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F-GGRU: a sensor-driven deep
learning framework for smart city
weather-aware traffic congestion
prediction
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The deployment of various sensors including inductive loops, radars, GPS
devices, cameras and floating car data (FCD) in intelligent transportation
systems generates a stream of heterogeneous data, further complicated by
exogenous factors like weather conditions and temporal patterns (e.g., peak
hours, weekends). For urban traffic development planning, the accurate
prediction of congestion under the influence of these exogenous factors
remains a major challenge. The proliferation of these diverse data sources
creates a complex prediction environment, demanding advanced analytical
frameworks. To address this issue, we propose a novel Fusion-based
Generative Adversarial Network with Gated Recurrent Unit (F-GGRU)
framework. The F-GGRU develops a generic data pipeline for integrating and
preprocessing multi-source data, featuring advanced techniques for outlier
removal, fuzzy logic-based automatic labeling, and Generative Adversarial
Networks (GANs) for class balancing. Extensive experimentation was
conducted on a novel real-time dataset from the Safe City Islamabad Pakistan
(SCIP) project, integrating heterogeneous and exogenous features. The results
demonstrate that our proposed F-GGRU framework achieves superior
performance, with 98% accuracy, 0.99 precision, 0.98 recall, and a 0.98 F1-
score. This significantly outperforms a suite of benchmark models, including
Logistic Regression, Random Forest, XGBoost, and deep learning baselines like
ANN, which achieved accuracies between 77% and 83% with correspondingly
lower precision, recall, and F1-scores. Significantly, hyperparameter tuning and
validation on a second independent dataset (CityPulse, Aarhus) confirmed the
proposed framework robustness and generalizability, achieving even higher
performance 99.42% accuracy and 0.99 AUC. These findings affirm that the
F-GGRU framework is a robust and generalizable solution for real world traffic
congestion prediction in smart cities.
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internet of things, generative adversarial networks, GRU, smart cities, weather,
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1 Introduction

Currently, the rapid expansion of sensor technologies, internet
connectivity, and high-volume data generation has reshaped the
landscape of intelligent systems, especially in the context of Internet
of Things (IoT)-driven applications and smart cities. The
continuous stream of real-time, heterogeneous data captured
from diverse sensor sources has unlocked vast potential for real-
world insights and decision-making. However, it also introduces
new complexities related to the efficient integration, interpretation,
and utilization of such multifaceted information (Ren et al., 2023).
Extracting meaningful patterns from these rich datasets requires
innovative approaches capable of merging varied data types and
applying advanced learning techniques to uncover actionable
intelligence. In this context, leveraging sensor-derived data from
urban surveillance infrastructures, such as the smart city, presents a
compelling opportunity to explore intelligent traffic solutions in
dynamically evolving environments.

The Intelligent Transportation System (ITS) serve as a
foundational element in the transformation of urban regions into
smart cities by enabling adaptive and data-driven traffic solutions.
The growing demand for accurate and timely traffic forecasting
necessitates the integration of real-time inputs from diverse sensor
modalities, including fixed and mobile surveillance units,
environmental monitoring systems, and external contextual
sources. Modern ITS frameworks capitalize on IoT to construct
interconnected platforms that combine multi-source, multi-sensor,
and multi-model data streams. In this context, our research
leverages the integrated pipelined dataset obtained from
heterogeneous features collected from smart city real time
environment, combining traffic surveillance with exogenous
features from weather sensing data to enable more precise traffic
speed and congestion prediction through our proposed hybrid
F-GGRU framework.

Traffic congestion arises from a range of exogenous contributing
factors (Rehborn and Koller, 2014), including weather conditions,
peak-hour load (Ali et al., 2021a), road maintenance, accidents, and
adverse weather conditions (Romanowska and Budzynski, 2022a).
Weather condition sensors are instrumental in monitoring
atmospheric  parameters such as rainfall, wind speed,
temperature, humidity and visibility offering important inputs for
both real-time and predictive traffic models (Du et al., 2022) (Vargas
et al., 2021). Within this context, sensors form the technological
backbone of the smart city, which goals to establish a smart,
responsive and secure urban environment. The Safe City
Islamabad, Pakistan (SCIP) network includes 2,758 cameras
monitor  high-definition  surveillance radar-based cameras
allowing near-total coverage of the SCIP (Khattak, 2025). Smart
City authorities (Authors Anonymous, 2022) state that the initiative
aims to ensure a digital record is maintained for every vehicle that
enters the city. Additional by mobile patrol vehicles and surveillance
drones, these sensor networks are linked to a centralized control
hub, enabling continuous data collection. These extensive sensor
deployments not only enhance urban smart city but also produce
rich spatiotemporal datasets helping as a fundamental enabler of
intelligent transportation research and congestion prediction.

There are two principal approaches to alleviating traffic

congestion on urban road networks. The first involves expanding
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infrastructure by increasing the number of freeway lanes or

constructing new roads. However, this solution demands
significant land acquisition and financial investment, which may
not be practical or sustainable in densely populated urban areas.
Alternatively, a more efficient and scalable strategy is to implement
intelligent traffic control mechanisms that optimize the use of
existing road infrastructure. These control strategies depend
heavily on accurate congestion prediction, empowering
authorities to proactively manage traffic flow and mitigate
congestion before it increases.

According to the United Nations, it is estimated that by
2050 nearly 68% of the global population will reside in urban
regions, reflecting a significant shift toward urbanization (United
Nation, 2023).

Country wise rapid pace of urbanization, coupled with
exponential growth in vehicle ownership, has introduced serious
challenges to traffic management, road safety, environmental
sustainability, and overall urban livability. Pakistan population
has grown tremendously, with census data indicating an increase
from 132.35 million in 1998 to 241.49 million in 2023. Projections
suggest this number will reach approximately 255.22 million by 2025
(Authors Anonymous, 2021). Alongside population growth, the
number of people residing in urban areas has risen from 32.5%
in 1998 to 38.82% in 2023, highlighting a marked demographic shift
toward cities. This surge in urban population and vehicular density
underscores the urgent need for intelligent, sensor-driven traffic
solutions to address congestion and ensure sustainable
urban mobility.

Furthermore, in the United States 3.3 Billion Gallons of fuel are
wasted in 2022 due to the traffic congestion (U.S Department of
Energy, 2025). Exogenous features (Weather conditions, peak hours,
week days and weekends) (Ali et al, 2021a) can significantly
influence traffic flow and congestion levels (Romanowska and
Budzynski, 2022b; Agarwal et al, 2005; Lin et al, 2015). Rain
(Mashros et al, 2014), fog (Ali et al, 2024), or snow often
reduce visibility and road friction, leading to slower driving
speeds and increased travel time. Severe weather may also cause
accidents, lane closures, or disruptions in traffic signals, further
compounding delays. Even mild weather changes can alter driver
behavior, contributing to fluctuations in congestion patterns across
urban roads.

In previous research work, for the traffic congestion prediction
several Mobile Crowed Sensing (MCS) (Ali et al, 2021b), ML
(YixinLi and Zhang, 2024; Yu and Xie, 2024) and DL (Zafar
et al,, 2022a; Lartey et al,, 2021) techniques have been presented,
including KNN, Support Vector Machines, RF, and deep networks
such as GRUs, Convolutional Neural Network (CNN) and Long
Short-Term Memory. Whereas these techniques have achieved
varying accuracy, some of the techniques deal to adapt to real-
world complexities such as temporal variations, missing data and
sudden disturbances caused by external factors like weather.
traffic

supervising the impact of exogenous variables and failing to

Traditional models often treat data in isolation,
integrate heterogeneous data sources effectively. Furthermore,
imbalanced class distributions and the lack of dynamic feature
fusion methods limit their generalizability. However, their
performance often declines in real-world situations due to issues

such as imbalanced class distributions, missing or noisy data,

frontiersin.org


https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2025.1666487

Ali et al.

temporal irregularities, and an inability to effectively integrate
exogenous factors like weather conditions or peak hours and
holidays. The existing techniques tend to deals with traffic data
robust  fusion

sources  separately,

heterogeneous and exogenous inputs. Our proposed F-GGRU

lacking strategies  for

framework overcomes these limitations through a novel hybrid
F-GGRU  framework
integrates fuzzy logic to fuse heterogeneous and exogenous

pipelined combination of techniques:
features, use fuzzy logic-automatic labeling for classification,
GANs for class balancing to balance the imbalanced class, and
enhances temporal learning through a gated recurrent structure.
This empowers the F-GGRU framework to capture more nuanced
patterns in smart cities dynamic urban environments, contributing
improved robustness, and predictive accuracy compared to existing
approaches (Ali et al., 2021b; YixinLi and Zhang, 2024; Yu and Xie,
2024; Zafar et al., 2022a; Al-Qarafi et al., 2022; Yasir et al., 2022;
Zafar et al., 2022b; Zhao et al., 2019; Zhong et al., 2024).

1.1 The following are scientific contributions
to intelligent transportation system and
smart cities

o The F-GGRU framework integrates underutilized smart city
traffic observation sensor heterogeneous (FCD) data with real-
time exogenous (weather conditions information, peak hour,
week days and weekend) information transforming passive
traffic records into actionable congestion prediction insights
improving the predictive power of ITS and supporting real-
time traffic management decisions.

o Enhanced data handling through applying automatic fuzzy
logic for intelligent to balance class
distribution use GANS.

« The usage of a Gated Recurrent Unit in F-GGRU framework

empowers effective modeling of time-dependent traffic

labeling and

patterns, allowing the F-GGRU framework to learn long-
term and short-term dependencies in sequential data while
maintaining computational efficiency.

After the introduction presented in this Section 1, the literature
review description presented in Section 2. The proposed Hybrid
F-GGRU framework is presented in Section 3. Section 4 presents
result analysis and discussion explaining the results. Conclusion and
future research direction presented in Section 5.

2 Literature review

The integration of weather conditions into traffic congestion
prediction models has garnered significant attention in recent years.
Adverse weather events, such as fog, rain, snow, and humidity, have
been empirically shown to influence traffic flow characteristics,
speed,

(Romanowska  and

including capacity, instance

Budzynski,

and headways. For
2022b)
comprehensive study on a Polish expressway, revealing that

conducted a
average vehicle speeds could decrease by up to 19% and road

capacity by 18% under adverse weather conditions, compared to
normal conditions.
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The study (Ali et al., 2021b) proposed MCS based dynamic traffic
efficiency framework for traffic congestion prediction and avoidance.
The real time vehicular traffic data collected through GetApp mobile
application. The recommended MCS based dynamic traffic efficiency
framework allocate the fasted available route with specific time slot to
the commuter to follow and reached to the destination on time, but it
does not explore other potential influencing factors in depth, such as
weather conditions, which could also significantly impact
congestion levels.

In research study (Zafar et al, 2022a) the author presented
LSTM-GRU model that combine heterogeneous data sources
collected data from sensors sources, holiday data, tracking
company, OSM road, Google, peak hour data and weather data.
Weather data from weather APIs and Open Street map for mapping.
The authors have provided an exploratory data analysis using GRU,
LSTM, CNN and their hybrid integration. The combination of
LSTM + GRU hybrid gave the finest output with 6.67% MAPE
and 4.5% RMSE. As classification the LSTM-GRU model yields
95% accuracy.

This study (Pragalathan and Schramm, 2024) employs the
Neural Prophet (NP) model to advance the prediction of urban
traffic dynamics by incorporating exogenous variables such as
meteorological conditions and public holidays. By integrating
classical time-series analysis with neural network architectures,
the NP model is capable of capturing non-linear and seasonally
varying patterns in traffic flow. The model’s responsiveness to
external influences particularly rain and calendric events
demonstrates its robustness in urban forecasting contexts. These
findings emphasize the necessity of including environmental and
temporal factors in traffic prediction models, particularly in
metropolitan areas where such variables exert a significant
influence on vehicular movement.

In research study (Sun et al., 2021) the authors developed an
online traffic flow prediction framework that integrates a Bi-LSTM
framework with CNN. Real time data collected from the IoT sensors
situated at intersection of Hongzehu Road and Qingnian Road, in
Sugian City, Jiangsu Province, China. The dataset, structured as a
time series, is managed by a Bi-LSTM network helping as the
generator, while a CNN operates as the discriminator within the
GAN model. To evaluate predictive performance, the study applies
metrics including MSE, MAE, and binary entropy. According to the
reported results, this GAN-based approach demonstrates improved
accuracy compared to separate Bi-LSTM and ARIMA models. The
study does not touch weather impact on traffic flow.

The study (Solanki et al., 2023) incorporates weather data
alongside traffic and Twitter messages to enhance traffic flow
predictions. The deep learning model Bi-directional LSTM
Stacked Auto Encoder architecture is used, it aims to improve
accuracy in predicting traffic congestion under varying weather
conditions, contributing to effective traffic management. Twitter
messages data and traffic and weather datasets are used.

The paper (Valarmathi and Dhanalakshmi, 2024) discusses
using genetic algorithms for optimization and IoT for real time
data collection of weather-adaptive traffic monitoring, enabling
dynamic adjustments in traffic management strategies. This
integration helps predict and mitigate traffic congestion by
analyzing real-time weather data and optimizing traffic flow

accordingly.
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The paper (Dong et al., 2010) develops traffic estimation and
prediction models that account for traffic response to extreme
weather, enabling real-time traffic management systems to
predict congestion and implement advisory and control strategies
effectively, thus mitigating weather impacts on traffic flow. Loop
detectors and roadside sensors data. Vehicle probes data for traffic
conditions. Deficiency in current weather-responsive traffic
management practices. Need for improved traffic estimation
models for inclement weather.

The TransGTR-MCA model (Cui, 2024) incorporates weather
factors, specifically precipitation, to enhance traffic flow predictions.
By considering these external conditions, the model improves
adaptability and accuracy in predicting traffic congestion,
particularly in data-scarce urban environments. Limitations of
the proposed work are insufficient optimization for long-term
prediction accuracy and need for better adaptation to
external factors.

The proposed Multilevel-Gated Recurrent Unit (MGRU) model
(Sravani et al., 2024) incorporates weather conditions and vehicle
numbers to enhance traffic congestion prediction accuracy,
achieving a notable accuracy of 0.887 and a Mean Absolute Error
of 82.34, outperforming existing methods like Conv-Bi-LSTM.

A Weather interaction-aware spatio-temporal attention network
(WST-ANet) model (Zhong et al, 2024) proposed effectively
predicts traffic flow by integrating weather factors, enhancing
adaptability to varying weather conditions. It utilizes a spatio-
temporal weather collaboration insight module, improving
accuracy in forecasting traffic congestion under different
weather scenarios.

The work in (Yasir et al., 2022) highlights that weather
significantly impacts traffic congestion levels. By utilizing
machine learning models MLP Regressor, Stacking Regressor,
SVR used for predictions. Historical traffic volume data utilized
for training and assessment, the study effectively predicts
congestion dynamics, taking into account various weather
parameters alongside time of day and holiday indicators to
enhance forecasting accuracy. Through this model, congestion
of a road can be predicted 1 week in advance with an average
RMSE of 1.12. Consequently, this model can be used to take
preventive measure beforehand.

Recent advances in traffic prediction have demonstrated the
strengths and limitations of different modeling approaches. Early
studies such as (Wu et al., 2018) and (Polson and Sokolov, 2017)
focused primarily on temporal patterns of traffic flow using deep
neural networks and recurrent models. While these methods
achieved promising accuracy for short-term prediction, they
lacked the ability to incorporate exogenous factors, making them
less reliable under unusual or disruptive conditions.

Subsequent works introduced weather and accident information
to improve robustness. For example, (Zhong et al, 2024),
highlighted that affect

congestion, while Gu et al. (2016) emphasized the role of

rainfall and visibility significantly
accident reports in traffic disruption. Although these studies
(Wang et al,

scenarios, they were limited by narrow boundary considerations

improved predictions 2016) wunder specific

and often struggled with the data imbalance problem, where rare

events such as severe accidents or extreme weather were
underrepresented.
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The study (Yixinli and Zhang, 2024)
relationship between various traffic modes and congestion levels,

investigates the

establishing a high-fidelity prediction model that analyzes multi-
modal traffic and congestion data across different time frames. It
employs machine learning techniques, including decision tree,
logistic regression, KNN and random forest (RF) models. The RF
model achieved accuracy of 99.88% after optimization. The study
primarily focuses on traffic volume as the most important predictor
of congestion, but it does not explore other potential influencing
factors in depth, such as weather conditions, road infrastructure, or
driver behavior, which could also significantly impact congestion
levels. The paper does not specifically address the impact of weather
conditions on traffic congestion prediction. The paper establishes a
robust prediction model using various machine learning techniques;
it does not address the addition of real-time data sources or
application of the model in dynamic traffic management systems,
which could enhance the practical utility of the findings in real-
world scenarios.

The study (Hazarika et al., 2024) introduced an edge machine
learning framework for adaptive traffic signal control in intelligent
transportation systems. Their method utilized lightweight object
detection models deployed at the edge to monitor vehicle density in
real time and dynamically adjust traffic light phases. While their
approach significantly reduced delays at intersections and improved
traffic coordination, the study did not explicitly consider exogenous
influences such as weather variability or special events, which often
disrupt flow patterns. This highlights a key research direction, as
integrating environmental conditions into traffic prediction
frameworks can complement edge-based management systems by
providing more resilient and context-aware congestion forecasting.

Despite the fact that various of the above studies on vehicular
traffic congestion prediction presents valuable insights and robust
models, these also has certain limitation like it does not explore other
potential influencing factors in depth, such as weather conditions,
which could also significantly impact congestion levels that should
be acknowledged. These limitations indicate areas for future
research and improvement, highlighting the need for a broader
framework to understanding and predicting traffic congestion
effectively on the basis of heterogeneous and exogenous data.
There are some limitations of widely used models such as LSTM,
Bi-LSTM and CNN-based hybrids. The LSTMs often suffer from
gradient vanishing, while Conv-bi-LSTM has high computational
cost. These shortcomings motivated the development of our FG-
GGRU model, which integrates fuzzy logic with gated recurrent
units to address these issues.

3 Proposed hybrid fusion-based
generative adversarial network applied
gated recurrent unit framework

To effectively capture the sequential and temporal dynamics
inherent in traffic flow data, this study employs a Gated Recurrent
Unit (GRU)-based neural architecture at the core of the predictive
framework. GRUs are a refined variant of traditional Recurrent
Neural Networks (RNNs), specifically designed to preserve
relevant information over long sequences while discarding
irrelevant signals through an efficient gating mechanism.

frontiersin.org


https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2025.1666487

Ali et al. 10.3389/frcmn.2025.1666487
e T et S 3]
| 4 : 1
I |
z 1
: Classification : : Exploratory Analysis |
[ | \ I
: Fuzzy Logic-Automatic : | Spatiotemporal-geospatial :
I Labeling for Classification . I Speed with Weather I
B s e - i
R R e e ) e e e e < e | e e e e s R S 1o o e i e e s e e e
: T & g |
Class Balancing i ' - % 1
: : | | Preprocessing and Data Integration :
I
: Class Balancing using GANs - : :
: i s ; Identify Peak Hours and by .
b e e i . Weekend !
bl s e s (e o e e e B Lo ek ! :
I : ! 1
| | Testao%) | | Train(70%) | T .
: 6 . } Features Selection (Correlation :
I : : Function-Heat map) 1
I | |
: : - [ :
| I
: Input Layer [0] ! : Zero Speed Correction using | | "
- [ | Violation Feature !
I Feed - : : 1
: Test L GRU Hidden " : T |
I Data Layer [1] ! ! 1
: 1 : : Outlier Analysis and Adjustment :
| ' | 1
; GRU Hidden L f !
>— ] |
| Layer [n] : : Weather-Augmented "
: & l I I Spatictemporal-geospatial :
]
{ Dense Target i - Sparsity through Data Fusion :
| | =
: Layer Speed : : :
I : S —— 1| [ ———— '
! I
! |
I
{ H Train Model : _______________________________
i g 1
\ Output Results : : "
i ra I
: Prediction : : T -
|
[ L—l—J : : i
: | | : Weather Data [
Safe C
- I Smooth | | Congested I : : ity (OpenWeather AP1) :
[ I | |
O O TR R b T e S
FIGURE 1

A novel hybrid features F-GGRU framework for traffic congestion prediction under weather conditions and temporal patterns.

Compared to Long Short-Term Memory (LSTM) networks, which
utilize three gates (input, forget, and output) and a memory cell,
GRUs reduce architectural complexity by combining the forget
and input mechanisms into a single update gate and introducing a
reset gate. This simplification results in fewer parameters, reduced
computational overhead, and faster training making GRUs well-
suited for time-sensitive and resource-limited applications such as
traffic congestion prediction.

We propose hybrid F-GGRU framework shown in Figure 1, which
builds on the fundamental GRU design and improves the model’s
learning potential in two significant ways. In order to ensure that the
framework learns representative patterns from both congested and
smooth traffic situations, we first implement a GAN-based class

Frontiers in Communications and Networks

balancing strategy to address label imbalance in the binary
congestion algorithmic
representation of F-GGRU framework presented in algorithm 1 to
algorithm 6. We develop a multisource data fusion approach that
combines exogenous (like weather, peak hours, and holidays) and
(like Smart City Automatic Plate

Recognition Cameras, patrol, and drone sensor) inputs into a single

classification  problem  mathematically

heterogeneous Number
time-series sequence. Through encoding and passing these enhanced
inputs via the GRU layers, the F-GGRU framework is able to learn
contextual impacts and temporal dependencies simultaneously. The
fusion approach make the model adaptable to abrupt changes and noise
in the data, enhancing its capacity to represent the complexity of real
world urban transportation network.
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3.1 Mathematical model explanation of the
F-GGRU framework

The core of the proposed F-GGRU framework is based on the
standard Gated Recurrent Unit (GRU) architecture, which is
enhanced through data fusion and synthetic class balancing. The
GRU cell is designed to capture temporal dependencies by
controlling the flow of information across time steps using gating
mechanisms. Here y, € R"” denote the fused input vector at time
step t, constructed by integrating heterogeneous features and
exogenous attributes. This enriched input forms the sequential
input to the F-GGRU framework.

The cell computations are defined as follows:

i. Update Gate:

azi=0(W,.5,+U,. hy+b,) (1)

ii. Reset Gate:

a,rt:U(W,.j/t+Ur.ht,1+b,) 2

iii. Candidate Activation:

a. by = tanh (Wy,. 5, +Uy. (r, @ hyy) + by 3)

iv. Final Hidden State:

ah=(010-2)0 h_ +z oh (4)

7=y

weather

FCD
t > )t >

eak hours  weekda weekend
yypeokhours, yyueckday gy weckend |

Where symbols stands for:

¥, is the input at time step ¢,

e h;_; is the previous hidden state,

o h; Final hidden state at time t,

e z; and r; are the update and reset gates respectively,

o ﬁ, is the candidate activation,

« © denotes element-wise multiplication,

« ¢ Sigmoid activation function (outputs between 0 and 1),

o« W., W,, W), Weight matrices for input y, in the update, reset,
and candidate gates,

o U, U,, U, Weight matrices for hidden state h;_;,

o b, b,,by, Bias terms for the respective gates

« tanh Hyperbolic tangent activation function (outputs between
—land1).

These Equations 1-4 collectively describe the temporal learning
mechanism of the GRU cell within the F-GGRU framework. The update
gate z; regulates how much of the previous hidden state is carried
forward, while the reset gate r; determines how much past information
to forget. By feeding the GRU with a multi-source fused input y, the
F-GGRU framework effectively captures contextual dependencies and
temporal dynamics for robust traffic congestion prediction.

3.1.1 Loss function and GAN-based class balancing

To enhance the reliability of the model in handling imbalanced
congestion labels, a GAN-based synthetic oversampling mechanism
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is applied during preprocessing. Specifically, a Vanilla Generative
Adversarial Network (GAN) is utilized to generate artificial feature
distribution of the
underrepresented class (e.g., congested or smooth traffic states).

vectors that mimic the statistical
The GAN contains two neural components: A generator G(z; ),
which maps input noise z ~ N(0,1) to synthetic traffic feature
D (x;64),

distinguish between real input samples x and generated samples x.

vectors X. A discriminator which attempts to
The generator and discriminator are trained via the following

minimax loss function in Equation 5:

min max

G D LGAN (D> G) = Ex~pdata(x) [logD (X)]

+E. (5 [log(1-D(G(2))] (5)

Where:

 Paata is the distribution of real traffic data samples.
o p, is the prior distribution over latent noise vectors.
o Dy represents the probability that sample x is real.

When trained, the generator G is used to synthesize new samples
for the minority class, thereby producing a balanced training dataset
that ensures fair learning during the model’s optimization phase.

3.1.2 F-GGRU framework loss function

For the prediction task, the F-GGRU framework is trained as a
binary classifier using the Binary Cross-Entropy (BCE) loss
function, defined by Equation 6:

1Y . .
L BCE = _N; x;log (%) + (1 — x)log (1 — ;) (6)

Where:

o Xx; € Error! Bookmark not defined. is the true label for the i-th
sample (0 = Congested, 1 = Smooth).

o Xx; € is the predicted probability from the F-GGRU framework.

o N is the number of training samples.

The loss function encourages the model to produce output
probabilities that align closely with the ground truth, whereas the
GAN-balanced dataset ensures that both classes contribute equally
to learning, preventing bias toward the dominant class.

3.2 Algorithmic representation of
F-GGRU framework

The proposed hybrid features F-GGRU framework pipeline can
be expressed as a sequence of algorithmic steps applied to the raw
dataset D,,,. The pipeline includes data preprocessing, feature
engineering, class balancing, and final model prediction.

1. Data Preprocessing and Feature Engineering
1.1. Dataset Preparation:
Input: Raw Smart City traffic and Weather conditions data
dataset D,
Output: Cleaned and integrated dataset Dgeqn
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1.2. Load Dataset:

1.2.1. s;: Speed

1.2.2. t; = (h;, my, sec;): Time (Hour, Minute, Second)
1.2.3. d; = (day; month;; hour;): Date

1.2.4. g;: Geographic Sector

1.3. Perform data cleansing:

1.3.1. Remove or impute missing values

1.3.2. Handle outliers

1.4. Generate additional features:

1.4.1.

Hour: Is_Peak_Hour;= 1if t; € {7 - 9,16 — 19}, else 0
1.4.2.

Weekend: Is_-Weekend; = 1if day _of week (d;) € {6,7}, else 0
1.5. Merge with weather dataset W:

1.5.1. Join D,,, and W on (g;, d;)

1.5.2. Aggregate and return enriched dataset D geqp.

Peak

. Spatiotemporal and Weather-Speed Correlation:
Input: D gean
Output: Correlation statistics
2.1. Group data by (g; t;, d;)
2.2. Compute correlation between:
2.2.1. Weather
rainfall, etc.)

Speed  vs. attributes (temp, humidity,
2.2.2. Speed vs. Time attributes (peak hours, weekends)
2.3. Store correlation matrix for model insight.
. Fuzzy Logic-Based Traffic Speed Labeling:
Input: Clean dataset with speeds
Output: Fuzzy traffic speed labels
3.1. Define fuzzy sets for Speed: {Low, Medium, High}
3.2. Apply membership functions:
3.2.1. Low: Congested
3.2.2. Medium/High: Smooth
3.3. Generate fuzzy rules and assign traffic label y; €
{Congested, Smooth}.
. GAN-Based Class Balancing:
Input: Labeled dataset Dy, with imbalance
Output: Balanced dataset Dyajanced
4.1. Encode categorical features into numeric format
4.2. Train a Conditional GAN (cGAN) using minority class labels
4.3. Generate synthetic samples for minority class
4.4. Merge synthetic and real data
4.5. Shuffle to obtain D pgjanced-
. Train-Test Preparation:
Input: D apanced
Output: Normalized and reshaped training/testing datasets
5.1. Split D pajanced into X (features) and Y (labels)
5.2. Normalize features using Min-Max scaling
Reshape input for F-GGRU: (n, timesteps, features)
: Where n is the number of samples, timesteps denotes the
sequence length (look-back window), and features represents
the number of variables at each time step.
5.3. Prepare training and testing sets with equal class
distribution.
. FG-GGRU Framework Training and Prediction
Input: Training dataset (X train, Y train)
Output: Predicted traffic congestion labels
6.1. Define FG-GGRU architecture:
6.1.1. Input layer (1,d) (1, d) (1,d)
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6.1.2. mechanism  (traffic weather
temporal features)
6.1.3. GRU layers

6.1.4. Dense layer with sigmoid activation

Fusion + +

6.2. Fusion function combines heterogeneous and exogenous
features with weighted rules

6.3. Compile model with:

6.3.1. Loss = Binary Cross-Entropy

6.3.2. Optimizer = Adam

6.4. Train on (X (rain> Y train)

6.5. Evaluate on test data (X esp Y test)

6.6. Output binary predictions: {Congested, Smooth}.
Objective is to train the F-GGRU framework to predict binary
traffic congestion labels using fused inputs.

3.3 Data sources

For the F-GGRU framework evaluation used the real time
heterogeneous and homogenous features data.

3.3.1 Heterogeneous features

We acquired heterogeneous features FCD data from the real
time SCIP (Khattak, 2025) dataset. SCIP uses a network of advanced
sensors of surveillance tools for urban monitoring and manually
traffic management. We collect data of key camera types include
high-definition sixty four CCTV, facial recognition systems linked
with NADRA, Automatic Number Plate Recognition (ANPR), at
strategic points across the city. These cameras are supported by
additional sensors like RFID readers, radar systems for vehicle speed
tracking, and flashlight systems for night visibility. The system
integrates with a centralized command and control center and
supports technologies like e-challan issuance and real-time traffic
surveillance, obtaining valuable data for further traffic analysis and
traffic congestion prediction. Traffic data of SCIP for the year
2023 have been collected from SCIP through proper channel.
The key features of SCIP FCD include Date_Time, Date, Hour,
District, Reg_No, Violation, Speed, Geographic_Sector, Police_
Station, Camera_Name, latitude and longitude initially.

3.3.2 Exogenous features

The weather conditions data is collected from OpenWeather API
(APIL, 2025) on the basis of latitude, longitude, time and date. The
homogenous raw dataset have 28 features dt, dt_iso,timezone, city_
name, lat, lon, temp, visibility, dew_point, feels_like, temp_min, temp_
max, pressure, sea_level, nd_level, humidity, wind_speed, wind_deg,
wind_gust, rain_1h, rain_3h, snow_1h, snow_3h, clouds_all, weather_
id, weather_main, weather_description, weather_icon.

3.4 Fusion of heterogeneous and exogenous
features based on correlation analysis

To enhance the representational strength of F-GGRU traffic
prediction framework, this study introduces a data integration
pipeline step 1 to step 3 in Figure 1, that fuses spatiotemporal
traffic records (heterogeneous) with contextual environmental
(exogenous) features that integrate the final dataset for F-GGRU
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TABLE 1 Hybrid features space of heterogeneous and exogenous features for integrated dataset.

Heterogeneous (FCD) feature Data type Exogenous (weather, peak hours, weekend) feature Data type
Speed int64 feels like float64
Violation int64 Humidity int64
Geographic Sector int64 wind_speed float64
Year int64 clouds_all int64
Month int64 weather_main int64
Day int64 weather_description int64
Hour int64 Date object
Minute int64 Label int64
Second int64 Is Peak Hour int64
Is_Weekend int64

framework training, both heterogeneous features (traffic-related
attributes) and exogenous features (weather and temporal
variables) were integrated into a single feature pool (SCIP). Since
including all available attributes may introduce redundancy and
noise, a correlation analysis was applied to identify the most relevant
predictors. Using a heat map of pairwise correlations, weakly
associated or redundant variables were removed, while strongly
correlated features were retained.

The resulting integrated feature set provides a balanced
representation of traffic dynamics and external influencing
factors. Core traffic variables such as speed and geographic sector
preserved
temperature, humidity, wind speed, cloud cover, and categorical

were alongside exogenous indicators including
weather conditions. Temporal and contextual variables such as peak
hour and weekend flag, indicators were also included, as their
correlations with congestion patterns were significant. By fusing
both heterogeneous and exogenous features under a correlation-
driven selection strategy, the final dataset ensures that the FG-
GGRU framework learns congestion patterns that are both data-rich
and context-aware, thereby enhancing robustness under boundary
conditions.

By integration spatial location, time of observation, and
ambient environmental conditions into a unified structure,
the pipeline takes a more comprehensive dataset features
presented in Table 1 of revealing patterns otherwise obscured
in isolated data streams. This multi-dimensional fusion not only
improves the data density in sparse geospatial segments but also
forms the basis for more accurate and context-aware congestion

prediction.

3.5 Outlier analysis and adjustment

The identified outliers are fixed through OSM maximum speed
limit for the respective route. The vehicle speed where exceeding the
maximum limit of speed on a segment of road is replaced with the
standard maximum speed limit value respectively. This step is
critical for minimizing the influence of noise and ensuring that
the fused heterogeneous and selected homogenous features data
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accurately represent typical urban mobility patterns observed in the
smart city network in real time environment.

3.5.1 Zero speed correction using violation feature
This step addresses records in the selected dataset where
vehicles consistently report zero speed, which may not always
indicate congestion but could result from long stops, sensor
errors, or stationary conditions. To improve the dataset, the
violations feature from FCD is selected that specifically
identifying cases where zero speed persists beyond a realistic
time threshold. These flagged records are corrected by replacing
the zero values with the minimum observed non-zero speed. This
approach enhances the accuracy of congestion labeling while
preserving the natural flow patterns in the smart city traffic data.
The speed value s; at time step i is corrected using the following
Equation 7:
ifs;=0
s; otherwise

(7)

i

gz{mmw>m

Where:

o s;: Original speed value at time i.
« s;: Corrected speed value.
o min(S>0): The minimum non-zero speed in the dataset.

3.5.2 Identify peak hours and weekend

This step involves deriving temporal features that capture
recurring patterns in traffic behavior. Based on historical analysis
of the Smart City data, specific time intervals such as morning,
afternoon and evening commute hours are flagged as peak hours,
while we use a calendar data source to identify the effect of holidays
(weekend) on traffic. The behaviors of commuter and traffic and
patterns of traffic are highly dependent on holiday data. The
calendar data source features contain Name, DateTime, and Type
and using the day-of-week attribute. These derived indicators help
differentiate routine traffic flow from irregular patterns, enabling the
model to account for variations caused by daily schedules and
weekend travel dynamics. Incorporating these temporal features
improves the model’s ability to predict congestion with greater
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TABLE 2 Presents number of vehicles observed in peak vs. non-peak hour
and weekday vs. weekend.

Total Peak Non- Weekday Weekend
records hour peak records records
records hour
records
3149881 1316877 1833004 2266293 883588
------------- (41.81%) (58.19%) ‘ (71.95%) ‘ (28.05%)

contextual awareness. Further statistical analysis presented in
3.3 Exploratory Analysis Section and presented in Table 2.

3.6 Exploratory data analysis

This step involves examining how traffic speed varies across
different locations, time intervals, and weather conditions. By
analyzing the merged dataset from heterogeneous traffic data of
Smart City and exogenous data of weather sources, patterns are
uncovered showing how weather condition like rainfall, humidity,
cloudy, and wind speed influence vehicle movement in specific
geographic sectors and time frames. Heatmaps, trend plots, and
correlation matrices are used to visualize these relationships,
providing critical insights into how congestion behavior shifts
under varying spatiotemporal and weather contexts. The analysis
shown in Figure 2 forms a foundation for building weather-aware
traffic prediction models.

10.3389/frcmn.2025.1666487

The analysis of the Average Speed Performance Index (SPI)
across weekdays and weekends reveals clear distinctions in traffic
behavior within smart cities urban road network. During weekdays
(Monday to Friday), SPI values remain relatively high (above 0.68)
during the early morning hours (midnight to 4 a.m.), indicating free-
flowing traffic shown in Figure 3. However, a sharp decline occurs
between 5 a.m. and 9 a.m., marking the onset of peak congestion
driven by office commutes and school activity. The lowest SPI values
are consistently observed between 7 a.m. and 9 a.m., with Friday
exhibiting a slightly more pronounced drop likely due to early
closures and pre-prayer movement. A mild recovery follows
during midday (10 a.m.-2 p.m.), though SPI remains below off-
peak levels, with a second dip observed between 3 p.m. and 6 p.m.
representing evening rush hour. After 7 p.m., the SPI gradually rises,
stabilizing (above 0.64) post-9 p.m. as traffic dissipates shown
in Figure 3.

In contrast, weekend traffic patterns (Saturday and Sunday)
display a smoother flow with less pronounced rush-hour
fluctuations shown in Figure 3. SPI values stay elevated through
the early morning (midnight to 5 a.m.) and gradually decline from
6 a.m., reaching their lowest between 9 am. and 5 p.m. Sunday
shows slightly reduced performance during afternoon hours,
reflecting increased recreational or commercial activity. Unlike
weekdays, the absence of sharp troughs indicates more dispersed
travel behavior. After 6 p.m., SPI steadily recovers toward the late
evening on both days.

Together, these patterns highlight distinct temporal traffic
characteristics between weekdays and weekends shown in

Feature Correlation Heatmap
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Speed performance index variation on weekends

Figure 4. They highlight the importance of incorporating time-of-
day and day-of-week variations in predictive traffic models. The
insights derived from Smart City real time sensor data support the
development of intelligent, context-aware urban traffic management
systems. Figure 5 shown total number vehicles per hour.

The comparison of vehicle record volumes across defined time
categories tells a diverse distribution pattern between peak and non-
peak hours are presented in Table 2. As per the implemented time
segmentation logic, seven out of 24 h (approximately 29%) are
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considered peak hours, specifically 8-9 a.m., 2-3 p.m., 6-8 p.m. The
remaining 17 h (about 71%) are classified as non-peak hours.
Despite this uneven distribution of hours, the recorded traffic
data show that 1833004 vehicle records occurred during non-
peak hours, while 1316877vehicles record were observed in the
peak-hour window. This outcome highlights that although peak
hours span fewer clock hours, they still account for a substantial
portion of the total traffic volume approximately 41.81% of all
vehicle records for December 2023. This indicates significant
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Vehicles record per hour.

congestion pressure during concentrated periods of urban activity,
such as morning and evening commutes or mid-day institutional
movement. On the other hand, the larger share of vehicle records
during non-peak hours reflects steady urban mobility outside
conventional congestion windows. These findings support the
relevance of temporal features in traffic modeling and underscore
the importance of capturing both regular and irregular traffic
behavior in predictive systems.

3.6.1 Feature importance analysis

To enhance the interpretability of the proposed F-GGRU
framework, a feature importance analysis was performed. We
applied statistical features selection techniques over the integrated
dataset obtained from FCD SCIP and weather sources. The results
shown that traffic speed is the most influential predictor of
congestion, confirming its strong and direct association with
traffic flow conditions. Among exogenous variables, humidity,
cloud cover, and wind speed emerged as significant contributors,
underscoring the impact of weather factors on congestion dynamics.
Temporal indicators such as peak hour and weekend also
demonstrated strong influence, reflecting the critical role of time-
of-day and day-of-week variations in shaping traffic behavior. In
contrast, features such as feels_like showed limited predictive value
and was excluded during correlation-based selection. Overall, this
analysis provides transparency into how the model utilizes
heterogeneous reinforcing that the
F-GGRU framework not only delivers higher predictive accuracy
but also offers interpretable insights into congestion patterns under
boundary conditions.

and exogenous inputs,

3.7 Fuzzy logic-automatic labeling for
classification

Fuzzy logic automatic labeling is used for classification The
mathematical formulation for our traffic congestion classification
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problem, particularly a binary classification task (Congested vs.
Smooth) based on traffic data features like Speed, Hour,
Geographic_Sector, and weather condition.

We define a binary classification problem to predict:

y € (0,1)

Where:

o y = 1: Congested
o y = 0: Smooth
Input Features:

Let the feature vector be: x = [x1,%2,...,X,] € R,

We have selected total twenty features, here R, is set of features.
Our selected features are shown in Table 2. We use a logistic
regression-based model as the core classifier for Prediction
Function by Equation 8:

y=f(x0)=0(w'x+b) (8)

Where.

y: Predicted probabilit y congestion

(2) = 775=: Sigmoid activation function
w € R": Weight vector

b € R: Biasterm

Classification Rule: We may adjust the threshold t € (0, 1)
depending on class imbalance.

. _ | 1ify>0.5 (Congested) ©)
Yl =1 0if § <0.5  (Smooth)
We use binary cross-entropy (log loss) as a Loss Function:
£ (3.y) = =[ylog(y) + (1 - y)log(1 - )] (10)

The optimization objective over m training samples is:
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1o S
Z@®)=—>YL(y"y? 11
) =— Zl (9,y9) (11)
Evaluation Metrics are:
A TC+ TS (12)
T = -
MY = TC Y TS + FC + FS
TC
Precision = ——— 13
recision TC+Fs (13)
TC
Recall = ———— 14
= TCTFS (14)
Precision . Recall
F1—Score=2 (15)

" Precision + Recall

o TC = True Congested
o FC = False Congested
o TS = True Smooth
o FS = False Smooth

Evaluation metrics of the classification model presents
mathematically by Equations 12-15 presents. In the proposed
scenario, accuracy measures the proportion of correctly predicted
instances among the total number of samples. It provides a general
effectiveness measure by computing how often the model’s
predictions match the actual class labels. Whereas informative, it
may be less reliable when class imbalance is present.

In our scenario Precision evaluates the ratio of true positive
predictions to all in-stances predicted as positive. This metric
emphasizes the model accuracy by identifying how many of the
predicted congestion alerts (positives) are truly congested. It is
crucial in applications wherever false positives carry a significant
cost. Recall calculates the proportion of actual positive cases that the
model correctly identifies. It measures the model’s ability to detect
all relevant traffic congestion events. High recall ensures that the
system minimizes the chances of overlooking actual congested
which traffic
management. The Fl-score is the harmonic mean of precision

conditions, is critical for real-time urban
and recall. It delivers a balanced evaluation metric that accounts
for both false negatives and false positives. This is especially useful
when seeking a trade-off between capturing all congestion events

and ensuring the accuracy of predictions.

3.8 Class balancing using generative
adversarial network (GAN)

In real-world traffic datasets such as those derived from Smart City,
class imbalance is a common issue particularly when congestion events
are underrepresented compared to normal traffic conditions. To
address this skewed distribution, GAN are employed to balance the
imbalance class without disturbing the sequence of data. This approach
mitigates bias in the training process, ensuring that the learning
algorithm does not disproportionately favor the majority class and
keeps predictive fairness across all classes.

A standard GAN architecture comprises two neural networks: a
Generator G (z; 0g) and a Discriminator D (x; 0d), where random
noise vector sampled represented by z, from a prior distribution
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pz(z), and x is a real data sample drawn from the true distribution
pdata (x). The generator learns to produce synthetic data G (z) that
mimics the true distribution, whereas the discriminator attempts to
distinguish between real and generated samples.

The minimax optimization objective is formally defined as:

min max

G D LGAN (D, G) = Ex ~pdata (x) [IOgD (x)]

+E.p(» [log(1-D(G(2))] (16)

Through iterative adversarial training, the generator gradually
improves its ability to produce high-fidelity minority class data
points that the discriminator cannot distinguish from real samples.
Once the GAN reaches equilibrium, synthetic minority data is combined
with the original dataset to form a balanced training set. This enhances
model generalizability, reduces classification bias, and improves
performance on previously underrepresented classes during evaluation.

3.9 Impact of hybrid F-GGRU framework
on society

The hybrid F-GGRU framework acts a valuable role in
administrative urban development by highlighting places that
frequently involvement traffic congestion. This awareness enables
city planners to avoid further constructions of public commercial
centers, educational institutions and patrol pumps in congestion
proven locations in city infrastructure they are already
overburdened areas. The hybrid F-GGRU framework not only
improves daily mobility for citizens but also supports long-term

urban sustainability and improves the livability of cities.

4 Results and discussion

This study evaluates the effectiveness of Gated Recurrent Unit
(GRU) models across four experimental configurations designed to
enhance traffic congestion prediction accuracy. The experiments were
systematically structured as follows: (i) using raw FCD alone, (ii) GAN
balanced classification FCD (iii) Combine FCD with weather conditions
(FCD-weather) features from weather APIs, and (iv) Applying GANs
for class balancing over the merged FCD-weather dataset. These
configurations reflect a progressive enhancement in data richness
and preprocessing sophistication, enabling the assessment of each
augmentation’s contribution to the model’s predictive performance.

The dataset used in this analysis comprises minute-level traffic
records for the month of December 2023, collected from the Smart
City real time surveillance system, covering seven major urban
Traffic behavior
granularity, where each segment was annotated using fuzzy logic

sectors. was analyzed at fine temporal
based labeling strategies derived from vehicle speed and time-based

thresholds. Our analysis described in below four scenarios.

4.1 Comparative analysis of F-GGRU
framework and benchmark models

In our study, a range of machine learning, classical deep
learning, and advanced deep learning models were implemented
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TABLE 3 Benchmark models accuracy results on heterogeneous FCD features.

Model setup Accuracy (%) Precision Recall Fl-score
Logistic Regression 74 0.56 0.74 0.6425
Decision Tree 65 0.67 0.65 0.66349
Random Forest 70 0.67 0.70 0.6872
Gradient Boosting 75 0.71 0.75 0.66187
XGBoost 75 0.70 0.75 0.670464
AdaBoost 75 0.71 0.75 0.644089
KNN 71 0.67 0.713 0.6877
Artificial Neural Network 75 0.70 0.752 0.6625
GRU 76 0.81 0.77 0.79

on below four types of features i. FCD features dataset, ii. GAN based
FCD features dataset, iii. Integrated heterogeneous (FCD) and
exogenous features dataset, iv. GAN based balanced Integrated
heterogeneous (FCD) and exogenous features dataset. The
Benchmark Models include widely used approaches such as
AdaBoost (Wang et al, 2016), XGBoost (Yu and Xie, 2024),
Decision Trees (Lartey et al, 2021) as base learners alongside
Linear Regression (Hazarika et al, 2024), and K-Nearest
Neighbors KNN (API, 2025). Additionally, Artificial Neural
Networks (ANNs) and CNN were applied. Deep learning model
employed in the analysis include Gated Recurrent Unit (GRU).
Furthermore, hybrid architectures were explored through F-GGRU
framework. Given the spatiotemporal characteristics of the dataset,
F-GGRU framework demonstrated relatively stronger performance.
Among these, the F-GGRU framework yielded the most favorable
outcomes. The subsequent sections provide a concise overview of
the F-GGRU framework, followed by an explanation of the hybrid
approach integrating this model.

4.1.1 Models training and evaluation

The entire dataset is split into 70% training and 30% testing sets
represented in algorithm 5. During the training phase, the model
learns to minimize the prediction error between actual and predicted
speeds. Once trained, the model is evaluated using standard
performance metrics, such as accuracy, precision, recall, and F1-
score, especially focusing on the congested class to validate its
reliability under real-world conditions. The results are then
presented in terms of the predicted traffic state, facilitating
decision-making for traffic control authorities.

4.1.2 Scenario 1: benchmark models and GRU
analysis on unbalanced floating car data
features dataset

In the initial evaluation using the selected FCD features
presented in Table 1 without class balancing, performance
variation was observed across classical ML and DL models and
the models results shown in Table 3. Logistic Regression, although
simple, showed relatively moderate accuracy (74%) and a notably
low precision (0.56), indicating high false-positive rates. Decision
Tree and Random Forest showed balanced precision and recall, but
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accuracy remained in the 65%-70% range. Notably, ensemble
models like Gradient Boosting, XGBoost, and AdaBoost reached
slightly better accuracy (~75%), though their F1-scores hovered
around 0.66. Among all models, GRU with linear activation stood
out with an Fl-score of 0.79 and the highest precision (0.81),
highlighting its superior capability in capturing sequential
dependencies in temporal traffic data even without class balancing.

4.1.3 Scenario 2: benchmark models and F-GGRU
framework analysis on generative adversarial
networks based balanced floating car data
features dataset

Upon applying GANs to balance class distributions of FCD
features presented in Table 1, a significant performance boost was
evident across nearly all models and results shown in Table 4.
Logistic Regression, which previously had weak precision,
achieved a perfect recall (1.0) and improved Fl-score (0.85).
Similarly, ensemble models like Gradient Boosting, AdaBoost,
and XGBoost consistently achieved an accuracy of 83% with
strong Fl-scores around 0.85, indicating balanced predictive
strength. The F-GGRU framework further excelled in this
scenario, reaching an accuracy of 84% and maintaining high
precision (0.78) and recall (0.98), underscoring the effectiveness
of combining generative resampling with temporal deep learning
in imbalanced classification tasks.

4.1.4 Scenario 3: benchmark models and F-GRU
framework analysis on unbalanced integrated
floating car data and exogenous features dataset
Integrating external exogenous features presented in Table 1
with the FCD features presented in Table 1 provided additional
context for congestion prediction, and models responded well to
the enriched feature space. Integrating exogenous features
presented in Table 1 with FCD features dataset provided
additional context for congestion prediction, and models
the While
benchmark models Logistic Regression and Decision Trees

responded well to enriched feature space.
showed modest improvements, reaching up to 74% accuracy
of 0.85 and 0.76 respectively,

techniques retained their strength, maintaining accuracy levels

and Fl-scores ensemble
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TABLE 4 Benchmark models and F-GGRU framework accuracy on GAN applied on FCD features.

Model setup Accuracy (%) Precision Recall F1-score
Logistic Regression 83 0.74 1.0 0.85
Decision Tree 77 0.78 0.75 0.76
Random Forest 80 0.77 0.85 0.81
Gradient Boosting 83 0.75 0.99 0.85
XGBoost 83 0.75 0.98 0.85
AdaBoost 83 0.75 0.99 0.85
KNN 80 0.77 0.87 0.82
ANN 83 0.75 0.98 0.85
F-GGRU Framework 84 0.78 0.98 0.85
TABLE 5 Benchmark models and F-GRU accuracy results on unbalanced integrated features space dataset.
Model setup Accuracy (%) Precision Recall F1-score
Logistic Regression 74 0.74 1 85
Decision Tree 65 0.78 0.75 76
Random Forest 69 0.77 0.83 0.80
Gradient Boosting 75 0.75 0.98 0.85
XGBoost 75 0.75 0.98 0.85
AdaBoost 75 0.75 0.99 0.85
KNN 71 0.77 0.87 0.82
ANN 75 0.75 0.98 0.85
F-GRU 83 0.89 0.87 0.88
TABLE 6 Accuracy table of benchmark models and F-GGRU framework on GANs applied integrated data.
Model setup Accuracy (%) Precision Recall F1-score
Decision Tree 77 0.77 0.77 0.77
Random Forest 79 0.80 0.80 0.80
KNN 81 0.82 0.81 0.81
Logistic Regression 83 0.87 0.83 0.83
Gradient Boosting 83 0.87 0.84 0.83
XGBoost 83 0.87 0.84 0.83
AdaBoost 83 0.87 0.83 0.83
ANN 83 0.86 0.83 0.83
F-GGRU Framework 0.98 0.99 0.98 0.98

around 75% with improved recall and F1-scores (~0.85). Notably,
the fuzzy logic based labeling GRU (F-GRU) framework achieved
83% accuracy and a superior Fl-score of 0.88, suggesting that
weather context synergizes well with temporal dependencies in
traffic flow modeling. Comparative results of models presented
in Table 5.
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4.1.5 Scenario 4: benchmark models and F-GGRU
framework analysis on generative adversarial
networks based balanced integrated
features space

This scenario produced the most pronounced results presented
in Table 6, where both class balancing (via GAN) and multi-source
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(A) ROC curve for both classes congested and smooth using AdaBoost model (B) ROC Curve for both classes congested and smooth using ANN
model (C). ROC curve for both classes congested and smooth using F-GGRU framework.

data fusion (FCD + weather) were employed. All models benefited
from this approach, with ensemble methods like Gradient Boosting,
Ada-Boost, and XG-Boost reaching consistent scores accuracy at
83%, precision at 0.87, and F1-scores around 0.83. KNN also showed
strong performance (81% accuracy and 0.81 Fl-score). The
F-GGRU framework, however, dominated this setting with a
remarkable 98% accuracy and Fl-score of 0.98, authenticating its
robustness in sequence modeling and its adaptability to fused and
balanced datasets.

The inclusion of weather variables such as humidity, wind speed,
temperature, and overall weather conditions demonstrated a
measurable impact on prediction accuracy, reflecting the influence
of environmental dynamics on congestion trends. Furthermore, the
application of GANs to balance class representation effectively
mitigated the skew typically observed in real-world traffic datasets,
especially between congested and smooth instances. The results
highlight that the final F-GGRU framework, trained on the GAN-
augmented and exogenous features (weather conditions, peak hours,
weekend)-enhanced dataset, outperformed other configurations in
terms of classification metrics including Fl-score, precision, and
Recall. This confirms the benefit of both data balancing and
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multimodal data integration in smart traffic prediction systems.
This benchmarking not only establishes the superiority of the
proposed F-GGRU framework but also fulfills the requirement of
comparing its performance against state-of-the-art deep learning
ANN and in Table 6 mentioned machine learning algorithms.

To evaluate the classification performance of each model, the
Receiver Operating Characteristic (ROC) curves for both traffic
congestion classes—Congested (0) and Smooth (1)—were
plotted for AdaBoost shown in Figure 6a, ANN shown in
Figure 6b, and the proposed hybrid F-GGRU framework
shown in Figure 6¢.

The ROC curve for the AdaBoost model indicates moderate
discriminative power, with AUC values of 0.78 for both classes,
suggesting limited sensitivity in differentiating between congested
and smooth traffic under the current feature representation. The
performance improved considerably with the ANN model, where
both classes achieved an AUC of 0.88, reflecting enhanced predictive
capacity and more reliable generalization over unseen data.

However, the most significant improvement was observed in the
F-GGRU frame-work with 98% accuracy, which delivered near-
perfect separation with an AUC of 0.99 for both Congested and
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TABLE 7 Hyperparameter tuning results for the F-GGRU framework on SCIP dataset

Trial  Learning Batch Hidden Dropout Activation Accuracy Precision
rate size units
(Layers)

1 0.001 64 (64, 32, 16) 02 ReLU 0.9847 0.9702 1.0000 0.9849 0.9912
2 0.001 128 (128, 64, 32) 03 Tanh 0.9848 0.9704 1.0000 0.9850 0.9914
3 0.001 256 (128, 64, 32) 0.4 ReLU 0.9846 0.9701 1.0000 0.9848 0.9911
4 0.0005 64 (64, 32, 16) 02 Tanh 0.9848 0.9703 1.0000 0.9849 0.9913
5 0.0005 128 (128, 64, 32) 03 Tanh 0.9848 0.9704 1.0000 0.9850 0.9914
6 0.0005 256 (256, 128, 64) 03 ReLU 0.9847 0.9703 1.0000 0.9849 0.9912
7 0.0001 64 (64, 32, 16) 02 ReLU 0.9847 0.9702 1.0000 0.9849 0.9912
8 0.0001 128 (128, 64, 32) 03 Tanh 0.9848 0.9704 1.0000 0.9850 0.9913
9 0.0001 256 (128, 64, 32) 0.4 ReLU 0.9846 0.9701 1.0000 0.9848 0.9911
10 0.001 64 (128, 64, 32) 03 Tanh 0.9847 0.9702 1.0000 0.9849 0.9912
11 0.001 128 (256, 128, 64) 03 ReLU 0.9847 0.9703 1.0000 0.9849 0.9912
12 0.0005 128 (128, 64, 32) 0.3 Tanh 0.9848* 0.9704* 1.0000* | 0.9850% | 0.9914*
13 0.0005 64 (256, 128, 64) 02 ReLU 0.9847 0.9702 1.0000 0.9849 0.9912
14 0.0005 256 (128, 64, 32) 0.4 Tanh 0.9846 0.9701 1.0000 0.9848 0.9911
15 0.0001 128 (128, 64, 32) 03 ReLU 0.9847 0.9703 1.0000 0.9849 0.9912
16 128 (128, 64, 32) 03 Tanh 0.9848 0.9704 1.0000 0.9850 0.9913

Smooth classes. The ROC curves of F-GGRU framework closely
follow the top-left corner, indicating a very high true positive rate
with a minimal false positive rate. This level of precision can be
attributed to the model’s ability to incorporate temporal patterns
and weather-related variations more effectively than traditional
ensemble or feed forward architectures. In summary, the
progression from AdaBoost to F-GGRU framework highlights the
benefits of deep temporal modeling and fusion strategies in
enhancing traffic congestion prediction accuracy.

Across all scenarios, the proposed F-GGRU framework with
linear activation function consistently outperformed from
traditional ML models, Multilevel-Gated Recurrent Unit (MGRU)
model (Sravani et al., 2024) and Conv-Bi-LSTM and GRU-LSTM
(Zafar et al,, 2022b), especially when supported by balanced data and
contextual weather features. GAN-based augmentation and data
fusion significantly enhanced classification robustness, reducing bias
and improving generalizability. These findings validate the
effectiveness of integrating generative resampling with temporal
deep learning frameworks for smart city traffic analytics.

4.2 Hyperparameter tuning and optimal
F-GGRU framework configuration

4.2.1 Hyperparameter tuning of F-GGRU on
SCIP dataset

A thorough hyperparameter tuning process was carried out to
optimize the proposed F-GGRU framework. Sixteen experimental
trials were conducted by systematically adjusting the learning rate,
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batch size, model depth, hidden units, dropout rate, and activation
functions. The results Table 7 demonstrated that the model achieved
consistently strong performance across all configurations, with
validation accuracy of approximately 98.5%, precision of 97.0%, recall
of 100%, F1-score of 98.5%, and AUC values exceeding 0.991. Among
the tested configurations, the combination of a learning rate of 0.0005,
batch size of 128, hidden units (128, 64, 32), dropout rate of 0.3, and tanh
activation function achieved the best trade-off between accuracy and
generalization, and was therefore selected as the final model.

4.2.2 Hyperparameter tuning of F-GGRU on
CityPulse dataset

The hyperparameter tuning of the F-GGRU framework analysis
presented in Table 8 on the CityPulse weather conditions data
integrated with FCD dataset (Aarhus, 2025), conducted across
16 trials, successfully identified an optimal configuration (Trial 5:
LR = 0.001, Batch = 256, Units = (64,64,32), Dropout = 0.2,
Activation = Tanh) that achieved exceptional performance
0.9942, AUC = 0.9976) while
maintaining perfect recall (1.000) across all trials. The results

(Accuracy = consistently
demonstrated a pronounced sensitivity to batch size, with larger
batches (256) significantly outperforming smaller ones (128), and
revealed the superiority of a wider, symmetric network architecture
paired with moderate regularization. This rigorous tuning process
not only optimized the model for the CityPulse dataset but also,
when contrasted with the robust performance on the SCIP dataset,
provided strong evidence for the generalizability and robustness of
the F-GGRU framework across diverse real-world sensing data
environments.
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TABLE 8 Hyperparameter tuning results for the F-GGRU framework on CityPulse dataset.

Trial  Learning Hidden units Dropout Activation Val_Acc Precision
rate (Layers)

1 0.001 128 (64, 64, 32) 0.2 tanh 0.9845 0.9701 10000  0.9850 09910

2 0.001 128 (64, 64, 32) 0.3 tanh 0.9852 09710 1.0000 09854 09915

3 0.001 128 (128, 64, 32) 02 tanh 0.9868 09725 10000 0.9861 0.9920

4 0.001 128 (128, 64, 32) 0.3 tanh 0.9860 09718 1.0000 09859 09917

5 0.001 256 (64, 64, 32) 02 tanh 0.9942 0.9870 10000 0.9942 0.9976

6 0.001 256 (64, 64, 32) 03 tanh 0.9935 0.9865 1.0000 09932 09973

7 0.001 256 (128, 64, 32) 02 tanh 0.9928 0.9855 1.0000 09927 09970

8 0.001 256 (128, 64, 32) 0.3 tanh 0.9918 0.9842 1.0000 09920 0.9965

9 0.0005 128 (64, 64, 32) 02 tanh 0.9850 0.9705 1.0000 09850 09912

10 0.0005 128 (64, 64, 32) 03 tanh 0.9848 0.9704 1.0000  0.9850 09914

11 0.0005 128 (128, 64, 32) 02 tanh 0.9856 09715 1.0000 09856 09918

12 0.0005 128 (128, 64, 32) 0.3 tanh 0.9848 0.9704 10000 0.9850 09914

13 0.0005 256 (64, 64, 32) 02 tanh 0.9920 0.9850 1.0000 09925 0.9960

14 0.0005 256 (64, 64, 32) 03 tanh 0.9915 0.9846 10000 09920 0.9962

15 0.0005 256 (128, 64, 32) 02 tanh 0.9922 0.9852 1.0000 09926 0.9967

16 0.0005 256 (128, 64, 32) 03 tanh 0.9918 0.9845 10000 09920 0.9963
4.3 F-GGRU framework validation on temporal patterns into a unified hybrid feature space. A key
additional real-world dataset and innovation lies in its integrated pipeline, which combines fuzzy
robustness analysis logic-based automatic labeling, GAN-driven class balancing, and

advanced temporal modeling through a gated architecture.
To further establish the robustness and generalizability of the = Validated against a suite of classical machine learning (Random
proposed F-GGRU framework, validation was conducted on an  Forest, XGBoost, etc.) and deep learning (GRU, ANN)
independent real-world dataset, the CityPulse dataset (Aarhus,  benchmarks which achieved accuracies of only 77%-83% with
2025). This dataset integrates urban Floating Car Data (FCD)  poor performance on the critical “congested” class the proposed
with weather conditions collected from Open Data Aarhus in  F-GGRU framework demonstrated superior performance,
Denmark, providing diverse traffic dynamics and environmental  achieving over 98% accuracy, near-perfect recall (1.00), and a
conditions that differ from the SCIP dataset. The evaluation high ROC-AUC value (0.99). Significantly, rigorous
confirmed that the framework consistently sustained high  hyperparameter tuning and validation on a second, independent
predictive performance, achieving validation accuracies above  real-world dataset (CityPulse) confirmed the framework’s
98.4%, precision around 97%, perfect recall, and AUC values  robustness and generalizability, where it achieved even higher
exceeding 0.991 across both datasets. Notably, the SCIP dataset  performance (99.42% accuracy, 0.9976 AUC). This proves the
favored a deeper hidden-layer configuration with moderate = model is not a singular solution but an adaptable and robust
dropout, while the CityPulse dataset achieved optimal results  tool for diverse urban environments. These findings underscore
with a more symmetric architecture and larger batch size. Despite ~ that the framework achievement is rooted in its synergistic
these structural variations, the framework demonstrated stable  combination of intelligent preprocessing (addressing class
generalization across heterogeneous data sources. These results  imbalance with GANs), feature fusion (incorporating impactful
validate the adaptability of the F-GGRU model and reinforce its ~ weather data), and sequential deep learning. The F-GGRU is
potential for deployment in practical intelligent traffic  therefore not only a highly accurate predictive tool but also a
management systems. scalable and practical solution for real-time traffic monitoring
systems. Its ability to reliably differentiate between traffic
conditions enables proactive measures such as dynamic route
5 Conclusion guidance and adaptive traffic signal control. By providing traffic
management authorities with a state-of-the-art, generalizable
This research study developed the F-GGRU framework, a  solution, this work contributes directly to reducing travel
comprehensive methodology for fusing heterogeneous traffic  delays, optimizing road infrastructure, and enhancing decision-
data FCD with exogenous factors like weather conditions and  making for smarter, more responsive urban mobility.
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Currently we integrated data sources of SCIP FCD from
heterogeneous data sources and Weather, peak hours, week days,
weekend from exogenous data sources in future we will integrates
multiple data sources for further work. We have novel data set of SCIP,
having various radar based cameras sensors that generate digital data.
Incorporate events data such as accidents, road closures, public protests,
planed events or major events from APIs like Google Traffic or Twitter,
etc., to improve model con-text-awareness. Integrate the trained model
into an edge computing environment or smart traffic control platform
for real-time congestion prediction and response.

Another promising direction is the application of transfer
learning to the smart city traffic domain. Pre-trained models
trained on large-scale traffic or mobility datasets can be fine-
tuned with city-specific data, enabling the framework to quickly
adapt to new environments with limited labeled data. This strategy
could enhance generalization, reduce training costs, and accelerate
deployment in different urban contexts.
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