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In tactical communication networks, highly dynamic topologies and frequent
data exchanges create complex spatiotemporal dependencies among link states.
However, most existing intelligent routing algorithms rely on simplified model
architectures and fail to capture these spatiotemporal correlations, resulting in
limited situational awareness and poor adaptability under dynamic network
conditions. To address these challenges, this study proposes an intelligent
path selection method—Deep Reinforcement Learning with Spatiotemporal-
aware Link State Guidance Algorithm (DRLSGA). The algorithm builds upon
the Proximal Policy Optimization (PPO) framework to develop an intelligent
decision-making model and integrates a link state feature extraction module
that combines Gated Recurrent Units (GRU) and a Graph Attention Network
(GAT). This design enables the model to learn long-term temporal dependencies
and spatial structural relationships from sequential link state data, thereby
enhancing perception and decision-making capability. An attention
mechanism is further introduced to highlight salient features within link state
sequences, while an optimal routing strategy is derived through a deep
reinforcement learning-based training process. Experimental results
demonstrate that, compared with the existing DRL-ST algorithm, DRLSGA
reduces average end-to-end latency by at least 2.07%, lowers the packet loss
rate by 1.65%, and increases average throughput by up to 2.59% under high-traffic
conditions. Moreover, the proposed algorithm exhibits stronger adaptability to
highly dynamic network topologies.
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1 Introduction

The evolution of modern warfare has driven battlefield communication systems toward
greater efficiency, flexibility, and intelligence. Routing technology plays a critical role in
ensuring dependable data transmission within tactical communication networks, enabling
coordination among units during missions, and improving overall quality of service (QoS)
(Suomalainen et al., 2021; Liu et al., 2024). Under intelligent warfare conditions, however,
the increasing number, heterogeneity, and autonomy of battlefield elements have created a
highly complex and adversarial communication environment (Patel et al., 2023).

Tactical communication networks designed for intelligent combat must meet several
demanding requirements. First, more than five types of heterogeneous services—such as
voice, image, and video—are typically transmitted, each with distinct QoS demands
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concerning delay, bandwidth, and packet-loss tolerance
(Pourranjbar et al., 2023). Second, the network infrastructure
incorporates more than ten types of heterogeneous links,
including shortwave, microwave, and optical fiber, with data rates
ranging fromKbps to hundreds ofMbps. These diverse and dynamic
link conditions significantly influence network performance and
complicate routing decisions. As a result, the design and deployment
of routing algorithms face new challenges in highly mobile and
adversarial battlefield scenarios (Bajracharya et al., 2023).

Conventional routing approaches generally compute optimal
paths using partial or limited link state information. While effective
under stable conditions, these methods adapt poorly to rapid traffic
fluctuations and often fail to meet diverse QoS requirements. The
explosive growth of data traffic and applications in tactical
communication networks further amplifies these limitations,
leading to inefficiency and reduced accuracy (Liu et al., 2023).
Deep reinforcement learning (DRL), a branch of artificial
intelligence, has emerged as a promising solution to these
challenges. DRL offers self-learning capabilities without requiring
prior environmental knowledge and is well-suited for optimizing
high-dimensional state spaces (Wang et al., 2023). Consequently,
DRL-based routing strategies have attracted significant attention in
path decision-making research.

Despite their potential, conventional DRL algorithms exhibit
notable drawbacks. They often require lengthy trial-and-error
exploration, during which valuable samples are underutilized
while uninformative samples are repeatedly processed. This
inefficiency leads to slow convergence and suboptimal routing
decisions, which may aggravate congestion (He et al., 2023).
Moreover, the frequent topological changes and intensive data
exchanges in tactical communication networks give rise to
complex temporal and spatial dependencies in link state
information (Yang et al., 2024). Most existing DRL-based routing
algorithms overlook these spatiotemporal correlations, thereby
limiting situational awareness and adaptability. As a result, end-
to-end QoS requirements are often not met.

To address these limitations, this study proposes a deep
reinforcement learning with spatiotemporal-aware link state
guidance algorithm (DRLSGA) for tactical communication
networks. The algorithm leverages proximal policy optimization
(PPO) to construct an intelligent path decision model while
integrating a link state feature extraction module. Specifically, a
gated recurrent unit (GRU) is employed to capture temporal
dependencies in link state sequences, and a graph attention
network (GAT) is used to model spatial correlations. An
additional attention mechanism highlights critical features within
the state sequence. Together, these components enable the DRL
framework to generate an optimal path forwarding policy with
improved adaptability to dynamic network topologies. The
contributions of this work can be concluded as:

• The study identifies critical limitations of existing DRL-based
routing algorithms in tactical communication networks,
including slow convergence, inefficient sample utilization,
and the inability to capture spatiotemporal correlations in
link state information.

• A novel deep reinforcement learning with spatiotemporal-
aware link state guidance algorithm is proposed. The

algorithm integrates PPO-based decision-making with a
specialized link state feature extraction module.

• Temporal dependencies of link state sequences are captured
using GRU, while spatial correlations are modeled through
GAT. An attention mechanism is further introduced to
highlight critical features, thereby enhancing
situational awareness.

To further enhance transparency and reproducibility, we
commit to releasing the full source code upon acceptance of this
paper. All resources will be hosted on GitHub, enabling researchers
to readily reproduce our results and adapt the proposed method to
other recommendation tasks.

2 Related works

Global network path planning algorithms can be broadly
categorized into three classes based on their underlying principles
and decision-making mechanisms: traditional routing algorithms,
heuristic routing algorithms, and DRL-based routing algorithms.
Traditional routing algorithms are typically divided into static and
dynamic approaches. Heuristic routing algorithms utilize
experience-based and rule-driven strategies for path planning.
DRL-based routing algorithms, depending on their learning
strategies, fall into value function-based and policy gradient-
based methods.

2.1 Traditional routing algorithms

Conventional routing algorithms are typically divided into static
and dynamic categories. Static routing involves manually configured
routing tables and is incapable of adapting to variations in network
topology or traffic conditions. As networks grow in scale and
complexity, manual configuration becomes increasingly
cumbersome and error-prone, rendering static routing unsuitable
for dynamic environments. In contrast, dynamic routing algorithms
autonomously adjust routing tables in response to network
conditions, making them more adaptable and suitable for
complex, dynamic communication scenarios (Zhou et al., 2023).

Traditional routing algorithms are supported by well-established
theoretical foundations and have been widely applied across various
domains. For instance, Mehraban et al. introduced an intelligent node
placement strategy that integrates both node connectivity and traffic
features, demonstrating notable improvements in reducing maximum
link utilization over existing methods (Hussain and Sinha Roy, 2021).
Similarly, Zhu et al. introduced a routing algorithm tailored for low
Earth orbit satellite ad hoc networks by enhancing open shortest path
first (OSPF) to accommodate dynamic satellite topologies,
incorporating a routing reconstruction mechanism to ensure reliable
data transmission (Zhu and Jin, 2023). Hussain et al. introduced a smart
flow steering agent that leverages real-time network conditions to
dynamically balance traffic in SDN, thereby enhancing routing
efficiency and overall performance (Hussain et al., 2021). However,
as network traffic and scale continue to grow exponentially,
conventional routing algorithms face mounting limitations due to
their restricted ability to obtain real-time link state information. This
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limitation results in slower convergence and delayed responsiveness to
dynamic traffic changes, thereby reducing transmission efficiency.
Consequently, Traditional routing strategies are inadequate for
addressing the complex and dynamic demands of tactical
communication networks in intelligent combat scenarios, thereby
hindering the formulation of globally optimal routing decisions.

2.2 Heuristic routing algorithms

Heuristic algorithms are well-suited for solving complex
optimization problems and offer notable advantages over traditional
methods when addressing large-scale and dynamic network
environments. As such, they have increasingly become mainstream
solutions for routing optimization tasks. Tabatabaei et al. combined
the bacterial foraging optimization algorithm with a mobile sink
approach to propose a novel routing algorithm for wireless sensor
networks. By incorporating node energy information in the path
selection process, the algorithm effectively reduced control overhead
and bandwidth consumption while improving routing accuracy
(Tabatabaei, 2022). Alnajjar et al. developed a genetic algorithm to
optimize cluster head placement in wireless sensor networks, achieving
balanced distribution and stable energy usage. By employing customized
crossover and mutation operations, the method gradually improved
sensor-to-cluster assignments, confirming the efficiency and reliability of
the approach overmultiple generations (Alnajjar et al., 2022). Deng et al.
(2022) introduced an ant colony optimization (ACO)-based routing
algorithm for low Earth orbit (LEO) satellite networks. Their method
jointly considers path distance, transmission direction, and link load to
identify routes with minimal delay and cost, thereby achieving load
balancing in the satellite network. Shokouhifar (2021) designed a fuzzy
heuristic ACO algorithm that utilizes a multi-objective function
incorporating power consumption, delay, and reliability, allowing for
adaptive routing based on application-specific requirements. Ju et al.
designed a dynamic load-balancing routing approach for LEO satellite
networks was developed by integrating multiagent dueling double deep
Q-network with spatiotemporal traffic prediction. By utilizing both local
and predicted traffic data, the method efficiently optimizes routing,
reduces peak and average bandwidth usage, and balances network load
(Ju et al., 2025). While heuristic routing algorithms have demonstrated
strong capability in solving complex network optimization problems and
have been widely applied, they often require specific network
assumptions and conditions. Variations in network topology and link
status can introduce significant volatility and error, undermining
algorithm scalability and stability. As a result, these methods tend to
perform poorly in highly dynamic and unpredictable environments,
such as tactical communication networks under battlefield conditions,
where rapid changes in structure and link quality are common.
Consequently, heuristic routing algorithms face challenges in
maintaining robust QoS under such circumstances.

2.3 Deep reinforcement learning-based
routing algorithms

DRL offers the capability to learn complex, nonlinear policies
through interaction with the environment, exhibiting superior
flexibility and adaptability in solving practical problems. These

advantages have opened new avenues for addressing complex
network optimization challenges (Dake et al., 2021). To address
the limitations of traditional routing strategies in SDN, particularly
their inability to meet diverse application-level QoS requirements
and their lack of interaction with the network environment, Li et al.
(2021) proposed DRNet—an intelligent, QoS-aware routing
algorithm. This approach utilizes traffic demand matrices and
network state information as input to the DRL agent for
training, enabling more flexible routing deployment. Fu et al.
(2020) designed a deep Q network (DQN)-based routing
strategy that distinguishes between mouse flows and elephant
flows in data center networks, thereby improving throughput
and reducing latency and packet loss. Liu et al. (2021)
introduced a DRL-based routing algorithm that reconfigures
network resources by assigning weighted importance to caching,
bandwidth, and latency. Network states are represented as
multidimensional inputs to the agent, enabling perceptual
learning and optimized resource allocation, which enhances
throughput and robustness. Casas-Velasco et al. (2021)
proposed a DQN-based intelligent routing algorithm under the
SDN architecture that learns path state information for dynamic
routing decisions, addressing the challenge of traffic variability in
traditional routing schemes. He et al. integrates graph neural
networks with deep reinforcement learning to capture network
topology information and guide routing decisions, which enables
balanced traffic distribution and enhanced performance (He et al.,
2023). Huang et al. (2022) developed a deep graph reinforcement
learning (DGRL) routing algorithm that integrates graph
convolutional network (GCN) with DDPG to achieve effective
traffic control in wireless sensor networks. Zhou et al. (2022)
proposed a PPO-based QoS-aware routing optimization
mechanism, which adjusts the reward function dynamically
according to different optimization goals, thus enabling a
generic and customizable routing optimization framework.

These DRL-based intelligent routing algorithms demonstrate
strong adaptability to complex and dynamic network conditions,
enabling autonomous policy adjustments and improving overall
service quality. However, several limitations persist. Current
methods often suffer from slow convergence and unstable
performance, and many focus solely on single or limited link-
level features, neglecting the heterogeneous QoS demands across
different traffic types. Moreover, the highly dynamic topology and
rapidly changing link states of tactical communication networks
challenge the fixed-architecture neural networks used in existing
models, limiting their situational awareness and adaptability.
Consequently, current intelligent routing algorithms are
inadequate for optimal path decision-making in highly mobile,
adversarial battlefield environments.

3 Basic theory

3.1 SDN network measurement mechanism

This study employs Ryu (Ryu SDN Framework Community,
2020) as the SDN controller to achieve network topology awareness
and link status monitoring, implementing the described application
requirements using Python programming.
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3.1.1 Network topology perception
The link layer discovery protocol (LLDP) (Chang et al., 2020) is

used in the SDN network to obtain the network topology structure.
The main principle is shown in Figure 1, the controller periodically
sends a Packet-Out message encapsulating LLDP data packet to the
S1 node of the data plane through the OpenFlow channel. Upon
receiving the Packet-Out message, node S1 processes it and forwards
it via the designated port to node S2. Since S2 cannot find a matching
flow table entry for the incoming packet, it responds by sending a
Packet-In message to the controller. The controller then interprets
this message to generate identifiers—such as Classis ID and Port
ID—that help recognize neighboring nodes and their associated
ports. Other adjacent nodes are identified in the same way, and
finally the entire network topology structure is obtained.

After achieving global network topology awareness, the
NetworkX module in Python is used to store the topology as a

graph G � (V, E), where V represents the node set in the graph G,
corresponding to the routing node set in the topology, and E
represents the edge set in the graph G, corresponding to the link
set between topological adjacent nodes.

3.1.2 Delay measurement SDN
The delay measurement method of the network link (Lu et al.,

2023) is shown in Figure 2. First, the SDN controller sends LLDP
protocol to nodes S1 and S2 to obtain timestamps Tlldp1 and Tlldp2

respectively. Then, by periodically sending Echo Request messages
to nodes S1 and S2, nodes S1 and S2 reply to the controller with Echo
Reply messages after receiving the request, and obtain timestamps
Techo1 and Techo2 respectively. The delay de12 of the link between
nodes S1 and S2 is calculated according to Equation 1.

de12 �
Tlldp1 + Tlldp2 − Techo1 + Techo2( )

2
(1)

3.1.3 Remaining bandwidth measurement
The remaining bandwidth measurement method of the SDN

network link is shown in Figure 3. The controller sends a port status
request message to the node at t1 and t2 to query the node status. The
node replies with a port status reply (Port Stats Reply) message. The
controller parses the data packet of the reply message to obtain the
sent byte count tb1, tb2, received byte count rb1, rb2 and port lifetime
tdur1, tdur1 of the node forwarding port statistics at t1 and t2. The
occupied bandwidth bused of the link is calculated based on the
statistical data at the two moments. The calculation method is
shown in Equation 2. The remaining bandwidth bfree of the link
is the difference between the total bandwidth btotal of the current link
and the occupied bandwidth bused, as shown in Equation 3.

bused � tb2 + rb2( ) − tb1 + rb1( )| |
tdur1 − tdur2

(2)

bfree � btotal − bused (3)

FIGURE 1
Network topology awareness.

FIGURE 2
Delay measurement.
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3.1.4 Packet loss rate measurement
The packet loss rate measurement method of the SDN link is

shown in Figure 4. The controller sends a Port Stats Request
message to nodes S1 and S2 to query the node status. The node
replies with a Port Stats Reply message. The controller parses the
data packet of the reply message and obtains the number of sent

data packets tp1, tp2, and the number of received data packets
rp1, rp2 of each node forwarding port statistics. The data
packets are transmitted from S1 and S2. The packet loss rate
of the link le12 is the ratio of the number of lost data packets (the
difference between the number of data packets sent by node S1
tp1 and the number of data packets received by node S2 rp2) to

FIGURE 3
Remaining bandwidth measurement.

FIGURE 4
Packet loss rate measurement.
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the number of data packets sent by node S1 tp1, as shown in
Equation 4.

le12 �
tp1 − rp2

tp1
(4)

3.2 Proximal policy optimization algorithm

The PPO algorithm is an improvement on the trust region policy
optimization (TRPO) algorithm (Li and He, 2023). Its main
advantage is to limit the distance between the new policy πθ and
the old policy πθold in each update to ensure that the policy update
amplitude is not too large, thereby improving the stability of
the algorithm.

The basic framework of the PPO algorithm can be divided
into two parts, the Actor network and the Critic network. The
Actor network is a policy network that maps the state st at time t
to the probability distribution of the action at. While the Critic is
a value network that evaluates the value of the current state st. In
the traditional policy gradient update algorithm, after the agent
collects experience samples according to the strategy πθ , the
parameter θ will be updated. Then the agent will re-collect
experience samples according to the new strategy, which will
lead to a decrease in sample utilization. To solve this problem, the
PPO algorithm uses the importance sampling method shown in
Equation 5 to limit the policy update range, thereby improving
the utilization of experience samples, where πθ(at | st) and
πθold(at | st) represent the new and old policy probabilities of
taking action st under state at.

rt θ( ) � πθ at st|( )
πθold at st|( ) (5)

The PPO algorithm can be refined into PPO-penalty with
adaptive KL-divergence and PPO-clip with clip clipping
according to the policy update method of the Actor network.
The objective functions of PPO-Penalty and PPO-Clip are
defined in Equations 6, 7.

Lklpen θ( ) � Et rt θ( )Ât − βKL πθold · st|( ), πθ · st|( )[ ][ ] (6)
Lclip θ( ) � Et min rt θ( )Ât, clip rt θ( ), 1 − ε, 1 + ε( )Ât( )[ ] (7)

where Ât represents the advantage function, which is used to
measure the quality of the agent’s actions in the policy network.
β is the penalty term coefficient. ε represents the clipping factor.
Studies have shown that PPO-Clip has more efficient sample
utilization and feasibility than PPO-Penalty.

3.3 System architecture and network model

3.3.1 System architecture
The SDN architecture decouples network control from data

forwarding, thereby improving resource utilization and enhancing
network transmission performance. This separation offers new
opportunities for enabling resilient and adaptive tactical
communication networks with intelligent capabilities (Bale et al.,

2023). Accordingly, this study designs a tactical communication
network path optimization system architecture based on SDN, as
illustrated in Figure 5, which comprises three layers: the data layer,
control layer, and application layer.

3.3.1.1 Data layer
The data layer is responsible for deploying the tactical

communication network, consisting of various routing nodes and
communication links. It primarily handles the transmission of
mission-critical traffic. Through the southbound interface, it
reports real-time network information to the control layer and
receives control policies from the control layer, executing
corresponding operations such as data processing and forwarding.

3.3.1.2 Control layer
Serving as the core of the path optimization system, the control

layer periodically issues requests to the data layer via the southbound
interface to acquire global network information, including topology
and link states. It then transmits optimized control strategies back to
the data layer. A data processing module within the control layer
maintains statistical records of global network metrics such as
average throughput, average end-to-end delay, and average
packet loss rate. These metrics are used as inputs to the reward
function of the intelligent routing optimization module.

The control layer consists of five functional modules: network
perception, network monitoring, data processing, intelligent
decision-making, and path installation. The network perception
module periodically issues feature request messages to the data
layer to obtain the topology information of the tactical
communication network. The network monitoring module
periodically sends status request messages and asynchronously
receives status reply messages to acquire the port status
information of routing nodes. The data processing module
utilizes the topology and port status data collected by the
network perception and monitoring modules to compute link
state and end-to-end path state metrics, including residual
bandwidth, delay, and packet loss rate. These metrics serve as the
network state inputs (st) and reward signals (rt) for model training
within the intelligent agent.

The intelligent decision-making module employs a learning
agent that takes the network state as input and trains a model to
generate forwarding actions for traffic in the data layer. The path
installation module translates the agent’s output actions into flow
tables, which are then deployed to the data layer to guide service
transmission.

The intelligent decision-making module in the control layer
adopts a smart routing decision model based on the PPO algorithm
within an actor-critic AC framework. To capture the spatiotemporal
dependencies inherent in link state information, the proposed
method integrates GRU and GAT in place of the traditional
feedforward neural network employed in standard PPO
architectures. This design enhances the agent’s perception of link
dynamics and improves the overall intelligence of routing decisions.

The control layer normalizes the collected network topology and
link state information into a unified network model, which is
subsequently fed into the deep reinforcement learning agent for
training. The agent dynamically adjusts the optimal routing policy
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by continuously interacting with real-time state information, aiming
to maximize the accumulated reward.

3.3.1.3 Application layer
The application layer encompasses a wide range of tactical

services and applications, including situational awareness,
command and control, and weapon engagement. It interacts with
the control layer through a northbound interface to facilitate
information exchange.

3.3.2 Network model
The tactical communication network topology model is

graph G � (V, E), where V � v1, v2,/, vm{ } represents the set
of all routing nodes, |V| � m represents the number of routing
nodes. E � e12, e23,/, eij{ } represents the set of all
communication links, where eij represents the link between
adjacent nodes vi and vj, and |E| � n represents the number of
links. The path from the source node vs to the destination node vd
in the network is recorded as psd, where psd consists of multiple

FIGURE 5
System architecture.
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communication links, namely, psd �� esa, eab,/, ecd{ }. |s| and |d|
represent the number of source nodes used to send services and
the number of destination nodes used to receive services in the
network, respectively. At the same time, the basic QoS indicators
(delay, bandwidth, packet loss rate) used to describe the quality of
service of communication links and paths are used, and the
characteristics of their measurement functions can be defined
as: additive parameters, concave parameters, and multiplicative
parameters. The QoS parameter definitions are shown in Table 1.

The set of all end-to-end paths through which service flows exist
in the global network is recorded as PF � pf

1 , p
f
2 ,/, pf

N{ }, where
|PF| � N indicates that there are N service flows in the network. The
performance indicators in the tactical communication network, such
as average network throughput �th, average end-to-end delay �d, and
average packet loss rate �l, are defined as follows:

Definition 1: Average network throughput is presented in
Equation 8. The average network throughput represents the
average value of the total amount of data successfully transmitted
through the end-to-end paths of all service flows per unit time.

�th � 1
N
∑N
i�1
th pf

i( ) (8)

where th(pf
i ) represents the amount of data successfully transmitted

through the path pi of service flow f per unit time.

Definition 2: Average end-to-end delay is presented in Equation
9. The average end-to-end delay represents the average value of
the sum of the end-to-end delays of all service flows through
the paths.

�d � 1
N
∑N
i�1
d pf

i( ) (9)

where d(pf
i ) represents the end-to-end delay of the path pi through

which service flow f passes.

Definition 3: Average packet loss rate is presented in Equation
10. The average packet loss rate represents the average value of
the sum of the packet loss rates of all service flows through
the paths.

�l � 1
N
∑N
i�1
l pf

i( ) (10)

where l(pf
i ) represents the packet loss rate of the path pi through

which service flow f passes.

4 Design of intelligent path
optimization algorithm

4.1 PPO agent

The intelligent optimization algorithm proposed in this paper
uses PPO to construct a deep reinforcement learning agent for
model training. PPO is more versatile and stable than DDPG, actor-
critic and other algorithms (Li andWu, 2025). The PPO algorithm is
implemented based on the AC network architecture. The policy
network Actor is used to learn the mean of the network environment
state output action, and the evaluation network Critic is used to
output the state value. The agent interacts with the environment
through state, action and reward information, and continuously
optimizes the strategy through iterative training.

As a framework-based deep reinforcement learning algorithm,
PPO requires the design of different state spaces, action spaces and
reward functions for different problems and different application
scenarios. In this paper, based on the PPO deep reinforcement
learning framework, the state space, action space and reward
function are designed for the tactical communication network
scenario, as follows:

1. State space. The state space is the set of link state information
obtained by the agent from the tactical communication
network. The network state xt at any time t includes the
global network service request Qt

E, the link remaining
bandwidth Bt

E, the delay Dt
E and the packet loss rate LtE

information, as shown in Equation 11.

xt � Qt
E, B

t
E, D

t
E, L

t
E[ ] ∈ Rd×n (11)

where d � 4 represents the above-mentioned state feature
dimension, and n represents the total number of network links.
Qt

E represents the service request information on the global network
link at time t, and its specific representation is shown in Equation 12.
This algorithm defines that when there is a service flow passing
through the link, its element is assigned to 1, that is, qteij � qtejt � 1,
and the link without service flow passing through and the link
composed of non-adjacent nodes, its element is assigned to 0.

Qt
E � qte12 , q

t
e23
,/, qteij[ ], i, j ∈ m (12)

The specific representation of each network link state
information set is shown in Equations 13–15. Due to the large
differences in the element values in the link state information, this
difference will cause the intelligent path optimization algorithm to

TABLE 1 QoS parameter definition.

QoS parameter type Calculation formula Application parameter

Additive parameter d(psd) � ∑
∀eij∈psd

d(eij) Delay

Concave parameter b(psd) � min
∀eij∈psd

b(eij) Residual bandwidth

Multiplicative parameter l(psd) � 1 − ∏
∀eij∈psd

(1 − l(eij)) Packet loss rate
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fluctuate greatly during the training process and it is difficult to
reach a convergence state. Therefore, the Min-Max method is used
to normalize the elements in the link state information.

Bt
E � bte12 , b

t
e23
,/, bteij[ ], i, j ∈ m (13)

Dt
E � dt

e12
, dt

e23
,/, dt

eij
[ ], i, j ∈ m (14)

Lt
E � lte12 , l

t
e23
,/, lteij[ ], i, j ∈ m (15)

The state space of the agent is designed to be a state sequence
formed by combining the state information containing time t and
l−1 time steps before the time, as shown in Equation 16.

st � xt−l+1, xt−l+2,/, xt[ ] ∈ Rl×d×n (16)

2. Action space. The action space refers to the set of actions taken
by the agent according to the state st during the interaction
with the network environment, which is used to forward the
business flow in the network. Assume that each source-
destination node pair in the global network contains k
feasible paths to form a feasible path set
P � p1, p2, p3,/, pk{ }, where each path corresponds to a
weight coefficient, namely, WP � [wp

1 , w
p
2 ,/, wp

k ]. The
algorithm in this paper defines each action in the action
space as the forwarding path weight between all source-
destination node pairs in the global network, specifically
expressed as at � [w12,/, wij,/, w|s||d|]. Among them,
wij ∈ WP, i ∈ [1, |s|], j ∈ [1, |d|] represent the weight of the
forwarding path p selected between the source node i and the
destination node j, and wij ∈ [0, 1].

3. Reward function. The control layer feeds back the collected
real-time network performance indicators as reward signals to
the agent. The optimization goal of the algorithm in this paper
is set to maximize network throughput and minimize end-to-
end delay and packet loss. In order to make the optimization
goal increase proportionally with the reward value, the reward
function is defined as shown in Equation 17.

R � α · �th′ + β · 1 − �d′( ) + γ · 1 − �l′( ) (17)
where α, β, γ is defined as the reward weight, and the value range is
α, β, γ ∈ [0, 1]. These weights are used to define the importance of
different network performance indicators. In order to avoid the
impact of network performance indicator differences on the
convergence performance of the algorithm, they are normalized,
where �th′, �d′, �l′ represents the performance indicator after
normalization.

The PPO algorithm policy update stage uses the advantage
function Ât to measure the quality of each action. The advantage
function is defined as follows:

Ât � Rt + γ · V st+1( ) − V st( ) (18)
where Rt is the reward for executing action at in state st, γ represents
the reward discount factor, V(st) and V(st+1) represent the
evaluation values of the current state st and the next state st+1
respectively.

The traditional policy gradient update algorithm will cause
serious deviations in the execution strategy of the agent due to

the inaccurate estimation of the advantage function [33]. Therefore,
this paper adopts the importance sampling method to adjust the
strategy update amplitude and improve the efficiency of strategy
update and sample utilization during training. The importance
sampling is presented in Equation 19.

rt θ( ) � πθ at st|( )
πθold at st|( ) (19)

where rt(θ) represents the ratio of the probability that the current
strategy πθ takes action at in state st to the probability that the old
strategy takes action at in state st.

To better adapt to the dynamic changes of the network topology
and the uneven distribution of samples, the algorithm in this paper
adopts a gradient clipping method defined as Equation 20, which
effectively limits the magnitude of policy updates. The policy update
of the algorithm is shown in Equation 21. While restricting the
extent of policy updates, the algorithm also aims to maximize the
expected cumulative reward, thereby improving the convergence
and stability of the algorithm.

Lclip θ( ) � Et min rt θ( )Ât, clip rt θ( ), 1 − ε, 1 + ε( )Ât( )[ ] (20)
θ̂ � argmax Et min rt θ( )Ât, clip rt θ( ), 1 − ε, 1 + ε( )Ât( )[ ] (21)

where, θ̂ represents the updated policy parameters. ε denotes the
clipping factor, usually represented by a small positive number,
which limits the extent of policy updates within the range of [1 −
ε, 1 + ε].

4.2 Link state feature extraction module

In order to better extract the temporal and spatial characteristics
of the tactical communication network link state information, this
paper introduces GRU, GAT, and a self-attention mechanism to
construct a link state feature extraction module, replacing the
feedforward neural network structure of PPO. This enables the
perception of the spatiotemporal characteristics of link state
information and realizes end-to-end optimal action policy output.
As shown in Figure 6, the link state feature extraction module
mainly consists of a temporal feature extraction module, a self-
attention mechanism module, a spatial feature extraction module,
and a multilayer perceptron module.

4.2.1 Time feature extraction module
The time correlation of link state refers to the mutual

dependence between link state data within a certain time range,
and is also the dynamic change of link state information over time.
Therefore, when considering the time correlation of link state
information, this paper needs to input a network state sequence
with a time step of l for the agent. When the initial network state st is
obtained, the state of the previous l-1 historical moments cannot be
obtained, so its sequence element is assigned to 0. With the iterative
update of reinforcement learning, the state sequence is also updated.
The update gate zt of GRU takes the hidden state ht−1 of the previous
moment and the network state xt of the current moment as input,
and calculates a value between [0,1] through the sigmoid function to
determine the degree of information retention in zt, as shown in
Equation 22.
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zt � sigmoid Wz · xt + Uz · ht−1( ) (22)
where Wz is the weight matrix, and Uz is the weight matrix of ht−1.

The reset gate rt has a similar function to the update gate. The rt
input is the hidden state ht−1 at the previous moment and the
network state xt at the current moment. The sigmoid function
calculates a value between [0,1] to determine the degree of
information retention in rt, as shown in Equation 23.

rt � sigmoid Wr · xt + Ur · ht−1( ) (23)
where Wr is the weight matrix, and Ur is the weight matrix of ht−1.

As shown in Equation 24, the output of the reset gate at the
current time step (rt) is multiplied elementwise with the previous
hidden state (ht−1). The resulting vector is then concatenated with
the current network state (xt) and passed through a tanh activation
function to compute the candidate hidden state (~ht).

~ht � tanh W~h · xt + U~h · rt ⊙ ht−1[ ]( ) (24)
whereW~h is the weight matrix. ⊙ represents the Hadamard product.

The output of the hidden state is shown in Equation 25. The
hidden state ht−1 at the previous moment and the candidate hidden
state ~ht at the current moment are combined through the update
gate zt at the current moment to obtain the next hidden state ht,
which is passed to the neuron of the next time step, and the weight
parameters of the GRU network model are continuously updated,
thereby realizing the extraction of time features.

ht � zt ⊙ ht−1 + 1 − zt( ) ⊙ ~ht (25)

Since the state sequence st input by the agent contains l time
steps, the GRU contains l units, and the output of its hidden layer is
HR, as shown in Equation 26.

HR � hR1 , h
R
2 ,/, hRl[ ] ∈ Rl×d×n (26)

4.2.2 Self-attention mechanism module
The self-attention mechanism is used to capture the dependencies

and importance among different samples in the state sequence. It
determines the importance of each sample in model computation by
calculating the correlations (i.e., attention weights) between different
samples in the sequence, thereby enhancing the model’s ability to
perceive the critical parts of the input sequence. According to Equations
27–29, the outputs of the GRU hidden layer are multiplied by three

weight matrices WQ, WK, WV to compute the query matrix (Q), key
matrix (K), and value matrix (V).

Q � WQ ·HR (27)
K � WK ·HR (28)
V � WV ·HR (29)

Then, the attention weight of each unit is computed, and the
attention matrix Hα is generated, as shown in Equations 30, 31.

hαi � att K, Q, V( ) �∑M
i�1
softmax

kTi · qi��
dk

√( ) · vi (30)

Hα � hα1 , h
α
2 ,/, hαl[ ] ∈ Rl×d×n (31)

where,M represents the dimension of the weight matrix, and
��
dk
√

is
the scaling factor.

Finally, the Hadamard product ofHα andHR is calculated, and a
weighted average operation is performed along the l-dimension on
the resulting matrix to obtain the output HR′ of the self-attention
module, as shown in Equation 32.

HR � μ WR HR ⊙ Hα( )( ) � hR1 , h
R
2 ,/, hRn[ ] ∈ Rd×n (32)

where WR is the weight matrix, and μ(·) denotes the weighted
average operation.

4.2.3 Spatial feature extraction module
GAT is capable of focusing on neighboring node information

with different weights and demonstrates excellent spatial
information capturing capabilities. Therefore, this paper employs
GAT to extract the spatial correlation features of complex tactical
communication network link state information. Since this study
focuses on the link state characteristics in the tactical
communication network, links are mapped to nodes in the graph
structure for feature extraction. The data output from the temporal
feature extraction module, after passing through the self-attention
mechanism module, is denoted as HR′. The element HR′ in hR′i is
used as the node feature of the corresponding node in the graph
structure. cij is defined as the attention coefficient of node j to node i,
as shown in Equation 33.

cij � Leaky Relu a WehR′i WehR′j
�����[ ]( ), Aij � 1

0,Others

⎧⎨⎩ (33)

FIGURE 6
Link state information feature extraction module.
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where, A � Aij{ } denotes the adjacency matrix, a(·) is a
transformation function, the symbol ‖ indicates vector
concatenation, and We is the weight matrix.

To facilitate the calculation of attention coefficients, a softmax function
is introduced to normalize the attention coefficients, as shown in
Equation 34.

aij � softmax cij( ) � exp cij( )
∑j∈Ni

exp cij( ) (34)

where, Ni represents the one-hop neighbor nodes of node i.
Then, the normalized attention coefficients are used to perform

a linear aggregation of the neighborhood representations of the
nodes to obtain the final output features of the node, which is
illustrated in Equation 35.

hAi � σ ∑
j∈Ni

aijWeh
R′
j

⎛⎝ ⎞⎠ (35)

where, σ(·) denotes a nonlinear activation function.
Since single-head attention may suffer from instability during the

training process, multi-head attention is introduced to enhance the
model’s representation capability and improve the algorithm’s stability.
Specifically, K is used to represent the number of heads. The above
operation is performed for each head, and the final results are
concatenated. Then, an averaging operation is applied to the
concatenated results, followed by a delayed application of a nonlinear
function to obtain the final representation, as shown in Equation 36.

~h
A

i � ‖kk�1σ ∑
j∈Ni

akijWeh
R′
j

⎛⎝ ⎞⎠ � σ
1
K
∑K
k�1
∑
j∈Ni

akijWeh
R′
j

⎛⎝ ⎞⎠ (36)

The GAT module outputs all node characteristics to obtain the
characteristic matrix ~H

A
, which is depicted in Equation 37.

~H
A � ~h

A

1 ,
~h
A

2 ,/, ~h
A

n[ ] ∈ Rd×n (37)

4.2.4 Multi-layer perceptron module
The multi-layer perceptron (MLP) module is used to implement

the model’s output function. The feature matrix ~H
A
output by the

GAT module is input into the MLP. Each layer in the MLP is
composed of multiple neurons, with fully connected structures
formed between layers through weight matrices and bias vectors.
A softmax function is applied, and the action weight matrix at at
time t is finally output, as shown in Equation 38.

at � softmax MLP ~H
A( )( ) (38)

The final output is the action weight
matrix at � [w12,/, wij,/, w|s||d|], where i ∈ [1, |s|], j ∈ [1, |d|]
and |s| × |d| represent the number of neurons in the output layer.

4.2.5 DRL-SGA path optimization algorithm
The structure of the DRL-SGA path optimization algorithm is

shown in Figure 7.
The agent interacts with the network environment over T iterative

cycles. At time t, the agent obtains the service request state and link state
information of the tactical communication network, generates the

current state sequence st, and inputs it into the Actor policy
network for state perception. It simultaneously obtains the current
action at. After executing the action, the agent receives the reward rt at
time t and the next state sequence st+1, storing the experience sample
(st, at, rt, st+1) into the experience replay buffer. It then enters a new
decision-making cycle until the Markov decision process (MDP) ends.
During this process, once the number of stored experience samples
meets the required amount, the agent trains by sampling the experience
data to iteratively update the weight parameters of both networks,
thereby optimizing the path decision model and enabling dynamic
resolution of global routing. The detailed process of the DRL-SGA
algorithm is shown in Algorithm 1.

Input: Reward discount factor γ, actor learning rate λ1,

critic learning rate λ2, total number of training rounds

T, interaction frequency Nstep, experience replay pool

capacity M, number of experience samples D, network

state sequence st.

Output: global network path weight

1: Initialize actor strategy network parameters θ and

Critic value network parameters φ.

2: Initialize experience replay pool capacity M.

3: fort episode = 1 to T do:

4: The agent obtains the initial network state sequence

st � [xt−1 ,xt−l+1 ,/,xt] at time t.

5: for t � 1 to Nstep:

6: The Actor network generates the optimal path

action at according to the strategy πθ and

executes it.

7: The agent obtains the reward rt and the new network

state sequence st+1.
8: Store the experience sample (st ,at ,rt,st+1) in the

experience replay pool.

9: Update the state sequence st ← st+1 .

10: end for

11: if len(M)>D:

12: for i � 1 to D:

13: Collect experience samples (st,at,rt ,st+1) and

input them into the critic network to obtain all

state values V(si).
14: Calculate the advantage function Â according to

Equation 18 and use back propagation to update the

Critic network parameters φ.

15: Calculate the objective function Lclip according

to Equation 20 and use back propagation to update

the Actor network parameters θ.

16: end for

17: end if

18:end for

Algorithm 1. DRL-SGA algorithm.

5 Simulation scenario setup and
result analysis

The experimental simulation platform in this paper is based on
the Linux operating system Ubuntu 18.04. The hardware platform is
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equipped with an Intel(R) Core (TM) i7-10700 CPU, 16.0 GB RAM,
and a Tesla V100s GPU. The Mininet 2.3.0 network simulation
software is used to build the network topology, with Ryu 4.34 serving
as the network controller. The DRL-SGA algorithm is implemented
based on PyTorch 1.11.0.

5.1 Scenario setup

The experimental scenario constructs an integrated tactical
communication network oriented toward joint operations. The

network structure is shown in Figure 8, consisting of 47 nodes
and 61 links. Among them, nodes 18, 19, and 20 and nodes 32, 33,
and 34 simulate sensor nodes. Nodes 42, 43, and 44 simulate
command and control nodes. Nodes 11, 12, and 13, nodes 25, 26,
and 27, and nodes 39, 40, and 41 simulate fire strike nodes. The
traffic transmission path follows the principle of “Sensor
— Command and Control — Fire Strike.” The tactical
communication network contains more than 10 types of
heterogeneous links. The types of heterogeneous links are
shown in Table 2. To simulate the impact of a highly
adversarial environment on link status, experiments are

FIGURE 7
DRL-SGA algorithm structure.
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conducted by setting different link bandwidths in the Mininet
simulation software.

The experiment sets five different traffic intensities in units of
kbps: {20, 40, 60, 80, 100} for testing. For each traffic intensity, an

Iperf [34] script is written to implement one-to-one or one-to-
many traffic transmission from sensor nodes to fire strike nodes,
and the Ryu controller is used to measure network performance
parameters.

FIGURE 8
Tactical communication network.

TABLE 2 Types of heterogeneous links.

Network type Link type Link bandwidth/Mbps

Backbone network Microwave, scattering, zone width, satellite, UHF, wired, data link 1~10

Superior command post Wired, VHF, UHF, zone width 1~10

Fiber 100~600

Reconnaissance unit UHF、VHF 1

Artillery unit UHF、VHF 1

Air defense unit UHF、VHF 1

Synthetic unit UHF、VHF 1

This paper takes the integrated tactical communication network oriented toward joint operations as the research background to verify the effectiveness of the DRL-SGA, algorithm. Four

different traffic intensities are set for testing, including low intensity (with transmission rates of 25 kbps and 50 kbps) and high intensity (with transmission rates of 75 kbps and 100 kbps). For

each traffic intensity, Iperf scripts are written to implement one-to-one or one-to-many traffic transmission from sensor nodes to fire strike nodes.
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5.2 Parameter settings

The parameter settings of the DRL-SGA algorithm are shown
in Table 3.

5.3 Network performance comparison
under different traffic intensities

To verify the effectiveness of the DRL-SGA algorithm in
improving the quality of service under different traffic intensities,
this paper compares the DRL-SGA algorithm with the following
three routing algorithms:

1. OSPF: Open shortest path first algorithm. It obtains the weight
information of each link in the network through an SDN
measurement mechanism and calculates the path with the
shortest link weight.

2. DQN [35]: A deep reinforcement learning routing algorithm
based on the traditional DQN. The agent performs perception
and training based on link state information. The reward
function is set the same as in this paper.

3. DDPG [36]: A deep reinforcement learning routing algorithm
based on the traditional DDPG. The agent adopts a fully
connected feedforward neural network structure. By
interacting with the network environment, it learns the
routing strategy using link state information. The reward
function is set the same as in this paper.

4. DRL-ST: Constructs an end-to-end transmission path decision
model based on Dueling DQN and optimizes the sampling
mechanism using SumTree. Routing decisions are made based
on link state information, with the reward function set the
same as in this paper.

The experiment uses average network throughput, average end-
to-end delay, and average packet loss rate as evaluation metrics. For
each traffic intensity, data transmission is tested five times, and the
average of the measurement results is taken for comparison. The
results are as follows:

The comparison results in Figure 9 indicate that under low
traffic intensity scenarios, the throughput improvement of DRL-
SGA over other algorithms is not significant. This is because the low
service traffic intensity and sufficient link bandwidth resources do
not lead to noticeable network congestion, resulting in relatively
small differences in throughput across algorithms. However, as
traffic intensity increases, DRL-SGA demonstrates a more
pronounced advantage in throughput performance compared to
the other algorithms. In high traffic intensity scenarios, DRL-SGA
consistently maintains a relatively high level of network throughput.
When the traffic intensity reaches 100 kbps, the throughput
improves by up to 23.48% compared with the OSPF algorithm,
and by up to 2.59% compared with the better-performing DRL-ST
algorithm. This indicates that DRL-SGA can formulate more
optimal routing strategies based on network load conditions and
dynamic link state variations.

As shown in Figure 10, DRL-SGA achieves lower average end-
to-end delay than the comparison routing algorithms under all
traffic intensity levels. Moreover, as the traffic intensity increases,
DRL-SGA demonstrates more outstanding performance in
guaranteeing end-to-end latency. Compared with the traditional
OSPF algorithm, DRL-SGA reduces the average end-to-end delay by
at least 14.42%, with a maximum reduction of 33.57%. Compared
with the DQN algorithm, the delay is reduced by a minimum of
5.69% and up to 25.04%. When compared with the DDPG
algorithm, the reduction ranges from 7.08% to 22.44%. Even
compared to the better-performing DRL-ST algorithm, DRL-SGA
achieves a delay reduction of at least 2.07% and up to 16.88%.

The comparison results in Figure 11 show that DRL-SGA
consistently achieves a lower average packet loss rate than the
comparison routing algorithms across different traffic intensities.
Moreover, as traffic intensity increases, DRL-SGA maintains more
stable packet loss performance. Compared with the traditional OSPF

TABLE 3 DRL-SGA parameter settings.

Parameters Value

Optimizer Adam

Actor learning rate λ1 0.001

Critic learning rate λ2 0.001

Reward discount factor γ 0.9

Crop factor ε 0.2

Experience replay pool capacity M 5,000

Experience sample number D 32

Total number of training rounds T 200

Interaction frequency Nstep 30

Number of GRU units 3

Number of GAT units 1

Number of MLP hidden layers 3

Number of MLP neurons [64,128,64]

Number of feasible paths k 10

Reward weight (α, β, γ) (1,1,1)

FIGURE 9
Comparison of average network throughput.
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algorithm, the average packet loss rate of DRL-SGA is reduced by at
least 14.66%. When compared with intelligent algorithms DQN,
DDPG, and DRL-ST, the average packet loss rate is reduced by at
least 9.03%, 8.73%, and 1.65%, respectively.

The above results demonstrate that the DRL-SGA algorithm
exhibits superior adaptability to network environments with varying
traffic intensities. This advantage stems from the fact that OSPF is a
routing algorithm based on fixed forwarding rules, which makes it
difficult to dynamically adjust routing strategies in response to
changes in network traffic, thereby increasing the likelihood of
link congestion. In contrast, DQN, DDPG, and DRL-ST utilize
deep reinforcement learning mechanisms to perceive network
state changes in real time and dynamically adjust optimal routing
strategies. This capability allows them to alleviate network
congestion to a certain extent, thereby reducing latency and
packet loss while improving throughput compared to the OSPF
algorithm. However, due to the limitations of fully connected
feedforward neural networks used in these traditional methods,

their perception capabilities are constrained, which hinders
optimal path decision-making.

DRL-SGA, by leveraging the collaborative functionality of GRU,
GAT, and attention mechanisms, effectively captures the
spatiotemporal characteristics of network link states. It fully
exploits hidden information within the link state data and
captures evolving trends in link status, thereby enhancing the
model’s decision-making and perception capabilities and enabling
the generation of more optimal routing strategies. As a result, DRL-
SGA demonstrates robust adaptability to varying traffic intensity
conditions, effectively reducing end-to-end delay and packet loss
while improving network throughput, thereby ensuring real-time
and reliable transmission of service data.

5.4 Ablation study

To evaluate the effectiveness of individual components in the
link-state feature extraction module for enhancing the perceptual
capability of the DRL-SGA algorithm, an ablation study was
conducted under the scenario where three links were broken and
traffic intensity was set to 100 kbps. The attention mechanism, the
temporal feature extraction module (GRU), and the spatial feature
extraction module (GAT) were removed individually. The
performance of each ablated algorithm was compared with that
of the full DRL-SGA model by analyzing the convergence behavior
of their reward functions. The comparative results are illustrated
in Figure 12.

As shown in Figure 12, the removal of any component from the
link-state feature extraction module resulted in a decrease in the
final reward value at convergence, indicating a reduction in the
perceptual and decision-making capabilities of the agent model.
This led to suboptimal routing choices. Furthermore, the removal of
each module increased the number of iterations required for
convergence and slowed the convergence speed. The most
significant degradation was observed when the GAT module was
ablated, which yielded the lowest reward and slowest convergence.
This is attributed to the role of GAT in capturing spatial

FIGURE 10
Comparison of average end-to-end delay.

FIGURE 11
Comparison of average packet loss rate.

FIGURE 12
Comparison of reward convergence.
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dependencies in link states, which enhances the algorithm’s
adaptability to dynamic network changes and is crucial for
achieving effective convergence. Table 4 presents a quantitative
comparison of the mean and variance of reward values obtained
during training under each ablated condition.

The results indicate that, while the variance in rewards remains
comparable across configurations, the full DRL-SGA algorithm
achieved mean rewards that are 2.60%, 1.75%, and 1.11% higher
than those of the models without GAT, GRU, and the attention
mechanism, respectively. This demonstrates that each component in
the link-state feature extraction module contributes positively to
enhancing the perceptual ability of the agent, enabling the algorithm
to adapt to dynamic structural changes in the network and thereby
facilitating the output of an optimal routing policy.

5.5 Computational overhead and
scalability analysis

To further assess the feasibility of the proposed DRL-SGA
algorithm in practical applications, its computational overhead
and scalability were analyzed. Evaluation metrics included model
size, parameter count, per-epoch training time, inference latency,
peak memory usage, throughput, and control overhead. The
experimental environment was identical to that described earlier,
and synthetic networks of different scales were constructed to
simulate various deployment scenarios: small scale (16 nodes,
24 links), medium scale (47 nodes, 61 links), and large scale
(100 nodes, 220 links). The results are presented in Table 5.

Several conclusions can be drawn from Table 5. First, both
model size and parameter count remain largely stable across
different network scales, indicating that computational
complexity is primarily determined by the architecture
components (GRU, GAT, and MLP) rather than node count.
Second, per-epoch training time grows approximately linearly
with network size, consistent with the complexity of node-based
feature extraction. Third, even in the large-scale scenario with
100 nodes and 220 links, inference latency remains below 10 ms,
meeting the real-time requirements of tactical communication
environments. Peak memory consumption increases with
network size but remains within the capacity of a V100 GPU.
Throughput decreases as the network expands, yet continues to
support several hundred routing decisions per second, sufficient for
operational needs. Meanwhile, control-plane overhead rises nearly
linearly with network size but remains negligible compared with
conventional network telemetry traffic. In summary, the DRL-SGA
algorithm demonstrates moderate computational overhead and
strong scalability. Its complexity scales nearly linearly with

network size, making it suitable for deployment in large-scale
tactical communication networks. Furthermore, additional
strategies such as batch processing, localized attention, and
model compression (e.g., pruning or quantization) may further
reduce computational costs in resource-constrained
environments. Overall, DRL-SGA achieves a favorable balance
between routing performance and computational efficiency,
supporting its feasibility for real-world large-scale deployment.

5.6 Parameter sensitivity analysis

As shown in Table 2, the performance of DRL-SGA is influenced
by several parameters, among which ε, α, β, and γ are the most
critical. To validate the rationality of their selection, two sets of
experiments were conducted. In the first, β and γ were fixed while ε
and α were varied. In the second, ε and α were fixed while β and γ

were adjusted. The results are illustrated in Figure 13.
In the first set, ε was varied within {0.10, 0.15, 0.20, 0.25, 0.30},

and α within {0.05, 0.10, 0.15, 0.20, 0.25}. The best performance was
observed when ε = 0.20 and α = 0.10, achieving a maximum average
reward of 87.29. This indicates that a balanced exploration rate and
reward weighting effectively enhance routing decisions. Excessively
high or low exploration rates reduced performance, suggesting that
both over-exploration and premature convergence degrade
effectiveness. In the second set, β and γ were varied within {0.05,
0.10, 0.15, 0.20, 0.25}. Optimal performance was obtained at β =
0.10 and γ = 0.10 (maximum reward 87.29), with only marginal
performance differences across values. This demonstrates
robustness in weighting for delay and packet-loss optimization.
However, further increases in β or γ caused slight declines,
indicating that overly emphasizing a single objective weakens
overall multi-objective optimization. Overall, DRL-SGA exhibits a
“middle-value optimal” pattern across ε, α, β, and γ, with stable and
peak performance maintained under balanced parameter settings.
The chosen configuration is therefore reasonable, providing an
effective trade-off among exploration, delay optimization, and
packet-loss control, ensuring both effectiveness and robustness
across diverse network scenarios.

5.7 Network performance comparison
under different topologies

To evaluate the adaptability of the DRL-SGA algorithm to
dynamically changing network topologies, a new network
structure was configured as shown in Figure 14. Several links
within the backbone network were sequentially disconnected to
simulate link failure scenarios. Experiments were conducted under
both low-intensity traffic (50 kbps) and high-intensity traffic
(100 kbps), and the network performance metrics of each routing
algorithm were recorded and compared accordingly.

Figure 15 presents the throughput comparison results of each
algorithm under varying levels of link failures and different traffic
intensities. As the number of failed backbone links increases, the
overall network throughput of all algorithms gradually declines.
However, the DRL-SGA consistently maintains the highest
throughput performance. When the number of failed backbone

TABLE 4 Comparison of reward quantitative metrics.

Method Reward mean Reward variance

w/o GAT 85.08 2.95

w/o GRU 85.79 2.37

w/o attention mechanism 86.33 2.49

DRL-SGA 87.29 2.80
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links reaches three, under the low traffic intensity scenario (50 kbps),
the average throughput of DRL-SGA improves by 8.76% over the
traditional routing algorithmOSPF, and by 5.34%, 4.25%, and 2.77%
over the intelligent routing algorithms DQN, DDPG, and DRL-ST,
respectively. Under the high traffic intensity scenario (100 kbps),
DRL-SGA outperforms these four algorithms with throughput
improvements of 35.29%, 25.47%, 20.18%, and 4.39%, respectively.

Figure 16 shows the comparison of average end-to-end delay
across algorithms under different levels of link failure and traffic
intensities. As the number of failed links increases, all algorithms
experience an increase in delay. Under 50 kbps traffic intensity, the
average end-to-end delay of DRL-SGA is at least 12.99%, 8.06%,
6.41%, and 3.15% lower than that of OSPF, DQN, DDPG, and DRL-
ST, respectively. Under 100 kbps traffic intensity, DRL-SGA
achieves delay reductions of at least 24.25%, 16.95%, 14.43%, and
6.44% compared to the same respective algorithms.

Figure 17 illustrates the comparison of average packet loss
rates for all algorithms under increasing link failure conditions
and varying traffic intensities. As the number of failed links
grows, all algorithms exhibit rising packet loss rates. When the
traffic intensity is 50 kbps, the average packet loss rate of DRL-
SGA is reduced by at least 21.92%, 15.08%, 12.52%, and 1.65%
relative to OSPF, DQN, DDPG, and DRL-ST, respectively. Under
100 kbps traffic intensity, DRL-SGA achieves minimum
reductions of 35.19%, 26.44%, 21.16%, and 9.63% compared to
the same algorithms.

In summary, compared with traditional routing algorithms and
existing intelligent routing algorithms, DRL-SGA demonstrates
superior adaptability to dynamic network changes and incurs
smaller QoS performance degradation in scenarios involving link
failures, regardless of whether the traffic intensity is low or high. This
is primarily because the traditional OSPF algorithm is incapable of
promptly adapting to changes in network topology and adjusting
routing strategies in a timely manner, making it difficult to maintain
optimal network performance. Although intelligent algorithms such
as DQN, DDPG, and DRL-ST leverage deep reinforcement learning,
they rely on conventional feedforward neural networks trained with
link state information in fixed formats, making it difficult to adapt to
complex network dynamics. Consequently, these algorithms exhibit
lower training efficiency and suboptimal decision accuracy.

In contrast, the DRL-SGA algorithm effectively extracts the
spatiotemporal characteristics of tactical communication network
structures. Specifically, GRU captures the temporal evolution of
historical link state information, enabling accurate prediction of
future trends and enhancing the model’s perception and reasoning
capabilities. GAT enhances the algorithm’s ability to represent non-
Euclidean graph-structured data, thereby enabling a more
comprehensive understanding and processing of complex
network environments and significantly improving the model’s
structural awareness. As a result, DRL-SGA exhibits stronger
adaptability to dynamic network topologies and superior
capability in ensuring service quality.

TABLE 5 Computational overhead and scalability of DRL-SGA.

Network
scale

Model
size (MB)

Parameters
(M)

Training
time per
epoch (s)

Inference
latency
(ms, GPU)

Peak
memory
(MB)

Throughput
(decisions/s)

Control
overhead
(msgs/s)

Small 12.4 3.1 0.38 2.6 940 860 12

Medium 13.1 3.3 1.12 3.9 1,350 620 28

Large 15.2 3.8 3.45 7.5 2,280 370 65

FIGURE 13
Parameter sensitivity analysis results. (a) Effect of &epsi; and α on DRL-SGA performance. (b) Effect of β and γ on DRL-SGA performance.
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FIGURE 14
Network topology with partial link failures.

FIGURE 15
Throughput comparison under link failure scenarios. (a) Traffic intensity: 50 kbps. (b) Traffic intensity: 100 kbps.
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6 Conclusion

This study proposes a DRL-SGA for tactical communication
networks, which enhances route selection through improved link
state awareness. The algorithm constructs an intelligent path
decision model using PPO and integrates a link state feature
extraction module designed to capture the spatiotemporal
dependencies within sequences composed of multiple link
states. An optimal path forwarding strategy is then derived
through a deep reinforcement learning training mechanism.
Experimental results demonstrate that DRL-SGA exhibits
superior adaptability to dynamic changes in network topology
compared to traditional and existing intelligent routing
algorithms.

It should be noted that all evaluations in this study are
conducted in simulation. While the simulated scenarios are
designed to resemble realistic tactical networks, the lack of
real-world dataset or testbed validation remains a limitation.
Future work will focus on validating the proposed approach in
real operational environments to further assess its practical
applicability and robustness. Moreover, tactical
communication networks typically exhibit rapidly changing
topologies and highly uncertain traffic patterns. Accurate and
real-time traffic prediction is critical for ensuring timely delivery
of high-priority services and effective traffic regulation, which in
turn improves network resource utilization. In future work, we
plan to integrate traffic prediction mechanisms with intelligent
routing algorithms. By forecasting the future evolution of

FIGURE 16
Average end-to-end delay comparison under link failure scenarios. (a) Traffic intensity: 50 kbps. (b) Traffic intensity: 100 kbps.

FIGURE 17
Average packet loss rate comparison under link failure scenarios. (a) Traffic intensity: 50 kbps. (b) Traffic intensity: 100 kbps.
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network traffic states, we aim to enhance the perception and
decision-making capabilities of intelligent routing models,
enabling more efficient and adaptive routing strategies in
dynamic tactical communication scenarios.
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