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Institute of Geography, University of Bern, Bern, Switzerland

Critical infrastructure (CI), such as healthcare facilities, schools, and the road
network, plays a vital role in society by providing essential services that sustain
the functioning of communities. Disruptions to this infrastructure can have
profound consequences, affecting public health, safety, economic activities,
and general well-being. Weather extremes, including tropical cyclones (TCs),
are major drivers of such disruptions, causing widespread failures to power,
communication, transportation, and healthcare. Forecasting the potential impact
of weather events on these services in the weeks to days before landfall is
crucial to enhance preparedness and enable effective anticipatory actions. Unlike
previous efforts that focused primarily on estimating the potentially affected
population, this research shifts attention to evaluating direct and indirect impacts
on CI, and to capture the uncertain nature of impact forecasts depending on
lead-time. The methodology, which relies entirely on open-source code and
data, yields several metrics quantifying the impact of ensemble-based tropical
cyclone (TC) wind forecasts on healthcare access, including the number of
hospitals directly affected and the number of people indirectly affected due to
disrupted access to healthcare facilities. We apply this approach to TCs Idai,
Kenneth, and Freddy, which have struck Mozambique since 2019. The results
highlight the extent of indirect effects on the population from infrastructure
disruptions. Uncertainty arises from lead time, disruption threshold assumptions,
and the challenge of capturing impact magnitude, especially for rapidly
intensifying TCs. These findings underscore the importance of including indirect
impacts into Impact-Based Forecasting (IBF) frameworks, which could enhance
decision making. This research aligns with the development of IBF and situational
awareness mechanisms promoted by the World Meteorological Organization
(WMO). Building on this, the work supports international organizations in
activating early warning protocols and delivering more targeted aid, such as
financial resources, blankets, medical supplies, and volunteer personnel by
identifying where hospitals are likely to be disrupted and which populations may
lose access to healthcare. The visualizations generated further assist decision-
makers in prioritizing areas that require immediate support.
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1 Introduction

Powerful tropical cyclones (TCs) are some of the most
impacting phenomena in nature, with worldwide damages
estimated to exceed 800 billion dollars (Collalti and Strobl, 2022).
A large part of the destruction caused by these TCs comes from
three core elements: high wind speeds, coastal flooding due to
storm surges pushing water inland, and river flooding (Bakkensen
et al., 2018; Park et al., 2013). As population grows and urbanization
increases, coupled with rising asset values and a changing climate,
lifeline services and critical infrastructure (CI) face increasing risk
from natural hazards (Cremen et al., 2022; Dodman et al., 2022).
Natural hazards such as TCs can lead to widespread failures in
lifeline services such as power, communication, transportation, and
healthcare (Svegrup et al., 2019). The impact of failures in CI
becomes evident in the context of natural disasters such as Cyclone
Freddy in Mozambique. This event impacted many people across
a large geographical area. It is estimated that around 1,187,265
individuals were affected by the storm’s initial and second landfalls
in locations such as Inhambane, Gaza, Zambezia, Sofala, Tete,
Niassa, and Manica. Reports detailed damages to 104 schools and
30 medical centers (ReliefWeb, 2023).

CI plays a vital role in society by providing essential services
that are necessary for the functioning of communities. These
infrastructures are not isolated entities but are multifaceted
urban systems interconnected with various elements, as described
by Gheorghe and Vamanu (2005) as a “metasystem”. This
metasystem is crucial for maintaining societal functioning as
the interconnections ensure the smooth operation and resilience
of urban environments. Disruptions to these systems can have
far-reaching consequences, affecting public health, educational
services, well-being, hinders emergency response and isolates
communities far beyond areas that are directly affected by adverse
weather events (Mühlhofer et al., 2024; Papilloud et al., 2024).
Given this vital role, the need to protect CI has been recognized
in global resilience frameworks. Initial steps in focusing on
essential physical infrastructure, networks, and services have been
considered in the IPCC Working Group II reports, especially in
its sixth cycle (O’Neill et al., 2022). Recognizing the far-reaching
implications of CI failures, policymakers have acknowledged
the pressing importance of prioritizing infrastructure resilience.
Consequently, this focus has been incorporated into various
agendas, including the Sendai Framework for Disaster Risk
Reduction 2015–2030 (United Nations Office for Disaster Risk
Reduction, 2015), the Sustainable Development Goals (SDGs)
(United Nations Statistics Division, 2023), and the International
Federation of Red Cross and Red Crescent Societies (IFRC).
Current research on modeling CI impacts primarily addresses
direct effects, such as structural damages or physical disruption
of basic services. Despite these efforts, there is often insufficient
knowledge about the extent to which social facilities are
exposed to natural hazards (Verschuur et al., 2024). This gap
in knowledge highlights the importance of understanding the
interdependencies between end-users and critical infrastructure
(Mühlhofer et al., 2023a). Therefore, capturing patterns of
people experiencing service disruptions based on forecast data
can provide more targeted and decision-relevant information to

decision-makers. This is particularly important as they require
a methodology that visualizes and enhances the understanding
of impacts while incorporating metrics and statistics that can be
reproduced quickly and are user-friendly for operational purposes.
Although policymakers recognized the need for early warning
through international frameworks as EW4All initiative (World
Meteorological Organization, 2023), there is still limited academic
and practical work focused on impact forecasting, particularly
for CI.

Data on exposure and vulnerability of critical infrastructure
can be combined with hydro-meteorological forecasts to estimate
impacts on healthcare, education, and road networks days or hours
in advance of an adverse event. Open-source platforms such as
CLIMADA operationalize this integration in line with the IPCC
risk framework. CLIMADA has been applied across diverse use
cases, including impact-based forecasting for winter windstorms
(Röösli et al., 2021), economics of climate adaptation studies
(Bresch and Aznar-Siguan, 2021), and global multi-hazard risk
assessments and climate-change risk projections (Stalhandske et al.,
2024; Meiler et al., 2025a). Further applications include human
mortality (Lüthi et al., 2023), human displacement (Meiler et al.,
2025b; Kam et al., 2024), infrastructure and basic-service disruption
(Mühlhofer et al., 2023a), and ecosystem services (Hülsen et al.,
2025).

Impact-based forecasting (IBF) is the field of research that aims
to calculate impacts based on exposure, vulnerability and hazard
forecast. Its goal is to reduce losses, optimize communication and
facilitate timely decisions (World Meteorological Organization,
2021). Questions such as where, what, and when impacts will
occur, as well as the magnitude of these impacts in a given
region, can be addressed through IBF. This information supports
decision-making, especially in cases where the forecaster lacks
extensive experience with past events (Golding, 2022; Lazo et al.,
2020). The WMO, with governments, science groups, and the Red
Cross and Red Crescent Climate Center, collaborates to transition
to impact-based forecasting (United Nations Office for Disaster
Risk Reduction, 2015; World Meteorological Organization, 2021).
According to the research gaps identified by Potter et al. (2025)
and Mosimann (2024), IBF requires research in four key areas:
(a) vulnerability models to understand how exposed elements
respond to hazards. (b) near real-time computation of hazard
footprints and impact calculations to support timely decisions;
(c) understanding uncertainties within the value chain; and (d)
cartographic visualization to present information clearly for better
understanding by decision-makers.

Recent IBF applications span multiple hazards and outcomes:
winter-windstorm building-damage forecasts in Switzerland
(Röösli et al., 2021); a global TC-displacement IBF that explicitly
analyses uncertainty along the IBF value chain (Kam et al., 2024);
a Philippines housing-damage IBF showing that models using
only global features did not underperform and reduced false
alarms (Kooshki Forooshani et al., 2024); and a surrogate flood
IBF for Switzerland enabling near-real-time impact prediction
(Mosimann et al., 2024). Complementing these, a comparative
study of a machine-learning and a damage-curve model revealed
sensitivity to lead time and trigger thresholds (Sedhain et al.,
2025). Despite this progress, important research gaps remain:
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IBF has largely focused on direct impacts, often overlooking
indirect societal effects and cascading consequences (Potter et al.,
2025).

This study addresses the gap by focusing on the calculation of
indirect impacts based on impact forecasting, aiming to capture
service disruptions as accurately as possible using the best available
estimates at the time of the event. Uncertainty is addressed through
cartographic visualizations of best and worst case scenarios, along
with their associated probabilities. Consistent with Early Action
Protocols (EAP), we target a five-day pre-landfall horizon for
anticipatory action; if the ECMWF ensemble identifies the storm
later than five days, we start from the first detection, for Idai
four days ahead, for Kenneth one day, and for Freddy five
days. We argue that forecasting and visualizing indirect impacts
can provide valuable additional information to support decision-
making before an event occurs. We applied predefined vulnerability
curves to estimate direct impacts, which are then combined with
real-time forecasts from the European Centre for Medium-Range
Weather Forecasts (ECMWF) to compute hazard footprints and
their associated impacts. We demonstrated the application of
this approach using the three most significant TCs that have
affected Mozambique. However, the methodology is generic, the
code is open-source, and the data is transferable, making the
approach easily applicable to other countries, hazards, and CI, and
fully replicable.

2 Materials and methods

The IBF framework for TCs in Figure 1 sketches the workflow
to calculate direct infrastructure and population impacts, and
indirect service disruption impacts using TC track forecasts. The
process for calculating impact forecasts of people experiencing
basic service disruptions begins with a classic natural hazard impact
calculation pipeline, following the IPCC definition of risk (Field
et al., 2014). We combine spatially explicit data on (a) hazard
forecast, (b) exposure, and (c) vulnerability. Finally, to compute
direct impacts in (d), we implement the data from (a), (b), and (c)
using CLIMADA (Aznar-Siguan and Bresch, 2019), an open-source
software widely used in the climate risk assessment community.
In (e), we extend the direct impact forecast pipeline to estimate
indirect impact forecasts by considering disruptions to critical
services or lifelines referred to here as Indirect I in (e) Figure 1
which occur when critical infrastructure can no longer provide
essential services to the population. Although deriving service level
disruptions directly from structural damage remains a challenge
(Schneider et al., 2025), we approximate that infrastructure is
fully non-functional, or “disrupted,” when the impact exceeds a
threshold, which we define as a severe impact (Section 2.2). We
then subset the infrastructure identified as disrupted and visualize
the affected CI, along with the potentially impacted population
due to service disruption, under Indirect II in (e) (Subsections
2.2.1 and 2.2.2). The results obtained in (d) serve as input for
estimating the population affected by disruptions (e) to hospitals,
schools, and road networks, using a nearest-neighbor approach
and the methodology of the Sustainable Development Goals (SDG)
indicator 1.4.1 from the Metadata on SDGs.

2.1 Impact forecast pipeline: input

Our approach follows the IPCC view of risk as the interaction
of hazard, exposure, and vulnerability. We implement this with
the CLIMADA risk platform, which separates (i) the hazard
module, (ii) the entity module (an exposure module and an
impact functions, i.e. vulnerability, module), and (iii) the engine
module that combines the three components to compute impacts.
In our case, the hazard is constructed from tropical cyclone
ensemble forecasts, and we explicitly use 10 m sustained wind
speed (from the ensemble) as the hazard intensity field. Exposure
includes geolocated infrastructure and population. Vulnerability
is represented by empirically derived vulnerability curves and
category thresholds. The engine module maps each wind field
onto exposure coordinates and evaluates asset-level impacts. The
resulting impact is given by Equation 1 in Section 2.1.4. The
subsections below describe how CLIMADA structures the hazard,
exposure, and vulnerability inputs, and how the engine module
integrates them to produce impact estimates.

2.1.1 Hazard
Hazard data can be derived from various sources, including

forecasts, past events, climate projections, and even simulations,
to generate probabilistic sets of events. We use ECMWF ensemble
forecasts of sustained wind to estimate the number of affected
infrastructure (Czajkowski and Done, 2014). The hazard data
has been fetched from the ECMWF for TCs. While past records
are not directly available in the ECMWF database, they can
be accessed through the THORPEX Interactive Grand Global
Ensemble (TIGGE). This forecast corresponds to the IFS Cycle
47r3, which encompass 51 ensemble members. The ECMWF
Integrated Forecasting System includes track data consisting
of forecasted positions (latitude, longitude), central pressure,
environmental pressure, radius of maximum wind, and maximum
wind speed, recorded every 6 h over a period of 240 hours. As the
forecast data consist of the variables described above, preprocessing
is necessary to obtain the wind field. This involves generating
a static circular wind field for each track and calculating the
translational wind speed. Several models have been developed for
this purpose, and the pressure-wind model by Holland (Holland,
2008; Aznar-Siguan and Bresch, 2019) has been implemented in
CLIMADA via the TropyCyclone module.

Hazard data were obtained from ECMWF tropical-cyclone
(TC) forecasts; historical ensemble records are available via TIGGE.
The ECMWF Integrated Forecasting System (IFS) provides a
51-member ensemble. For each member, the TC track product
includes forecast positions (latitude, longitude), central pressure,
environmental pressure, radius of maximum wind, and maximum
wind speed, recorded every 6 hours over a period of 240
hours. Impact forecasts are generated at 150-arc-second ( 4 km)
spatial resolution.

2.1.2 Exposure
Exposure refers to the presence of assets or population

geographically located within a specific area of interest. Exposure
involves the quantification of infrastructure components using
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FIGURE 1

Impact Forecast: The input consists of the interplay between (a) hazard forecasts, (b) exposure, and (c) vulnerability curves. In (d) Impact Forecast:
Direct Impact, the impact is visualized based on the mean results across the 51 ensemble members. In (e), the plot shows infrastructure disruptions
along with the population potentially affected. Finally, in (f), we illustrate the uncertainty inherent in impact forecast modeling by highlighting the
differences among the highest-impact and minimum impact.

measurements such as spatial dimensions, encompassing both
areas and basic value units (Mühlhofer et al., 2023a). Figure 1b
illustrates the exposure data, which varies depending on the type
of infrastructure and is represented by points (hospitals, schools
and population) and lines (road networks). Exposure in the present
study consist of hospitals, schools and roads networks retrieved
from OpenStreepMap (CLIMADA, 2023), and high-resolution
population data from WorldPop, with a resolution of 1 km at the
equator (WorldPop Project, 2023). In the case of health facilities, we
apply a categorization of hospital types based on reports developed
by the Deltares Institute, documents from the World Bank Health
Sector, and the Strategic Health Plan of Mozambique (Global
Facility for Disaster Reduction and Recovery, 2023; Ministrio da
Sade - Repblica de Moambique, 2007) To ensure data accuracy
and cleanliness, geometric points with overlaps within 100 meters
have been excluded. Road network data is grouped by highways,
considering only main roads, while excluding roads labeled as
“residential” and “unclassified”. This procedure is necessary due to
the occasional inaccuracies found in the data, as OpenStreetMap is
an open-source platform developed by various users.

2.1.3 Vulnerability
The definition of vulnerability varies across different

disciplines. However, the Intergovernmental Panel on Climate
Change (IPCC) report identifies two frameworks that share
common causal factors of vulnerability. In disaster risk
management, these factors are termed susceptibility/fragility
and lack of resilience, while in climate change adaptation, they are
referred to as sensitivity and lack of coping and adaptive capacities
(Balica et al., 2009; Cardona et al., 2012). Vulnerability encompasses
diverse dimensions, including socio-economic, environmental,
and physical aspects. Building on this conceptual framing, a
wide body of work has quantified infrastructure vulnerability
in practice. On one side are engineering fragility/vulnerability
functions for specific assets, often used directly for risk estimation,
for example power-system assets under wind and flood (Ye et al.,
2024). On the other side are data-driven, multi-indicator risk
indices at high spatial resolution, for example block-level coastal
flood risk using Random Forest (Yarveysi et al., 2025). While
large-scale natural-hazard risk assessments for infrastructure are
increasing, a recent cross-sector review highlights persistent gaps
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in transferability and reproducibility, including limited treatment
of multi-hazard and interdependencies, scarce open geolocated
asset data, and challenges in scaling across geographies (Verschuur
et al., 2024). Our approach is complementary: we do not derive
new fragility models or socio-economic indices. Instead, we
focus on the physical dimension risks to infrastructure using
vulnerability functions also called fragility curves; termed “impact
functions” in CLIMADA to map hazard intensity to structural
damage (Figure 1c). To ensure broad applicability, we employ
widely used structural-damage functions, the Eberenz and Deltares
models (Eberenz et al., 2021; Mühlhofer et al., 2023b), and category
thresholds consistent with the Saffir-Simpson scale. For example,
a stepwise function can be applied to represent the distinct wind
speed ranges of Categories 1, 2, and 3 of the Saffir-Simpson Scale.
This means that the hazard intensity is discretized into levels
based on defined wind speed thresholds. Further details on these
vulnerability curves can be found in Supplementary Figure S1.

2.1.4 Impact
Impacts are calculated using the CLIMADA risk assessment

platform via the Impact module. Exposure and hazard data are
overlayed, and the corresponding vulnerability curves are applied
to compute impact and generate a cartographic representation.
Since we use track forecast data, impacts are calculated for each
of the 51 ensemble members. To visualize the direct impact on
infrastructure and the uncertainty across the ensemble members,
we used the mean impact calculated across all tracks. In contrast, to
analyze the indirect impact, we applied the conditions described in
the following Section 2.2.1.

The general impact at each exposed location k is calculated as:

xk = Hk · Vk(HEk) (1)

where xk is the impact at location k, Hk is the hazard intensity,
and Vk(HEk) is the vulnerability as a function of local exposure
and hazard.

For roads, which are represented as line strings, additional
steps are introduced to calculate the mean impact per road. We
disaggregate the line-strings into sections represented by points and
take the average impact over the points belonging to each line,
as shown by Equation 2. In this equation, x̄ij,osm is the average
impact for a road segment identified by osm_id, calculated from
the individual point impacts x(k)

ij , with Nosm denoting the number
of points along the segment.

x̄ij,osm = 1
Nosm

Nosm∑
k=1

x(k)
ij (2)

2.2 Impact forecast pipeline: indirect
impact

2.2.1 Indirect I: infrastructure dysfunctionality
We extend the standard IBF by calculating not only direct

impacts but adding disruption thresholds.
We assume that a disruption occurs when the following two

conditions are met:

• Step 1: The impact value exceeds the structural disruption
threshold of 0.20, based on the scale defined by previous
studies in Australia. We adopt the risk categorization
developed by Richter et al. (2018), where values equal to
or above 0.20 indicate severe impacts. This condition is
formalized in Equation 3, which maps the impact value xij at
each point to a binary disruption indicator Dij:

Dij =
{

1, if xij ≥ Tsd

0, otherwise
(3)

where Tsd = 0.20 is the structural disruption threshold.
• Step 2: A disruption is triggered if the proportion of

ensemble members reporting an impact value xij exceeding
the structural disruption threshold Tsd at a given location is
greater than or equal to a predefined alert threshold A. In this
study, we use Tsd = 0.20 as the structural disruption threshold
and set the alert threshold A = 0.10, meaning that an alert
is issued if at least 10% of the ensemble members predict an
impact value above 0.20 at the same location. This corresponds
to at least 5 out of 51 ensemble members exceeding the
condition xij > Tsd, indicating a consistent signal of potential
disruption across multiple forecast realizations.

We define the probability of disruption PD as the ratio of
the members of the ensemble that exceed the threshold to the
total number of members of the ensemble:

PD = N(xij > Tsd)
Nens

(4)

In our case, the probability of disruption becomes as
follows:

PD = 5
51

≈ 0.10 (5)

We do not claim these thresholds are the most suitable.
The selected thresholds follow prior work and are set to a
lower cut-off to reflect higher vulnerability in many countries
of the Global South. Both the structural-disruption cut-off Tsd
and the alert share A are tunable operational parameters; their
sensitivity is reported in the Supplementary Figure S8.

2.2.2 Indirect II: population affected by service
disruption

The results obtained in Figure 1d Impact Forecast: Direct
Impact and in Figure 1e Indirect I: Infrastructure dysfunctionality
serves as input for estimating the population affected by disruptions
to hospitals, schools, and road networks, using a nearest-neighbor
approach when the exposure is represented as a geometric point.
This methodology estimates the number of people who lose access
to health and educational services due to infrastructure failure.
Equation 6 describes the calculation of people experiencing basic
service disruptions. hi represents a hospital that has been damaged,
pj is the nearest population point obtained by minimizing the
geodesic distance d(hi, pj). The hospital location is then assigned
to the nearest point of the impacted population imp_peoplej∗ . This
process ensures that every hospital is associated with its nearest
population point.
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For road network disruption, we used the metric from the
Metadata on Sustainable Development Goals (SDGs) indicator
1.4.1. This involves calculating the population affected within
a radius of 2 km of the disrupted road network. For these
calculations, we use the subset of impacts obtained after applying
one of the assumptions described in Section 2.2.1. The Equation 7
calculates the total affected population termed as (pp_tot).
Summing the impacted population imp_p(pj) at each point pj
within 2 km of the road midpoint ri. Interp(ri, 0.5) represents the
midpoint of ri and each population point is counted only once to
avoid double counting.

ppi = imp_peoplej∗ , where j∗ = arg min
j

d(hi, pj) (6)

pp_tot =
n∑

i=1

∑
pj∈Pi
j�∈I

imp_p(pj), where

Pi = {pj | d(interp(ri, 0.5), pj) ≤ 2 km} (7)

2.3 Impact forecast pipeline: uncertainty
across the value chain

We quantify how uncertainty evolves across lead times and
along the impact chain by computing ensemble-based spread
statistics at each forecast step. All non-zero impact values across
members and lead times are pooled and globally normalized to a
common minimum and maximum, so differences reflect variability
across forecasts rather than absolute magnitude. The spread of the
ensemble is then summarized with the interquartile range (IQR),
chosen for its robustness to outliers and its interpretation as the
middle 50% of the predicted impacts. This yields a consistent
basis for comparing uncertainty over time and across impact types
(Supplementary material, Section 1.2).

3 Results

3.1 Impact forecast: direct impact
visualization

To demonstrate the impact-based forecasting pipeline, we
selected the three most significant TCs that affected Mozambique
between 2019 and 2023. TC Idai reached Category 4 intensity on the
Saffir-Simpson scale on 13 March 2019, weakening before making
landfall near Beira as a Category 2 cyclone on 14 March at 2330
UTC (Nyongesa et al., 2024). Approximately one month later, TC
Kenneth struck northern Mozambique, also reaching Category 4
intensity before making landfall on 25 April 2019 (Mawren et al.,
2020). Three years later, Mozambique experienced the record-
breaking and longest-lasting TC Freddy, which made landfall twice.
In the main paper, we focus on the second and most intense landfall
of TC Freddy, which occurred on 11 March 2023 as a Category 5
cyclone (Liu et al., 2023). The results for TCs Idai and Kenneth are
provided in the Supplementary Figures S2–S7. TC Idai caused the
most significant damage, followed by TC Freddy, with estimated

283 economic losses of $150 million (United Nations Office for
Disaster Risk Reduction, 2023).

Figure 2 provides a cartographic representation of the Impact-
Based Forecasting (IBF) results generated from the 51 ensemble
members of the ECMWF. These maps show the predicted
tracks of Tropical Cyclone Freddy, representing the best available
forecast from three days before landfall until the cyclone reached
Mozambique. Analogous plots for TCs Idai and Kenneth are
provided in the Supplementary Figures S2 and S3. The exposure
layer shown corresponds specifically to hospitals, highlighting the
forecasted spatial distribution of impacts based on the hazard-
exposure-vulnerability framework described in Section 2.1. To
represent hospital dysfunctionality, we used the mean impact value
between the members of the ensemble at each location. This
average reflects the expected severity and consistency of the impact,
serving as a proxy for expected levels of disruption. Areas with
higher mean values indicate a higher likelihood of disruption of
hospital service due to TC Freddy. This visualization aims to help
decision-makers quickly identify which hospitals are most likely
to be affected, allowing for pre-emptive resource allocation and
emergency planning.

To estimate the direct impacts on infrastructure and
populations exposed to varying wind speeds, we provide a set of
vulnerability functions. Decision-makers can select the appropriate
function based on their expertise and the specific objectives of their
impact assessments, as outlined in Section 2.1.3. Figure 2 presents
a visual analysis of the impact status from three days to one day
before landfall, revealing a shift in spatial patterns. These impact
estimations are derived using the Deltares vulnerability function.
Lower impacts are modeled three days before landfall, while
higher impacts emerge as landfall approaches. These plots offer
an initial basis for identifying potentially affected infrastructure
and regions. However, the challenge of translating this information
into societal consequences remains unresolved. For this reason, we
incorporate estimations of indirect impacts in the subsequent steps
of our analysis.

Figure 3 summarizes the number of hospitals, schools, and
roads affected in Mozambique across the 51 ensemble members
for each lead time (Step 1 in Section 2.2.1). To better
capture the uncertainty across ensemble members, the figure
presents the minimum, maximum, median, and mean number
of affected elements for each lead time. Corresponding figures
for Tropical Cyclones Idai and Kenneth are provided in the
Supplementary Figures S4 and S5, respectively.

3.2 Impact forecast: indirect impacts

The novelty of this impact-based forecasting (IBF) research
lies in the integration of indirect impacts within the value chain
pipeline. This approach enables the provision of additional metrics
to stakeholders, which may be useful for organizational tasks
and informed decision-making. Beyond direct impact metrics
such as the number of disrupted hospitals, schools, and primary
road segments, we quantify indirect service disruption: (i) the
population losing access to health care when a hospital is non-
functional; (ii) the population losing access to education when a
school is non-functional; and (iii) the population affected by loss of
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FIGURE 2

Cartographic visualization of the forecasted direct (structural) impact on health facilities from three days before until one day before landfall of TC
Freddy in Mozambique.

connectivity when primary-roads are disrupted. Figure 4 illustrates
which hospitals, schools, or roads may potentially be disrupted
one day before cyclone landfall. These visualizations offer valuable
insights, highlighting critical infrastructure and specific regions
that should be prioritized in disaster preparedness and response
efforts. Additional visualizations for TCs Idai and Kenneth are
included in Supplementary Figures S6 and S7, respectively.

Figure 5 details the population potentially affected by service
disruptions using the nearest-neighbor method. The signal is
non-monotonic across lead times: it is high at longer lead time,
drops to a minimum around +3 days, and intensifies again at +1
day before landfall. The province ranking also shifts at +5 days
Nampula, Zambezia, and Sofala appear prominent, whereas by +1
day Nampula no longer shows service-disruption impacts while
Zambezia show more impacts. These fluctuations are consistent
with forecast uncertainty propagated along the IBF value chain
and with TC Freddy having undergone six rapid-intensification
episodes, complicating track and intensity prediction.

Consistent with this evolution, +3 days before landfall very
few locations met the disruption criteria of Section 2.2.1, yielding
minimal affected population across hospitals, schools, and roads.
One day before landfall, the number of people potentially
affected by service interruptions rises sharply. While the number
directly exposed to strong winds is considerable, indirect impacts
loss of access to health, education, and transport–can amplify

vulnerability. For example, an injury that is survivable under
normal conditions may become life-threatening if hospital access
is impeded by damage or blocked roads. Such indirect effects are
often more spatially localized than the wind field but can critically
limit access to essential services exactly when they are most needed.

Although the most severe impacts occurred in Zambezia
(Figure 5), disruptions to basic services were also likely in
neighboring Sofala and Nampula provinces. One day before
landfall, substantial impacts were already evident: about 1,396,760
people in Zambezia and 204,350 in Sofala were in areas meeting
the disruption criteria of Section 2.2.1. These totals include both
direct exposure and indirect loss of access. Using the nearest-
neighbor method (Section 2.2.1), we estimate that, of the 1.4
million people in Zambezia at +1 day, roughly 23,657 could
face reduced access to healthcare (hospital disruptions), 45,480
to schooling (school disruptions), and 648,735 to mobility (road-
network disruptions). This dominance of road-related indirect
impacts reflects the spatial logic of the system: hospitals and schools
are spatially discrete with localized service areas, whereas the
road network is spatially extensive, so small disrupted segments
can hinder access for large populations. Overall, indirect impacts
remain smaller than direct exposure, with roads contributing
most to the indirect component. Therefore, maintaining road
access is pivotal to avoid secondary losses or a cascading effect.
Similar overview of the direct and indirect impacts for TCs Idai
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FIGURE 3

Overview of the number of affected infrastructure elements over lead time, based on ensemble forecasts. (a) Number of hospitals affected, (b)
Number of schools affected, and (c) Number of roads affected. For each lead time, the variability across the 51 ensemble members is shown,
highlighting the range (e.g., mean, median, min, and max) of the predicted impact on critical infrastructure.

FIGURE 4

Potential disruption of (a) hospitals, (b) schools, and (c) roads, based on the criteria defined in Section 2.2.1. The figures correspond to a 1-day lead
time for TC Freddy, the most significant event that struck Mozambique since 2019.

Frontiers in Climate 08 frontiersin.org

https://doi.org/10.3389/fclim.2025.1666586
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Espejo et al. 10.3389/fclim.2025.1666586

FIGURE 5

Overview of population directly affected by TC category 1, and population indirectly affected when hospitals, schools and roads are disrupted.

and Kenneth is provided in Supplementary Figures S9 and S10,
respectively. The results reported here use the thresholds in Section
2.2.1 (Tsd = 0.20, A = 0.10). A sensitivity analysis shows that
raising Tsd to 0.50 removes pre-landfall disruption signals for TC
Freddy, showing that threshold choice strongly controls early-
warning signals (Supplementary Figure S8). Therefore, transparent
communication of threshold choices, and the associated trade-offs
for stakeholders is pivotal.

The spatial variability across TCs Freddy, Idai, and Kenneth
significantly influenced the number of people affected, as each TC
impacted different regions of Mozambique. Despite these regional
differences, a comparison across the three cyclones reveals key

distinctions in both direct and indirect impacts. Among the three
TCs, Idai resulted in the highest overall impact, particularly with
regard to indirect effects on access to healthcare, education, and
road infrastructure (see Supplementary material S11). Although a
standardized five-day lead time was selected as the basis for the
Early Action Protocol (EAP) assessment, the actual availability
of cyclone forecast data varied between events. For TC Idai,
ensemble forecast data, became available only four days before
landfall. In the case of TC Kenneth, the forecast track labeled
"Kenneth" was not detectable until just one day before landfall.
This discrepancy does not stem from an arbitrary choice of lead
time but reflects limitations in the historical forecast data from
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FIGURE 6

Normalized uncertainty across the impact-based value chain from hazard to impact covering the period from five days before landfall to the day of
landfall.

the ECMWF ensemble system. As a result, while TC Freddy
could be analyzed from five days in advance, the analyses for TCs
Idai and Kenneth begin from the earliest time the storm became
identifiable in ensemble forecasts. Despite its shorter lead time, TC
Idai caused widespread infrastructure disruptions, highlighting the
severity of its indirect impacts. TC Freddy, with the benefit of a full
five-day forecast window, also produced substantial disruptions,
particularly due to its prolonged duration over the region. In
contrast, TC Kenneth detected only one day before landfall led
to comparatively lower levels of indirect impact across all types
of exposure. However, TC Kenneth was included in the analysis
because it struck shortly after TC Idai, affecting a population that
had not yet recovered from the previous disaster. These differences
illustrate how forecast lead time, storm intensity, and regional
vulnerabilities collectively influence the extent of indirect impacts.
They further underscore the critical role of early warning systems
and impact-based forecasting in improving disaster preparedness
and response.

3.3 Uncertainty across the value chain

Impact-based forecasting has traditionally focused on
uncertainty stemming from meteorological forecasts, often
overlooking the fact that uncertainty can accumulate and
propagate through subsequent stages, from hazard characterization
and exposure assessment to final impact estimation. To better
understand this propagation, Figure 6 presents the evolution of
uncertainty (measured as the interquartile range, IQR) in different
components of the impact chain and in multiple lead times for the
case study of TC Freddy. To allow meaningful comparison between
stages, all values were normalized. The detailed steps and equations
used in the normalization and statistical processing can be found
in the Supplementary material in Section 1.2. The heatmap in
Figure 6 reveals that the greatest uncertainty is associated with the

vulnerability function provided by Deltares. This is expected, as
the Deltares function is defined by a stepwise structure with abrupt
thresholds, which can amplify variability in impact estimates.
In contrast, the vulnerability function from Eberenz displays
considerably lower uncertainty across all lead times due to its
continuous, monotonous shape. Meteorological uncertainty,
represented by the hazard layer, is highest five to four days before
landfall but decreases as the event approaches, indicating increased
forecast confidence closer to landfall. The Saffir-Simpson Category
1 thresholds show moderate variability, while the uncertainty
associated with exposure data remains relatively low. Overall,
this analysis highlights the importance of considering not just
meteorological uncertainty but also the compounding effects of
vulnerability and exposure in impact-based forecasts.

Building upon this, Figure 7 explores how uncertainty
translates into spatial variability in modeled impacts across
Mozambique. Additionally, it shows the ensemble spread of
hospital impacts, computed as the maximum minus minimum
mean impact across members at a 1-day lead. Along the Zambezia,
Sofala coast the spread is small, indicating similar outcomes
across scenarios, whereas inland areas exhibit a larger spread,
highlighting where preparedness decisions are most sensitive to
forecast changes. The tracks in Figure 7 illustrate this divergence:
the red dashed (maximum) track crosses the country almost
east-west, while the gray dashed (minimum) track originates
farther south, makes landfall in Sofala, turns inland, and then
recurves toward the Indian Ocean. Providing this scenario-based
uncertainty hours before landfall offers decision-makers actionable
spatial signals to prioritize some contingency plans.

4 Discussion

The value chain of impact-based forecasting presented in this
study demonstrates the added benefit of translating meteorological
forecasts into impact metrics. Communicating metrics such as
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FIGURE 7

Spatial variability in impact-related uncertainty one day prior to the
landfall of Tropical Cyclone Freddy.

impact severity, potentially disrupted hospitals, and populations
directly or indirectly affected by essential service disruptions
provides more detailed and operationally relevant insights than
traditional forecasts alone. For the impact calculations, we used
forecast track data from ECMWF, combined with population
data from WorldPop and a comprehensive set of vulnerability
functions. These datasets were integrated into the CLIMADA
platform, an open-source tool for risk assessment. The setup
was implemented retrospectively for five days prior to landfall,
reflecting the structure of Early Action Protocols (EAPs), which
typically initiate monitoring five days ahead of a potential event.
The activation of early actions, however, is usually discussed around
three days before landfall, depending on whether a predefined
trigger is met (Mozambique Red Cross and IFRC, 2021).

The method presented here is designed to support flexible
forecasting at any required lead time within this five-day
window. In real-time applications, it allows for day-to-day impact
calculations, providing timely information to decision-makers as
forecast data evolves. To demonstrate its applicability and assess
how early action varied between events, we modeled the impacts
of the most relevant TCs affecting Mozambique: Cyclones Idai and
Kenneth, both in 2019, and Cyclone Freddy in 2023. Furthermore,
all components of this workflow are fully open-source and can be
tailored to user needs including the risk model, input data, and
the scripts used for the impact computations and visualizations
presented here.

IBF still faces several research gaps, as identified in recent
review studies. One key limitation is the insufficient understanding
of how warning information must be tailored considering spatial,
temporal, and societal dimensions to effectively trigger early
actions. Methods and techniques need to be developed in close
collaboration with stakeholders to ensure effective use of impact-
based warnings. Furthermore, limited attention has been paid
to the integration of indirect or secondary impacts, as well
as cascading and compounding hazards, which are essential to
complete the analytical framework (Potter et al., 2025). This study
contributes to addressing one of these key gaps by integrating
secondary or indirect impacts into the impact-based forecasting
value chain. Previous research has emphasized that disruptions
to healthcare services are not only a result of physical damage
to infrastructure but also of the limited accessibility faced by
populations, particularly in low-density areas. In Mozambique,
for example, hospitals with high service coverage are primarily
concentrated in urban centers, while rural communities often
face travel times of at least 45 minutes to several hours on
foot to reach the nearest facility. To mitigate this vulnerability,
mobile health units are deployed to provide basic services such as
vaccination programs. However, during Tropical Cyclone Freddy,
flooding severely affected these mobile health services, leading to
interruptions in vaccination campaigns that persisted for weeks or
even months (Rossi et al., 2024; Hierink et al., 2020). Although
spatial data on the precise locations of mobile units was not
available for this study, we argue that such disruptions constitute
a critical form of indirect impact with substantial implications
for public health. Similar patterns were observed in the aftermath
of TCs Idai and Kenneth. These events damaged health facilities
and caused secondary effects such as increased travel times and
reduced coverage of healthcare. Following TC Idai, the proportion
of children under five years of age with access to a healthcare
facility in two hours decreased from 78. 8% to 52. 5%. In areas
affected by TC Kenneth, accessibility declined from 82.2% to 71.5%,
leaving approximately 14,330 children without adequate access to
care (Hierink et al., 2020). These cases underscore the importance
of forecasting not only direct exposure to hazards, but also the
likelihood of healthcare service disruptions and their broader
societal consequences.

The methodology presented here seeks to operationalize this
understanding by incorporating such effects into the impact-
based forecasting framework. As shown in Figure 5, estimating the
population that might be disrupted by wind speed provides critical
insight into direct exposure. However, identifying populations
whose access to essential services such as hospitals is hindered
by infrastructure disruptions offers an additional and equally
important perspective. For example, areas with populations
located below the defined thresholds of physical disruption or
in less densely populated regions may still experience service
interruptions due to damage to nearby healthcare facilities or
increased travel times. As a result, these populations, although
not located in high-exposure zones, may still suffer limited
access to critical services, with potentially severe public health
consequences. This situation was clearly observed in the case of
TC Freddy, as illustrated in Figure 5, where populations outside
the strongest wind zones experienced significant disruptions to
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healthcare access. These findings emphasize the importance of
extending IBF approaches to include indirect impacts, particularly
for under-served or remote communities that are highly vulnerable
to service disruptions.

The case studies of TCs Idai, Kenneth, and Freddy aim to
identify the evolution of early action protocols in Mozambique.
During Cyclones Idai and Kenneth in 2019, an early warning
system was in place; however, coordination to disseminate timely
information and provide guidance on how to respond was limited.
Formal early action plans and predefined triggers were still under
development or completely absent at that time. In the case
of Cyclone Idai, the Zimbabwe Meteorological Office issued a
warning in advance. Nevertheless, it was insufficient to support
the relocation of at-risk populations. Logistical arrangements
were lacking, there were no designated shelters for communities,
and the population did not know how to respond. A critical
intermediary mechanism to translate warnings into understandable
and actionable consequences was missing (ReliefWeb, 2019). Even
when communities were aware that a TC was approaching, many
assumed it would be similar to past events and therefore did
not take precautionary measures. This highlights a significant
communication gap in impact-based forecasting specifically, the
need to effectively convey the difference between an event
with 60 km/h wind speeds and one with 180 km/h winds
(ReliefWeb, 2021). Lessons learned from Cyclones Idai and Freddy,
along with the development of the EAPs established through
partnerships among local and national organizations and the
German Red Cross have led to the implementation of mechanisms
for activating anticipatory actions. A mapping of authorized actions
has also been performed in relevant sectors to ensure effective
communication flows and that each responsible entity receives
the necessary information to act. These protocols, which include
threshold values for triggering actions, were developed using
30 years of historical data to establish scientifically grounded
activation criteria (International Federation of Red Cross and Red
Crescent Societies , IFRC). Evidence from communities exposed to
anticipatory action during Cyclone Freddy shows that they received
warnings earlier and were more likely to believe that the event
would occur. While some residents took precautionary measures,
others still experienced uncertainty about how to respond. In
contrast, communities not reached by anticipatory actions received
warnings with less lead time and showed lower levels of trust
in the information (Malawi Red Cross Society and Danish Red
Cross, 2024). This highlights the importance of improving the
communication flow by including impact-based triggers. Such
triggers can inform the population not only about the hazard
itself but also about the potential consequences such as the loss
of access to health services. Contingency plans can be activated
to ensure the availability of alternative health facilities or sectors
to maintain essential services like health care or preserving for
example medicaments and vaccination dosis.

IBF links forecasts to impacts, yet many implementations
rely on computationally heavy physics-based chains or surrogate
models that trade accuracy and transferability especially outside
their training domain (Najafi et al., 2024). A central gap is
uncertainty: IBF depends on input data and assumptions at
multiple stages, so end-to-end propagation and clear representation

of impact uncertainty are essential. Probabilistic approaches are
better suited than deterministic ones for extreme events and
anticipatory action, but choices must match the use case and
data. Following Kam et al. (2024), we treat each ensemble
member as a distinct meteorological realization and pair this
with alternative vulnerability curves. In our study, the full 51-
member ECMWF ensemble and multiple vulnerability curves yield
min/median/max counts of disrupted hospitals, schools, and roads,
plus associated affected populations; we also tested disruption
and alert threshold combinations for indirect-impact sensitivity.
Finally, a normalized IQR analysis (Figure 6) traces uncertainty
across hazard, vulnerability, and exposure, showing that relative
contributions shift with lead time.

We now detail each component of the IBF chain. Hazard
forecast: In the case of TC Freddy, one of the most significant
sources of uncertainty stemmed from the ECMWF forecast. The
model underestimated Freddy’s intensity, exhibited a considerable
mean track error, and predicted premature dissipation by not
accurately recording the full development of the cyclone (Liu et al.,
2023).

Vulnerability: In contrast, we hypothesize that uncertainty
introduced by the vulnerability functions was comparatively lower.
This is evident in the vulnerability function by Eberenz (Figure 6),
which shows low variability compared to the Deltares vulnerability
function, indicating a smaller contribution to overall uncertainty
in this specific case. However, uncertainties in vulnerability can
vary from event to event. In situations where forecasts are
relatively accurate, local vulnerability estimates may contribute
more significantly to overall model uncertainty. This insight aligns
with findings from recent research in the Philippines, where an IBF
model for housing damage using XGBoost showed that removing
local vulnerability data and relying solely on global features did not
negatively affect performance. In fact, the model achieved higher
true-positive rates and reduced false negatives and false positives,
thus minimizing unnecessary early actions.

Disruption threshold: We flag structural disruption at impact
≥ 0.20, adopting the lower bound of the severe impact class in
Richter et al. (2018). At this level, expected wind effects align
with Saffir-Simpson descriptors [e.g., roof failure, major envelope
damage, blocked access; (National Hurricane Center, 2023)]. In
Mozambique, post-Idai assessments reported tearing roofs off
homes and buildings, the Beira Central Hospital emergency room
rendered non-functional, and widespread road and bridge outages
with power interruptions (ReliefWeb, 2019) . Given this context,
0.20 is a conservative cut-off that reduces missed disruptions. In
line with this concern about missed events, a stricter 0.50 threshold
identified no disrupted infrastructure at any lead time before
landfall for TC Freddy, thereby missing disruption signals. Alert
threshold: We set the alert threshold at impact ≥ 0.10 to prioritize
preparedness. In access-constrained settings (single road access),
the cost of a missed event is high; a lower alert share increases recall
and triggers earlier warnings, even at the expense of more false
alarms. Where logistics are stronger and rapid on-site mobilization
is feasible, a higher alert share may better focus resources on the
most affected assets. In practice, this is an operational parameter
that users can tune to their priorities. Trade-offs and lead time:
Sensitivity analysis (Supplementary Figure S8) indicates that the
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disruption cut-off Tsd is the primary lever–raising it from 0.20 to
0.50 collapses pre-landfall signals. By contrast, changing the alert
share A has a smaller effect: lowering A adds alerts at locations
where only a few ensemble members exceed Tsd, and raising A
removes these borderline cases; the main hotspots remain largely
unchanged compared with the choice of Tsd. Differences between
threshold pairs become more pronounced as landfall approaches,
suggesting preventive settings (e.g., Tsd=0.20, A=0.10) early in
the EAP window and tighter settings closer to impact, according
to operational priorities. Exposure: Data on critical infrastructure
extracted from OpenStreetMap is represented by point features
and line-strings. While this dataset is widely used, there is some
uncertainty regarding the precise locations of certain infrastructure
elements, which may be slightly offset from their actual positions.
Although our model accounts for these spatial inaccuracies, they
are expected to have minimal influence on the overall uncertainty
of the model.

Critical infrastructures, for example, schools, hospitals, and
primary roads–face rising climate-driven extremes, yet many CI
models remain data-intensive, local, and hard to transfer, and
hazard models often stop at direct asset damage, overlooking
interdependencies. To bridge this gap, we present an open-
source, impact-based forecasting pipeline that converts ECMWF
tropical-cyclone forecasts into decision-ready metrics on both asset
disruption and basic service loss. Implemented in CLIMADA, it
captures interdependences between infrastructure and population
and operates over a five-day Early Action Protocol horizon with
daily updates. Thresholds are conservative and tunable: a 0.20
disruption cut-off reduces missed disruptions, and a 0.10 alert share
prioritizes preparedness; a sensitivity check on TC Freddy showed
that raising the disruption cut-off to 0.50 identified no pre-landfall
disruptions, whereas 0.20 retained clear ensemble signals. Its
modular, lightweight design and reliance on open hazard, exposure,
and vulnerability data make the pipeline transferable across
geographies and hazards and suitable for routine anticipatory
planning.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary material, further inquiries can be
directed to the corresponding author.

Author contributions

GE: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Visualization, Writing – original
draft, Writing – review & editing. ZS: Conceptualization,
Methodology, Writing – review & editing. EM: Conceptualization,
Methodology, Writing – review & editing. TR: Writing – review &
editing. SB: Writing – review & editing. DB: Resources, Writing –
review & editing. AZ: Writing – review & editing.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. Open Access funding
was provided by the University of Bern.

Acknowledgments

This work was initiated in the framework of the Weather4UN
pilot project, through which Switzerland, via MeteoSwiss, supports
the development of the WMO Coordination Mechanism (WCM).
The WCM aims to improve access to weather and climate
information and to provide expert guidance to the humanitarian
community. The author also acknowledges the input and early
feedback provided by colleagues at MeteoSwiss and the World
Meteorological Organization, as well as by members of the Weather
and Climate Risks (WCR) group at ETH Zurich, which contributed
to the initial development of this multidisciplinary approach.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that Gen AI was used in the creation
of this manuscript. Grammar checking was performed using
grammarly AI.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fclim.2025.
1666586/full#supplementary-material

Frontiers in Climate 13 frontiersin.org

https://doi.org/10.3389/fclim.2025.1666586
https://www.frontiersin.org/articles/10.3389/fclim.2025.1666586/full#supplementary-material
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Espejo et al. 10.3389/fclim.2025.1666586

References

Aznar-Siguan, G., and Bresch, D. N. (2019). Climada v1: a global weather and
climate risk xmltex/break assessment platform. Geoscient. Model Dev. 12, 3085–3097.
doi: 10.5194/gmd-12-3085-2019

Bakkensen, L. A., Park, D.-S. R., and Sarkar, R. S. R. (2018). Climate costs
of tropical cyclone losses also depend on rain. Environm. Res. Lett. 13:074034.
doi: 10.1088/1748-9326/aad056

Balica, S., Douben, N., and Wright, N. G. (2009). Flood vulnerability indices at
varying spatial scales. Water Sci. Technol. 60, 2571–2580. doi: 10.2166/wst.2009.183

Bresch, D. N., and Aznar-Siguan, G. (2021). Climada v1. 4.1: towards a globally
consistent adaptation options appraisal tool. Geoscient. Model Dev. 14, 351–363.
doi: 10.5194/gmd-14-351-2021

Cardona, O., van Aalst, M., Birkmann, J., Fordham, M., McGregor, G., Perez, R.,
et al. (2012). Determinants of Risk: Exposure and Vulnerability. Cambridge, New York:
Cambridge University Press. doi: 10.1017/CBO9781139177245.005

CLIMADA (2023). Climada Exposures Openstreetmap Tutorial. Zurich: ETH
Zurich.

Collalti, D., and Strobl, E. (2022). Economic damages due to extreme precipitation
during tropical storms: evidence from jamaica. Nat. Hazards 110, 2059–2086.
doi: 10.1007/s11069-021-05025-9

Cremen, G., Galasso, C., and McCloskey, J. (2022). Modelling and quantifying
tomorrow’s risks from natural hazards. Sci. Total Environm. 817:152552.
doi: 10.1016/j.scitotenv.2021.152552

Czajkowski, J., and Done, J. (2014). As the wind blows? Understanding hurricane
damages at the local level through a case study analysis. Weather Climate Soc. 6,
202–217. doi: 10.1175/WCAS-D-13-00024.1

Dodman, D., Hayward, B., Pelling, M., Castan Broto, V., Chow, W., Chu, E., et al.
(2022). Cities, Settlements and Key Infrastructure. Cambridge, New York: Cambridge
University Press.

Eberenz, S., Lüthi, S., and Bresch, D. N. (2021). Regional tropical cyclone impact
functions for globally consistent risk assessments. Nat. Hazards Earth Syst. Sci. 21,
393–415. doi: 10.5194/nhess-21-393-2021

Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E.,
et al. (2014). “Climate change 2014: impacts, adaptation and vulnerability,” in Part A:
Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change (New York: Cambridge
University Press).

Gheorghe, A. V., and Vamanu, D. V. (2005). On the vulnerability of
critical infrastructures: "seeing it coming". Int. J. Crit. Infrastruct. 1, 216–246.
doi: 10.1504/IJCIS.2005.006120

Global Facility for Disaster Reduction and Recovery (2023). Multi-Hazard Risk
Assessment for the Schools Sector in Mozambique. Washington, DC: World Bank
International.

Golding, B. (2022). Towards the “Perfect” Weather Warning: Bridging Disciplinary
Gaps Through Partnership and Communication. Cham: Springer Nature.

Hierink, F., Rodrigues, N., Mu niz, M., Panciera, R., and Ray, N. (2020). Modelling
geographical accessibility to support disaster response and rehabilitation of a healthcare
system: an impact analysis of cyclones idai and kenneth in mozambique. BMJ Open
10:e039138. doi: 10.1136/bmjopen-2020-039138

Holland, G. (2008). A revised hurricane pressure-wind model. Monthly Weather
Rev. 136, 3432–3445. doi: 10.1175/2008MWR2395.1

Hülsen, S., Dee, L. E., Kropf, C. M., Meiler, S., and Bresch, D. N. (2025). Mangroves
and their services are at risk from tropical cyclones and sea level rise under climate
change. Commun. Earth Environm. 6:262. doi: 10.1038/s43247-025-02242-z

International Federation of Red Cross and Red Crescent Societies (IFRC) (2023).
Global Plan 2023. Geneva: IFRC.

International Federation of Red Cross and Red Crescent Societies (IFRC) (2025).
Mozambique/Africa: To Coordinate Early Actions for Preparation and Response to
Cyclones in Mozambique. Geneva: IFRC.

Kam, P. M., Ciccone, F., Kropf, C. M., Riedel, L., Fairless, C., and Bresch, D. N.
(2024). Impact-based forecasting of tropical cyclone-related human displacement to
support anticipatory action. Nat. Commun. 15:8795. doi: 10.1038/s41467-024-53200-w

Kooshki Forooshani, M., van den Homberg, M., Kalimeri, K., Kaltenbrunner,
A., Mejova, Y., Milano, L., et al. (2024). Towards a global impact-based
forecasting model for tropical cyclones. Nat. Hazards Earth Syst. Sci. 24, 309–329.
doi: 10.5194/nhess-24-309-2024

Lazo, J. K., Hosterman, H. R., Sprague-Hilderbrand, J. M., and Adkins, J. E. (2020).
Impact-based decision support services and the socioeconomic impacts of winter
storms. Bull. Am. Meteorol. Soc. 101, E626–E639. doi: 10.1175/BAMS-D-18-0153.1

Liu, H.-Y., Satoh, M., Gu, J.-F., Lei, L., Tang, J., Tan, Z.-M., et al. (2023).
Predictability of the most long-lived tropical cyclone freddy (2023) during its

westward journey through the southern tropical indian ocean. Geophysi. Res. Lett.
50:e2023GL105729. doi: 10.1029/2023GL105729

Lüthi, S., Fairless, C., Fischer, E. M., Scovronick, N., Armstrong, B., Coelho, M. D.
S. Z. S., et al. (2023). Rapid increase in the risk of heat-related mortality. Nat. Commun.
14:4894. doi: 10.1038/s41467-023-40599-x

Malawi Red Cross Society and Danish Red Cross (2024). “Comparative study in the
early warnings and early actions before tropical cyclone freddy in southern malawi in
areas with and without previous anticipatory action programming: Quantitative data
findings and analysis,” in Technical Report, Malawi Red Cross Society and Danish Red
Cross.

Mawren, D., Hermes, J., and Reason, C. (2020). Exceptional tropical cyclone
kenneth in the far northern mozambique channel and ocean eddy influences. Geophys.
Res. Lett. 47:e2020GL088715. doi: 10.1029/2020GL088715

Meiler, S., Kropf, C. M., McCaughey, J. W., Lee, C.-Y., Camargo, S. J., Sobel, A. H.,
et al. (2025a). Navigating and attributing uncertainty in future tropical cyclone risk
estimates. Sci. Adv. 11:eadn4607. doi: 10.1126/sciadv.adn4607

Meiler, S., Mühlhofer, E., Lüthi, S., Bresch, D. N., Ottonelli, D., Ghizzoni, T., et al.
(2025b). A natural hazard risk modelling approach to human displacement - frontiers
& challenges. Environ. Res. Clim. 4:045001. doi: 10.1088/2752-5295/ae014c

Ministrio da Sade - Repblica de Moambique (2007). “Plano estratgico do sector sade
2007-2012,” in Technical report, Ministio da Sade, Maputo, Mozambique. Available
online at: https://www.uhc2030.org/fileadmin/uploads/ihp/Documents/Country_
Pages/Mozambique/PlanoEstrategicoSectorSaude_2007-2012.pdf (Accessed June 10,
2025).

Mosimann, M. (2024). From Weather Forecasts to Impact-Based Flood Warning
Systems: A Modelling Perspective (Phd dissertation). University of Bern, Bern,
Germany.

Mosimann, M., Kauzlaric, M., Schick, S., Martius, O., and Zischg, A. P.
(2024). Evaluation of surrogate flood models for the use in impact-based
flood warning systems at national scale. Environm. Model. Softw. 173:105936.
doi: 10.1016/j.envsoft.2023.105936

Mozambique Red Cross and IFRC (2021). Mozambique: Cyclone Early Action
Protocol. Available online at: https://www.ifrc.org/document/mozambique-cyclone-
early-action-protocol (Accessed March 24, 2025).

Mühlhofer, E., Bresch, D. N., and Koks, E. E. (2024). Infrastructure failure cascades
quintuple risk of storm and flood-induced service disruptions across the globe. One
Earth 7, 714–729. doi: 10.1016/j.oneear.2024.03.010

Mühlhofer, E., Koks, E. E., Kropf, C. M., Sansavini, G., and Bresch, D. N.
(2023a). A generalized natural hazard risk modelling framework for infrastructure
failure cascades. Reliabil. Eng. Syst. Safety 234:109194. doi: 10.1016/j.ress.2023.
109194

Mühlhofer, E., Stalhandske, Z., Sarcinella, M., Schlumberger, J., Bresch, D. N., and
Koks, E. (2023b). “Supporting robust and climate-sensitive adaptation strategies for
infrastructure networks: a multi-hazard case study on Mozambique’s healthcare sector,”
in Proceedings of the 14th International Conference on Applications of Statistics and
Probability in Civil Engineering (ICASP14) (Dublin: Trinity College Dublin).

Najafi, H., Shrestha, P. K., Rakovec, O., Apel, H., Vorogushyn, S., Kumar, R., et al.
(2024). High-resolution impact-based early warning system for riverine flooding. Nat.
Commun. 15:3726. doi: 10.1038/s41467-024-48065-y

National Hurricane Center (2023). Saffir-simpson Hurricane Wind Scale. Available
online at: https://www.nhc.noaa.gov/aboutsshws.php (Accessed February 27, 2025).

Nyongesa, A. M., Shi, D., Li, S., and Li, Q. (2024). Influence of convective
parameterization on the simulation of tropical cyclones over the south west indian
ocean: A case study of tropical cyclone idai (2019). Atmospheric Res. 306:107461.
doi: 10.1016/j.atmosres.2024.107461

O’Neill, B., van Aalst, M., Zaiton Ibrahim, Z., Berrang Ford, L., Bhadwal, S.,
Buhaug, H., et al. (2022). Key Risks Across Sectors and Regions. Cambridge, New York:
Cambridge University Press.

Papilloud, T., Steiner, A., Zischg, A., and Keiler, M. (2024). Road network
disruptions during extreme flooding events and their impact on the access to
emergency medical services: a spatiotemporal vulnerability analysis. Sci. Total
Environm. 956:177140. doi: 10.1016/j.scitotenv.2024.177140

Park, S., van de Lindt, J. W., and Li, Y. (2013). Application of the hybrid abv
procedure for assessing community risk to hurricanes spatially. Nat. Hazards 68,
981–1000. doi: 10.1007/s11069-013-0674-2

Potter, S. H., Kox, T., Mills, B., Taylor, A., Robbins, J., Cerrudo, C., et al. (2025).
Research gaps and challenges for impact-based forecasts and warnings: results of
international workshops for high impact weather in 2022. Int. J. Disast. Risk Reduct.
118:105234. doi: 10.1016/j.ijdrr.2025.105234

ReliefWeb (2019). Cyclone IDAI: Time to Reassess Disaster Management. Geneva:
United Nations Office for the Coordination of Humanitarian Affairs (OCHA).

Frontiers in Climate 14 frontiersin.org

https://doi.org/10.3389/fclim.2025.1666586
https://doi.org/10.5194/gmd-12-3085-2019
https://doi.org/10.1088/1748-9326/aad056
https://doi.org/10.2166/wst.2009.183
https://doi.org/10.5194/gmd-14-351-2021
https://doi.org/10.1017/CBO9781139177245.005
https://doi.org/10.1007/s11069-021-05025-9
https://doi.org/10.1016/j.scitotenv.2021.152552
https://doi.org/10.1175/WCAS-D-13-00024.1
https://doi.org/10.5194/nhess-21-393-2021
https://doi.org/10.1504/IJCIS.2005.006120
https://doi.org/10.1136/bmjopen-2020-039138
https://doi.org/10.1175/2008MWR2395.1
https://doi.org/10.1038/s43247-025-02242-z
https://doi.org/10.1038/s41467-024-53200-w
https://doi.org/10.5194/nhess-24-309-2024
https://doi.org/10.1175/BAMS-D-18-0153.1
https://doi.org/10.1029/2023GL105729
https://doi.org/10.1038/s41467-023-40599-x
https://doi.org/10.1029/2020GL088715
https://doi.org/10.1126/sciadv.adn4607
https://doi.org/10.1088/2752-5295/ae014c
https://www.uhc2030.org/fileadmin/uploads/ihp/Documents/Country_Pages/Mozambique/PlanoEstrategicoSectorSaude_2007-2012.pdf
https://www.uhc2030.org/fileadmin/uploads/ihp/Documents/Country_Pages/Mozambique/PlanoEstrategicoSectorSaude_2007-2012.pdf
https://doi.org/10.1016/j.envsoft.2023.105936
https://www.ifrc.org/document/mozambique-cyclone-early-action-protocol
https://www.ifrc.org/document/mozambique-cyclone-early-action-protocol
https://doi.org/10.1016/j.oneear.2024.03.010
https://doi.org/10.1016/j.ress.2023.109194
https://doi.org/10.1038/s41467-024-48065-y
https://www.nhc.noaa.gov/aboutsshws.php
https://doi.org/10.1016/j.atmosres.2024.107461
https://doi.org/10.1016/j.scitotenv.2024.177140
https://doi.org/10.1007/s11069-013-0674-2
https://doi.org/10.1016/j.ijdrr.2025.105234
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Espejo et al. 10.3389/fclim.2025.1666586

ReliefWeb (2021). Learning From Cyclone IDAI and Cyclone Kenneth to Strengthen
Early Warning Systems in Mozambique. Geneva: United Nations Office for the
Coordination of Humanitarian Affairs (OCHA).

ReliefWeb (2023). Tropical Cyclone Freddy Mozambique Update - 30 March
2023. Available at: https://reliefweb.int/report/mozambique/tropical-cyclone-freddy-
mozambique-update-30-march-2023 (Accessed February 27, 2025).

Richter, H., Arthur, C., Schroeter, S., Wehner, M., Sexton, J., Ebert, B., et al. (2018).
Impact-Based Forecasting for the Coastal Zone: East Coast Lows. Melbourne, VIC:
Natural Hazards Research Australia.

Röösli, T., Appenzeller, C., and Bresch, D. N. (2021). Towards operational impact
forecasting of building damage from winter windstorms in switzerland. Meteorol. Appl.
28:e2035. doi: 10.1002/met.2035

Rossi, B., Formenti, B., Cerini, C., Tique, N., da Celma Cossa, R., Boniotti, F., et al.
(2024). Addressing health care disruption in rural mozambique due to extreme climate
events: mobile units tackling cyclones, vaccine-preventable diseases, and beyond.
Front. Trop. Dis. 5:1328926. doi: 10.3389/fitd.2024.1328926

Schneider, M., Halekotte, L., Mentges, A., and Fiedrich, F. (2025). Dependent
infrastructure service disruption mapping (disruptionmap): a method to
assess cascading service disruptions in disaster scenarios. Sci. Rep. 15:5736.
doi: 10.1038/s41598-025-89469-0

Sedhain, S., van den Homberg, M., Teklesadik, A., van Aalst, M., and Kerle, N.
(2025). Evaluating impact-based forecasting models for tropical cyclone anticipatory
action. Int. J. Disast. Risk Reduct. 2025:105782. doi: 10.1016/j.ijdrr.2025.105782

Stalhandske, Z., Steinmann, C. B., Meiler, S., Sauer, I. J., Vogt, T., Bresch, D. N., et
al. (2024). Global multi-hazard risk assessment in a changing climate. Sci. Rep. 14:5875.
doi: 10.1038/s41598-024-55775-2

Svegrup, L., Johansson, J., and Hassel, H. (2019). Integration of critical
infrastructure and societal consequence models: impact on swedish power system
mitigation decisions. Risk Analysis 39, 1970–1996. doi: 10.1111/risa.13272

United Nations Office for Disaster Risk Reduction (2015). Sendai Framework for
Disaster Risk Reduction. Available online at: https://www.undrr.org/implementing-
sendai-framework/sendai-framework-disaster-risk-reduction-2015--2030 (Accessed
April 14, 2025).

United Nations Office for Disaster Risk Reduction (2023). Southern Africa Cyclone
Freddy 2023: Forensic Analysis. Available online at: https://www.undrr.org/resource/
southern-africa-cyclone-2023-forensic-analysis (Accessed March 11, 2025).

United Nations Statistics Division (2023). Indicators List - Sustainable Development
Goals. New York, NY: United Nations.

Verschuur, J., Fernández-Pérez, A., Mühlhofer, E., Nirandjan, S., Borgomeo, E.,
Becher, O., et al. (2024). Quantifying climate risks to infrastructure systems: a
comparative review of developments across infrastructure sectors. PLoS Climate
3:e0000331. doi: 10.1371/journal.pclm.0000331

World Meteorological Organization (2021). Guidelines on Multi-Hazard
Impact-Based Forecasting and Warning Services—Part 2: Putting Multi-Hazard
IBFWS into Practice. Number WMO-No. 1150. Geneva: World Meteorological
Organization.

World Meteorological Organization (2023). Early Warnings for All: The UN Global
Early Warning Initiative for the Implementation of Climate Adaptation—Executive
Action Plan 2023–2027. Geneva: World Meteorological Organization.

WorldPop Project (2023). Worldpop. Available online at: https://www.worldpop.
org/ (Accessed June 15, 2023).

Yarveysi, F., Jafarzadegan, K., Tripathy, S. S., Moftakhari, H., and Moradkhani,
H. (2025). A data-driven framework for an efficient block-level coastal flood
risk assessment. Int. J. Disast. Risk Reduct. 122:105478. doi: 10.1016/j.ijdrr.2025.
105478

Ye, M., Ward, P. J., Bloemendaal, N., Nirandjan, S., and Koks, E. E. (2024). Risk of
tropical cyclones and floods to power grids in southeast and east asia. Int. J. Disast. Risk
Sci. 15, 494–507. doi: 10.1007/s13753-024-00573-7

Frontiers in Climate 15 frontiersin.org

https://doi.org/10.3389/fclim.2025.1666586
https://reliefweb.int/report/mozambique/tropical-cyclone-freddy-mozambique-update-30-march-2023
https://reliefweb.int/report/mozambique/tropical-cyclone-freddy-mozambique-update-30-march-2023
https://doi.org/10.1002/met.2035
https://doi.org/10.3389/fitd.2024.1328926
https://doi.org/10.1038/s41598-025-89469-0
https://doi.org/10.1016/j.ijdrr.2025.105782
https://doi.org/10.1038/s41598-024-55775-2
https://doi.org/10.1111/risa.13272
https://www.undrr.org/implementing-sendai-framework/sendai-framework-disaster-risk-reduction-2015--2030
https://www.undrr.org/implementing-sendai-framework/sendai-framework-disaster-risk-reduction-2015--2030
https://www.undrr.org/resource/southern-africa-cyclone-2023-forensic-analysis
https://www.undrr.org/resource/southern-africa-cyclone-2023-forensic-analysis
https://doi.org/10.1371/journal.pclm.0000331
https://www.worldpop.org/
https://www.worldpop.org/
https://doi.org/10.1016/j.ijdrr.2025.105478
https://doi.org/10.1007/s13753-024-00573-7
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org

	From hazard to disruption: forecasting direct and indirect tropical cyclone impacts on infrastructure in Mozambique
	1 Introduction
	2 Materials and methods
	2.1 Impact forecast pipeline: input
	2.1.1 Hazard
	2.1.2 Exposure
	2.1.3 Vulnerability
	2.1.4 Impact

	2.2 Impact forecast pipeline: indirect impact
	2.2.1 Indirect I: infrastructure dysfunctionality
	2.2.2 Indirect II: population affected by service disruption

	2.3 Impact forecast pipeline: uncertainty across the value chain

	3 Results
	3.1 Impact forecast: direct impact visualization
	3.2 Impact forecast: indirect impacts
	3.3 Uncertainty across the value chain

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


