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Introduction: The prevalence of gestational diabetes mellitus (GDM) is
significantly increasing. Hyperglycaemia and dyslipidaemia have been
demonstrated to contribute to endothelial dysfunction linked to foetal—
placental circulation. Glycosylphosphatidylinositol-anchored high-density
lipoprotein-binding protein 1 (GPIHBP1) is crucial for the lipolytic processing of
TG-rich lipoproteins through the anchoring of lipoprotein lipase (LPL). In this
study, circulating GPIHBP1 levels during pregnancy were evaluated, and their
associations with hypertriglyceridaemia and the perinatal outcomes of GDM
were evaluated.

Methods: This study included 12 pregnant women with GDM and 21 pregnant
women with normal glucose tolerance (NGT).

Results: No significant differences in obstetrical outcomes were detected
between the two groups. In participants with NGT, circulating GPIHBP1 levels
were markedly lower in the 3rd trimester than in the 2nd trimester and at delivery.
In women with GDM, circulating GPIHBP1 levels were unchanged during the 3rd
trimester, and circulating GPIHBP1 levels throughout the 3™ trimester were
negatively correlated with neonatal birth weight percentile and umbilical
venous pO; (p=-0.636, p=0.026; p=-0.657, p=0.020).

Discussion: Our findings suggest a possible association between circulating
GPIHBP1 levels and perinatal outcomes in patients with GDM.
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Introduction

The current prevalence of gestational diabetes mellitus (GDM),
which poses a significantly increased risk for perinatal
complications, is notably high at 14% (1). Prepregnancy
overweight or obesity and advanced maternal age have been
identified as significant risk factors for GDM (2, 3). Foetal growth
is influenced by maternal factors, including GDM, prepregnancy
BMI, maternal age, and parity (4-6), and GDM is a well-established
risk factor for large for gestational age (LGA) neonates, as affected
women exhibit a 2.83-fold greater risk than those with normal
glucose tolerance (7). Recent findings indicate that maternal
glycaemic levels are not the sole risk factor for foetal overgrowth
in cases of obesity and GDM (8). Certain studies have revealed an
association between maternal blood triglyceride (TG) levels and
neonatal weight, although no such correlation has been observed
with maternal plasma glucose levels (9). In GDM, maternal blood
TG levels are increased in early pregnancy compared with those in
mothers without GDM and remain elevated throughout gestation,
contributing to increased foetal subcutaneous fat mass and
adiposity; maternal blood TG levels are also linked to foetal
overgrowth (10, 11). Hyperglycaemia and dyslipidaemia have also
been shown to contribute to the endothelial dysfunction associated
with foetal-placental circulation (12-14).

Glycosylphosphatidylinositol-anchored high-density
lipoprotein-binding protein 1 (GPIHBP1) is essential for the
lipolytic processing of TG-rich lipoproteins (TRLs) because it
anchors lipoprotein lipase (LPL) to the abluminal surface of
blood capillaries, thereby stabilising its structure and facilitating
its transport to the capillary lumen. GPIHBP1-anchored LPLs are
crucial for the margination of TRLs within capillaries, which
facilitates the process of lipolysis (15). Mutations in GPIHBPI
have been associated with severe hypertriglyceridaemia, which
results in an increased risk of acute pancreatitis, underscoring the
importance of GPIHBPI in intravascular TG processing (16).
During pregnancy, women with GPTHBPI mutations exhibit high
TG levels, particularly in the third trimester, which leads to severe
pancreatitis and postnatal problems, including foetal distress (17,
18). Nonetheless, the relationships among circulating GPTHBP1
levels, dyslipidaemia, and maternal and foetal complications during
GDM remain largely unexplored. This study assessed circulating
GPIHBPI levels during pregnancy and investigated their
associations with hypertriglyceridaemia and perinatal outcomes in
cases of GDM.

Materials and methods
Study participants

This prospective study included a cohort of 33 pregnant women
recruited from the 26th of November, 2019, to the 31st of March,

2023. Participants were recruited from Okayama University
Hospital, and GDM (n=12) was diagnosed using the 75 g oral
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glucose tolerance test (75 g OGTT) in accordance with the
diagnostic criteria established by the International Association of
Diabetes and Pregnancy Study Group (IADPSG) (19). Individuals
with normal glucose tolerance (NGT, n=21) are defined as those
who exhibit postprandial glucose levels below 100 mg/dL during
screening tests or those who do not meet the diagnostic criteria for
GDM after a 75 g OGTT. The exclusion criteria were as follows (1):
multiple pregnancies (2); overt diabetes during pregnancy; and (3)
preexisting type 1 or type 2 diabetes mellitus. Written informed
consent was obtained from all participants. The study protocol
received approval from the Ethics Committee of Okayama
University (1910-015) and was executed in compliance with the
Declaration of Helsinki.

Data collection

Blood samples were collected after a 12-hour fast. Serum TG,
HbAIc and glucose levels were quantified within one hour after blood
collection by conventional methods using an automated clinical
chemistry analyser (JCA-BM8040G; JEOL, Ltd., Tokyo, Japan).
Serum samples were promptly frozen and stored at the Okayama
University Hospital Biobank (Okadai Biobank) prior to the assessment
of the other parameters using a GPIHBP1 (Immuno-Biological
Laboratories [IBL]) enzyme-linked immunosorbent assay (ELISA)
kits, as previously described (20).

Body mass index (BMI) was calculated using the following
formula: body weight (kg)/heigh'[2 (m?). Systolic blood pressure was
the median blood pressure recorded during the patient’s 5-day post-
partum hospital stay. Medical history and current prescription
information were extracted from each patient’s medical records.

Histopathological examination of the
placenta

The placenta was histologically examined by an experienced
perinatal pathologist. Placental tissue samples were sliced into
blocks of four um, fixed in formalin, embedded in paraffin and
stained with haematoxylin and eosin.

Statistical analysis

Continuous variables are presented as the median (interquartile
range: IQR), while categorical variables are expressed as absolute
numbers or percentages. Differences between two groups in each
separate experiment were analysed using Student’s ¢ test, the
nonparametric Mann-Whitney test, or the 2 test. The Wilcoxon
signed-rank test was employed to assess disparities between paired
datasets. Spearman’s rank correlation was used to determine
correlation coefficients. All the statistical analyses were conducted
with SPSS Statistics version 25 (IBM Corp., Armonk, NY, USA). P
values < 0.05 were considered to indicate statistical significance.
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Post hoc power analysis

To assess the reliability of the correlations in the GDM group
(n = 12), post hoc power was calculated using G*Power 3.1.9.7
(Bivariate normal model, Exact test). In terms of the correlation
between circulating GPIHBP1 levels and the neonatal birthweight
percentile (p = -0.636) and between circulating GPTHBP1 levels and
the umbilical venous pO, level (p =-0.657), the observed power was
approximately 0.65 and 0.70, respectively.

Results

Baseline characteristics and comparisons
between study groups

In all, 12 women with GDM and 21 participants with NGT, all
of whom were Japanese, were included in this study. Blood samples

2" trimester at 25 to 26 weeks of

were obtained during the
gestation, during the 3™ trimester at 35 to 36 weeks and within 3
days after delivery. Table 1 describes the baseline characteristics and
comparisons between the study groups. Statistical analysis indicated
that compared with participants with NGT, women with GDM had
significantly higher pregestational BMI and HbA1c levels (in the 3™

trimester and at delivery). Women with GDM had significantly

TABLE 1 Characteristics of the GDM and NGT groups.

10.3389/fcdhc.2025.1682012

lower gestational weight gain (GWG), total cholesterol (3™
trimester), and HDL (3" trimester) levels than did participants
with NGT. Although women with GDM received dietary
counselling only once at the initial visit, they exhibited lower
gestational weight gain than did women with NGT, which likely
reflects dietary glycaemic management and efforts to control
weight. Nonetheless, no statistically significant difference was
observed between the two groups in terms of age, proportion of
primiparous women, total cholesterol (at delivery), LDL cholesterol
(3" trimester and at delivery), HDL cholesterol (at delivery), LDL-
cholesterol/HDL-cholesterol (3" trimester and at delivery), or TG
levels (3" trimester and at delivery).

Comparisons of obstetrical outcomes and
neonatal characteristics between study
groups

With respect to obstetrical outcomes, no significant differences
were observed between the two groups in terms of gestational age at
delivery and in the incidences of preterm delivery, emergency
caesarean section, or hypertensive disorders of pregnancy (HDP)
(Table 2). In terms of neonatal characteristics, the two groups did
not significantly differ in terms of neonatal birth weight, LGA, small
for gestational age (SGA), Apgar score (AS), neonatal plasma

Variables
Age (years) 35 (33-40) 36 (32.5-39.5) 0.956
Primipara, n (%) 9 (75) 12 (57.1) 0.457
Pregestational BMI (kg/mz) 26.4 (23.6-30.9) 20.6 (19.6-22.6) 0.001
GWG (kg) 3.9 (-0.0-6.4) 8.1 (54-9.2) 0.004
HbAlc (%) 3" trimester 5.8 (5.5-6.0) 5.5 (5.4-5.8) 0.033
delivery 5.7 (5.0-6.1) 5.4 (5.0-5.5) 0.049
Total cholesterol (mg/dL) 3" trimester 256 (204-280) 296 (264-342) 0.018
delivery 222 (172-239) 236 (211-274) 0.131
LDL cholesterol (mg/dL) 3™ trimester 147 (85-164) 170 (136-207) 0.082
delivery 117 (85-133) 134 (109-156) 0.213
HDL cholesterol (mg/dL) 3" trimester 61 (52-83) 78 (72-88) 0.030
delivery 55 (43-67) 64 (53-72) 0.069
LDL-cholesterol/HDL-cholesterol | 3" trimester 2.0 (1.5-2.5) 2.2 (1.8-2.4) 0.618
delivery 2.1 (1.6-2.4) 2.1 (1.8-24) 0.897
TG (mg/dL) 3 trimester 279 (192-338) 338 (215-389) 0.345
delivery 246 (167-355) 204 (145-252) 0.308

Data are presented as medians (25-75th percentile) for continuous variables and as percentages for categorical variables.
GDM, gestational diabetes mellitus; NGT, normal glucose tolerance; BMI, body mass index; GWG, gestational weight gain; HbA1c, glycated haemoglobin; LDL, low-density lipoprotein; HDL,

high-density lipoprotein.
Values in bold indicate statistically significant differences (P < 0.05).
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TABLE 2 Obstetrical outcomes and neonatal characteristics of the GDM
and NGT groups.

Variables

Obstetrical outcomes

Gestational age at

delivery (wocks) 39 (38-40) 39 (38-39) 1.000
Preterm delivery, n (%) 0 (0) 0(0) -

fe’?teitr)ie,":y(;esarea" 0 (0) 2(9.5) 0.523
Systolic BP 118 (111-122) 111 (106-120) 0.242
HDP, n (%) 2(167) 2 (9.5) 0.610

Neonatal characteristics

Neonatal birth

weight (g) 3056 (2904-3337)

3122 (2703-3236) 0.811

Neonatal birth weight

Serceatil 430 (342-763) | 57.8 (28.5-77.4) 0.985
LGA 2 (16.7) 3 (143) 1.000
SGA 0 (0) 1(4.8) 1.000
AS 1 min 8 (8-8) 8 (8-8) 0.699
AS 5 min 9 (9-9) 9 (9-9) 1.000
:;7;;1 plasma glucose 61 (47-74) 63 (52-70) 0.860
UmApH 731 (7.28-733) | 730 (7.25-7.34) 0.927
UmApO, 174 (142213)  19.1 (163-23.7) 0.408
UmVpH 7.35 (7.32-738) | 7.34 (7.31-7.35) 0477
UmVpO, 276 (226322) | 249 (21.9-32.8) 0.632
Foetal distress 0 (0) 0 (0) -

BP, blood pressure; HDP, hypertensive disorders of pregnancy; LGA, large for gestational age;
SGA, small for gestational age; AS, Apgar score; UmApH, umbilical artery pH; UmApO,,
umbilical artery pO,; UmVpH, umbilical venous pH; UmVpO,, umbilical venous pO.,.

glucose, umbilical blood gas analysis, or incidence of foetal
distress (Table 2).

Changes in circulating GPIHBP1 levels
during pregnancy

Next, we evaluated circulating GPIHBP1 levels during
pregnancy in participants with NGT. Circulating GPTHBP1 levels
were markedly lower in the 3 trimester than in the 2™ trimester
and at delivery (Figure 1A). Conversely, serum TG levels had
markedly increased in the 3™ trimester compared with the 2™
trimester and at delivery (Figure 1B). In women with GDM,
circulating GPTHBP1 levels and serum TG levels were unchanged
during the 3" trimester (Figure 1). circulating GPIHBP1 levels
during the third trimester were not significantly correlated with
serum TG levels. Circulating GPIHBP1 levels throughout the 3™
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trimester were not significantly correlated with serum TG levels in
both the NGT and GDM groups.

Correlation between circulating GPIHBP1
levels and perinatal outcomes of patients
with GDM

Given the variability in circulating GPTHBP1 levels during the
3™ trimester, we investigated the correlation between circulating
GPIHBPI levels and perinatal complications during the 3™
trimester. In the 3™ trimester, circulating GPTHBP1 levels were
negatively correlated with neonatal birth weight (BW) percentile
(p=-0.636, p=0.026) (Figure 2A). Furthermore, circulating
GPIHBP1 levels throughout the 3™ trimester were negatively
correlated with umbilical venous pO, levels (p=-0.657; p=0.020)
(Figure 2B). After the Bonferroni correction was applied for
multiple testing (ot = 0.025), only the correlation with umbilical
venous pO, remained statistically significant. Notably, TG levels
throughout the 3™ trimester were positively correlated with
maternal age and prepregnancy BMI (maternal age: p=0.647,
p=0.023; prepregnancy BMI: p=0.629, p=0.028); however, no
association was observed with neonatal outcome.

In this study, among six women with placental pathology,
circulating GPIHBP1 levels throughout the 3™ trimester were
elevated in those with placental infarction (n=2) and in those
with chorangiosis (n=1) compared with those without these
conditions (n=3). However, these observations are exploratory
given the very limited sample size (Supplementary Figures 1, 2).

Additionally, maternal age, maternal BMI, GWG, HbAlc (3™
trimester), LDL-C (3™ trimester) and HDL-C (3™ trimester) were
not significantly associated with GPIHBP1 levels, neonatal birth
weight percentiles or umbilical venous pO, in this cohort.
Furthermore, no significant differences in neonatal BW percentile
or umbilical venous pO, levels were observed between the groups in
patients who met one positive criterion and in those who met two or
3 positive criteria on the 75 g OGTT (neonatal BW percentile:
p=1.000; umbilical venous pO, level: p=0.527).

Discussion

In this study, we demonstrated that circulating GPTHBP1 levels
were markedly lower in the 3 trimester than in the 2™ trimester
and at delivery. Notably, circulating GPTHBP1 levels in women with
GDM were negatively correlated with neonatal BW percentiles (p =
-0.636, p = 0.026) and umbilical venous pO, (p = -0.657, p = 0.020).
In contrast, maternal TG levels throughout the 3™ trimester were
not associated with neonatal outcomes. This work represents a
novel contribution, as it is the first to suggest a potential link
between circulating GPIHBP1 levels and perinatal outcomes.

Previous studies have indicated that GDM is associated with an
increased risk of perinatal complications such as macrosomia,
preterm birth, polyhydramnios, and preeclampsia (3, 7) and have

frontiersin.org


https://doi.org/10.3389/fcdhc.2025.1682012
https://www.frontiersin.org/journals/clinical-diabetes-and-healthcare
https://www.frontiersin.org

Watanabe et al.

A) GPIHBP1 (pg/mL)

1000 * *
i
800 "
u a"n
600 TE.E
400-
I.. ps "
200 = wn®t
O——T—T T 1
W & 0 a® O
AN\J NS
¥ ¥
. GDM = NGT

FIGURE 1

10.3389/fcdhc.2025.1682012

B  Triglyceride (mg/dL)

1000 * * *
o B
800
600- .o
400-
200-
0

Longitudinal changes in circulating GPIHBP1 and triglyceride (TG) levels during pregnancy in women with gestational diabetes mellitus (GDM) and
participants with normal glucose tolerance (NGT) (GDM; n=12; NGT; n=21). (A) Circulating GPIHBP1 levels. (B) Maternal TG levels. Red circles indicate
women with GDM, and blue squares indicate women with NGT. The data are presented as individual values. Wilcoxon signed-rank test; *p < 0.05.
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Correlations between circulating GPIHBP1 levels and neonatal outcomes in women with GDM. Spearman’s rank correlation coefficients (p) and
corresponding p values are indicated for each relationship. (A) Correlations between circulating GPIHBP1 levels in the 3™ trimester and neonatal
birth weight (BW) percentiles. (B) Correlations between circulating GPIHBP1 levels in the 3™ trimester and umbilical venous pO; levels.

reported that pregnant women with GDM or obesity typically
exhibit higher TG levels than do women of normal weight (10).
However, in our study, TG levels in women with GDM did not
differ significantly from those in women with NGT, and perinatal
outcomes also did not differ markedly between the groups. Previous
studies have indicated that elevated serum TG levels during
pregnancy are associated with an increased risk of higher birth
weight (21, 22), which results in excessive fat accumulation in the
foetus (23). Early maternal obesity has been reported to be a risk
factor for neonatal adiposity (10, 24). Even in well-managed GDM
pregnancies, maternal TG levels remain strong predictors of foetal
lipid profiles and foetal growth (25). Despite these findings, in the
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present study, maternal TG levels throughout the 3" trimester were
not associated with the neonatal BW percentile. In healthy pregnant
women, total cholesterol, TG, and HDL-cholesterol levels typically
increase during pregnancy, while the atherogenic index (LDL-
cholesterol/HDL-cholesterol) remains unchanged. In contrast,
women with GDM exhibit elevated TG levels, altered cholesterol
and lipoprotein levels, and reduced HDL levels (9). In the present
study, women with GDM exhibited lower HDL-C levels, whereas
TG levels and the atherogenic index did not differ significantly from
those in women with NGT, which suggests that lipid metabolic
alterations in women with GDM in the present cohort may have
been less pronounced than those reported in previous studies. The
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women with GDM in this cohort had a median prepregnancy BMI
of 26.4 kg/m? these women were categorised as overweight, and
their median GWG was only 3.9 kg, which is below the
recommended range of 6.8-11.3 kg for this population (26).
Insufficient GWG has been linked to an increased risk of SGA
(27), which may partly explain the lack of association between
maternal TG levels and neonatal birthweight percentiles observed
in this study.

Currently, no findings have been published on GPIHBP1 or its
role in placental function, and the regulatory mechanisms
underlying circulating GPTHBP1 levels during pregnancy remain
to be elucidated. In this study, circulating GPTHBP1 levels in
women with GDM tended to be negatively correlated with
neonatal birth weight percentiles, regardless of maternal TG
levels. Although GDM is typically linked to excessive foetal
growth and consequently higher rates of LGA and macrosomia,
associations with SGA have also been reported, which suggests that
GDM affects foetal growth through a variety of mechanisms (28).
GPIHBPI is essential for TG hydrolysis because it binds LPL and
facilitates its transit from the extravascular space to the lumen (15).
GPIHBPI1 is expressed predominantly in adipose tissue, but its
expression has also been documented in the placenta (29). LPL
mRNA is expressed on both the maternal and foetal sides of the
human placenta, and the LPL protein is also detectable in foetal
endothelial cells. In other tissues, such as adipose tissue and skeletal
muscle, parenchymal adipocytes and myocytes produce LPL, which
is subsequently transported to the luminal surface of the vascular
endothelium. LPL hydrolyses TG-rich lipoproteins to generate free
fatty acids for uptake by local tissues. LPL in placental endothelial
cells may facilitate the uptake of lipids from both the maternal
circulation and the foetal circulation, thereby contributing to the
foetal nutrient supply (30). In pregnant rats, LPL activity decreases
in adipose tissue and the liver during late pregnancy but increases in
the placenta. In the placenta, TG of maternal origin is hydrolysed
into free fatty acids, which are supplied to the foetus (31). These
observations highlight the substantial alterations in lipid
metabolism that occur during the 3™ trimester. In this context of
marked metabolic changes, LPL anchored by GPIHBP1 may be
modulated, which may affect circulating GPTHBP1 levels. Notably,
even within a range of TG changes that did not differ significantly
from those in women with NGT, circulating GPIHBP1 levels tended
to be negatively correlated with neonatal birth weight percentiles,
which suggests that circulating GPIHBP1 may reflect aspects of
foetal growth regardless of maternal TG levels.

In the present study, circulating GPIHBP1 levels tended to be
negatively correlated with umbilical venous pO, in women with
GDM. Umbilical vein blood gas analysis primarily indicates
placental metabolism (32). Placental dysfunction is associated
with complications, including low birth weight in infants (33, 34).
Our prior work indicated that circulating GPIHBP1 levels are
associated with the incidence of microvascular complications in
women with type 2 diabetes, irrespective of TG levels (35).
Comparable results were reported in a study that investigated the
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association between vascular disorders and circulating GPTHBP1
levels (20). Circulating GPIHBPI1 levels may be associated with
vascular damage irrespective of serum TG levels. Previous studies
have also suggested an association between GDM and SGA, which
may reflect vascular or endothelial dysfunction and placental
insufficiency, suggesting that multiple mechanisms may underlie
the influence of GDM on foetal growth (28). In pregnancies
complicated by GDM and/or maternal overweight or obesity,
fetoplacental endothelial dysfunction appears to arise from
dysfunction in the regulation of several critical pathways,
including epigenetic modifications, inflammatory signalling, nitric
oxide-mediated vascular signalling, mitochondrial function, and
alterations in the L-arginine/nitric oxide and insulin/adenosine
signalling axes (36, 37). GPIHBP1 is localised to endothelial cells,
and fetoplacental endothelial dysfunction could be related to its
expression and possibly to its levels in the circulation. Although the
sample size was limited, circulating GPIHBP1 levels tended to be
elevated in patients with placental infarction and in those with
chorangiosis. Previous studies have suggested that placental
infarction, a marker of maternal vascular insufficiency in
placental pathology, is associated with foetal growth failure (38),
whereas chorangiosis, a vascular alteration affecting the terminal
villi of the placenta, arises from moderate hypoxia and is linked to
intrauterine growth restriction (39). Taken together, the observed
negative correlation between circulating GPIHBP1 levels and
umbilical venous pO, in GDM pregnancies suggests that
circulating GPIHBP1 may serve as an indicator of placental
vascular function, particularly given the multifaceted involvement
of GDM and prepregnancy overweight or obesity in vascular
dysfunction. Several biomarkers have already been proposed to
reflect placental dysfunction (40, 41); our findings indicate that
circulating GPIHBP1 may also partially reflect placental function,
which highlights its potential as a novel biomarker.

Despite our novel findings, this study has several limitations.
First, the small sample size inherent to this pilot study constitutes a
major limitation. The limited cohort reduces statistical power and
considerably restricts the generalisability of the findings; therefore,
the results should be interpreted with caution. Confirmation in larger,
independent cohorts is essential. Second, heterogeneity was observed
in the interventions: the GDM group received a single session of
dietary counselling, while the NGT group received no intervention.
Given that the intervention was limited to one session, its direct
impact was likely minimal. The observed differences may instead
reflect heightened individual attention to gestational weight control in
the GDM group, which could not be quantified. This represents an
additional important limitation when interpreting the results. Third,
multiple correlations were conducted without formal adjustment for
multiple testing. After the Bonferroni correction was applied, only the
correlation between circulating GPTHBP1 levels and umbilical venous
pO, remained statistically significant. Given the limited number of
cases, these findings should be interpreted with caution, as the
correction may have been overly conservative. Although maternal
BMI, maternal age, and parity were not significantly associated with
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GPIHBP1 levels, birth weight percentile, umbilical venous pO,,
neonatal blood glucose, or umbilical arterial pO, in our exploratory
analyses, the small sample size limits the statistical power to exclude
residual confounding. Finally, the impact of GPIHBP1 on placental
function remains underexplored, and thus additional comprehensive
pathological and molecular biological investigations are needed.
Taken together, these limitations should be carefully considered
when interpreting the results.

In summary, our study suggests that in women with GDM,
higher circulating GPIHBP1 levels may be associated with lower
birth weight percentiles and lower umbilical venous pO, levels.
These observations may indicate a potential association between
circulating GPTHBP1 levels and placental function; however, this
notion remains preliminary and requires confirmation in
future studies.
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