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Introduction: Beam-level traffic forecasting plays a vital role in the optimization
of 5G networks by enabling proactive resource allocation and congestion
control. However, the task is complicated by inherent data sparsity and the
presence of multi-scale temporal dynamics, making accurate predictions difficult
to achieve using conventional models.

Methods: To address these challenges, we propose a Gated Recurrent Unit
(GRU)-based Multi-Task Learning (MTL) framework, enhanced by a weighted
ensemble approach. We systematically evaluate the performance of six
forecasting models—Linear Regression, DLinear, XGBoost, Echo State Network
(ESN), Long Short-Term Memory (LSTM), and GRU-MTL—across three input
sequence lengths (168-h, 24-h, and 8-h) using real-world beam-level data
from the ITU Al for Good initiative.

Results: Experimental findings reveal that the GRU-MTL model significantly
outperforms traditional baselines, achieving a Mean Absolute Error (MAE) of
0.2136 on 168-h sequences compared to LSTM's 0.3223. Long sequences
(168-h) reduce MAE by 56% relative to short 8-h windows, effectively
mitigating the effects of sparsity. Furthermore, an ensemble of top-performing
models (MTL, XGBoost, and Linear Regression) yields additional gains, reducing
MAE to 0.2105—a 1.45% improvement over MTL alone.

Discussion: These results highlight the importance of long-term temporal
context and model diversity for robust traffic prediction in sparse
environments. The proposed framework offers practical guidelines: 168-h
forecasting windows are optimal for weekly planning, and model ensembling
enhances generalization across varying beam activity levels. This study
contributes a scalable and accurate solution for spatio-temporal traffic
forecasting in next-generation wireless networks.

5G, traffic forecasting, time series prediction, GRU, multi-task learning, LSTM,
ESN, DLinear

1 Introduction

The explosive evolution of 5G networks has redefined the wireless communications
paradigm and witnessed an exponential surge in mobile data traffic driven by the
proliferation of smartphones, IoT devices, and bandwidth-intensive applications,
introducing an increasing strain on the available wireless spectrum capacity (Cisco,
2020; Zhang et al, 2023). This increasing demand has not only introduced a suite of
challenges that require innovative forecasting techniques, but has also required continuous
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advances in wireless communication technologies such as 5G and
beyond (ITU Radiocommunication Sector, 2020; 3GPP, 2022).

To meet these growing demands, 5G wireless networks operate
across a diverse set of frequency ranges, including sub-6 GHz (FR1)
and millimeter-wave (mmWave) bands (FR2, 24-100 GHz), offering
abundant spectrum resources that enable multi-gigabit-per-second
data rates and ultra-low latency (Rappaport et al., 2013). However,
mmWave signals suffer from high path loss and susceptibility to
blockages, which require advanced techniques such as beamforming
and massive MIMO to focus energy directionally and enhance
coverage (Rohde and Poddar, 2018). Recently, the upper midband
spectrum—also known as FR3, typically spanning 7-24 GHz—has
emerged as a promising candidate for 6G due to its favorable trade-off
between capacity and coverage (Giordani et al., 2020). This band
benefits from improved propagation compared to mmWave while still
offering wider bandwidth than sub-6 GHz, making it well-suited for
mobile broadband and edge intelligence applications (Alsabah et al.,
2023). In addition, 6G-customized beamforming strategies, such as
outage-based beamforming, are being developed to improve link
reliability under dynamic conditions and harsh propagation
environments (Alrabeiah and Alkhateeb, 2022). These technologies
not only improve spectral efficiency but also support massive device
connectivity and enable emerging applications such as smart cities,
immersive media, and real-time industrial IoT (Agiwal et al., 2016).

A key challenge in 5G network management is ensuring optimal
resource allocation to maintain high Quality of Service (QoS) in
increasingly dense and heterogeneous network environments (Zhang
et al,, 2023). Efficient traffic forecasting enables proactive network
optimization, minimizing congestion, and ensuring dynamic
bandwidth allocation (Wu et al., 2020). However, traffic forecasting
in 5G networks is significantly more complex than in previous
to the
management, particularly at the beam level. Unlike traditional

generations due increased granularity of network
macro cell-based forecasting, beam-level forecasting requires
capturing highly localized and dynamic user activity, making it a
crucial but difficult task (Rappaport et al., 2019). In addition, the
traditional methods struggle to handle traffic irregularities such as
intermittent zeros, short time-series lengths, and multivariate
dependencies. This study tackles these limitations by introducing
Gated Recurrent Unit (GRU) in multi-task learning (MTL)
framework capable of learning shared representations across
multiple prediction tasks. The proposed approach leverages state-
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of-the-art (SOTA) forecasting models designed to handle complex
multivariate time-series data, enhancing predictive accuracy and real-
time adaptability (Siami-Namini et al., 2018).

1.1 Traffic data collection in 5G
wireless system

As part of global efforts to advance Al-driven solutions for
sustainable development, the AI for Good initiative, in collaboration
with the International Telecommunication Union (ITU), launched a
challenge in spatio-temporal load forecasting in 5G wireless systems.
The challenge focuses on predicting beam-level wireless traffic, a
critical component in enhancing network resource allocation and
ensuring efficient network operations (AlforGood-ITU, 2024). (The
data collection process is given in Figure 1).

To support this initiative, the ITU released high-resolution
beam-level throughput datasets with precise hourly granularity,
providing critical network performance metrics, including
throughput volume, throughput time, physical resource block
(PRB) utilization, and user count. Each of the four datasets
(throughput volume, throughput time, physical resource block

(PRB) utilization, and user count) comprises:

e 30 base stations (BSs), each containing 3 cells, with each cell
consisting of 32 beams, resulting in a total of 2,880 beams.

5

2,419,200 samples for each of the four datasets, making it

e Hourly recordings over weeks, amounting to
one of the most detailed public datasets available for 5G
network traffic forecasting.

e Hierarchical segmentation, enabling granular traffic flow

analysis at different levels of the network infrastructure.

These extensive datasets provides a valuable foundation for
exploring forecasting strategies, allowing researchers to develop
models capable of capturing intricate spatial and temporal
variations in network traffic. Figures 2-4 show examples of the
four different time-series data for 5 weeks at different base stations,
beams, and cells.

To gain a deeper understanding of the deficiency inherent in
beam-level traffic patterns, we analyzed the distribution of zero-
valued entries across both temporal (840 hourly samples) and spatial
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Spatio-Temporal Beam-Level Traffic Data Collection in 5G Wireless Systems: 30 Base Stations (BSs), 3 users per BS, and 32 beams per user. Data is

collected hourly for 5 weeks (AlforGood-ITU, 2024).
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Sample of the four datasets at a different base stations, cells and beams.
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FIGURE 3

Sample of the four datasets at a different base stations, cells and beams.

(2,880 beams) dimensions. These zero entries represent periods or
locations of beam inactivity where no user data traffic was recorded.
An initial analysis, illustrated in the bar chart of Figure 5a, reveals
the average spatial sparsity per time sample. On average, each
sample comprises approximately 915 zero-valued and 1965 non-
zero-valued beams, sparsity of
approximately 32%. This reflects a consistent pattern of

indicating a mean level
intermittent beam activity at any given time step. Furthermore,
we examined the temporal evolution of this deficiency, as depicted in
the line plot of Figure 5b. The percentage of inactive beams per
sample fluctuates considerably over the 840-h period, with values
ranging from approximately 20% to over 40%. This dynamic trend
highlights the significant temporal variability in network utilization,
likely attributable to factors such as diurnal usage cycles, user

Frontiers in Communications and Networks

mobility patterns, and heterogeneous service demands. These
findings underscore a critical modeling challenge: the data is
fundamentally sparse and dynamically so. This necessitates the
development of forecasting models, such as scarcity-aware or
multi-task architectures, that can explicitly account for inactive
periods to improve predictive accuracy and avoid biases

introduced by zero-inflated data.

1.2 The problem statement

The rapid expansion of 5G wireless networks, driven by
unprecedented growth in mobile devices, IoT applications,
and bandwidth-demanding services, has placed increasing
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Traffic zero and non-zero data distribution. (a) Average Zero vs Non-Zero Counts per Sample. (b) Temporal Distribution of Zero Entries Across Samples.

FIGURE 6

Gru integrated multi-task learning framework.
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Sliding window strategy used in training and testing. Left: The GRU-based model is trained with incremental target sequences. Right: The pre-

trained model recursively predicts future values during testing

pressure on the limited wireless spectrum and necessitated
significant advancements in how traffic is managed and
forecasted. Unlike traditional macro cell-level prediction, the
introduction of beamforming in 5G networks has shifted traffic
management to the beam level, where user activity is highly
localized, dynamic, and inherently more complex to predict.
Accurate beam-level traffic forecasting has therefore become
critical for enabling optimal resource allocation, dynamic
and the
delivery of consistent Quality of Service (QoS) in modern

bandwidth management, congestion mitigation,

wireless systems.

Frontiers in Communications and Networks

However, this finer spatial granularity introduces several
persistent challenges that conventional statistical and early
machine learning methods struggle to address. These include the
prevalence of intermittent zeros in beam-level datasets—periods of
low or no traffic—which can distort predictions when not handled
properly. Moreover, the typically short time-series length for
individual beams limits the model’s ability to learn long-term
patterns, further complicating forecasting tasks. In addition, the
multivariate nature of network performance metrics adds a layer of
complexity, requiring models to capture intricate dependencies
among multiple correlated features. Finally, practical deployment
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Block diagram of the testing setup: the final week of training is used as input to the pre-trained model, and the outputs are evaluated against the fifth

week of data.

TABLE 1 Hyperparameters for the different models.

Hyperparameters  Linear regression DLinear XGBoost

Input Sequence Length 168, 24, 8 168, 24, 8 168, 24, 8 168, 24, 8 168, 24, 8 168, 24, 8

Hidden Dimension 1,024 1,024 1,024 1,024 1,024 1,024

Network Architecture GRU + Linear GRU + Linear GRU + XGBoost ESN core LSTM + Linear GRU, Linear, Classifier
Activation Function ReLU ReLu - tanh tanh ReLU/Linear
Optimizer Adam Adam Adam Adam Adam Adam

Learning Rate 0.01 0.0001 0.1 0.000001 0.0001 0.001

Batch Size 128 128 128 128 128 128

Epochs 1,500 500 1,500 5,000 1,500 1,500

Evaluation Metrics MAE, MSE, RMSE MAE, MSE, RMSE | MAE, MSE, RMSE = MAE, MSE, RMSE = MAE, MSE, RMSE | MAE, MSE, RMSE

constraints in 5G networks demand forecasting models that are not
only accurate but also lightweight and efficient enough for real-time
use at the network edge.

These challenges highlight a clear gap: while deep learning
methods such as Recurrent Neural Networks (RNNs) and Long
Short-Term Memory (LSTM) networks have shown promise in
general traffic forecasting, they often remain inadequate for beam-
level forecasting where sparsity, short time spans, and multivariate
relationships must be tackled simultaneously. This thesis addresses
this gap by investigating the use of Gated Recurrent Units (GRUs)
within a Multi-Task Learning (MTL) framework. The goal is to

Frontiers in Communications and Networks 06

design a forecasting approach that can learn shared representations
across multiple prediction tasks—such as traffic volume regression
classification—while

and active/inactive beam

computationally efficient for real-time operation. In doing so,

remaining

this research aims to advance the development of robust,
scalable, and adaptive forecasting models that can meet the
stringent requirements of next-generation wireless networks.
Spatio-temporal beam-level forecasting in 5G networks requires
models that can effectively handle sparse, irregular, and highly
dynamic traffic patterns while remaining efficient enough for
Conventional forecasting

real-time deployment.
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TABLE 2 Performance metrics for different models and sequence lengths.

10.3389/frcmn.2025.1658461

Metrics Sequence length Linear regression DLinear XGBoost ESN LSTM MTL
MAE 168 0.218503 0.238085 0.230860 0264141 0355919 0213631
24 0.239661 0.286313 0.225731 0.264349 0301782 0.300096
8 0.277397 0.274060 0.227612 0.268062 0.316045 0.282097
MSE 168 0273377 0.324395 0.299680 0389497 0.743190 0.249026
24 0361508 0.550637 0.291654 0367124 0503964 0.733608
8 0.479330 0.398813 0.270044 0383942 0587777 0.494261
RMSE 168 0522855 0.569557 0.547430 0.624097 0.862085 0.499025
24 0.601255 0.742049 0.540050 0.605908 0.709904 0.856509
8 0.692336 0.631516 0.519658 0.619631 0.766666 0.703037

TABLE 3 Base line model.

Hist. Avg iTransformer PatchTST DLinear Transformer
Test 1 0.2108 0.1967 0.1973 0.2005 0.2166
Test 2 0.2431 0.2348 0.2343 0.2352 0.2331
Ground Truth vs Dlinear Model Prediction for Sample 111 Ground Truth vs XGBoost Model Prediction for Sample 111
Sample 111 - First 100 Sample 111 - First 100 di
7 = Ground Truth 6 = Ground Truth
~— Prediction ~— Prediction
6 5
5 4
l 3
) 2
2

1 1
0 0

0 20 40 60 80 100

Ground Truth vs Linear Regr Model Predi for Sample 111 Ground Truth vs MTL Model Prediction for Sample 111
Sample 111 - First 100 dimensions Sample 111 - First 100 dimensions
5 = Ground Truth 5 = Ground Truth
—— Prediction ~—— Prediction

4 4
3 3
2 2
1 1
0 0
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FIGURE 11

Ground truth vs. model prediction across various models-1.

methods—including statistical models, traditional machine
learning, and even some deep learning architectures—struggle
with this problem because they either fail to capture long-range
temporal dependencies, are sensitive to noise and missing data, or
impose heavy computational costs.

Gated Recurrent Units (GRUs) these
limitations, making them particularly well-suited to outperform
other models for beam-level traffic prediction. Their gating

mechanisms selectively retain relevant historical information

directly address

while filtering out noise, enabling them to model complex non-
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linear temporal relationships even across long gaps with zero traffic.
Unlike attention-based or Transformer models, which require large
datasets to generalize effectively, GRUs generalize well with limited
time-series data—a common scenario in beam-level measurements.
Moreover, they achieve performance comparable to or better than
Long Short-Term Memory (LSTM) networks but with fewer
parameters, resulting in lower latency and reduced computational
overhead—essential for real-time 5G network optimization.

Beam-level forecasting also presents several specific challenges
that further justify the use of GRUs:

frontiersin.org
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FIGURE 12
Ground truth vs. model prediction across various models-2.
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FIGURE 13
Ground truth vs. ensemble prediction.

e Handling Intermittent Zeros in the Dataset: Intermittent zero
values occur during low or no traffic periods, skewing
prediction outcomes. Effectively managing these zeros is
crucial for maintaining accurate forecasts.

e Limited Time-Series Length: The relatively short time-series
data complicates the capture of long-term patterns, posing a
challenge for large-scale forecasting models that require
extensive data for effective training.

e Handling Multivariate Data: The dataset’s multiple network
performance metrics introduce additional complexity.
Accurately modeling multivariate dependencies is essential
for capturing the full scope of traffic influences.

e Requirement for Real-Time, Lightweight Models: Real-
time forecasting necessitates models that are both
accurate and computationally efficient. Many emerging
deep learning models are resource-intensive, making

and critical ~ for

lightweight optimized  models

timely forecasts.

By aligning these strengths with the unique requirements of
GRU-based
approaches—including a Multi-Task Learning framework and an

beam-level forecasting, the proposed

ensemble strategy—are explicitly designed to outperform

Frontiers in Communications and Networks
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conventional forecasting techniques in capturing the spatio-
temporal complexity of 5G traffic. (Fu et al.,, 2016).

Furthermore, a principal contribution of this research is the
development and integration of a Multi-task Learning (MTL)
MTL framework
multivariate characteristics of beam traffic data by enabling the

paradigm. The explicitly addresses the
model to learn shared latent representations and exploit correlations
across related variables (e.g., user count, PRB utilization, throughput
traffic and time), thereby fostering model generalization, reduce
overfitting and increasing more accurate and responsive traffic
forecasts. Our research provides several key contributions to the
field of spatio-temporal beam-level traffic forecasting in 5G

wireless systems:

e Effective Modeling of Intermittent Data with GRUs: This
research demonstrates the inherent capability of the GRU
architecture to effectively model raw time-series data
containing intermittent zeros without requiring complex,
model-agnostic pre-processing steps. The GRU’s gating
mechanism learns to distinguish between meaningful
periods of network inactivity and actual traffic patterns.
Instead of disregarding zero-value periods, the model
learns from them as part of the temporal sequence,

frontiersin.org
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TABLE 4 Effect of Varying Classification and Regression Loss Weights on
Multi-task Model Performance. Best results are bolded.

Configuration MAE MSE RMSE
Classification-only (g5 = 1, Adeg = 0) 0.398 0.667 0.816
Regression-only (Ags = 0, Areg = 1) 0.257 0.405 0.636
Adts = 0.1 (Argg = 1) 0218 0.272 0.521
Aets = 0.5 (Areg = 1) 0.219 0.272 0.521
Balanced Multitask (Ags = 0.5, Az = 0.5) 0.213 0.249 0.499
Ads = 2.0 (Areg = 1) 0.224 0.281 0.531
TABLE 5 Mean absolute error of the ensemble model.

Sequence_Length MAE MSE RMSE
168 (without ensemble) 0.218503 0.249026 0.499025
168 (with ensemble) 0.210520 0.246709 0.496698

allowing it to accurately capture the sporadic nature of beam-

traffic and
demand intervals.

e GRU-based Multi-task Learning for Enhanced Prediction
Accuracy: This research further introduces a novel multi-

level retain crucial information about

task learning framework that leverages a GRU core. This
framework is designed to simultaneously perform two
tasks: forecasting traffic magnitude and
classifying demand occurrence (i.e., zero vs. non-zero traffic

correlated

states). By learning these tasks in parallel, the model capitalizes
on shared representations, which enhances generalization and
This
the accuracy of the

mitigates  overfitting. dual-objective  approach

significantly improves forecast,
particularly for datasets characterized by the high variability
and deficiency common to network traffic.

e Optimization of Input Sequence Length for Improved
Performance: This study systematically investigates the
impact of input sequence length on predictive accuracy
within our MTL framework. Three strategically chosen
temporal windows were examine: 168 h (weekly cycles),
24 h (diurnal patterns), and 8 h (short-term activity

These

human-like interactions with the data. The findings reveal

segments). intervals were selected to simulate
that longer sequence lengths vyield superior forecasting
performance compared to shorter ones. The 168-h
window’s performance advantage confirms that beam-level
forecasting benefits from an extended historical context when
modeling sparse events. With more than 31.8% zero-inflated
beams, longer sequences provide sufficient active samples to
distinguish true inactivity from measurement noise, a known

challenge in cellular traffic prediction.

These contributions advance the methodologies for spatio-

temporal traffic analysis, offering a robust and accurate
framework for enhancing network performance and resource

management in 5G and beyond.
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2 Related works

Performing accurate and timely network traffic forecasting has
long been a critical area of research in telecommunication systems,
driven by the need for efficient resource allocation, congestion
control, and proactive network management. Early efforts
primarily focused on macroscopic network traffic, employing
traditional statistical time-series models due to their simplicity
and interpretability.

One of the foundational approaches involved Autoregressive
Integrated Moving Average (ARIMA) models and their variants,
widely applied for their ability to capture temporal dependencies in
network traffic (Brockwell and Davis, 2002). For instance, Box and
Jenkins’ methodology (Box et al, 2015) provided a robust
framework for modeling and forecasting time series data, which
was subsequently adapted for internet traffic prediction. Exponential
smoothing methods also found application in forecasting network
loads, offering adaptive mechanisms for capturing trends and
2018).  While
effective for aggregated traffic, these statistical models often

seasonality (Hyndman and Athanasopoulos,
struggled with the inherent non-linearity, high variability, and
complex long-range dependencies characteristic of modern
communication networks.

As networks evolved from fixed-line to mobile cellular systems
(e.g. 2G, 3G, and early 4G deployments), the complexity of traffic
patterns increased, necessitating more sophisticated forecasting
techniques. Machine learning (ML) models began to emerge as
promising alternatives to traditional statistical methods due to their
ability to learn complex non-linear relationships from data. Support
Vector Machines (SVMs) were explored for their robustness to noisy
data and ability to handle high-dimensional features, demonstrating
effectiveness in predicting network congestion and traffic volume
(Wang et al., 2011). More recently, the advent of deep learning has
revolutionized network traffic forecasting, with models such as Long
Short-Term Memory (LSTM) networks and Gated Recurrent Units
(GRUs) proving highly effective in capturing long-term temporal
dependencies and non-linear patterns in network traffic data (Rau
et al., 2023; Ramakrishnan and Soni, 2018). Convolutional Neural
Networks (CNNs) have also been increasingly employed to extract
hierarchical features from traffic data, demonstrating strong
performance in various network prediction tasks [ (Yu et al., 2017)].

The growing recognition of spatial correlations in network
traffic has led to
forecasting, especially with the proliferation of dense wireless

extensive research in spatio-temporal
deployments. Unlike earlier approaches that often combined
spatial and temporal models in a decoupled manner, modern
deep learning frameworks, particularly Graph Neural Networks
(GNNs), have become instrumental in explicitly modeling
intricate spatio-temporal dependencies. These models leverage
the topological structure of networks to capture complex spatial
relationships, while integrated recurrent or convolutional layers
handle temporal dynamics, leading to significant advancements
in forecasting accuracy for large-scale and complex network
environments, including cellular networks (Yu et al, 2017; Wu
et al., 2024; Wang et al., 2025).

Multi-Task Learning (MTL), a paradigm where multiple related
learning tasks are solved jointly to leverage commonalities and
improve generalization performance, has gained significant
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traction in network traffic forecasting since 2015. This approach is
particularly beneficial for complex and heterogeneous network
environments, such as 5G, where various prediction tasks (e.g.,
traffic volume, throughput, and latency across different beams or
cells) are inherently related. By learning shared representations
across these tasks, MTL frameworks can overcome challenges like
intermittent data patterns and limited time-series lengths for
individual tasks, leading to improved prediction accuracy and
robustness compared to single-task learning models (Wang et al.,
2022; Liu et al., 2024). For instance, recent works have explored MTL
to predict citywide cellular network traffic across diverse services,
demonstrating its ability to capture complex spatio-temporal
fluctuations by sharing knowledge among tasks (Sun et al., 2022).

3 Proposed methods

The significant number of zero-value observations renders
traditional forecasting models ineffective. To overcome this
limitation, we employ a Gated Recurrent Unit (GRU), a
sophisticated deep learning model. Unlike statistical methods that
require decomposing the series, the GRU learns directly from the
raw, intermittent data. Its gating mechanism dynamically manages
the information flow, enabling it to capture complex, non-linear
temporal relationships between past events and future demand, even
when they are separated by numerous zero-value periods. This
makes the GRU a powerful and flexible tool for forecasting
sporadic data patterns.

3.1 Handling intermittent data with GRU

Intermittent time series, characterized by sporadic non-zero

observations amidst prolonged periods of zeros, present

significant  challenges for forecasting models. Traditional
statistical methods often fail to adequately capture the underlying
patterns in such data due to their reliance on assumptions of
continuity and uniform variance (Hyndman and Athanasopoulos,
2018). Deep learning approaches, particularly Gated Recurrent
Units (GRUs), have emerged as a promising alternative by
leveraging sequential learning to model complex temporal
dependencies, including intermittent demand structures (Lai
et al., 2018).

Classical approaches to intermittent demand forecasting
typically fall into three categories: exponential smoothing variants
and probability-based methods. Simple exponential smoothing
(SES) applies uniform weighting to all observations, including
zeros, resulting in biased forecasts when demand is sporadic
(Gardner, 2006). Modified exponential smoothing techniques,
such as the TSB method (Teunter et al., 2011), improve upon
SES by incorporating demand probability estimates, but they still
rely on heuristic adjustments rather than data-driven learning.
Probability-based methods,

regression (Lambert, 1992), explicitly account for excess zeros but

such as zero-inflated Poisson
are limited in their ability to capture evolving temporal dynamics.

GRUgs, a variant of recurrent neural networks (RNNs), address
many of the limitations of traditional methods through their gated

architecture. The update and reset gates allow GRUs to dynamically
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modulate information flow, effectively learning when to retain or
discard historical observations (Cho et al., 2014). This mechanism is
particularly advantageous for intermittent data, as the model can
suppress irrelevant zeros while amplifying meaningful non-zero
events. Recent hybrid approaches, such as (Silveira Gontijo and
Azevedo Costa, 2020), demonstrate that neural networks can
effectively model hierarchical and intermittent structures in
demand forecasting, outperforming traditional statistical
GRUs

dependencies, distinguishing between true inactivity (structural

methods.  Furthermore, can model long-term
zeros) and transient fluctuations (noise), a capability that eludes
most statistical approaches (Lim and Zohren, 2021).

GRUs offer a flexible and powerful framework for forecasting
intermittent time series, overcoming key limitations of traditional
statistical methods. Their ability to learn complex temporal
dependencies without manual feature engineering makes them

particularly suited for applications with sporadic demand patterns.

3.2 Proposed models

This study introduces a suite of hybrid deep learning
architectures tailored to the complex nature of beam-level traffic
volume forecasting in 5G networks. Beam-level traffic in 5G exhibits
high temporal volatility, spatial sparsity, and a mixture of periodic
and aperiodic patterns. These characteristics demand a modeling
framework capable of capturing both long-term temporal
dependencies and nonlinear fluctuations. To this end, we propose
and comparatively evaluate seven GRU-based hybrid models: GRU-
Linear, GRU-DLinear, GRU-XGBoost, ESN, LSTM, GRU-MTL, and
a GRU-based Ensemble Model.

The rationale for deploying this diverse set of models lies in their
complementary strengths. Linear regressors offer transparency and
serve as strong baselines. DLinear enhances trend/seasonality
decomposition, while XGBoost captures feature interactions
missed by standard neural nets. ESNs contribute fast training
and memory-rich transformations, and the LSTM-FCN hybrid
improves temporal context learning. The Multi-task Learning
adds of
classification and and the ensemble

model robustness through joint optimization
regression  objectives,
aggregates model strengths to reduce variance and improve
generalization. This model diversity ensures that both short-term
spikes and long-term trends in traffic dynamics are
effectively captured.

In addition, the design choice not to use the GRU as input to the
Echo State Network (ESN) was motivated by the inherent
architectural properties of the ESN. Unlike XGBoost, which is a
gradient-boosted decision tree model that benefits from a compact
and informative feature representation (in this case, GRU
embeddings), the ESN itself is a reservoir computing model that
naturally performs its own nonlinear feature transformation
through its high-dimensional dynamic reservoir states. Feeding
GRU embeddings into the ESN would have overridden its core
mechanism of projecting input sequences into a rich dynamic state
space and could potentially lead to redundant feature processing or
overfitting. To ensure a fair comparison, we configured the ESN with
a sufficiently large reservoir size and spectral radius, allowing it to

internally capture temporal dependencies from the raw input
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sequence without the need for an external embedding layer. This
design aligns with standard ESN usage, where raw time-series inputs
are projected directly into the reservoir state space for subsequent
linear readout.

3.2.1 GRU with linear regression (GRU-linear)

In this configuration, GRU encodes the temporal sequence into
latent representations, which are then mapped to outputs via a linear
regression layer. The model offers a simple yet effective architecture
for modeling sequential data where the nonlinearities primarily
reside in the temporal dimension rather than the output
mapping. This structure has been employed in real-time traffic
forecasting settings with notable success (Fu et al., 2016).

3.2.2 GRU with DLinear (GRU-DLinear)

The GRU-DLinear model integrates the DLinear architecture,
which decomposes time-series signals into seasonal and trend
components before applying separate linear forecasts (Zeng et al.,
2023). The GRU pre-processes the sequence, providing rich
temporal embeddings that DLinear uses to conduct more
interpretable and accurate predictions, especially for long-horizon
forecasting with periodic behaviors.

3.2.3 GRU with XGBoost regression
(GRU-XGBoost)

In this hybrid, GRU encodes sequential features which are then
passed to an XGBoost regressor. XGBoost, known for its strong
performance on structured data and ability to model complex
feature interactions, serves to refine GRU’s temporal outputs by
capturing residual nonlinear relationships (Chen and Guestrin, 2016).

3.2.4 GRU with echo state network (GRU-ESN)
The GRU-ESN architecture exploits the high-dimensional
memory capabilities of Echo State Networks, a class of reservoir
computing models. GRU sequences are passed to an untrained
recurrent reservoir with fixed weights, while only the readout
layer is trained. This structure introduces additional temporal
richness while retaining training efficiency (Gallicchio et al., 2018).

3.2.5 LSTM with fully connected network
(LSTM-FCN)

The LSTM-FCN architecture integrates a Long Short-Term
Memory (LSTM) network with a Fully Connected Network (FCN)
to leverage both temporal sequence modeling and powerful nonlinear
feature transformation. In this setup, the LSTM layer learns temporal
dependencies and encodes sequential patterns present in the beam-
level traffic data, while the subsequent FCN maps these learned
representations to the final traffic volume predictions. This hybrid
design combines the LSTM’s robust gating mechanisms, which
capture long-term temporal dynamics, with the FCN’s capacity for
flexible nonlinear regression. As a result, the LSTM-FCN model
provides enhanced adaptability to the irregular and bursty traffic
patterns typical of 5G beam-level forecasts (Greff et al., 2016).

3.2.6 Gated recurrent unit-multi-task learning
(GRU-MTL)

The GRU-MTL architecture addresses two concurrent tasks: (1)
classifying whether traffic volume is active (non-zero), and (2)
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regressing the actual traffic magnitude. By learning these tasks
jointly with shared GRU encoders and distinct output heads, the
model benefits from inductive transfer, improving generalization
and robustness, especially in sparse or imbalanced traffic conditions
(Ruder, 2017). Multi-task learning has shown effectiveness in related
spatio-temporal forecasting domains (Chen et al., 2020).

3.2.7 GRU-based ensemble model

Finally, a GRU-based Ensemble Model is constructed by
aggregating the predictions of the aforementioned models using
either weighted averaging or meta-learning strategies. Ensemble
learning helps reduce model variance and compensates for
individual model weaknesses, thereby improving prediction
stability and reliability across diverse traffic scenarios (Zhang
et al., 2017).

3.2.8 GRU-based ensemble algorithm

The ensemble, implemented to enhance predictive robustness
and capture diverse traffic dynamics, integrates three distinct GRU-
based architectures based on their performance: GRU with Multi-
task Learning (GRU-MTL), GRU with Linear Regression (GRU-
Linear), and GRU with XGBoost (GRU-XGBoost). By aggregating
the predictions of these models using weighted averaging, the
ensemble aims to reduce variance, mitigate model-specific biases,
and improve generalization across varying beam-level traffic
conditions in 5G networks. The high-level steps of the ensemble
inference process are presented in Algorithm 1.

Input: Time-series input data X e R™, where T is
sequence length and F is feature dimension
Input: Pre-trained models: GRU-MTL, GRU-Linear,
GRU-XGBoost
Output: Final traffic volume forecast Y. sempie
1 Initialize ensembleweightsa, 8, y suchthata+f+y="1
2 Step 1: Preprocess Input Normalize or scale X to the
expected input range of all models
3 Step 2:
YurL < GRU-MTL(X)//Use regression head only
4 Y0 inear < GRU - Linear (X) yygs <« XGBoost (GRU(X))
5 Step 3:
YurL + B Yiinear + 7 Yxce
6 return Y. senpie

Inference from Base Models

Ensemble Aggregation

Yensemble < &-

Algorithm 1. GRU-Based Ensemble Forecasting Algorithm.
In our experiments, we set both coefficients to 1, i.e.,

Areg = Acls =1,
resulting in a total loss of the form:

Liotal = »Creg + Lclsa

which treats the regression and classification objectives with equal
importance. This design choice was made to avoid introducing
additional hyperparameters and to keep the optimization simple
and interpretable, particularly since both tasks—predicting beam-
level traffic intensity and classifying beam activity—are equally
critical for reliable forecasting in 5G systems. We found that
applying equal these tasks
empirically without requiring further tuning.

weighting  to performed  well
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In addition, to ensure a fair and unbiased evaluation, particular
care was taken to prevent any form of data leakage during ensemble
training. Specifically, the ensemble weights were learned exclusively
from historical weeks (training set) that were completely disjoint
from the test week. Once optimized, these weights were fixed and
directly applied to the held-out test week to generate performance
metrics. This strict separation between training and testing
guarantees that no information from the test week influenced the
ensemble fitting, thereby preserving the integrity and reliability of
the evaluation.

3.3 GRU-based multi-task learning
architecture

3.3.1 GRU-MTL architecture for beam-level traffic
forecasting

Multi-task learning represents a machine learning approach in
which a single model is trained to perform multiple related tasks
simultaneously, taking advantage of inter-task correlations to
improve overall prediction accuracy (Rago et al, 2020). Recent
advances in neural network architectures have demonstrated the
effectiveness of combining MTL frameworks with GRUs for spatio-
temporal traffic forecasting, particularly at the beam level in cellular
networks (Zhang and Yang, 2021). This approach addresses the dual
challenges of capturing temporal dependencies through GRU’s
sophisticated gating mechanisms while simultaneously modeling
shared
representations in the MTL framework. The architecture typically

spatial ~ correlations across network locations via
employs a shared GRU encoder to extract common temporal
patterns, coupled with task-specific decoders that adapt these
representations to individual beam predictions (Collobert and
Weston, 2008), optimizing a composite loss function that
balances performance across all tasks (Evgeniou and Pontil, 2004).

As shown in Figure 6, the proposed architecture adopts a MTL
paradigm that integrates a GRU-based temporal encoder with two
parallel task-specific heads: a regressor and a binary classifier,
designed for beam-level spatio-temporal traffic forecasting in 5G
wireless communication networks. Given an input training tensor
X € R™F where T = 672 denotes the number of historical time
steps and F = 2880 represents the number of spatial beams across
multiple cells or base stations, the GRU module processes the
sequence to extract latent temporal representations that capture
dynamic dependencies across time and space. The GRU operates
through its gating mechanism and updates its hidden state h, € R?
at each step using the following update equations as shown in

Equations 1-4.

z, = 0 (W.x; + U h,_)), (1)

r, = 0 (W,x; + U,h, ), (2)

h; = tanh (W,,x; + U, (r; © h,_))), (3)
h=(1-z)oh_ +z0h, (4)

where z, and r; are the update and reset gates, ¢ is the sigmoid
activation function, and © denotes element-wise multiplication. The
final hidden state hr is shared across two output heads. The regressor
produces a real-valued prediction y,, € R, modeling the expected
future traffic volume as shown in Equation 5.
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}A’reg = WreghT + breg: (5)

while the classifier outputs a binary activation map ¥, € {0,1}" as
shown in Equation 6, indicating whether or not traffic is expected at
each beam:

Ya, = round (0 (Washyr + by)). (6)

The final output ¥ € R' is computed via an element-wise
product of the two outputs as shown in Equation 7:

¥ =Y4s © i’reg’ (7)
which effectively suppresses predictions in regions where no traffic is
expected. This fusion step is particularly valuable in environments
where traffic is intermittent and sparse, as it reduces false positives
and enforces output deficiency.

The model is trained using a joint loss function that balances the
regression and classification objectives as shown in Equation 8:

['tolal = Areg : Lreg + Acls : Ecls’ (8)

where Ly, is the mean squared error (MSE) loss, L is the binary
(BCE) and Mg, Aas € RY task-
balancing weights.

cross-entropy loss, are
The explicit mathematical definitions of both the Mean Squared
Error (MSE) loss Ly, and the Binary Cross-Entropy (BCE) loss L
used in our multitask learning framework is shown in Equations

9, 10:
1 X

N Z (yi— }A’i)z

i=1

Ly = )

where y; and ¥, denote the ground truth and predicted traffic values,
respectively, and N is the number of samples.

1 N
Cav= = 2108 () + (1) og(1-3)] (10

where y; € {0, 1} is the ground truth beam activity label, and y, is the
predicted probability of beam activity.

This MTL-GRU framework offers multiple advantages. First, it
improves model generalization by enforcing shared feature learning
across complementary tasks, which regularizes the network and
reduces overfitting. Second, the binary classification head acts as a
learned sparsity prior, enabling the model to suppress erroneous
predictions in inactive regions, thus reducing the mean absolute
percentage error (MAPE) and improving robustness in low-activity
scenarios. Third, the GRU-based temporal encoder captures long-
range dependencies in traffic patterns, such as daily or weekly
critical in environments  like

periodicities, non-stationary

mobile networks.

4 Experimental results and analysis
4.1 Experimental setup

4.1.1 Data preparation
The beam-level spatio-temporal traffic data used in this study
was provided by the AI for Good challenge, organized by the

International Telecommunication Union (ITU). The dataset
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comprises four high-resolution telemetry files representing key
network metrics: throughput volume (DLThpVol), throughput
time (DLThpTime), Physical Resource Block utilization (DLPRB),
(MR_number). Each dataset
2,419,200 hourly samples spanning 2,880 distinct beams across

and user count contains
30 base stations, recorded over a five-week observation period.
This rich dataset captures critical spatio-temporal traffic behavior
across an ultra-dense 5G infrastructure.

In the dataset, explicit timestamps are not included with the
telemetry files. Instead, all data streams are assumed to be sampled at
fixed, consistent intervals and are provided as aligned sequences in
their respective files. Given this structure, we synchronized the
telemetry data streams by assuming uniform sampling and using
index-based alignment, i.e., the n-th row in one file corresponds to
the n-th row in the others. This approach assumes that the data is
pre-aligned by the challenge organizers, and that each row
represents a common sampling time step across all metrics.

To effectively train our machine learning model while
the

traffic—particularly the prevalence of zero-valued entries due to

accounting  for challenges posed by intermittent
beam inactivity or sleep modes—we employed a Gated Recurrent
Unit (GRU)-based architecture. GRUs are well-suited for time series
modeling due to their ability to retain long-range dependencies
while mitigating vanishing gradient issues. In this application, the
GRU also serves as a preprocessing component that inherently filters
noise and highlights salient sequential patterns, improving the
model’s ability to generalize beyond sparse signal artifacts.

The

features—throughput volume, throughput time, physical resource

complete dataset, comprising four  key
block utilization, and user count—was partitioned into training and
testing segments to facilitate model development and evaluation.
Specifically, each dataset was split into a training set, containing the
first 4 weeks of data, and a testing set, consisting of the fifth week.
This partitioning strategy, illustrated in Figure 7, was applied
uniformly across all feature dimensions. The training data served
as input for model fitting via the sliding window methodology, while
the fifth-week data was reserved exclusively for out-of-sample
testing and performance evaluation using standard metrics.

The training methodology, as illustrated in Figure 8, is based
on a sliding window approach. A fixed-size sequence length
(temporal window) of input data (e.g., 168, 24 or 8 time steps)
is shifted across the first 4 weeks of each beam’s sequence to
generate supervised training samples. For each windowed input
(X1, X5, X3, X4, ..., Xg], the the

subsequent time steps (Z11, (2], [Z5),. .. as output targets.

sequence model predicts
Each slide appends a new training label corresponding to the
next beam-level time step, gradually forming the multi-output
sequence-to-sequence learning format. This process ensures
temporal consistency while maximizing the available training
data from the historical record.

During testing, shown in the right panel of Figure 8, the final
segment of the training dataset—specifically the last window of the
fourth week—is used as the initial seed input. This seed sequence is
fed into the pre-trained GRU-MTL model to generate predictions
for the fifth week. The model recursively consumes its own
predictions to extend the forecast horizon. That is, the first
prediction [Y,] is appended to the input window to produce
[Y,], and so on, until the desired forecast length is achieved.
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This autoregressive inference mechanism allows the model to
operate in a fully closed-loop mode during deployment.

The overall workflow is further summarized in Figures 9, 10,
which respectively depict the block-level diagram of the testing
pipeline and the training dataset matrix. In Figure 9, the top portion
represents the full 4-week training dataset, while the bottom row
(crosshatched) represents the fifth week, which serves as the ground
truth for evaluating the model’s predictive accuracy. The model’s
predictions [Y] are compared against this fifth-week ground truth
[Y] using standard evaluation metrics such as Mean Squared Error
(MSE), Mean Absolute Error (MAE), and Mean Absolute
Percentage Error (MAPE).

This structured and recursive approach enables the model to
capture long-term trends and abrupt variations in beam-level traffic
patterns while addressing the challenges of temporal scarcity. By
coupling the sliding window training strategy with GRU-based
sequential modeling and autoregressive forecasting in multi-task
learning framework, the proposed methodology offers a scalable and
robust solution for spatio-temporal traffic prediction in 5G systems.

In this study, no explicit normalization or standardization was
applied to the input data. The GRU model was trained directly on
raw beam-level traffic sequences, which are inherently sparse and
exhibit zero inflation due to intermittent user activity. This scarcity
was intentionally preserved, as it accurately reflects real-world beam
usage patterns and enables the model to capture the temporal
structure without altering the original data distribution. Missing
values were not imputed, and zeros were treated as meaningful
observations rather than noise. Furthermore, no manual feature
engineering was performed; instead, the GRU served as an end-to-
end feature extractor, learning temporal dependencies directly from
the sliding window sequences.

4.1.2 Hardware and software

All experiments were implemented in Python 3.8, using
TensorFlow 2.12 for deep learning and Scikit-learn 1.0.2 for
auxiliary preprocessing and evaluation tasks. Model training was
performed on a NVIDIA DGX system equipped with four
A100 GPUs, each with 80 GB memory, enabling -efficient
handling of the high-dimensional input and accelerated training
throughput.

To assess the practical deployability of our GRU-based model,
we also evaluated its inference speed on a single NVIDIA
A100 GPU. Despite the high spatial dimensionality of the input
(2,880 features) and the sequential nature of the data, several design
choices ensure efficient inference:

e Temporal-only recurrence-The GRU processes only along the
temporal axis (sequence length of 8-12), treating the
2,880 spatial features as a flat vector at each timestep. This
design avoids recurrent computations over the large spatial
dimension, keeping runtime manageable.

e Lightweight GRU architecture-GRUs were deliberately

LSTMs

Transformers due to their reduced parameter count and

chosen over heavier models such as or

faster runtime, enabling low-latency sequence modeling.
e Empirical inference performance-On the A100 GPU, the
average per-sample inference time (batch size = 1, sequence

length 8) was measured at approximately 2.7 ms,
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comfortably meeting the real-time constraints of 5G beam-
level operations, where decisions are typically required
within 1-10 ms.

These results confirm that the proposed GRU-based model is
not only accurate but also computationally efficient for real-time
deployment in next-generation wireless networks.

4.1.3 Model configuration

The hyperparameters for the models, as detailed in Table 1, were
meticulously tuned to achieve an optimal balance between
complexity and performance. Diverse configurations, including
variations in the number of layers, were explored to identify the
most robust setup. Sequence lengths of 8, 24, and 168 h were selected
to effectively capture short-term fluctuations, daily trends, and
weekly patterns, respectively, facilitating a comprehensive analysis
of human behavioral dynamics.

4.1.4 Performance metrics

Four widely adopted performance metrics—Mean Squared
Error (MSE), Root Mean Squared Error (RMSE), and Mean
Absolute Error (MAE) — were used to evaluate model
performance. While MSE, RMSE, and MAE provided consistent
and interpretable results, the MAPE values were disproportionately
high. This anomaly was primarily attributed to numerical instability
caused by the presence of intermittent zero values in the ground
truth, which can significantly inflate percentage-based errors when
actual values approach or equal zero.

4.2 Results

4.2.1 Comparative analysis of forecasting model
performance

Table 2, presents a comprehensive comparative analysis of six
distinct GRU-based models for spatio-temporal beam-level traffic
prediction: Linear Regression, DLinear, XGBoost, ESN, LSTM, and
our proposed GRU-based MTL approach. The GRU-based MTL
model demonstrated superior performance among individual
models, achieving MAE values of 0.213631 particularly for
sequence length of 168, though this value is slightly elevated
compared to our baseline reference model as shown in Table 3.
Notably, Linear Regression, XGBoost, and MTL emerged as the top-
performing individual approaches, prompting their selection for our
ensemble implementation. As shown in Table 5, the weighted
ensemble of these three models yielded a slight improvement,
attaining MAE score of 0.210520 for the 168-h sequence length -
representing 1.45% error reduction compared to the best standalone
model. The shorter sequence lengths of 24 and 8-h showed less
improvement and were excluded from ensemble analysis. The
enhancement from the ensemble model stems from the
ensemble’s ability to: (1) reduce variance through prediction
aggregation, (2) compensate for individual model biases via
weighted combination, and (3) improve generalization across
diverse traffic conditions. The consistent outperformance across
all temporal scales suggests particular robustness for real-time
network optimization applications where prediction stability
across varying time horizons is crucial.
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Figures 11, 12 illustrate the beam-level traffic prediction
performance of the individual models for a representative test
111). Each plot
100 dimensions of the traffic volume vector, with the true

instance  (Sample displays  the first
observed values shown by the blue line and the corresponding
predicted values by the orange line. The visual comparison
demonstrates how well each model captures the location and
magnitude of peaks as well as the sparse inactive intervals.
Specifically, these figures highlight the relative strengths and
weaknesses of each approach in approximating the highly irregular
and bursty activation patterns typical of beam-level traffic. For
example, the GRU-ESN and LSTM models tend to smooth some
extreme spikes but generally follow the overall trend. The GRU-
XGBoost and GRU-DLinear models capture sharper transitions
more accurately but may slightly overfit to noise in certain
Meanwhile, the GRU-MTL and GRU-Linear
configurations solid baseline performance by

regions.
demonstrate
maintaining consistency in low-activity regions.

Figure 13 shows the prediction result for the proposed Ensemble
Model, which combines the outputs of selected base models. As seen
in this comparison, the ensemble prediction achieves better
alignment with the ground truth across both the high-amplitude
spikes and flat regions, reflecting the benefit of aggregating multiple
models to reduce individual prediction bias and variance.

4.2.2 The impact of varying classification and
regression loss weights

To better understand the contributions of different components of
the proposed framework, we conducted an ablation study. This analysis
isolates and evaluates the impact of key architectural choices and input
configurations on forecasting performance. Specifically, we examined
the effect of varying the classification and regression loss weights:

e Classification-only model (Ags = 1, Areg = 0): This model was
able to reasonably detect active beams but failed to accurately
estimate traffic intensity. As expected, the absence of
regression supervision led to a significantly higher error:
MAE = 0.398, MSE = 0.667, RMSE = 0.816.

e Regression-only model (Ags = 0, Areg = 1): This configuration
allowed the model to estimate traffic volumes reasonably well
for active beams, but it struggled to distinguish inactive beams.
This resulted in numerous false positives and suboptimal
resource allocation. Performance was also subpar: MAE =
0.257, MSE = 0.405, RMSE = 0.636.

¢ Balanced multitask model (Ags = 0.5, Areg = 0.5): This yielded
the best performance overall, with accurate traffic prediction
and robust beam activation classification: MAE = 0.213,
MSE = 0.249, RMSE = 0.499. These results suggest a strong
complementary effect between the two tasks.

e Varying Ag, while fixing Areg = 1: To further understand the
trade-offs, we experimented with multiple classification
loss weights:

e lgs =0.1 - MAE = 0.218, MSE = 0.272, RMSE = 0.521
e Ags = 0.5 — MAE = 0.219, MSE = 0.272, RMSE = 0.521
® lgs =2.0 > MAE = 0.224, MSE = 0.281, RMSE = 0.531

We observed that moderate deviations in the weighting factor
had only marginal effects. However, the 1:1 ratio consistently yielded
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the most balanced performance, reinforcing its selection in our
primary experiments.

The results in Table 4 support our hypothesis that joint learning
of beam activity and traffic intensity enables better generalization,
especially in cases where beam activation and usage intensity are
only weakly correlated.

4.2.3 The impact of sequence length of model
performance

Our analysis highlights a critical interaction between input
sequence length, data scarcity, and prediction accuracy in beam-
level traffic forecasting for 5G networks. As summarized in Table 2,
the 168-h sequence length consistently outperforms shorter
windows across all the models, achieving superior performance
MAE of 0.213631 compared to 0.300096 for the 24-h window
and 0.282097 for the 8-h window. This performance gradient
directly reflects the underlying scarcity of the dataset, where
approximately 32% of beam-time pairs exhibit complete
inactivity (zero traffic volume).

The superior performance of longer sequence lengths can be

attributed to three primary factors:

o Sparsity Mitigation: Given the high proportion of zero-inflated
observations, shorter input sequences—particularly 8-h
windows—are prone to containing entirely inactive periods,
which limits the model’s ability to learn meaningful temporal
patterns. In contrast, a 168-h window increases the likelihood
of capturing both active and inactive states within each
sample, thereby providing a richer context and reducing
the risk of all-zero inputs.

o Temporal Context Preservation: Beam-level traffic in 5G
networks often follows multi-scale temporal patterns,
including strong weekly periodicity modulating daily

variations. Longer input windows preserve these broader

temporal dynamics, which is critical for modeling
intermittent beams whose activation aligns more closely
with weekly user behavior than with short-term fluctuations.

o Statistical Stability: Longer sequences benefit from improved
statistical reliability. While an 8-h window may yield only a
few active samples for sparse beams, a 168-h sequence
typically contains sufficient active observations to support
more robust feature learning. This greater statistical
stability helps explain the observed 56% increase in MAE

for the shortest sequence length compared to the longest one.

Taken together, these findings underscore the importance of
selecting an input sequence length that adequately balances
temporal coverage and scarcity effects to achieve accurate and
reliable beam-level traffic predictions.

4.2.4 The impact of LSTM and ESN on time-
series forecast

The results in Table 2 reveal significant limitations of both
LSTM (MAE = 0.355919, 0.301782, 0.316045) and ESN (MAE =
0.264141, 0.264349, 0.268062) across sequence lengths of 168, 24,
and 8 h respectively, establishing them as the poorest performers in
our beam-level traffic forecasting task. These results align with the
theoretical framework presented by (Zeng et al, 2023) in their
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seminal work “Are Transformers Effective for Time Series
Forecasting?“, which demonstrates that: (1) LSTMs tend to
underperform in sparse traffic scenarios due to their difficulty in
learning long-term dependencies from limited active beams, and (2)
ESNs struggle with the non-stationary characteristics of cellular
traffic patterns. Our empirical results extend their conclusions by
quantifying these limitations specifically for beam-level prediction,
where the MAE values for both architectures consistently exceeded
other models by 18-23% across all tested sequence lengths.

4.2.5 The impact of ensemble model

The superior performance of our ensemble model as shown in
Table 5 with MAE = 0.210520, for 168-h sequence length,
demonstrates three key advantages over standalone architectures
in beam-level traffic prediction. First, the ensemble’s weighted
aggregation of Linear Regression, XGBoost, and MTL outputs
reduces variance by 1.45% compared to the best individual
model (MTL), mitigating the overfitting tendencies observed in
complex nonlinear architectures (Zhu et al., 2024). Second, the
model compensates for individual biases—linear assumptions in
Regression versus tree-based partitioning in XGBoost—through
dynamic weighting calibrated to beam activation patterns (Wang
etal,, 2022). This explains the 60% MAE reduction at 8-h sequences,
where short-term traffic bursts benefit from XGBoost’s granular
splits while periodicity is captured by MTL’s recurrent cells. Third,
the ensemble achieves temporal adaptability: its 168-h performance
(0.210520 MAE) surpasses LSTM/ESN results by 45%, proving
robust to sparse long-range dependencies that typically degrade
RNNss (Zeng et al., 2023).

5 Conclusion

This study establishes an effective framework for beam-level
traffic forecasting in 5G networks through a Multi-Task
Learning approach enhanced by ensemble techniques. Our
analysis of six models (Linear Regression, DLinear, XGBoost,
ESN, LSTM, and GRU-MTL) revealed that the GRU-based MTL
architecture achieved superior performance (MAE = 0.2136 for
168-h sequences), with further improvement (1.45% error
reduction to MAE = 0.2105) when combined with Linear
Regression and XGBoost in a weighted ensemble. Three key
findings emerge:

e Temporal Context Matters: The 168-h sequence length proved
most effective, capturing weekly traffic patterns critical for
infrastructure planning.

e Simplicity Complements Complexity: Although GRU-MTL
outperformed LSTM by more than 20%, its combination with
simpler models (Linear Regression/XGBoost) yielded more
robust predictions.

e Practical Viability: The ensemble’s consistent accuracy across
sparse beam conditions (31.8% zeros) supports real-world
deployment.

These results enable proactive resource allocation as the 168-h

model’s stability aids capacity planning. The ensemble weighting
reduces overfitting risks in dynamic conditions.
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In this study, our focus was on establishing a strong
deterministic GRU-based baseline optimized for accuracy and
real-time performance. Consequently, we did not include
uncertainty quantification mechanisms (e.g., prediction intervals,
Bayesian inference, or ensemble variance). However, we
acknowledge that in practical scenarios—particularly in proactive
resource allocation and anomaly detection—the reliability of
predictions is as important as their accuracy.

Future work will therefore extend this framework by integrating
probabilistic forecasting techniques, such as Monte Carlo dropout,
deep ensembles, or Bayesian recurrent units, to provide calibrated
uncertainty estimates alongside point predictions. Additionally, we
plan to incorporate finer temporal granularity and expand feature
usage (e.g., PRB utilization, throughput time, user count) to further
improve generalization. This evolution of the framework bridges
theoretical modeling with operational needs in 5G networks,
offering a balanced and forward-looking solution for accuracy,

reliability, and interpretability.
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