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Due to the increasing demand for frequency resources in wireless networks,
efficient frequency assignment has become a critical challenge. Unlike
conventional cellular systems, where frequency allocation is centrally
managed by a base station, device-to-device (D2D) communication,
especially in mission-critical scenarios, introduces additional complexity due
to its decentralized nature. In this study, we model a D2D communication
network as a graph and formulate the frequency assignment task as a graph
coloring problem. While previous research has primarily relied on heuristic or
artificial intelligence (Al)-based methods to determine node ordering, we
propose a novel framework that integrates deep Q-learning (DQN) with graph
neural networks (GNNs) to enhance assignment efficiency. To ensure
interference-free operation, we explicitly incorporate net filter discrimination
(NFD), which captures realistic interference constraints. Unlike previous Al-based
approaches that focus solely on minimizing the number of assigned frequency
blocks, our method jointly optimizes both the total frequency span and the
ordering cost. Extensive simulations show that the proposed approach
significantly outperforms greedy baselines, particularly in complex and
dynamic environments. Furthermore, by incorporating device mobility into the
simulations, we validate the robustness and adaptability of the proposed
framework. These results underscore the potential of DQN-based methods to
enable scalable and reliable frequency assignment in mission-critical wireless
networks.

KEYWORDS

graph coloring problem, frequency assignment problem, greedy algorithm, deep
Q-learning, net filter discrimination, minimum order, minimum span

1 Introduction

1.1 Motivation of the frequency assignment in
wireless networks

Modern communication systems rely heavily on the radio-frequency (RF) spectrum,
which is a fundamentally limited resource. The rapid growth of users and applications
continues to intensify the competition for available bands, underscoring the need for more
efficient and equitable spectrum assignment strategies. Spectrum management operates
within a hierarchical framework: the International Telecommunication Union (ITU)
oversees the harmonization and coordination of frequency usage across nations. At the
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national level, governments allocate spectrum primarily through
auctions or direct administrative licensing. At the user level, certain
unlicensed bands—such as those supporting Wi-Fi and
Bluetooth—are designated for open public use without the need
for a license, as recognized by the Cellular Telecommunications
Industry Association (CTIA).

When considering sixth-generation (6G) communication
systems, the demand for efficient frequency and adaptive
frequency assignment strategies becomes even more critical as
these levels  of

systems aim to support

connectivity, data throughput, and reliability. In particular, the

unprecedented

upper mid-band spectrum—ranging from 7 to 24 GHz—has
emerged as a key target due to its potential to support both a
wide bandwidth and favorable propagation conditions. However,
many bands in this range are already occupied by incumbent
services such as fixed satellite and radar systems, which
complicate  coexistence and spectrum sharing. Therefore,
developing efficient and interference-aware spectrum assignment
mechanisms is not merely desirable but essential—particularly in
mission-critical or time-sensitive applications where coexistence
with incumbent users must be ensured without compromising
system performance. To reflect real-world spectrum challenges,
our study models the frequency assignment within the 7 GHz
band, where coexistence with existing users is becoming a
greater concern.

In this context, numerous studies have aimed to enhance the
efficiency of frequency assignment (Yaipairoj and Harmantzis, 20065
Hale, 1980; Yilmaz et al., 2017; Kumar and Milleth, 2018). For
example, Yaipairoj and Harmantzis (2006) demonstrated that
auction-based congestion pricing can enable more efficient
spectrum assignment in commercial networks facing increasing
wireless data demand. Even within licensed bands, maximizing
efficiency remains essential: operators must minimize interference
while ensuring reliable service. Although licensing helps reduce the
risk of congestion and passive interception, it does not eliminate
interference entirely. In certain domains—most notably, military
operations—frequency resources must be allocated with a dual
emphasis on service reliability and interference minimization.
Mission-critical systems, therefore, implement robust protective
measures such as strong encryption, frequency hopping, and
spectrum scrambling to safeguard links against eavesdropping
and jamming. However, these protective schemes often require
non-trivial setup delays, rendering conventional resource
assignment methods inadequate for scenarios that require rapid
frequency reassignment in response to sudden environmental
changes. As a result, recent research has increasingly focused on
developing adaptive assignment strategies that maintain spectral

efficiency and security under dynamic conditions.

1.2 Frequency assignment problem
formulated as a graph coloring problem

Numerous studies have adopted graph-theoretic approaches to
optimize frequency assignment because the problem—defined by
numerous devices and stringent interference constraints—can be
effectively represented using a graph model. This formulation is
commonly referred to as the frequency assignment problem (FAP),
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with the objective of minimizing a particular metric, such as the
frequency span or interference. FAP is closely related to the classical
graph coloring problem and can be generalized by modeling
communication links as nodes in a graph, where frequencies are
assigned in a way that minimizes interference. The graph coloring
problem is defined as follows: given a graph G = (V,E), as
illustrated in Figure 1, colors are assigned to the nodes such that
no two adjacent nodes share the same color. This constraints can be
mathematically expressed as Equation I:

Find f Ve st V{V,VileE 0
1
fwvy#£(v),
where {Vy,...,Vs} €V denotes the set of nodes illustrated in

Figure 1 and C represents the set of possible colors.

As an illustrative example, Figure 1 shows a valid coloring of
graph G. The vertices (nodes) are processed in order of V5, V1, V,
V5, V3, and V4. The color set is C = 0, 1,2, where the indices 0, 1,
and 2 correspond to the colors “red,” “yellow,” and “purple,”
respectively. For each node, we greedily assign the lowest-indexed
color in C that does not violate the interference constraint imposed
by the colors already assigned to its neighbors. Following this rule,
node Vs is first assigned color 0. Next, node V is assigned color 1,
which is the smallest admissible color given the current partial
assignment. Applying the same greedy rule to each subsequent node
yields the complete coloring, as shown in the sixth step on the right-
hand side of Figure 1.

Since the

nondeterministic polynomial-time hard (NP-hard)

to be
(Zoellner,

graph coloring problem is known
1973), finding an optimal solution is computationally intractable
in most cases. As a result, researchers have commonly relied on
heuristic methods to obtain feasible solutions. While many earlier
studies applied graph coloring to unweighted graphs satisfying the
constraint in 1, more recent work has incorporated net filter
discrimination (NFD) to account for frequency guard bands.
NED is a metric that quantifies the extent to which a receiver
can reject interference from adjacent frequency channels,
enabling a more realistic representation of communication
systems (Yilmaz et al., 2017; Jeon et al., 2021; Jeon et al., 2019).
By guiding the minimum required separation between assigned
frequencies, NFD introduces additional constraints into the
coloring process. This results in a constrained version of the
graph coloring problem, which can be formally expressed as follows:

Find f V-C
lf (Vi) - f(Vj)l >Wy)s

.t ViV, Vit €eE,
s.t. { ]}e @

where Wy,y, is the weight of the edge {V;,V;} € E, reflecting the
NED value. The required frequency is encoded in the edge weight
(see Section 2.1.1 for details), where Wy,v, represents the minimum
frequency offset needed to ensure acceptable communication quality
between the two interfering links. Although several heuristic
methods have considered edge weight to enforce frequency
separation constraints, most artificial intelligence (AI)-based
approaches still neglect this aspect. In this work, we explicitly
incorporate  NFD into the proposed Al-assisted frequency
assignment framework to better reflect realistic communication
conditions.
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Graph G consists of six nodes for graph coloring assignment. The color set comprises integer-labeled colors {0, 1, 2}, each representing a distinct
frequency block. The six steps on the right illustrate the sequential coloring process, where each node is assigned a color such that no two adjacent nodes
share the same color. This process reflects frequency assignment in communication networks.

1.3 Objective metrics in FAP: minimum order
VS. minimum span

The possible objective metrics include the order and span of
frequency bands. The order refers to the number of distinct
frequency blocks used in an assignment and corresponds to the
(MO-FAP)
(Aardal et al., 2007). This objective aligns with the classical graph

minimum order frequency assignment problem

coloring goal of minimizing the number of assigned colors. In
traditional graph-theoretic terms, the chromatic number of a
graph is defined as the minimum number of colors required to
color the nodes such that no two adjacent nodes share the same
color. Accordingly, substantial research has focused on determining
the chromatic number or approximating it through heuristic
coloring methods (Brown, 1972; Welsh and Powell, 1967).
Scheduling problems have also been modeled as graph coloring
tasks, where minimizing the chromatic number corresponds to
achieving optimal resource allocation.

However, since computing the chromatic number is NP-hard,
many studies instead focus on heuristically minimizing the number
of colors used. A similar principle applies to frequency assignment,
where minimizing the number of frequency blocks improves
spectral efficiency. This objective becomes even more valuable in
multi-cell wireless systems, where minimizing the number of
frequencies assigned within a cell can facilitate frequency reuse
across spatially separated regions. By reusing frequencies in non-
interfering areas, network operators can reduce the total spectrum
demand while maintaining service quality, especially in large-scale
and high-density deployments. The MO-FAP is particularly
effective when frequency resources are independent as the total
spectrum usage is approximately proportional to the order.
Additionally, reducing the number of assigned frequencies
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enhances adaptability by increasing the likelihood of identifying
alternative solutions within a constrained frequency range.
Another important objective is to minimize the span, which is
defined as the range between the minimum and maximum
frequency values used in a given assignment. This problem is
referred to as the minimum span frequency assignment problem
(MS-FAP) (Aardal et al., 2007). Unlike MO-FAP, which focuses on
minimizing the number of frequencies used, MS-FAP aims to
compress the frequency allocation into a narrow contiguous
block. This is particularly useful in scenarios where preserving
contiguous, unused portions of the spectrum is desirable as it
flexible potential
applications within the remaining bandwidth. Minimizing the

enables more accommodation of the
span enhances the overall robustness as it enables the assigned
frequencies to be more readily shifted to an alternative frequency
region in the event of interference or malicious attacks. A compact
frequency assignment also facilitates more efficient frequency reuse,
particularly within confined environments or adjacent cells, by
minimizing spectral leakage and limiting the footprint of active
channels. To address this objective, prior studies have explored
various heuristic methods. Just as the chromatic number provides a
theoretical lower bound for MO-FAP, meta-heuristic approaches
have been employed to estimate lower bounds for MS-FAP (Costa
et al,, 2002), thereby guiding the search for near-optimal solutions.

Notably, technical reports in the field of network and
telecommunications engineering—including studies conducted by
NASA (Heyward, 1992)—have applied heuristic methods and
parallel scheduling models to minimize the frequency span.
These approaches have demonstrated practical effectiveness in
real-world satellite communication experiments, highlighting the
applicability of MS-FAP to mission-critical systems. In this study,
we propose two complementary approaches: MO-FAP and MS-
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TABLE 1 Classifications of frequency assignment methods and their characteristics.

Method

Approach

Key Reference

Decision (color
vs.nodes)

NFD Mobility

Heuristics Greedy Welsh and Powell (1967) MO Select color X X
DSATUR Brélaz (1979) MO Select color X X
Yilmaz et al. (2017) MO and MS Select color o X
Tabu search Montemanni and Smith (2010) — Select color X X
Genetic Jeon et al. (2021), Yilmaz et al. MO and MS Select color o X
(2017)

Colombo (2006) MO and MS Select color o X
Al-based Deep learning-based Langedal and Manne (2024) MO Select nodes X X
DNN + reinforcement Watkins et al. (2023) MO Select nodes X X

learning
AlphaGo Zero Huang et al. (2019) MO Select nodes X X
Proposed method (DQN) MO and MS Select color o o

MO, minimum order; MS, minimum span; NED, net filter discrimination; DQN, deep Q-learning.

FAP, each targeting a different objective—minimizing the number
of frequency blocks and minimizing the overall frequency span,
respectively.

1.4 Heuiristic strategies in FAP

Given the NP-hard nature of the graph coloring problem, previous
studies have explored various heuristic approaches, such as the greedy
algorithm, genetic algorithm, and tabu search (Yilmaz et al, 2017;
Kumar and Milleth, 2018; Colombo, 2006). Among these, DSATUR
(Brélaz, 1979), an advanced greedy algorithm that dynamically decides
the next node to color based on the saturation degree, has
demonstrated strong performance in addressing the minimum
order. However, certain heuristics, particularly local search methods
such as greedy algorithms and tabu search, are often susceptible to
becoming trapped in the local optima, limiting their ability to identify
globally optimal solutions. To overcome this issue, some studies have
employed genetic algorithms, which, as global search methods, can
explore a broader solution space and help escape the local optima.
Despite this advantage, genetic algorithms also face challenges in terms
of scalability and computational efficiency, particularly in large-scale or
real-time frequency assignment scenarios.

1.5 Al-driven approaches in FAP

To enhance performance in frequency assignment, neural
networks and reinforcement learning have recently emerged as
promising alternatives to traditional heuristics. Previous studies
have applied Al-based approaches to graph coloring problems
across various domains, including computer science. For
instance, a deep learning-based approximate graph coloring
algorithm was proposed for designing the register allocation (Das
et al., 2020). Other studies have explored AlI-driven methods for
minimizing the

number of assigned frequency blocks,

demonstrating performance comparable to or exceeding that of

Frontiers in Communications and Networks

conventional heuristics (Watkins et al., 2023; Langedal and Manne,
2024). Huang et al. (2019) demonstrated that reinforcement
learning significantly enhances heuristic performance. However,
the training process in that work required approximately
300 GPUs and became increasingly time-consuming as the graph
size increased. Although these studies primarily focused on
minimizing the number of frequency blocks and demonstrated
improved results, they often suffer from scalability issues due to
the high computational costs and extensive GPU resources required
for training. To address these limitations, we propose a learning-
based frequency assignment framework that reduces computational
complexity while maintaining or surpassing the performance of
existing Al-based methods. Building on the recent advances in AI-
based frequency assignment methods, we summarize the key
contributions of the proposed approach in the following section.

1.6 Comparison of FAP approaches

Table 1 summarizes prior research that employs various
methods to address the graph coloring problem, encompassing
both heuristic and Al-based approaches. The table categorizes
each study based on its objective, the primary decision-making
strategy employed, and whether the method accounts for
NFD—i.e., graph coloring on edge-weighted graphs—or device
mobility. Among heuristic techniques, greedy algorithms are the
most widely used, with numerous variations reported in the
literature. Notable extensions of the basic greedy approach
include DSATUR and its derivatives (Welsh and Powell, 1967;
Brélaz, 1979; Yilmaz et al,, 2017), which dynamically select nodes
based on the saturation degree. Additionally, broader search
strategies such as tabu search (Montemanni and Smith, 2010)
and genetic algorithms (Colombo, 2006; Jeon et al., 2021) have
been extensively studied to improve solution quality and avoid local
optima. A typical greedy method involves two main steps:
determining the node sequence and assigning colors. Although
both steps rely on heuristic decisions, the color assignment step

frontiersin.org
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FIGURE 2

[llustration of the proposed frequency assignment framework
applied to a real-world, mission-critical scenario. The top panel shows
interference caused by spectrum congestion in a dynamic
environment. To prevent communication failure, frequencies f;

and f3 are reassigned to safer bands f; and f;, respectively. The
proposed model enables real-time reassignment to safer frequency
regions while maintaining efficient spectrum utilization.

is typically considered the core decision-making component and is
labeled accordingly in Table 1. Some studies are further enhanced by
introducing novel strategies for determining the node sequence,
which can significantly impact the quality of the final solution. These
heuristic approaches have been widely applied to both MO-FAP and
MS-FAP, aiming to minimize either the number of frequency blocks
or the overall frequency span required.

In recent years, artificial intelligence has emerged as a promising
alternative to classical heuristics for frequency resource assignment.
Several studies have demonstrated the effectiveness of learning-based
approaches in addressing the limitations of traditional methods. Most
existing research has applied learning models to determine the node
sequence—primarily to support color (frequency) assignment—and
has largely been restricted to unweighted graph settings. As illustrated
in Figure 2, real-world scenarios such as emergency response require
efficient and adaptive frequency management, which existing
methods often struggle to provide. The proposed approach is
designed to address these challenges more effectively.

1.7 Contributions

In this study, we propose a novel DQN-based framework that
integrates graph-based representations with reinforcement learning
to enable efficient and adaptive frequency assignment. To improve
the applicability of the solution in real-world environments, the
proposed model explicitly accounts for device mobility. The primary
contributions of this work are as follows:

o« We propose an Al-based framework that enhances the

performance of heuristic methods while improving learning
efficiency by simplifying the training process used in prior studies.

Frontiers in Communications and Networks

10.3389/frcmn.2025.1657288

« We
environment to demonstrate the superior adaptability and

incorporate device mobility into the simulation
performance of the proposed Al-based method compared to
conventional algorithms.

2 Methodology

2.1 System model and baseline heuristic
approaches

2.1.1 Graph representation of the
communication system

In the context of the FAP, the communication system
information is typically represented as a graph to enable the
application of graph coloring techniques. Each communication
link between a pair of transmitters is modeled as a node in the
graph, and an edge is established between two nodes if the
corresponding links are subject to interference.

For clarity, an example of graph representation is provided below.
In Figure 3, a communication system consisting of four devices is
illustrated. In this example, all device pairs form communication links,
resulting in a total of six links (for the convenience of explaining, we
do not consider the direction of the communication). The red dotted
line in Figure 3 represents the communication links, which are
mapped to six corresponding graph nodes. The blue arrow in
Figure 3 indicates Linky — V, and for all the links, they are
., Vs}. The edges of the Graph G are
formed when interference exists between the communication links

converted into nodes {Vy, ..

(nodes). The edge weight W;; quantifies the interference between
links i and j. W; ; is defined as the signal power, measured in decibels,
received at the target node from the transmitter of link i € V, as
calculated by Yilmaz et al. (2017) and Jeon et al. (2021):

Wij = [Peolasm *+ [Gii g, = [PLiti ] gy = T 3)

dBm dBm

where i, j, are the transmitter and receiver of the link i, j,

respectively, and P, is the transmitting power of the
transmitter of the link i, G, ;, is the product of the antenna gains
at both the transmitter of link 7 and the receiver of link j, PL; ;, is the
free-space path loss from the transmitter of link i to the receiver of
link j based on ITU-R P.525 (ITU-R, 1994), and T is the receiver
sensitivity threshold. We consider the frequency separation only
when the computed W ; value in dBm exceeds 0. In other words, an
edge is generated between nodes i and j when W;;>0. After
computing the interference between the communication links
(the nodes), the edge of Graph G is formed (the graph at the
center in Figure 3), which signifies the presence of interference
between the links.

As discussed earlier, effective frequency assignment must
account for interference constraints to ensure reliable,
interference-free operation. These constraints are modeled using
NED, which quantifies the minimum required frequency separation
between communication links. This separation requirement is
encoded as edge weights in the interference graph, as
demonstrated in prior studies (Yilmaz et al., 2017; Mannino and
Sassano, 2003). NFD depends on both the transmitter’s spectrum
emission mask and the receiver’s filter characteristics, and it

determines the minimum frequency offset necessary to protect
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the desired signal at the receiver from adjacent-channel interference.
The NFD function Fypp is defined in Equation 4.

Fxep (Af) = Wo, (4)

where Wy (dB) represents the attenuation level when the frequency
separation between two signals is Af (Hz). The variable Af
indicates the minimum frequency separation required between
two links to prevent mutual interference. This implies that, when
combined with the edge weight definition in Equation 3, the center
frequencies of links i and j must be separated by at least
Fykp (max (0, W;;,W;,)) to avoid signal degradation.

We define the set of assignable center frequencies as
F ={fo,..
frequency channels. A frequency assignment is defined as a
mapping F: V — {1,2,...,m}, where F(V;) =k indicates that
the frequency fy € F is assigned to link V; € V. The goal is to

.» fm}, where m denotes the number of available

assign frequencies such that the separation constraint derived from
the NFD model is satisfied, as expressed by

U-IF (Vi) = F(V;)I 2 Fyp (max(0, Wy, Wy ). (5)

Here, U is the unit frequency interval (i.e., the frequency spacing
between consecutive channels). Inequality (Equation 5) ensures that
the resulting frequency assignment maintains sufficient separation
between interfering links, thereby enhancing communication
Once  the
communication system is represented as a weighted interference

robustness and  preserving signal  quality.
graph, various algorithms can be applied to perform the frequency
assignment. The following the proposed

assignment,

section presents

methodology for efficient frequency resource

building upon this graph-based formulation.

2.1.2 Heuristic algorithms for FAP

As discussed in Section 2.1.1, graph coloring is an NP-hard
problem, which means that the computational complexity required
to find an optimal solution increases exponentially with the number
of nodes. This makes the exact solution impractical for real-time
applications, constituting a significant challenge for their
deployment in communication systems—especially in mission-
critical scenarios. In this study, we adopt the greedy algorithm as
a representative heuristic approach. The greedy algorithm makes
locally optimal choices at each step to approximate a globally
optimal solution, thereby balancing computational efficiency and
solution quality.

The greedy algorithm is widely used for its linear-time
complexity and computational efficiency. Its implementation
may vary by incorporating techniques such as backtracking and
approximation to suit different problem settings. Among these
variants, DSATUR has been suggested (Brélaz, 1979; Watkins
et al, 2023) as an effective greedy method. It dynamically
determines the node coloring sequence based on the saturation
degree. In this study, we modify the DSATUR algorithm to
enhance its compatibility with reinforcement learning. For
benchmarking purposes, we implement two versions of the
greedy algorithm: the minimum order greedy algorithm (MO-
greedy) and the minimum span greedy algorithm (MS-greedy).
Both variants begin by determining a node coloring sequence and
then assigning the minimum admissible color to each node. The
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objective of MO-greedy is to minimize the number of distinct
frequency blocks (ordering cost), while MS-greedy focuses on
minimizing the overall frequency span. The node sequence in
the greedy algorithm is determined based on the degree, which is
defined using two criteria: first, the number of neighboring nodes
and, second, the sum of edge weights. Due to its greedy nature, the
resulting frequency assignment may not be globally optimal.
However, the algorithm operates in linear time, making it
suitable for time-sensitive applications. The following section
detailed greedy
methodologies applied in this study.

provides a explanation of the specific

To extend the search space and mitigate the local limitations of
greedy algorithms, we also incorporate a genetic algorithm. By
introducing evolutionary mechanisms such as selection,
crossover, and mutation, the genetic algorithm enhances the
ability to explore the global optima. Prior studies (Colombo,
2006) have shown that the genetic algorithm achieves results that
are comparable to or better than those of other well-known
heuristics in various benchmark problems. Comparing the
outcomes of the genetic algorithm with those of the proposed
Al-based approach

effectiveness and adaptability of the proposed method.

enables us to evaluate the relative

Require:

1: Graph G

2:curr_assignment: current list of frequency block
in nodes

w

- while there exists an unassigned link do

~

Choose an unassigned node ¢; with the highest
degree
for {neighboring links with

ol

curr_assignment[i] + 0} do
6 Candidate[f] ={f | satisfy graph coloring rule}
7: end for
8 curr_assignment|i] « min(Candidate)
9: end while

return curr_assignment

Algorithm 1. Minimum span greedy algorithm (MS-greedy).

Require:
Graph G
2: curr_assignment: current list of frequency block
in nodes
Do Assign colors assuming edge weights @ or 1
return S: sequence of nodes
while there exists an unassigned link in S do
4: Choose an unassigned node S; of the sequence
for {neighboring links with
curr_assignment(i] + 9} do

6: Candidate[f] ={f | satisfy graph coloring rule}
end for
8: curr_assignment[i] « min(Candidate)
end while

return curr_assignment

Algorithm 2. Minimum order greedy algorithm (MO-greedy).

frontiersin.org
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2.1.2.1 MS-greedy

The MS-greedy algorithm is a heuristic method derived from the
greedy algorithm, specifically adopted to minimize the span of
assigned frequency blocks. Since minimizing the span is generally
more challenging than minimizing the order (Aardal et al., 2007), it
is essential to assign frequency blocks in a manner that effectively
reflects the graph structure. The degree of a node captures key
structural information and implicitly encodes node priority, making
it a valuable heuristic for guiding the assignment process. To reduce
the overall frequency span, the algorithm prioritizes the reuse of
recently assigned frequency blocks whenever feasible. The detailed
procedure of MS-greedy is outlined in Algorithm 1. At each step, the
algorithm selects the node with the highest degree and assigns it a
frequency from the set of feasible candidates—i.e., frequencies that
satisfy the interference constraints—while attempting to
minimize the span.

2.1.2.2 MO-greedy

The MO-greedy algorithm is designed to minimize the total
number of frequency blocks used, which is also known as the order.
Prior to the actual frequency assignment, each node in the graph is
preliminarily evaluated based on the weights of its connecting edges,
which are simplified to binary values: an edge weight of 1 indicates
interference (i.e., connectivity), while 0 indicates no interference.
These preprocessing steps, detailed in Algorithm 2, are intended to
reflect the essential structure of the graph and inform the assignment
sequence. By encoding connectivity in this manner, the algorithm
derives a node order that prioritizes nodes with higher
degrees—those more likely to cause interference—thus reducing
the chance of conflicts during assignment. Once the sequence is
determined, frequencies are assigned greedily to each node using the
lowest feasible frequency block, with the objective of minimizing the
total number of distinct frequencies.

Require:
Graph G
initial_assignment: greedy algorithm result
3: Crossover
Select a random crossover point k € {1,...,n -1}, where
n is the number of nodes.
Childy « [Py (1: K)|P2 (k +1: n)]
6: Childy, « [Py (1: K)|IP1(k +1:n)]
Mutation
for each gene (frequency) in Child;, for i =1,2 do
9: With probability u, replace the genewith a random
integer in [1,Nfreql
end for
Tournament Selection
12 : Randomly select T individuals from the population.
Choose the individual with the lowest fitness value.

Algorithm 3 Genetic algorithm.

2.1.2.3 Genetic algorithm

The genetic algorithm introduces controlled randomness into the
solution process, enabling exploration of a broader solution space
beyond what greedy algorithms can achieve. For both the MO-
greedy and MS-greedy algorithms, randomness is incorporated
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through standard genetic operations, including crossover, mutation,
and selection. These operations enhance the algorithm’s ability to escape
the local optima and increase the likelihood of discovering globally
optimal solutions. The detailed procedure of the genetic algorithm is
outlined in Algorithm 3. The initial population is seeded using solutions
generated by the greedy coloring algorithm, providing a strong starting
point. One-point crossover is applied to recombine segments from
parent solutions, while mutation introduces random variations to
maintain diversity and prevent premature convergence. Tournament
selection is used to retain fitter individuals based on a predefined fitness
function, which is evaluated separately for the MO and MS objectives.
To ensure that offspring solutions remain feasible with respect to the
interference constraints, a repair function is applied after crossover and
mutation. This function enforces NFD constraints, which require that
the frequency difference between any two adjacent nodes must be
greater than or equal to the corresponding edge weight. During the
repair process, if any pair of connected nodes violates this condition, the
assigned frequencies are adjusted to satisfy the minimum separation
required by the edge weight. In cases where no valid adjustment can be
made due to conflicts with other neighboring nodes, the entire
assignment for the conflicting node may be regenerated. This
ensures that all individuals in the population remain feasible
throughout the evolutionary process.

2.2 Proposed approach: Artificial
intelligence-based method

In this study, we propose a DQN framework integrated with a
graph neural network (GNN) architecture to obtain pseudo-optimal
solutions for the FAP, demonstrating superior performance
DQN, a

effective

compared to conventional heuristic approaches.

reinforcement learning technique, enables more
exploration of the solution space than traditional greedy
algorithms, which inherently operate as local search methods
with limited exploration capability. Reinforcement learning offers
a principled framework for balancing exploration and exploitation,
making it particularly suitable for sequential decision-making tasks
such as graph coloring, where each frequency assignment influences
subsequent decisions. Within our framework, the GNN serves as a
feature to extract the meaningful structural properties of the graph,
providing rich embeddings for effective policy learning. The
Q-learning agent then interacts with the environment iteratively,
optimizing a long-term reward signal to guide the frequency
assignment process toward globally effective and interference-
aware solutions. We denote the two variants of our DQN-GNN
model as MO-DQN and MS-DQN, corresponding to the objectives
of minimizing the order and span, respectively.

We adopt the GNN architecture to process the graph-structured
inputs and effectively encode topological information. GNNs are
designed to learn from the node, edge, and graph-level structures,
making them particularly well-suited for pattern-based prediction
tasks such as frequency assignment. Their ability to generalize across
varying graph topologies has been demonstrated in a wide range of
applications (Wu et al., 2021; Langedal and Manne, 2024). However,
conventional GNNs may face limitations when generalizing to
unseen graphs or scaling to deeper architectures, often due to

issues such as over-smoothing and vanishing gradients. To
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[llustration of a frequency assignment map. A wireless communication system is transformed into a graph G, where each node represents a
communication link and each edge weight denotes the required frequency separation (Af) between interfering links. The objective is to assign
frequencies that satisfy these constraints while minimizing either the number of frequency blocks (MO-FAP) or the total frequency span (MS-FAP). This
graph-based formulation visually illustrates how frequency assignment problems are modeled and addressed.

address these challenges, we integrate GNN with DQN. In this
framework, the GNN component serves as a structural encoder that
embeds the input graph by capturing node relations via edge
connectivity—an essential feature for learning effective frequency
assignments under interference constraints.

DQN integrates classical Q-learning with deep neural networks
to approximate the action-value function Q(s,a), which estimates
the expected cumulative reward of taking action a in state s. The
learning process follows the Bellman update policy (Wagqar
et al., 2024):

Q(s,a) < Q(s,a) +a| r +y maxQ (s',a') - Q(s,a) |, (6)

where r is the immediate reward, s’ is the next state, y € [0,1) is the
discount factor, and « is the learning rate. A higher y biases the agent
toward future rewards, potentially increasing learning time while
promoting long-term optimization. In traditional Q-learning, the
function Q(s,a) is stored in a lookup table. However, for large and
high-dimensional state spaces, DQN approximates Q (4, s) using deep
neural networks. In our environment, actions correspond to assigning
frequencies to nodes, a task that is discrete and high-dimensional. To
manage this complexity, we employ a GNN as the Q-network. The
GNN encodes structural information from the graph, producing
meaningful embeddings over which Q-learning is performed. An e—
greedy policy is adopted to balance exploration and exploitation: with
probability €, a random action is selected to encourage exploration;
otherwise, the action with the highest predicted Q-value is chosen. This
integration of DQN with GNN enables scalable and adaptive frequency
assignment by effectively learning from graph-structured input while
optimizing long-term performance.
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2.2.1 Network architecture of the proposed model

The overall network architecture of the proposed model is
illustrated in Figure 4. It consists of multiple interconnected
layers that collectively compute the Q-values. The model employs
a deep neural network composed of five graph convolutional
(GCN) the PyTorch
Geometric library, followed by three fully connected layers. The

network layers, implemented using
GCN layers capture topological information and aggregate features
across neighboring nodes, while the fully connected layers transform
the learned node embeddings into Q-values corresponding to
possible actions. The depth of the GCN (five layers) was
empirically chosen due to the balance between representational
expressiveness and training stability. The input to the model is a
node feature vector whose length corresponds to the number of
nodes in the graph. The hidden and output layers consist of
4,096 and 4,000 units, respectively. The output dimensionality is
fixed at 4,000 to align with the number of available frequency blocks.
All model weights are randomly assigned at the initialization stage.
Given that GNN structures are known for their ability to learn from
graph-structured data, this architecture is designed to generalize well
across diverse graph topologies, thus providing a robust foundation
for adaptive and scalable frequency assignment.

2.2.2 Reinforcement learning design: state, action,
and reward

To implement reinforcement learning effectively, it is essential
to define the key components of the model: the state, action,
and reward.

In conventional DQN models, the state is typically represented
by a single vector or image that encodes the current environment. In
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Network architecture of the proposed DQN-GNN model. The input node features are first processed through five graph convolutional network
(GCN) layers and passed through three fully connected layers to generate Q-values over 4,000 possible frequency blocks.

our framework, the state is composed of the communication graph
structure and the current frequency assignment vector. The GNN
processes the graph to extract structural embeddings that capture
node connectivity and interference relationships. The frequency
assignment vector is denoted as v = [fo,..., f,,]T, where f;
represents the frequency assigned to node i in a graph with »
nodes. This combined state representation captures both the
topological and assignment-specific information, enabling the
model to make context-aware decisions that consider the
structure of the network and the current state of frequency usage.

At each decision step, the agent selects a frequency block to
assign to a node—this corresponds to the action in the
reinforcement learning framework. Nodes are processed
sequentially in a fixed order determined by their degree. This
predefined sequence simplifies the training process and helps the
Q-network converge more efficiently, particularly when dealing with
large-scale graphs. During exploitation, the agent chooses the
frequency corresponding to the highest predicted Q-value. For
exploration, a greedy search strategy is employed to reduce
computational overhead as it increases the likelihood of selecting
feasible frequencies based on prior heuristic knowledge. To ensure
compliance with the interference constraints defined by the NFD in
(5), alist of candidate frequencies is precomputed for each node. The
agent then selects an action from this filtered set, thereby ensuring
that all actions maintain communication quality by preventing
harmful interference.

The reward is computed after each frequency assignment and
reflects the efficiency of the current solution. In the MO-DQN
model, the reward is based on the increase in the number of distinct
frequency blocks used. Specifically, the agent receives a fixed
negative reward whenever the number of distinct blocks
increases. Since at most one new negative block can be added per
step, the reward is inherently binary—either a penalty is applied for
introducing a new block, or no penalty is given if the current order is
maintained. This design encourages the agent to avoid unnecessary
expansion of the frequency set and aligns well with the MO-FAP
objective. In the MS-DQN model, the reward is determined by the
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change in the total frequency span after each assignment. A negative
reward is applied whenever the span increases, penalizing inefficient
spectrum usage. Similar to the MO case, we adopt a binary reward
scheme to enhance training stability—assigning a small penalty for
span increases and 0 otherwise. This binary reward structure
improves learning dynamics by providing clearer signals at
critical decision points while avoiding noisy gradients caused by
minor fluctuations. As shown by Bellemare et al. (2016), sparse and
binary rewards can enhance the stability of policy learning and
promote efficient exploration, particularly in high-dimensional or
combinatorial state spaces. In our setting, this approach enables the
agent to focus on impactful decisions, delay unnecessary spectrum
expansion, and achieve more stable and consistent policy
improvement.

Furthermore, to ensure that Q-values reflect the effectiveness of
the full assignment, updates are performed only after the entire
graph has been colored. The Bellman equation (Equation 6 is used to
update Q-values, and the network is trained by minimizing the
mean-squared-error (MSE) between the predicted and target
Q-values. The DQN  parameters are optimized
backpropagation using the Adam optimizer, with all layers

via

updated jointly to progressively refine the agent’s policy.

3 Simulation results
3.1 Simulation setup

The efficiency of the proposed resource assignment model is
evaluated within a virtual communication system. We generate a
virtual communication system by randomly placing the devices and
their corresponding communication links. The simulation area is
defined as a square region of 100 x 100 [km?], and it consists of a
total of 200 devices. An example of a randomly generated topology is
illustrated in Figure 5, where 200 communication links are formed
between randomly selected pairs of 200 devices. These links are then
mapped to graph nodes, representing the structure used for
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Topology of a randomly generated simulation scenario is shown.
Atotal of 200 devices are randomly distributed in the 100 x 100 [km?]
area, forming 200 communication links.

TABLE 2 The key simulation parameters used to model the wireless
communication environment in our experiments.

Parameter Description Value
B Minimum assignable frequency 600 MHz
w Bandwidth of each frequency band 0.15 MHz
h Channel model Rayleigh
Ny Noise power -100 dBm
Py Transmitting power 20 dBm
T, Receiver sensitivity threshold -79.12 dBm

TABLE 3 Parameter settings of the genetic algorithm for
200 communication links.

Parameters of genetic algorithm

Parameter Value

Population Size 50
Number of Generation ‘ 50
Mutation Rate ‘ 0.05

frequency assignment. Interference between communication links is
modeled based on free space attenuation, using the standard ITU
P.525 (ITU-R, 1994). All devices are assumed to operate with
identical transmission power, antenna characteristics, and
sensitivity. The receiver sensitivity—the minimum
detectable by a
to —79.12 dBm in this study. The frequency spectrum is divided
into blocks, each with a bandwidth of 15 MHz, within a total band of
600 MHz. The key simulation parameters are summarized in
Table 2. The detailed parameters of genetic algorithm and DQN-
GNN model is provided in Tables 3, 4.

In the simulation, the performance of both the greedy algorithm

receiver

received power that is receiver—is  set

and the proposed DQN-GNN learning method is evaluated using
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TABLE 4 Parameter settings of the DQN-GNN model for
200 communication links.

Parameters of DQN-GNN

Parameter
Learning rate 0.001
Discount factor (y) 0.99
Initial epsilon 1.0
Epsilon decay rate 0.999
Number of GNN layers 5
Number of fully connected layers 3
Hidden dimension size 4,096
Number of colors (action space) 4,000
Batch size 64

randomly generated communication links. The fundamental
objectives of the FAP are twofold: first, to eliminate all
perceivable interference between communication links and,
second, to prevent the detectability of intended signals by
potential attacks. To meet these objectives, the proposed method
ensures successful frequency assignment for all devices in the
network. Specifically, it guarantees stable communication across
all transmitter-receiver pairs. This validates the feasibility and
reliability of the method in scenarios requiring interference-free
and secure communication.

3.2 Results and discussion

To enable a fair comparison, we evaluate the performance of
the greedy algorithm, the genetic algorithm, and the proposed
DQN-based learning model, each targeting both the minimum
span and minimum order objectives. The evaluation is conducted
on randomly generated communication link instances. For each
method, the average frequency span and ordering cost are
recorded as the primary performance metrics. All the resulting
frequency assignments satisfy the interference constraints,
ensuring interference-free communication. Specifically, each
node meets the requirement that each node is assigned a
frequency greater than the corresponding edge weight, as
defined in (Equation 2).

3.2.1 Comparison when the number of
nodes increases

To evaluate the scalability of the proposed DQN-GNN
approach, we increased the number of D2D communication links
and compared the resulting frequency assignments with those
obtained by a greedy heuristic and a stochastic variant based on
a genetic algorithm. For each link set size {10, 20, 50, 100, 200}, we
generated 100 random network topologies and computed the
average frequency span and ordering cost. The result is
summarized in Figure 6, where the left plot depicts the average
span, and the right plot presents the average ordering cost as the
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number of links increases. Since both metrics are minimization
objectives, lower values indicate better performance.

An analysis of the results reveals that the greedy algorithm
exhibits a near-linear relationship in both frequency span and
ordering cost as the number of communication links increases.
The genetic algorithm provides marginal improvements over the
greedy approach in smaller instances but similarly shows a near-
linear performance trend as the network scales. In contrast, the
DQN-GNN model
methods, with its advantage becoming more pronounced in

consistently outperforms both heuristic

larger-scale scenarios. As the number of links increases, both the
average span and ordering cost increase more slowly under the DQN
model, demonstrating its superior scalability and effectiveness in
managing complex frequency assignment tasks.

Since the graph coloring problem is NP-hard, its computational
the of
communication links. Consequently, the performance of the

complexity increases exponentially with number
three methods—greedy, geneticc, and DQN—appears nearly
indistinguishable for small-scale instances. However, as the link
count increases, the superiority of the DQN-based approach
becomes increasingly evident. As earlier studies have noted,
minimizing the span is generally more challenging than reducing
the ordering cost. This is reflected in our results, where the average
span decreased less significantly than the average order. Notably, the
performance gap between the greedy algorithm and the DQN model
is more pronounced in the average-order metric. Although the
genetic algorithm demonstrates a marginal advantage in
minimizing the span for smaller graphs, the DQN-GNN model
consistently outperforms it once the number of links exceeds
100—clearly surpassing both the genetic and greedy methods.
Although the genetic algorithm explores a broader solution space
than the greedy heuristic, its reliance on random variation leads to
increased computational cost. Consequently, its performance tends
to regress toward that of the greedy algorithm as the graph size
increases. In contrast, the DQN strategy effectively learns to

minimize both the span and order, surpassing both greedy and
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genetic approaches as it receives appropriate rewards during
training. Its ability to generalize and expand the effective search
space without incurring prohibitive computational overhead enables
the DQN-GNN model to achieve superior performance, particularly
in large-scale scenarios. These results confirm that the proposed
model preserves its effectiveness in large-scale scenarios. Despite the
growing complexity of the input graphs, the performance gains scale
favorably, and the decision quality does not degrade.

3.2.2 Scenario of a 200-node graph

Figure 7 presents the mean span and mean order obtained from
100 randomly generated graphs, each containing 200 communication
links (nodes). As mentioned in Section 2.1, the total span of the given
frequency band is 600 MHz, consisting of 4,000 frequency blocks
(each block is 0.15 MHz wide). To evaluate the effectiveness of the
proposed approach, we compared four algorithms—MS-greedy, MO-
greedy, MS-DQN, and MO-DQN—on large graphs.

Among the evaluated methods, MO-DQN leverages the full
frequency band to produce highly efficient frequency assignments.
Specifically, MO-DQN reduces the number of required frequency
blocks by approximately 60 and 30 frequency blocks compared to
MS-greedy and MO-greedy, respectively, as shown in the right-hand
plot of Figure 7. This corresponds to an improvement of 30% over MO-
greedy in terms of ordering cost, demonstrating the model’s ability to
effectively minimize frequency block usage while satisfying interference
constraints. Moreover, MS-DQN demonstrates improved performance
in terms of reducing the ordering cost compared to MO-greedy. It
achieved an average order of 77.18 across 100 test graphs—12% lower
than MO-greedy—demonstrating improved performance in reducing
the frequency blocks.

With respect to the frequency span, MS-greedy holds only a
marginal advantage over MO-greedy—their average spans differ by
an almost negligible amount. In contrast, when considering the
ordering cost, MO-greedy surpasses MS-greedy by approximately
30 frequency blocks. It underscores the difficulty of compressing the
frequency range in graph coloring formulations, as demonstrated by
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Average span and order achieved by four methods—MS-greedy, MO-greedy, MS-DQN, and MO-DQN —for the case of 200 communication links.
MS-DQN and MO-DQN achieve the best performance in their respective objectives.

prior studies (Aardal et al., 2007). When the DQN framework is
trained with the objective of minimizing the span, performance
improves across all algorithmic variants. In particular, MS-DQN
achieves the best result, achieving a 13% reduction compared to the
best-performing heuristic baseline. These findings suggest that the
reinforcement learning model equipped with a neural-network
Q-function learns to explore the solution space far more
effectively than heuristic approaches. On large-scale graphs, MS-
DQN achieves a significant reduction in the frequency span, while
both MS-DQN and MO-DQN superior
performance in minimizing the ordering cost compared to their

also demonstrate

greedy counterparts. These results underscore the advantage of
using deep reinforcement learning in addressing multi-objective
frequency assignment problems.

3.2.3 Scenario with device mobility

In D2D networks, device mobility is an important factor to
consider for seamless communication. As users move, the network
must maintain reliable communication links by dynamically assigning
appropriate frequency resources. To emulate realistic operating
conditions, we introduced random mobility into our simulation
without relying on predefined motions. Specifically, we began with
200 devices forming 100 communication links, represented as a graph
with 100 nodes. Then, 10 devices were randomly selected and
randomly relocated within a 4 km radius, independently of any
movement pattern. Their original communication links were kept
identical. Consequently, the edges of the graph largely unchanged, yet
the edge weights—expressed as NFD values—are recomputed to
capture the new inter-device interference introduced by mobility.
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We compare the frequency assignment results produced by a heuristic
model with those obtained from our reinforcement learning model to
quantify their performance gap.

Opverall, the experimental results demonstrate a clear advantage
of our learning-based approach. The DQN-GNN framework
consistently demonstrated significant improvements in reducing
both the order and span of the frequency assignment.
Specifically, MO-DQN achieves the lowest ordering cost, while
MS-DQN attains the minimum span among the four methods.
MO-DQN reduced the ordering cost by 14.6 frequency blocks,
corresponding to a 32% improvement over MO-greedy. The two
greedy baselines produce nearly identical spans, and although MO-
greedy offers a slight ordering improvement over MS-greedy, these
results indicate that heuristic methods lose effectiveness once
mobility is introduced into the environment. In contrast, our
learning-based model consistently outperforms the greedy
methods. As illustrated in Figure 8, MS-DQN reduced the
frequency span by 39.5 MHz, representing a reduction of
approximately 12.6% relative to the best greedy method, while
simultaneously achieving a lower ordering cost. These findings
suggest that reinforcement learning offers a distinct advantage
when the underlying graphs exhibit similar structural patterns.

3.3 Comparison of computational
complexity

In real-world deployments, especially in mission-critical
communication, frequency assignments must be applied with
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Average span and order results over 10 randomly generated graphs, each with 100 communication links and 10 mobile devices. MS-DQN and MO-
DQN exhibit the best performance in minimizing the span and order, respectively.

minimal latency. While traditional heuristic methods run in roughly
linear time with respect to the number of nodes, learning-based
approaches raise concerns regarding their substantial training
complexity. As the network size increases, the state-action space
expands exponentially, resulting in a corresponding increase in the
required training time. To verify that the proposed model is
practically deployable, we measured the execution time of each
method. Table 5 summarizes the mean runtime per graph, which
was averaged over 100 randomly generated instances with 200 nodes
each. It shows the average time required for training or to obtain a
result for a single graph for each method. All algorithms were
executed on the same hardware (a single NVIDIA GeForce RTX
4090 GPU) to ensure a fair comparison of their computational
footprints. We report the average running times of the greedy
algorithm, the genetic algorithm, and the proposed DQN-GNN
approach. In Table 5, train-DQN denotes the time required to train
the model on a single graph instance, whereas execute-DQN denotes
the inference time needed to produce a solution with the pre-
trained model.

As shown in Table 5, the genetic algorithm exhibits the longest
runtime among all methods, even surpassing the training time of the
DQN-GNN model. This excessive runtime stems from the genetic
algorithm’s dependence on random mutation, which frequently
generates infeasible solutions that violate interference constraints.
Consequently, a time-consuming repair process is required for each
offspring to ensure NFD-compliant frequency assignments, which
significantly increases the overall execution time.

In contrast, although the DQN-GNN model incurs an initial
training cost—approximately 20 times longer than that of the greedy
algorithm—the runtime during inference is nearly identical to that
of the greedy approach. This parity highlights a key advantage of our
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framework: once trained, the DQN-GNN model can deliver fast,
near-instantaneous decisions, making it suitable for mission-critical
communication systems with stringent latency constraints. The
scalability and consistency of its inference performance make the
DQN approach highly practical, especially when trained over a
sufficiently diverse set of environmental scenarios. Thus, although
the initial training phase requires substantial computational effort,
once trained, the model can be deployed repeatedly at minimal cost,
thus real-time  operational

requirements.

ensuring  compatibility =~ with

4 Conclusion

In this study, we proposed a reinforcement learning-based
frequency assignment framework that integrates DQN with GNN
to efficiently allocate spectrum resources under interference
constraints, incorporating both the NFD metric and device
mobility. The model architecture employs multiple graph
convolutional layers to extract structural features of the
communication network, as node connectivity and
interference levels. These encoded representations are then
processed by a fully connected Q-network, which sequentially
assigns frequencies by estimating long-term cumulative rewards.
This decoupled design enables the model to learn interference-aware
assignment strategies that generalize effectively across diverse
network topologies and densities.

Extensive evaluations demonstrate that the proposed DQN-
GNN model consistently outperforms conventional heuristics in
both frequency span and ordering cost. In high-density or mobility-
intensive scenarios, the model maintains spectrum efficiency and

such
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TABLE 5 Average time consumption for a single graph of 200 nodes. The time refers to the time required to obtain a frequency assignment solution, whereas
train-DQN denotes the time spent for training the model.

Genetic Train-DQN Execute-DQN

Average time (s) 0.278 9.847 5.845 0.300

exhibits sub-linear scaling behavior, reflecting its robustness and Fu nding
ability to capture structural patterns.

Future work will focus on extending this framework to support The author(s) declare that financial support was received for the
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