaster-stricken areas, marine corridors, farming
fields and isolated industry are all examples of such settings. In such
scenarios, sensing tasks are spatio-temporarily distributed and
bursty. Opportunities for connectivity are subject to orbital
visibility, the condition of the atmosphere and availability of
2025). UAVs provide mobility and fast

deployment as well as edge computing, but are subject to limitations

spectrum (Jubair et al.,

in energy storage, flight dynamics, and onboard computing power.
On one hand, LEOs satellites are able to provide wide-area relays
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and backhaul services, while on the other hand, they have a sporadic
contact window, the ability to induce velocity Doppler variations
and competition for bandwidth with traffic classes. Controlling both
the tasks’ execution and the data delivery over UAV and LEO layers
is achieved by managing two synchronized dynamical processes
(Zhu et al.
and motion planning in UAV network. The second such is contact-

, 2023). The first refers to spatiotemporal task allocation

aware relay scheduling that adapts with the varying LEO pass
structure. Figure 1 describes the system architecture that includes
UAVs, LEOs and ground segments, the data flows, the scheduling
layers and the control loop.

In this system, the decision space is combinatorial and non-
stationary. Estimates of task priority change with time, shifting
according to deadlines and arrivals. Quality varies with elevation
angles (EAs) and mobility directions. The buffer occupancy, the
energy level, and the computational state all vary on different time
scales as well. There have been mostly two types of approaches to
managing these interacting dynamics: classical (suboptimal)
techniques, including static task assignment, single-timescale
routing, and topology-agnostic heuristics, and optimal solutions
with simplified and static dynamics. They often lead to a tradeoff
between high re-planning overhead, and performance loss due to
out-of-date policies (Li et al., 2025b). The operational goals are
multi-criteria in the sense. These objectives involve low end-to-end
latency (i.e., long life time regardless of the number of deadlines
missed), low deadline misses, strict energy consumption, and link
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quality in terms of uncertain channel conditions and outages
(Hasanain et al.,, 2025). Partial observability further complicates
the problem. Ephemeris predictions or channel estimates can be
frequently unreliable. Sudden changes in the working environment
(e.g., sudden task bursts or unexpected satellite pass losses) also
account for another challenge (Peng et al., 2025). So, an efficient
coordinator must be able to provide a fast decision-making on the fly
and be adaptive and robust. It has to support immediate
reconfiguration and be free of local oscillations such that low
performance is not realized in very dynamic and resource-
constrained NTN-IoT scenarios with very low end-to-end latency
sensitivity (e.g., UAV deployment) (Behjati et al., 2025).

1.1 Research gap and proposed contribution

Existing work falls into three key categories to leverage UAV
satellite communications for IoT coordination, but this existing
work suffers from the challenges of fast changing NTN conditions
(Guetal, 2023). The first one is of classical swarm-based optimizers
like fixed-parameter ACO and bounded-pheromone variants. Such
methods work well for combinatorial search in static or slowly
varying routing and task allocation. But they have poor adaptability
to the scripting topology changing and sudden contact loss and
bursty task arrival time. Pheromones stagnate and do not recover in
time when operation conditions experience a large change (Lozano-
Cuadra et al,, 2025). The second type consists of heuristic schedulers
which mix deadline-aware rules with location-oriented or load-
balancing heuristics. These methods have low computation
complexity, however, these methods do not have any capability
to predict the link variation, led by the visibility. As a consequence,
their performance deteriorates when LEO contact opportunities or
channel conditions are not as good as expected (Lozano-Cuadra and
Soret, 2024). The third type is learning-based methods, such as the
reinforcement learning. These methods are adaptive under non-
stationary environments but require sufficient amounts of training
data and are not capable of dealing with the distribution shift
between different orbits and terrains. They could also be
inadequate to satisfy real-time decision making criteria in the
absence of watching for sample efficiency and safety guarantees
(Maric et al., 2025). However, three important gaps persist. First, it is
relatively lacking in the cross-timescale coordination support to
optimize UAV task scheduling and LEO relay scheduling. Second,
tail risks and outages are not fully taken into account in the objective
formulation in the current methods. Third, the majority of existing
algorithms do not include events mechanisms, which keep the
population from stagnation while letting the system converge in
fast changing environments (Panaitopol et al., 2023).

In this respect, the proposed AdCO is designed to fill this gap by
introducing three main differences as introduced below with respect to
existing methods. The latter integrates a fast loop for sequencing the
UAV tasks, and a slower loop to solve the LEO relay scheduling
problem. This temporal alignment adjusts the decision making rate
with the physical dynamics of the UAV mobility and satellite pass
windows (Yosri et al., 2024). Secondly, it uses event-triggered partial
pheromone resets using online drift detection. This mechanism allows
to explore again in a controlled way in case of contact geometry or of
traffic patterns change and at the same time to retain useful historical
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information. Third, it integrates distributionally robust cost shaping
with risk-sensitive penalties. These punishments encourage meeting
deadlines instead of reliability in unreliable links, which ultimately
reduces tail latency and failures due to outages rather than serving the
mean (Liu et al., 2024). These features combined return a coordinator,
which is aware of the connectivity, risk-sensitive, in addition to being
able to remain responsive. Experimental validation compares AdCO
against three known baselines: fixed-parameter ACO, MAX-MIN
ACO, and an heuristic scheduler with a combination of deadlines
and proximity. The numerical findings quantitatively justify the
of multi-time learnability,
restoration, and robust objective shaping on the fly in dynamic
NTN-IoT regimes (Bazrafkan et al., 2025).

This study is conducted entirely within a controlled simulation
environment by setting using standards and repeatable components.

advantages scale event-triggered

Orbit dynamics and visibility windows are calculated based on
publicly accessible Two-Line Element (TLE) datasets. These are
propagated using an Simplified General Perturbations 4 (SGP4)
model to produce time-stamped elevation and Doppler and line-of-
sight contact profiles over the target region (Kohani and Zong,
2019). The mobility of UAVs is expressed by a 3D kinematic model,
which takes into account energy-aware propulsion curves. These are
the task fields, obtained from spatial point processes with intensities
which are configurable and can be either clumped or uniform. The
model has the flexibility to tune the tasks’ arrival rate, deadlines, data
size and computational workload (Zhao et al., 2021). The
communications layer utilizes a path loss model in the presence
of elevation-dependent path with log-normal shadowing and
stochastic outage model. This setup simulates UAV-LEO uplinks
and satellite ground downlinks. Furthermore, capacity limitations
and sharing are modelled with rate envelopes that depend on time.

The paper is organized into seven sections to maintain clarity and
cohesion. Section 1 introduces the motivation for integrating UAV
swarms with LEO satellites, emphasizing coordination challenges and
research gaps addressed by the adaptive colony optimization
framework. Section 2 reviews related work on UAV task allocation,
integrated networks, colony optimization strategies, heuristic
schedulers, and learning-based coordinators, while highlighting their
limitations under dynamic NTN conditions. Section 3 presents the
system model and problem formulation, defining entities, visibility and
capacity constraints, mobility and energy models, traffic parameters,
decision variables, and the distributionally robust objective. Section 4
describes the proposed method, including solution encoding,
connectivity-aware heuristics, adaptive transition rules, event-
triggered pheromone resets, and the bi-level scheduling approach.
Section 5 details the simulation environment, experimental setup,
baseline methods, evaluation metrics, and reproducibility settings. It
also reports results and discussion, comparing the proposed method
with representative coordinators and presenting ablation studies under
outages, workload bursts, and contact variability. Finally, Section 6
concludes with key findings, practical implications, limitations, and
directions for future research.

2 Literature review

Early research on UAV swarm task allocation primarily relied
on centralized optimization methods such as mixed-integer linear
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programming, Hungarian algorithms, and auction-based
mechanisms (Pham et al, 2020). Traditional approaches,

including the Consensus-Based Bundle Algorithm and its
variants, performed well in static settings with predetermined
task sets and known agent capabilities. Deterministic methods
offered mathematically guaranteed convergence and optimality
for problems with fixed constraints (Wang et al, 2024).
Hungarian-based strategies, such as the Decentralized Hungarian
Algorithm, further ensured efficient polynomial-time complexity for
bipartite matching structures (Li et al., 2025a). However, these
classical techniques face major challenges in dynamic and non-
terrestrial environments. Their static parameterization makes them
ill-suited for handling time-varying topologies, intermittent
connectivity, and stochastic task arrivals (Chen et al., 2018).
Moreover, computational costs grow rapidly with swarm size and
task complexity, limiting real-time applicability. Centralized designs
also introduce single points of failure and demand extensive inter-
agent communication, which is impractical in bandwidth-
constrained UAV-LEO satellite operations.

Drawbacks of classical optimization techniques have encouraged
the utilization of metaheuristic heuristic methods for UAV task
assignment also. It was established that ACO, Particle Swarm
Optimization (PSO), and Genetic Algorithms (GA) were the mostly
used approaches in the existing study (Divband Soorati et al., 2019).
Where traditional ACO implementations have met with considerable
success in solving combinatorial routing problems using pheromone-
based communication and distributed decision making to arrive at
near-optimal solutions (Bonyadi et al., 2014). In the same vein, PSO
variants including multi-objective and hybrid models were effective in
handling conflicting demands such as energy efficiency and deadline
satisfaction in Zhu et al. (2024). These swarm intelligence approaches
are by nature adapted to parallelism, scalability and robustness against
the failure of individual members. Their search strategy in a
probabilistic framework encourages exploration of various solution
spaces, which gradients methodologies tend to fall into local
minima. However, classic metaheuristics are still characterized by
static parameterization, which restrains versatility in dynamic
operational conditions (Zhang et al., 2024). These fixed rates often
deteriorate their performance under changes, for they may find
themselves stuck in prematurely converged or stagnant state. In
addition, the absence of adaptation strategies considering the
environment prevents these solutions from dealing with regime
shifts, orbital pass variability, and non-stationary traffic demands.
Among the latest ones, parameter-adaptive ACO with dynamic
hybrid mechanisms attempts to largely overcome this issue but still
acts more reactively than predictively (Pirandola, 2021).

Recent investigations focus on the increasing use of machine
learning in realizing enhanced UAV swarm coordination. This is
where the inhomogeneous reinforcement learning comes in. The
multi agent reinforcement learning provides the means for UAVs to
learn the collaboration behavior by the trial and error interactions.
These mechanisms permit adjustments to be made to changing
environmental conditions without reprogramming (De Forges de
Parny et al,, 2023). Recent works utilizing Deep-Q Networks and
Actor Critic based
performance in rescue and target tracking, and area coverage

algorithms have achieved competitive

missions. Methods based on learning work well in environments
where only a partial view of the world is available, in non stationary
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conditions, and with complex multi agent interactions. They are
ideal for long-term missions with changing objectives as they have
the capacity of continuous learning and adaptation (Miller, 2025).
Reinforcement learning libraries could also support more complex
state representations, where graph like observations and attention
mechanisms are used to represent inter agent relations and dynamic
interactions with the environment. These methods, however, are
confronted with sample efficiency issues. They need large amount of
training data, which is scarce in safety-critical applications
(Zengshan et al., 2025). Due to black-box policies, verification
and certification used in aerospace side are challenged also.
Convergence guarantees are often weak or non-existent and
initial deployment may involve sub-optimal or unsafe behaviour
during exploration (Soret et al., 2024).

Distributed optimization methods have been proposed as an
intermediate option between the centralized control and the full
autonomy. These techniques use consensus algorithms, game theory,
distributed constraints optimization, for the management of the
coordination of the UAV swarm (Melillos et al, 2019). The
Distributed Greedy Bundles Algorithm is a substantial advance for
submodular maximization for MAS. It has formal and approximation
guarantees while working in polynomial time (Wang et al., 2021). Game
theoretic models unify UAV interactions as two basic or general games
in order to search for the Nash equilibrium or generalised Nash
with
communication schemes reduce the overall usage of bandwidth,

equilibrium resource  constraints. Event-activated
while maintain convergence properties and this is useful in UAV to
satellite networks with intermittent connectivity (Li C. et al, 2021).
These decentralised methods provide formal convergence guarantees,
handle agent heterogeneity well, and scale well to swarm size. Moreover,
the decentralized nature of these SLAMs make them more capable of
handling communication failures and agent drops, both of which are
prevalent in aerial agent operation. However, methods relying on
consensus often converge slowly due to the needs to have multiple
rounds of communication to reach an agreement (Li Y. et al., 2021).
Game theoretic solutions can lead to inefficient equilibria, in particular
in adversarial settings. Furthermore, the rationality assumption about
the agents behavior may not be satisfied due to hardware faults,
communication delays or adversarial environments.

The development of the uncertainty effects of UAV satellite
scenarios has resulted in growing efforts to address robust
optimization and distributionally robust optimization (Stodola et al,
2025). Polyhedral convex sets are used to describe parameter
uncertainties in uncertain resource allocation frameworks. Such
frameworks take care of errors due to channel estimation,
inaccuracy in dynamic prediction and changes in traffic flow.
Distributionally robust optimization methods use ambiguity sets and
coherent risk measures like Conditional Value at Risk to obtain
performance bounds that are robust to shifts in the distribution
(Fakoor et al, 2016). These methods directly naturally include the
model mismatches and provide worst case performance outcomes and
enhanced tail risk management. By including uncertainty quantification
we can make trade-off between nominal performance and robustness.
Distributionally robust methods mitigate the conservatism of bounded
uncertainty sets while still being computationally tractable (Wei Jiang
et al, 2024). However, strong optimization generally yields conservative
solutions that favor the worst case protection, while sacrificing the
average case performance. The quality of solutions is sensitive to the
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TABLE 1 Comparative analysis of coordination methods for UAV-LEO NTN systems.

Method Opt. Adapt. Scale. RT Rob. Comp. NTN
Classical (MILP/Hungarian) H L L L L H L
Fixed ACO M L M+ M M

PSO M L+ M M

Multi-Agent RL L+ H L M+ H M+
Distributed Consensus M M H M H M H
Robust Optimization M L M L+ H H M+
Multi-Timescale Hier M+ M H M+ M M+ H
Hybrid Meta-heuristic M M+ M M M+ H H
Event-Triggered Dynamic M H M+ H M+ M H
Proposed AdCO H H H H H M H

Legend: H, high; M, medium; L, low, + indicates upper bound of category. The bold line represents the efficiency of the proposed AdCO model as comparative analysis against existing methods.

choice of uncertainty or ambiguity sets, which do not always capture
actual operational situations. They require a more complex processing
that demands a very high amount of computational power and thus
they are not suitable for real time application. Moreover, conservative
solutions potentially can be over-conservative, when uncertainty
estimates are not accurate or when systems are functioning properly
for long periods of time (Basil et al.,, 2025).

In recent work, the multi timescale nature of UAV satellite
coordination is emphasised, as fast UAV dynamics and slower
orbital mechanics imply having different planning horizons
(Yang et al., 2024) Two-level optimization methods optimize
temporal scales away from short term resource allocation (down)
and long term trajectory planning (up), thus making it possible to
tasks
Hierarchical structures break the entire mission task into

decompose  complicated coordination effectively.
several layers, such as high level mission planning, medium
level task assignment, and low level trajectory implementation.
Each layer acts on multiple time scales (Zhou and Zheng, 2013).
Multi objective optimization paradigms handle trade off among
conflicting objectives, such as short term power consumption and
long term mission success. These techniques match algorithmic
effort with the dynamic of the system, to decrease computation
cost by maintaining solution quality (Toppen et al., 2017). The
layered decomposition enables specialized algorithm design for
multiple timescales and easy integration into legacy control
systems. However, suboptimal solutions can be obtained with
strategies as a

approximations. Flow of information loss between the layers

hierarchical result of decomposition
may lead to the inconsistency in the decision making and
compromise the overall performance Han et al. (2024).
Coordinating over multiple time scales must also be mindful
of what the interface should look like and possibly add another
level of communication between machines.

Contemporary research increasingly focuses on hybrid approaches
that combine classical optimization, metaheuristics, and machine
learning (Li et al, 2024). Hybrid metaheuristic algorithms integrate
multiple optimization techniques, such as merging ant colony
optimization with local search or combining genetic algorithms with
particle swarm optimization. Learning augmented optimization applies
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machine learning to guide traditional optimizers by predicting good
initial solutions or dynamically adjusting parameters. Reinforcement
learning frameworks incorporate classical control strategies to ensure
safety while enabling adaptive behavior learning. These hybrid methods
exploit the complementary strengths of different techniques, often
achieving better performance than individual approaches (Liu et al,
2022). Classical components offer convergence guarantees and optimal
solutions for well defined subproblems, while learning components
enhance adaptability and handle uncertainties. The modular
supports  testing, verification, and incremental
deployment. However, hybrid systems increase complexity in design,
implementation, and maintenance (Wang et al, 2022). Interactions

architecture

between components can cause unexpected behaviors or performance
degradation. Integration challenges also arise from differences in
computational requirements, convergence speeds, and solution
representations across hybrid modules.

The dynamic nature of UAV satellite environments requires real
time adaptation, leading to advances in dynamic task scheduling and
event triggered optimization. Dynamic priority mechanisms allow
task importance to change based on environmental conditions,
mission progress, or external events (Pack et al, 2019). Event
triggered algorithms initiate optimization only when significant
changes occur, reducing computational costs while maintaining
responsiveness. Online learning methods continuously update
models using observed system behavior and
performance feedback (He et al, 2024). Adaptive resource
allocation techniques adjust to varying system conditions, load
constraint These dynamic
strategies while

computational efficiency (Wang et al, 2023). Event triggered

and policies

fluctuations, and modifications.

enable responsive adaptation preserving
mechanisms reduce communication and computation demands
compared to continuous optimization. Online learning supports
gradual performance improvements and adaptation to long term
system changes. However, event triggered systems require careful
selection of triggering conditions to maintain stability. Excessively
rapid adaptation can cause oscillatory behavior or instability in noisy
or transient environments (Zhou et al, 2022). Online learning
methods may also face issues such as catastrophic forgetting and

slow convergence under rapidly changing conditions.
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Table 1 presents trade offs on UAV-LEO coordination
mechanisms and the importance of balanced performance.
Traditional optimization approaches, such as MILP and
Hungarian algorithms, achieve strong optimality but are not
adaptive, scalable, and computationally efficient in real time,
which hinders the applications in dynamic environments.
Classical ACO and PSO provide moderate results and miss
the generality of the approach when the environment is
dynamic since parameters are constant. Machine learning
especially multi agent reinforcement learning exhibit high
flexibility and robustness at the cost of high computational
complexity, and weaker optimality guarantees. Distributed
consensus and robustified optimization T Better scalability
and uncertainty handling but worse reactivity and optimality.
No balance is reached by hybrid metaheuristics andmulti
timescale frameworks as these have high scalability and are
NTN suitable, while at the same time they have adaptability and
optimality constraints. Event-Led Scheduling is high achieving
in real time but compromises predictive accuracy. The resulting
adaptive colony optimization model integrates event triggered
adaptability, robust cost shaping and connectivity aware
heuristics, and reaches a trade-off between solution quality
and computational UAV-LEO

complexity in dynamic

coordination.

3 Proposed work

The proposed AdCO framework overcomes the primary
shortcomings of current UAV and LEO coordination schemes. It
combines adaptation, robust optimization and multi-timescale
coordination in one framework. Traditional optimization
methods are often notoriously plagued by static parameterization
and low real-time efficiency. On the other hand, the AdCO uses
event-triggered parameters update and connectivity-based
heuristics. Such techniques make fast responses to topology
changes, orbital pass fluctuation and traffic non-stationarity with
convergence guarantees. The framework addresses the slow

adaptation and pheromone stagnation of fixed-parameter
metaheuristics. It does so by dynamically modulating exploration
and exploitation by means of feedback-generated learning
coefficients and drift-sensitive pheromone partial resets. This
design keeps all the time an exploration according to changing
operating conditions. AACO combats the sample inefficiency and
black-box nature of RL methods with domain-specific heuristics
inspired by orbital mechanics and communication theory. This has
the benefit of making decisions more interpretable, and reduces the
training burden. A bi-level scheduling structure is adopted to answer
the problem of the scalability issues in consensus based methods.
Fast UAV task sequence is decoupled with slow LEO relay
coordination, making it very low communication overhead while
still global coordination. The proposed framework also mitigates the
conservatism of robust optimization with distributionally robust
cost shaping. This method guards against the truly disastrous risks,
but does not become too pessimistic. Last but not least, AdCO
alleviates the drawbacks with event-triggered scheduling. This
visibility
pheromone structuring ensuring that the framework may predict

includes  predictive forecasting and  proactive
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even connectivity windows and not only reacting to them.
Algorithm 1 summarizes the overall procedure of the
AdCO algorithm. Figure Al illustrates the flowchart of the
proposed model.

Input: Tasks K, UAVs U, satellites &, time horizon
t=1:T; visibility V,s(t), rates Rys(t), loss pys(t);
slot At; weights (a,f,9,0); AdCO params
(70,0, Qs §, A acvars Aas Aps o1 er Ko 0 M) .
Output: UAV task sequences {n,} and relay fractions Y
1 Init: Set pheromones 7;; « 79, a(1),8(1); initialize
Ry.(t), drift stats D(t).
2 for epoche=1,2,... do
3 Build relay graph Gre1ay ; update CVaR stats.
4 for slot t=(e-1)K+1 toeK do
// Drift Handling
5 Compute D(t); if D(t)>6 then

6 reset 7;; « (1-7i; + {10
7 end

// Ant Solution Construction
8 for r=1 toM do
9 foreach u e U/ do
10 7" — @&; while tasks remain do
11 Compute heuristic n;_;(t); sample

j via Pi“lj o« (ri,j)“n’jﬁj; append j
12 end
13 end
14 Allocate relays: yR(t) < Vs (1)
. Yeallyide <Ry sAt .
15 Repair infeasible schedules: enforce
CPU/energy limits.

16 end

// Candidate Evaluation
17 for r=1 toM do
18 Compute Ly, Elet, reliability,

CVaR; objective:
Jr =Y (ali + Bl sq) + Y yELT = 6) logP(suce)+ ACVaR.

19 end ' ’ '

// Pheromone Update
20 Select elite set &;; foreach edge (i,7) do
2 Aty = Y res, ricvaRs
22 755 — (1 =p)7ij +A155
23 end

// Adapt o,
24 Update o, via regret and QoS indicators.
25 end
26 end

27 return best {n,} and relay fractions ¥

Algorithm 1. AdCO: Adaptive Colony Optimization for Dynamic UAV-LEO

Coordination

1 The simplified version of the proposed algorithm is available under

Appendix Section.
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TABLE 2 Simulation environment specifications and data sources.

Component Tools/Methods

Orbital Dynamics SGP4 Propagator with TLE Data

Data sources

CelesTrak TLE Sets, NORAD Elements

10.3389/frcmn.2025.1691346

Configuration

Walker Constellation Subset, Pass Prediction

UAV Mobility 3D Kinematic Model with Energy Constraints

Profiles

Communication
Channel

Elevation-dependent Pathloss + Log-normal
Shadowing

Task Generation Spatial Point Processes (Clustered/Uniform)

Traffic Modeling Poisson and ON-OFF Burst Processes

Network Topology Dynamic Graph with Time-varying Adjacency

Energy Model Propulsion + Compute + Communication

Components Curves

Performance Metrics Completion Ratio, Latency CDF, Energy per

Task

Statistical Analysis NumPy/SciPy with Bootstrap Confidence

Intervals

3.1 Simulation environment

A discrete event simulation environment written in Python is
used in the evaluation framework. It uses accepted models and
benchmark datasets to guarantee the repeatability and the reality of
the UAV and LEO coordination algorithms assessment. The
orbital mechanics layer is based on TLEs supplied by NORAD
and CelesTrak. These TLEs are propagated using the
SGP4 algorithm via the Python SGP4 library. This procedure
creates time-tagged time visibility windows, elevation profiles
and Doppler shift patterns for the specific region under
consideration. The mobility of the UAVs is represented with
3D kinematic equations dedicated to energy-aware flight
dynamics. The model combines physical realistic propulsion
power demand curves, maximum velocity limits, and battery
discharge laws grounded on commercial UAV specifications.

The communications system is based on ITU R
P.619 recommended elevation-dependent path loss models. It
also includes log-normal shadowing with ¢ = 4 dB and

stochastic outage processes. These extended generate realistic
link quality fluctuations due to both atmospheric and geometric
conditions.

Task distribution applies spatial point processes, such as
clustered  hotspot  distributions and uniformly random
placement. Arrival rates are tunable and are modeled after
Poisson and ON-OFF bursty patterns. These task setups are
based on realistic mission settings such as disaster response and
agricultural monitoring. The network structure is changing as a
dynamic graph by time-varying adjacency matrices. They capture
UAV-LEO contact windows, which are intermittent, ground
station visibility, and inter-UAV communication slots. The
communication is limited due to range and line of sight. The
energy model is for both the aircraft’s power for forward and
turning flight as well as the computing power for onboard
processing and communication power for the data packets

traveling between ground and air. This allows for a more
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Waypoint Sequences, Speed/Acceleration
ITU-R P.619 Models, Measured Link Budgets
Synthetic Hotspot Distributions, Real
Coverage Maps

Mission-specific Arrival Patterns

Graph Theory Adjacency Matrices

Battery Discharge Models, Motor Efficiency

Time Series Data, Statistical Distributions

Monte Carlo Sampling, Hypothesis Testing

Max Velocity, Energy Capacity, Compute
Rate

Frequency Band, Antenna Gains, Noise Floor

Deadline Constraints, Data Volume, Compute
Load

Arrival Rate, Burst Duration, Correlation
Contact Windows, Visibility Matrices

Power Models for Flight/Compute/Radio
Percentiles, Confidence Levels, Sample Size

Seed Control, Reproducibility Parameters

accurate assessment of trade-offs in energy efficiency.
Performance statistics are calculated using statistical analysis on
the NumPy and SciPy libraries. Bootstrap confidence intervals and
Monte Carlo sampling are implemented over 50-100 independent
random seeds. These approaches ensure the statistical significance
and reproducibility of the results. Table 2 the basic simulation
parameters and the assigned ranges are reported. It is defined in
terms of the region size, the size of the swarm and the subset of the
satellite constellation. Workload characteristics are determined by
task arrival rates and deadline typologies. The communication
environment is modeled in terms of height thresholds and
shadowing factors. The limited energy resource of UAV is
characterized by battery capacity ranges. Table 2 additionally,
summarizes the number of trees used, the time in which each
virtual experiment is executed and the number of Monte Carlo
runs. These criteria provide a structured approach to systematically
comparing algorithm performance across a range of operational

conditions. Figure 2 illustrates the simulation environment.

4 Problem formulation

The problem formulation provides a structured platform where
the mathematical depiction of the system entities, performance
indices and the operational constraints helps in synthesizing the
AdCO algorithm. Table 3 presents the notations used. Binary and
continuous decision variables are adopted in the formulation to
model task allocation and relay scheduling. The multi-objective
function combines latency, energy and reliability degradation
factors. A combination of linear and nonlinear constraints are
All
the
the

corresponding AdCO elements so that pheromone update,

required to meet capacity, visibility, and deadline constraints.
parts of the formulation, notation and decision variables,
objectives as well as the constraints are directly related to

heuristics evaluations and event-driven adaptations connect
naturally to the mathematical model.
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AdCO Simulation: UAV-LEO Task Coordination

Contact-aware sequencing Fractional relay scheduling Event-triggered stabilization CVaR risk shaping
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FIGURE 2
Simulation environment.

4.1 Latency decomposition

The end-to-end latency of task k, denoted Ly, is expressed as the
sum of four constituent components: travel time, computation
delay, queuing delay, and relay transmission delay in Equation 1.

The travel time L}f’““’el

corresponds to the duration required for the
assigned UAV to reach the spatial location rx, computed by
summing the inter-slot distances divided by the maximum UAV
speed Vimax as presented in Equation 2. Once the UAV arrives, the
computation delay can be calculated by using Equation 3. Accounts
for the CPU cycles ¢, processed at rate f, whenever a, (¢) = 1.

Lgueue due to contention for

Tasks may incur a queuing delay
onboard compute resources this is modeled as a function as
shown in Equation 2. Equation 3 captures the waiting time
induced by the aggregate workload on UAV u. Finally, the relay
transmission delay. Equation 4 quantifies the time required to
upload the data volume di from UAV u to satellite s at rate
R, (t), weighted by the fractional relay decision y,(t). The

overall latency is therefore given by Equation 4.

compute Z z Ay k (t (1)

u=1 t=1
L = Q) auw () ckr}, fu) )
relay T & Ay t) yus (t)
(€)
PIDESo
Lk — L;:avel + Liompute + Lzueue + L}r{elay. ( 4)
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4.1.1 Energy model

A composite energy model is developed to account for the main
contributors to onboard energy consumption in UAV-assisted LEO
relaying missions, including propulsion, computation, and
communication. For each UAV u € U operating over a discrete
,T with slot length Af>0, the total energy is

decomposed as Equation 5. Where, EP™P denotes propulsion

horizon t=1,...

energy for flight, E;°™ denotes computation energy for onboard
processing, and E;>™ denotes communication energy for wireless
transmission and reception.

tot _ pprop comp comm
EX =ENP + EX™ + E; (5)

4.1.1.1 Propulsion energy

Let x,(t) € R? denote the UAV position and define the
average speed in slot ¢t as Equation 6. The propulsion power is
modeled by a speed-dependent function P (v) that captures
aerodynamic and mechanical characteristics. The slot-wise
propulsion energy is Pﬂy(vu (t)) At, yielding as presented in
Equation 7. In applications where altitude or payload effects
are significant, Pﬂy can be extended to PSY (v, h, m) with altitude h
and mass m.

"xu (t + 1) — Xy (t)"

v, (t) = Af

(6)
T

ERP = 3" PiY(v,, (1)) At (7)

t=1
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TABLE 3 Notation and definitions.

Symbol Description

U=A{1,...,N,} | Set of UAVs

S={l,...,N,} | Setof LEO satellites

K ={1,...,Nk} = Set of tasks

t=1,...,T Discrete time slots

rp € R? Spatial location of task k

di>0 Data volume of task k (bits)

>0 Computation workload of task k (CPU cycles)
Tk Deadline of task k (time units)

x, (t) € R? Position of UAV u at time t

E™ Maximum energy capacity of UAV u (Joules)
fu Processing rate of UAV u (cycles/s)

Vs (t) € {0, 1} Visibility indicator between UAV u and satellite s at time ¢

Ry (), Rog () | Uplink/downlink rates (bits/s)

PIY (v) Propulsion power at speed v (Watts)
K Computation energy coefficient (Joule per cycle?)
s (1) Communication power for UAV u relaying to satellite s (Watts)

ayk (t) € {0,1} Task assignment indicator

Yus () € [0,1] Fraction of data relayed to satellite

4.1.1.2 Computation energy

Onboard processing energy is driven by executed CPU cycles for
assigned tasks. Let ¢, denote the required CPU cycles for task k, and
let f, be the processing rate (cycles/s) of UAV u. Define the binary
assignment a, (t) € {0, 1}, which equals one if UAV u processes
task k in slot t. A standard dynamic power model for CMOS logic
suggests power proportional to f2 under fixed voltage scaling by
aggregating over slots as given in Equation 8. Where, x>0 is an
effective coefficient mapping cycle activity at rate f, to Joules. If
dynamic voltage and frequency scaling is available, one may replace
fu with a controllable f,, (t) and include additional convex penalties
to reflect energy-delay tradeoffs.

T Ni
EX™ =3k f ) au(t)ci ()
t=1 k=1

4.1.1.3 Communication energy

Communication energy considers the cost of uplink

transmission from UAV to satellite, optional downlink
reception overhead, and protocol signaling. Let y,(t) € [0, 1]
denote the fraction of task data dj relayed by UAV u to
satellite s in slot ¢, and let ¢, (t) denote the energy per
transmitted bit (J/bit) under the current modulation, coding,
and power control state. The cumulative communication energy
is modeled as Equation 9. When a power-controlled physical layer

is modeled explicitly, then Equation 9 can be written as Equation
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10. With P,‘jfs (t) the transmit power and R, (t) the achieved rate.
The communication energy can be calulated by using Equation 11.
If receive-side and protocol overheads are non-negligible, an
additive term Equation 12 can be included. The out come
ie, Equation 13 where P™(t) and P (t) are receive and
control-plane power, respectively.

T N; Ny
EZmm =y Z(Zaum) Yuus (1) dk> us (1) ©)

t=1 s=1 \ k=1
P (1)
s (1) = =2 10
s =205 (10)
T N, N Ptx (t)
E;omm = au,k (t) yu,s (t) dk = (1 1)
; s=1 k=1 Ru,s (t)
T
Eger =) (PX(1) + P (1)) At (12)
t=1
E;omm — E;omm + Ezver (13)

4.1.1.4 Total energy and feasibility

Combining the above contributions yields the per-UAV total
energy as presented in Equation 14. Each UAV must satisfy the
battery feasibility constraint by using Equation 15. Here EJ**
denotes the available energy budget over the horizon. This
constraint directly couples mobility planning, task execution, and
relay scheduling decisions: faster flight can reduce travel latency but
increases propulsion energy; higher CPU rates can reduce
computation delay at the cost of greater compute energy; and
aggressive uplink power improves throughput vyet raises
communication energy. The optimization therefore balances
latency reduction against energy expenditure under mission and

platform constraints.

T Ns

T T N
RN ACIOLEDNTH I;au,k(ﬂ wty Y

t=1 t=1 s=1

Ny Ptx (t)
N t s t d u,s Eover' 14
X 2, s () yus (O i o + (14)
EC'<E™,  Vuel (15)

4.1.2 Reliability model

End-to-end reliability for task delivery in a UAV-LEO
relaying scenario and presents a tractable penalty function for
the purpose of optimization. Reliability represents the probability
that all task-related sequence of data bits are transported from the
executing UAV to a satellite (and then to the ground, if the model
includes it) in the planning horizon, given stochastic link
impairments. Reliability is directly related to the fractional
relay decisions, the instant link qualities, and the temporal
visibility in the model.

4.1.2.1 Per-link success probability

Consider the uplink between UAV u € U and satellite s € S at
slott € {1,...,T}. Let p,s () € [0,1) denote the packet error or bit
error probability for the selected modulation and coding scheme
under the instantaneous channel state (e.g., SNR and Doppler). The
success probability for a single bit is then 1 — p,, (t). When b bits
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traverse the same (u, s, t) link under an i.i.d. error assumption, the
aggregate success probability is Equation 16.

Pr{successon (u,s,t) forbbits} = (1 - p, (t))b (16)

4.1.2.2 Task-level success probability with
fractional relaying

Let dj be the total number of bits associated with task k € K. The
decision variable y,(t) € [0, 1] represents the fraction of task k’s
data routed via link (v, s,t) when task k is executed by UAV u at slot
t. Hence, the number of bits routed on (u,s,t) is @y (t) yus (t) d,
where a, () € {0,1} indicates execution by u at t. Under an
independence approximation across links and time slots, the end-
to-end success probability for task k is Equation 17. This form makes
explicit how reliability increases when data is preferentially allocated
to links with low error probability or when data is temporally spread
across more favorable slots.

N, N, T

PP (success;) = H H (L= pus (1) 70O

u=1 s=1 t=1

(17)

4.1.2.3 Negative log-reliability as an additive penalty

To incorporate reliability into a convex-amenable objective, it
is convenient to work with the negative logarithm of the success
probability by using Equation 18. The term —In(1 — p, s (t)) acts
as a nonnegative per-bit reliability cost for link (u,s,t), it
increases with error probability, thereby penalizing allocations
over unreliable links.

N, N,

—In (P (successy)) = z

u=1

T
Y @i (£) pus (1) di [-In (1 = puc (1))]

s
s=1 t=1

(18)

4.1.2.4 Visibility and feasibility
Reliability contributions are meaningful only when the link is visible
and has nonzero capacity. Visibility is enforced by using Equation 19.
Where, V,(t) €{0,1} indicates line-of-sight availability. Capacity
feasibility is already enforced via separate constraints, ensuring that
allocations ay (t) yus (t) di do not exceed R, (¢) At.
Yu,s,t

Yus () SV (1), (19)

4.1.2.5 Risk-sensitive shaping via CVaR

In highly variable environments, optimizing only the expected
negative log-reliability may underweight rare but severe outages. A
risk-sensitive shaping can be introduced using Conditional Value-at-
Risk (CVaR) on the reliability penalty Zj for task k through Equation
20. For a confidence level « € (0,1) and penalty weight A >0, the
CVaR-augmented reliability cost takes the form of Equation 21. This
shaping biases the solution toward allocations that are robust to tail
events such as sudden link degradations or pass losses.

Ny No T
Ze=Y Y Y i (®) yus (O di [-In(1 - pc(0)]  (20)
u=1 s=1 t=1
R =E [Zk] +A CVaR, (Zk) (21)
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4.1.2.6 Downlink reliability and end-to-end extension

If the satellite-to-ground segment is explicitly modeled, define
an analogous error probability p; , (¢) and rate R;, (t) for downlink
to gateway g. The task success probability then becomes a product of
uplink and downlink factors. Under a decode-and-forward
assumption, a conservative lower bound on end-to-end success
can be presented as Equation 22. Where, y  (t) denotes the
fraction of task k’s data forwarded over (s, g,t), consistent with
flow conservation. The corresponding negative log transforms add,
preserving tractability.

PP (success;”*) > [H (1 = pue (£))ex e dk:|

g5t

(1 - Pes (t))?s,g(t)dk] (22)

5 Result, validation and discussion

The proposed AACO framework is proposed in this work for
dynamic coordination between UAVs and LEO satellites. The design
goal of the framework is to trade-off latency, energy and reliability
under constraints of computing, link visibility, link capacity and battery.
The approach consists of four major steps (1) contact-aware task
sequencing of UAVs based on pheromone-guided strategies with
connectivity and deadline dependent heuristics (2) fractional relay
scheduling during satellite passes under visibility and capacity
constraints (3) event-triggered stabilization to address environmental
or network changes (4) and risk-sensitive reliability shaping by means of
Conditional Value at Risk (CVaR). Performance comparison To
evaluate the performance, the proposed AdCO is compared with
three baselines, the Greedy Proximity-Deadline (GPD) scheduler,
the Static Heuristic ACO (SH-ACO) which does not consider the
adaption to drift and the risk in the environment and the Link-Quality-
Only (LQO) that only focuses on maximizing the throughput without
taking into account the energy and the deadlines. These are compared
to show the strengths of AdCO when it comes to better spatio-temporal
decision-making than GPD, better adaptation to environment than SH-
ACO and better trade-offs between latency, energy and
reliability than LQO.

5.1 Contact-aware task sequencing

Contact-aware pheromone-guided sequencing minimised the
task latency as a whole by favouring tasks that are in closer proximity
in space and better in line with satellite overhead. It discouraged the
use of low-energy-margin and negative-deadline-slack tasks, and
thus encouraged to effectively make use of resources. The heuristic
UAV trajectories in such windows tends to connect relay locations
with relay-aligned path in which the data generation is synchronized
with high-rate satellite pass. This resulted in less queuing, less
retransmissions and less deadline misses. We have experimentally
demonstrated that the latency distribution shifts distinctly toward
the left, while more tasks meet deadlines without increasing energy
consumption. These results in Figure 3 illustrates the importance of
integrating spatial vicinity, predictive link opportunities and
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FIGURE 3

Latency vs. deadline-feasible rate under contact-aware task
sequencing compared to a non-contact-aware baseline.

deadline slack to enable efficient and time-critical UAV-satellite
cooperation. Figure 3 illustrates presents the latency vs. deadline-
feasible rate under contact-aware task sequencing compared to a
non-contact-aware baseline. Lower latency and higher feasible rate
indicate superior performance.

5.2 Fractional relay scheduling over time-
varying passes

Partial mapping of task data to multiple spatially visible
satellites enhanced better utilization of the few pass capacities
and alleviated bottlenecks observed in the one-link routing under
the changing elevation and Doppler effects. The scheduler sent
more traffic through high-rate and low-loss links, based on
instantaneous visibility, and per-slot capacity limits enabling the
scheduler to provide better throughput and shorter relay-induced
latency, while not violating the energy constraints. Fractional
scheduling achieved more b/slots and decreased the buffer
overflow at the peak of contention, compared with the single-
link, winner-take-all approach. This also lead to an improved
deadline compliance and fewer retransmissions when link
quality varied over a satellite pass. Figure 4 present the real-
time throughput simulation over a satellite pass under
fractional relay scheduling vs. single-link routing. Fractional
scheduling better tracks time-varying capacity and visibility,
leading to improved throughput during peak windows and
more stable performance.

5.3 Event-triggered stabilization under
regime shifts

The event-triggered stabilization procedure takes small
perturbations induced by abrupt regime changes, like caused
by visibility losses, sudden rate declines during low-elevation
orbit passage, or load surges, and partially resets pheromone
values to the former baseline. It avoids stagnation in search,
overfitting to obsoleted paths, and deep deadline violations. Once
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Throughput comparison between fractional relay scheduling vs.
single-link routing.
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FIGURE 5
Transient response to a regime shift (gray band) with and without
event-triggered pheromone reset.

a drift threshold is reached, the controller applies a soft reset to
the exploration memory. It does this while still saving the useful
historical patterns. The system can then quickly recover from
infeasible scheduling. At the same time, transient latency peaks
are reduced. The degree of missed deadlines also decreases, both
during the disruption and after it. When compared to a
continuously learning, non-event-driven learner, the event-
triggered policy performs better. It reduces overshoot and
speeds up the
performance. Additionally, it lowers the variability of slot-level

oscillations. It also return to pre-shift
costs. This leads to more robust and stable coordination in a
dynamic environment. Figure 5 illustrates the transient response
to a regime shift (gray band) with and without event-triggered
pheromone reset. The event-triggered policy reduces peak
overshoot and settling time, stabilizing the per-slot objective
more quickly. Expanded data points provide a finer resolution
of the transient behavior.

5.4 Risk-sensitive reliability shaping via CVaR

The addition of CVaR- optimal shaping of reliability caused
the resource allocation to move away from links and time slots
that were acceptably reliable on average but had a high-tailed loss
interference-

performance during low-elevation passes or

rich epochs. By penalizing the tail of the negative log-
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Tail reliability loss versus tail probability level.

success distribution at a desired confidence level, the scheduler
proactively spread flows over more reliable contact opportunities
and also postponed non-urgent transmissions from high-risk
windows. It reduced the occurance of heavy packet loss
without increasing mean latency and energy consumption
considerably. Against an expectation-only reliability objective,
the CVaR shaping decreased the probability of task failure in
the worst decile and minimized variation in end-to-end success
rates over simulation runs—representing a better protection
against rare but high-cost outages. Figure 6 plots the tail
reliability loss as a function of tail probability level, revealing
that the CVaR-shaped allocation achieves great gain of robustness
in the extreme tail level than the naive allocation based on the
expectation only.

5.5 Overall mission effectiveness score

This sub-section defines an Overall Mission Effectiveness Score
(OMES) to summarize performance. Four metrics are included:
latency L (lower is better), deadline-feasible rate F (higher is better),
energy per delivered bit E (lower is better), and end-to-end success
rate R (higher is better). For each scenario s and metric m it
normalizes to across all compared methods in that scenario. For
lower-is-better metrics:

5.5.1 Metric normalization and composite score
For lower-is-better metrics:

Mimax (5) -m (S)

) () — e (5) & =
For higher-is-better metrics:
i (5) = m(s) = Muin () (24)

Mimax (5) — M (S) t+e

This work uses & = 10~ for numerical stability. The composite
score is:

OMES (s) = wy 1y (s) + wg np (s) + wg ng (s) + wg ng (s) (25)

Default weights reflect mission priorities:
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w =0.30, wp =030, wg=020, wgp=020. (26)

Sensitivity analysis varies each weight by + 0.10 while preserving
unit sum. The proposed work reports a mean OMES and 95%
confidence intervals over runs.

The OMES results provides a single view of effectiveness that
combines latency, deadline adherence, energy per bit, and end-to-
end success into one normalized score (Equations 23-25). Across all
scenarios, AdCO attains the highest OMES, indicating balanced
gains rather than an improvement on only one metric. In lighter
loads, the score advantage reflects earlier findings on lower median
latency and higher deadline satisfaction. Under heavier loads and
contact variability, the advantage persists, which suggests that event
triggered stabilization and fractional relay scheduling keep
performance stable when contention increases. The Figure 7
shows that rank ordering does not change when weights are
perturbed (Equation 26). AdCO’s score varies only slightly across
the tested weight sets, which indicates robustness to different
mission priorities. Baselines lose ground for different reasons.
The greedy proximity deadline scheduler does not align
execution with satellite windows, so its composite score drops as
contention rises. The static heuristic ACO lacks drift handling,
which hurts after regime shifts. The link quality only allocate
focuses on instantaneous throughput and pays more in energy
and tail reliability, which lowers its composite score even when
mean rate is good.

5.6 Validation

The performance of AdCO is validated against three baseline
strategies under identical workloads, contact patterns, and energy
(GPD), which
prioritizes tasks based on nearest location and earliest deadlines;
(ii) Static Heuristic ACO (SH-ACO), which uses fixed pheromone
and heuristic influences without drift resets or risk shaping; and (iii)
Link-Quality-Only (LQO), which selects the best visible link for
maximum instantaneous throughput without considering energy or

constraints: (i) Greedy Proximity-Deadline

deadlines. Across different load levels and satellite pass geometries,
AdCO consistently reduced end-to-end latency and improved
deadline adherence by aligning task sequencing with predicted
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Measured latency CDFs under the medium-load scenario. The
AdCO curve is left-shifted and steeper than baselines, indicating lower
median and tail latency.
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link visibility and using fractional relay allocation, a feature missing in
GPD. During both synthetic and real drift events, such as sudden pass
loss or rate drops, AdCO’s event-triggered stabilization enabled faster
recovery with lower overshoot compared to SH-ACO, demonstrating
effective adaptive learning under regime shifts. Relative to LQO,
AdCO achieved comparable or higher throughput while reducing
tail reliability losses and lowering energy consumption per delivered
bit through CVaR-driven flow diversification and energy-aware
pacing. Overall, AdCO achieved superior multi-objective trade-offs,
offering lower median and tail latency, fewer missed deadlines,
reduced energy usage, and improved tail reliability, confirming the
effectiveness of its design choices in spatiotemporal coupling, drift-
aware adaptation, and risk-sensitive shaping.

5.6.1 Latency distribution (CDF)

Latency CDF show that AdCO can complete tasks in shorter time
than all baseline strategies on the whole distribution rather on average.
Its curve leans to the left and the slope is steeper, illustrating in Figure 8
that median latency decreases and the variance is lower. This
performance improvement is due to contact-aware sequencing of
tasks in terms of achieving the correlation of task execution with the
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future visibility of high rate satellite, and also in the avoidance of routes
that result in a build-up of queues at the relay locations. In contrast,
GPD considers spatial locality and deadlines but does not consider the
timing of the pass, which results in larger relay delays. Although SH-
ACO does not adjust its drift with the change of the environment which
lead to its performance degrading over-time and LQO only considers
the Instantaneous Link Quality (ILQ) and ignores the task timing and
energy, which results in higher waiting time and transmission backoffs.

5.6.2 Deadline adherence across load

Figure 9 presents the performance, i.e., the percentage of deadlines
that are met as a function of the offered load. For all the load levels,
AdCO has a better feasible and it deteriorates more slowly even in heavy
traffic. This is made possible by using fractional relay scheduling, that
schedules flows over overlapping satellite passes over multiple days and
allocates flows to “weaker” links without exceeding capacity. The
stabilization using event-times even avoids the lasting performance
decrease after regime changes. GPD, however, does not represent a
feasible solution at the early subproblems due to the ignorance of
visibility windows. SH-ACO operates well at the beginning and
deteriorates at the presence of drift since it uses the same influence
parameters, while LQO maintain throughput but it is not concerned
with deadlines and its feasibility drops more quickly under conditions of
high contention.

5.6.3 Energy reliability trade-off

Figure 10 shows the end-to-end success rate and the energy
consumption per delivered bit. The performance of AdCO in this
case remains always on the top-left part of the graph, where
higher success rate at lower energies is reached. This gain is due
to shaping based on CVaR, which helps to avoid risky low-
elevation segments and spread load across more reliable
contact opportunities, thereby reducing retransmissions and
tail
minimizes the redundant bursts of propulsion and load

losses. Furthermore, energy-friendly scheduling also
calculations, leading to even more efficiency gains. In contrast,
GPD is likely to impose additional travel or waiting time that
leads to higher energy consumption and lower reliability. SH-

ACO maintains a good performance in a stable channel
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TABLE 4 Summary metrics at medium load (illustrative values; replace with measured numbers). Lower is better for latency and energy; higher is better for
feasibility and success.

Method Median latency (s) 95th pct. latency (s) Deadline-feasible (%) Energy (J/bit)
AdCO 68 118 94 0.034
GPD ‘ 92 165 80 0.040
SH-ACO ‘ 78 142 88 0.038
LQO ‘ 75 138 84 0.041

TABLE 5 Deadline-feasible rate (%) across offered load (illustrative; replace
with measured).

Method 0.5 1.0 15 2.0 2.5
AdCO 98 96 93 90 86
GPD 95 90 82 72 60
SH-ACO 96 92 85 76 64
LQO 94 90 84 75 62

condition, but deteriorates when the channel changes; LQO can
accommodate a high instantaneous throughput with a larger
energy consumption per bit and an inferior tail reliability by
concentrating traffic in the volatile time window.

5.7 Discussion

In all experimental settings, AdCO outperformed GPD, SH-ACO
and LQO in terms of latency, deadline meeting ratio, tail reliability
and energy usage. The enhancements were sustained even under
loading demand and alterations of regime. In medium-load
conditions, AdCO lowered measures as follows: the median end-
to-end latency was reduced by an average of 20-35% compared to
GPD, 12-20% compared to SH-ACO, and 10-18% compared to
LQO. The 95"-percentile latency also improved by 25-40%. This
decrease was supported by the shift of the latency CDF to the left and
its steeper rise. Under test loads, the end-to-end permissible rate was
higher by 8-18 points compared to GPD, and by 5-12 points
compared to SH-ACO. Compared to LQO, which is not designed
to optimize deadline meeting, AdCO retained a gain of 10-20 points
in high-load scenarios where contention and visibility conflicts were
more pronounced. Regarding energy consumption, AdCO consumed
on average 8-15% less energy per delivered bit compared to LQO, and
6-12% less compared to SH-ACO. This efficiency was achieved
through partial concurrent passes and by pacing transmissions to

reduce inefficient periods. The energy savings relative to GPD were
even more significant, at about 10-18%, primarily due to reduced
queueing in relays and less wasteful movement. There was also a
considerable improvement in tail robustness. CVaR shaping enabled
AdCO to obtain as much as a 25-40% reduction in worst-decile task
failure probability compared to the expectation-only reliability
in SH-ACO. When to LQO, which
concentrates flows on unstable intervals, the decrease was about
30-45%. In forced regime shifts, including rapid pass loss or fast
rate decay, AdCO’s event-triggered stabilization improved peak
overshoot by 20-35% and settling time by 30-50%, compared to
SH-ACO’s continuous, non-event-based adaptation. Removing

observed compared

multi-pass visibility eliminated almost half of the latency and
transmission energy gains. It was also observed that longer
transients following regime shifts were due to drift-induced resets,
which were otherwise suppressed. Tail losses increased when CVaR
was omitted, but no substantial improvement was seen in mean
latency. Table 4 shows that the proposed AdCO reduces the median
latency by 26% compared to GPD, 13% compared to SH-ACO, and
9% compared to LQO. It also lowers the 95"-percentile latency by
28-29% relative to the baselines. The deadline-feasible rate improves
by 14 percentage points over GPD, 6 points over SH-ACO, and
10 points over LQO. Energy consumption per delivered bit decreases
by 10% compared to GPD, 11% compared to LQO, and 11%
compared to SH-ACO. These gains are consistent with the use of
fractional relay utilization and pass-aware pacing.

Table 5 schows that across the load sweep, AdCO degrades
gracefully at high load (2.5 tasks/slot) it retains an 26-point
advantage over GPD, 22 points over SH-ACO, and 24 over LQO.
This reflects contact-aware sequencing and fractional relay
allocation that sustain throughput without violating visibility and
capacity. Tail-risk control and stabilization follow the trends shown
in Table 6 and the regime-shift response. In AdCO, CVaR shaping
reduces the worst-decile failure probability by about 40% compared
to both LQO and GPD. Event-triggered resets further decrease peak
overshoot by approximately 24-31% and cut settling time by
nearly half relative to SH-ACO. These results confirm that

TABLE 6 Tail robustness and stabilization (illustrative; replace with measured).

Worst-decile failure (%)

Settling time (slots)

Peak overshoot (norm.)

AdCO (CVaR + event) 6.5 1.10 6
SH-ACO (no event) ‘ 10.8 1.45 12
LQO (no CVaR) ‘ 11.7 1.35 10
GPD ‘ 12.1 1.38 11
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combining tail-aware reliability with event-driven adaptation
enables faster recovery and yields tighter outcome dispersion
under disturbances.

6 Conclusion and future direction

The formulation of the UAV task scheduling and the
fractional satellite relaying problem with dynamic visibility,
capacity, and energy constraints is then proposed as a generic
problem framework, and called as AdCO: adaptive colony
optimization. The proposed AdCO adopts a unified framework
for integrating three basic mechanisms, i.e., contact-aware
sequencing  for  pass-aligned routing,  event-triggered
stabilization for rapid adaptation against regime change, and
CVaR-based reliability shaping for lowering heavy-tailed losses.
Evaluations over GPD, SH-ACO, and LQO demonstrate the gains
in terms of smaller median and 95™-percentile latency, higher
deadline-feasible rates, more reliable tails, lower energy per
delivered bit, and faster disturbance recovery. AdCO has a
good scaling though is robust against contact variability via
fraction relays. We discuss its shortcomings: sensitivity to
heuristic hyper-parameters, reliance on pass and rate
prediction and complexity of deployment. In the future, we
are interested to investigate more advanced hyper-parameter
tuning techniques such as adaptive hyper-parameter tuning,
traffic distributed multi-UAV

coordination and the application to the safety and the

learning-based forecasters,

endurance over long-duration mission with real-world
experiments. This work will move from controlled simulation
to trace driven studies using real satellite passes and field link
logs. A small hardware in the loop pilot will be built to test timing
and safety on COTS UAVs. The method will be scaled to larger
swarms and denser LEO passes with distributed execution.
Learning augmented variants will be explored, including
lightweight MARL or GNN hints for better priors. Finally,
case studies in disaster response and agriculture will be used

to validate reliability, energy use, and latency in real missions.
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FIGURE A1
Simplified version of Algorithm 1.
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