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Introduction: To support China’s “dual carbon” goals (carbon emission peak by
2030 and carbon neutrality by 2060), this study systematically investigates the
spatio-temporal evolution and decarbonization pathways of CO, emissions across
30 Chinese provinces. As regional disparities significantly influence national climate
strategies, a detailed provincial-level analysis is essential for effective policy-making.
Methods: We integrate spatial autocorrelation analysis, spatio-temporal
geographically weighted regression (GTWR/SGTWR), and agglomerative
hierarchical clustering with dynamic time warping (DTW-AHC) to capture both
spatial and temporal heterogeneities in emission patterns.

Results: The findings reveal that provincial CO, emissions exhibit weakening
spatial aggregation after 2015, with northern provinces maintaining higher
carbon intensity due to heavy reliance on fossil fuels. Energy consumption and
transportation collectively account for over 70% of emissions growth after 2008,
while emissions from food and water sectors decline after 2016, largely driven
by technological advances. Four distinct emission clusters are identified: Rapid
Growth, Resource-Dependent, Typical Growth, and Low-Carbon Exemplar.
Discussion: Tailored decarbonization strategies are proposed for each cluster:
integrating renewable energy corridors with urban green infrastructure for
Rapid Growth provinces; prioritizing ecological restoration and carbon capture,
utilization, and storage (CCUS) in Resource-Dependent regions; accelerating
green industrial transitions in Typical Growth provinces; and reinforcing existing
low-carbon policies for Exemplar provinces. This research provides a spatially
explicit framework for regionally differentiated carbon governance, supporting
the achievement of China’s national climate targets.

KEYWORDS

carbon emission clustering, spatial autocorrelation, dynamic time warping, regional
decarbonization, industrial structure

1 Introduction

Anthropogenic carbon dioxide (CO,) emissions from fossil fuel combustion have been
identified as the dominant driver of atmospheric CO, concentrations since the Industrial revolution
(Zhang and Zhao, 2024). As the world’s largest carbon emitter, China plays a pivotal role in global
efforts to combat climate change. Given that the industrial sector constitutes a major portion of
China’s carbon emissions, rigorous analysis of provincial-level industrial emissions becomes
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imperative (Wu et al., 2023). In 2020, the Chinese government officially
proposed the “double carbon” strategic goals - achieving carbon peaking
by 2030 and carbon neutrality by 2060. This commitment entails
profound transformations of the energy system and industrial structure
optimization (Liang et al., 2024), demonstrating China’s international
climate responsibility while offering a distinctive sustainable
development model.

To advance carbon reduction objectives, scholars predominantly
employ spatial econometric methods for qualitative and quantitative
investigations (Chen et al., 2018; Meng et al., 2021). These approaches,
combined with advanced modeling techniques, reveal spatial
agglomeration effects and distribution heterogeneity (Song et al., 2018;
Lim et al., 2019) while enabling emissions trajectory projections (Wei
and Liu, 2022). For instance, the ESDA-GWR (Exploratory Spatial Data
Analysis-Geographically Weighted Regression) methodology was
employed to systematically examine the spatial distribution patterns of
China’s carbon emissions and the spatial heterogeneity of multiple
driving factors at the prefecture-level city scale in 2012 (Qin et al.,
2019), revealed a pronounced spatial spillover effect predominantly
concentrated in eastern regions, where demographic, economic, and
industrial factors exerted significantly stronger influences on carbon
emissions compared to central and western regions. Similarly, Moran’s
I and hotspot analyses confirmed positive spatial autocorrelation in
shrinking Chinese cities during 2012-2019, with Northeast China
emerging as a significant emission hotspot due to concentrated urban
contraction (Yang et al.,, 2022). Complementary research utilizing
GWR models established urbanization as the dominant factor in
China’s annual carbon dioxide emission growth, which indicated that
both energy intensity and industrial structure positively influenced
carbon emissions, providing valuable insights for emission reduction
strategies (Wang et al., 2018). Despite these advances, current research
has not systematically elucidated spatial differentiation across emission
types or their city-specific response mechanisms.

On the basis of systematically combing the spatial heterogeneity of
carbon emissions and its driving factors, it is necessary to further pay
attention to the multi-dimensional influence mechanism of human
activity pattern changes on carbon emissions in the process of
urbanization. Previous research consistently demonstrated the significant
impact of human activity patterns on carbon emission growth through
complex environmental changes (Liu et al,, 2015; Sheng and Guo, 2016).
By constructing the urbanization index system including population,
public services, infrastructure and environment, the coupling
coordination degree of China ‘s low-carbon development and
urbanization system was measured, which showed that the coordination
degree of the eastern and western regions was at the highest and lowest
levels, respectively, (Song et al., 2018). Spatial autocorrelation analyses of
30 provinces (2010-2019) using a multidimensional urbanization
evaluation system further identified a ladder-like spatial gradient in
coordination, decreasing from southeastern coastal areas to central and
western regions, with significant positive spatial correlation (Jiang et al.,
2022). Nevertheless, systematic analyses of emission differentiation
mechanisms and regional response variations under diverse human
activities remain lacking.

This study extends existing frameworks by incorporating
multidimensional human activity impacts on emission patterns.
We investigate dynamic provincial carbon emission characteristics
through integrated dynamic time series analysis and hierarchical
clustering. By examining contributions from food, water, housing,
transportation, and energy sectors to total emissions, we explore
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spatial differentiation mechanisms across emission types. This study
selects five key sectors of food, water, housing, transportation and
energy as the analytical dimensions of carbon emissions, because they
cover the core areas of basic human life and production activities, and
each has obvious carbon emission characteristics and driving
mechanisms. In recent years, the proportion of these sectors in total
carbon emissions and their changing trends have become the focus of
regional low-carbon transformation policies (Zhang et al., 2023; Li
etal,, 2024; Wang and Chen, 2025). This approach provides precise
scientific evidence for formulating differentiated mitigation policies.
Industrial carbon emissions warrant particular attention given their
profound ecological and public health implications. Through temporal
evolution pattern analysis, we reveal provincial emission trajectories
and regional disparities. Specifically, t dynamic time warping (DTW)
captures temporal dependencies and fluctuation characteristics across
emission categories (Wen et al., 2024), enabling comprehensive
trajectory measurement to inform policy formulation. Hierarchical
clustering techniques (Sabbir, 1998) group provinces with similar
emission patterns, facilitating identification of distinct emission
clusters through regional comparisons. This research enriches China’s
carbon emission theoretical framework while providing policymakers
with actionable references for climate mitigation strategies.
Furthermore, it establishes methodological foundations for future
exploration of carbon emission-socioeconomic relationships.

2 Method
2.1 Data source

This study is conducted with comprehensive and reliable data on
carbon emissions at the provincial level, obtained from reputable sources
such as the National Bureau of Statistics of China and relevant
governmental departments. Our data is collected by Python and Java web
parsing tools with pre-process of filtering and cleaning. The industrial
energy and carbon emission data comes from China Carbon Emission
Accounts and Datasets for Emerging Economies (CEADs, 2023) and the
IPCC (Intergovernmental Panel on Climate Change) National
Greenhouse Gas Inventory Guidelines (2001-2020) (IPCC, 2021) (Tibet,
Taiwan, Hong Kong, and Macao are not available). Data on energy
classification and consumption of each province are obtained from China
Energy Statistical Yearbook 2001-2020 (Companies and Markets, 2008).
Population and GDP data comes from China Statistical Yearbook
(Research and Markets, 2008). Considering the data availability and
completeness, our study focuses on the data during the target years
between 2001 to 2019 including 30 provinces and municipalities from
mainland China. Due to large portion of missing data, Tibet, Hong Kong,
and Macao are excluded from investigation areas.

2.2 Calculation of spatial characteristics of
interprovincial carbon dioxide emissions

The spatial characteristics of interprovincial carbon dioxide (CO,)
emissions are typically calculated through spatial autocorrelation
analysis (identifying spatial aggregation patterns of emissions),
hotspot analysis (locating high/low value clusters), and spatial
regression models (SLM (Spatial Lag Model), SEM (Spatial Error
Model), geographically weighted regression) to explore spatial effects.
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These methods are combined with spatial weight matrices (adjacency,
distance, or economic linkages) to quantify interprovincial
associations, supported by GIS tools for visualization and modeling.
Compared to GWR (spatial-only) and TWR (temporal-only), GTWR
integrates spatio-temporal non-stationarity by weighting observations
based on spatial proximity and temporal proximity (Yao et al., 2021;
Wu et al,, 2021). This is critical for China’s provincial emissions, where
Moran’s I shifted from positive (2010-2014) to negative (2015-2019),
indicating weakening spatial dependence and strengthening temporal
heterogeneity (Table 1). GTWR’s dual kernel function captures such
dynamics, enabling unbiased estimation of drivers like energy
intensity in Inner Mongolia (spatial hotspot) post-2015.

2.3 Carbon emission intensity analysis and
prediction

The algorithm of the model mainly involves the analysis of the least
squares method of statistics. A linear regression analysis was performed
on year-carbon emissions and year-food and water-related emissions. A
comparative analysis of the two. And then to predict the country ‘s carbon
emissions. And for the convenience of the next calculation, the carbon
emissions of the four categories of food, water, housing and transportation
in the country are also predicted. At the same time, in order to analyze the
impact of food, water, housing, and transportation on the total carbon
emissions, a multiple regression analysis was also performed with the total
emissions. The above analysis and modeling are carried out for the data
of the whole country and 30 queried provinces.

The data processing in the above regression analysis mainly uses
python language and java language. For data in standard message
format, it mainly uses alibaba’s fastjson toolkit to split and reorganize
messages, extract and calculate data, and finally output. For the most
primitive data, scrapy crawler technology is needed to obtain keyword
pages. For the analysis of linear regression by putting the processed
data into the model, the third-party scientific computing software
package pandas and statsmodels. Api of python are mainly used to
train and calculate the data, so as to obtain the result formula. For the
high-precision calculation in the data, python ‘s accuracy package is
used to ensure the calculation accuracy. It is also necessary to use the
third-party software tools ArcGis and python’s graphics toolkit for
visual analysis and display of model results.

2.4 Data preparation

Carbon Emission and GDP data are characterized into the first,
second, and tertiary industry with 44 sub-level industries, according

TABLE 1 Results of multicollinearity analysis.

Coordinate Tolerance VIF
x1 0.237 4216
x2 0.226 4.426
x3 0.658 1.521
x4 0.488 2.049

VIF values <5 for all drivers (Food: 4.216; Water: 4.426; etc.) confirm no severe
multicollinearity (Hair et al., 2010).
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to the provisions on the division of three industries posted by the
National Bureau of Statistics in 2012 (Xu, 2019). Unclassified carbon
emission sources such as the carbon emissions in daily life from
urban, rural area and other sources are also removed from the
analysis process.

Population growth is broadly used as one of the essential factors
to evaluate regional carbon emission, and population weighted factors
are commonly used in economitric-based models, such as GDP per
capita and carbon emission per capita. However, our study starts from
the absolute sizes of industrial carbon emission and GDP over
observation time horizon. In order to eliminate the effect of population
growth, a new factor, Average Carbon Cost of Production (ACCP), is
proposed for a better understanding of the evolution of carbon
emission paths with provincial level industrial data. ACCP is defined
as yearly regional GDP divided by corresponding amount of carbon
emission (Unit: Tons of Carbon Dioxide Emitted per 10,000 CNY). It
is a simple but strong indicator for the relationship between
production and carbon emission, as ACCP allows direct comparison
on the longitudinal observations from different observation time
by mathematically.

2.5 Clustering methodology

Clustering is an unsupervised learning technique used to explore and
identify the common patterns for study population. There have been
plenty of studies on cross-sectional carbon emission data with clustering.
Lietal (2022) used a combination of static and dynamic indices as the
inputs for clustering. Static includes population, Economic level, industrial
structure, and dynamic indices includes the growth in population, GDP,
city expansion, and carbon emission. He et al. (2022)’s study used selected
factors of GDP per capita (GPC), GDP intensity of power (GIP), TPG
energy efficiency (TEE), and share of non-fossil power (SNP) from
Logistic Mean Divided Index (LMDI) with a K-means clustering.
Similarly, Jiang et al. (2017) combines a multi-layer LMDI model with
hierarchical clustering. One major deficiency of the cross-sectional
analysis is that data is observed from each single time point, which cannot
reflect the time lagging and speed of carbon emission paths. For example,
local carbon neutral policy might be promoted to other regions and
leading to similar carbon emission paths but with temporal differences.
To capture the overall path similarity, Dynamic Time Warping (DTW) is
introduced as the similarity measure for comparing two times series.
Considering the fact that it is hard to define an interpretable “central
series” for multivariate time series data under DTW distance, centroid-
based clustering algorithms, such as widely used K-Means, are no long
applicable here.

Dynamic Time Warping (DTW) is employed as an algorithmic
approach aimed at quantifying the similarity between two temporal
sequences that exhibit variability in terms of pace (Salvador and Chan,
2007). Applications of DTW have been found in the analysis of video
sequences, audio streams, and graphic data, which underlines its
versatility in handling diverse forms of data while maintaining high
levels of accuracy in identifying temporal correlations. The DTW is
formulated as following: Given two times series X and Y of length n
and m, where (Equations 1, 2),

X =%x1,%0,- 02X Y = Y1, ¥20e s Vi (1)

frontiersin.org


https://doi.org/10.3389/fclim.2025.1649791
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org

Chen et al.

a warp path W is a list of index pairs with length K given by.

Wz[wl,wz,...,wK]with Wi :(ik,jk),ik e{l,...,n},jk e{l,...,m} (2)

SEWE—Wg_1 € {(1,0),(0,1),(1,1)} SforV e[l : K]

The optimal warp path is the warp path W has the minimum-
distance, where the distance of a warp path is (Equation 3)

k=K
Dist(W)= z d(xwkl Y, ) (3)
-1

=

And d is a distance function d: Rdim(x) x Rdim(y) — R1. For
this study, we use Euclidean distance as the distance function for
calculation. Then distance of the optimal DTW path is used as the
dissimilarity measure between X and Y. Instead of vanilla DTW,
we use an accurate approximation to DTW with higher computation
efficiency provided by Salvador and Chan (2007). Notice that all the
above calculation is based on one-dimensional time series, but it
can be easily expanded to multivariate time series by calculating the
Euclidean distance for each xt and yt € Rz, wherez € Z > 1.

Agglomerative Hierarchical Clustering (AHC) is a bottom-up
algorithm aiming to partition data points into distinct clusters based
on their similarities or dissimilarities. The AHC algorithm first
assumes individual observations as different clusters with only one
member, then iteratively merges two clusters until there is only one
cluster left. Linkage functions as measurements of similarities between
clusters determines the clusters to be merged. We used the unweighted
average linkage function as following (Qin et al., 2019):

1
L(A,B) :mz xeaZyepdDTW (X,Y) (4)

Where A, B are two different cluster sets, N is the cardinality of
given set. This linkage function minimizes the average distance of each
observation of the two sets (Equation 4). From above definition, it is
easy to see that AHC only depends on pairwise distance calculation
between observations and avoids the problem of missing centroids.
Moreover, AHC forms a tree structure usually interpreted with
dendrograms reflecting the cluster merging process, which enables a
systemic analysis for different regions.

2.6 Data processing

DTW-AHC is implemented on two datasets, with each of the
dataset as a three-dimensional multivariate time series. First dataset
is from a combination of Total Carbon Emission (TCE, in tons),
Gross Domestic Production (GDP, in 10,000 CNY), and Average
Carbon Cost of Production (ACCP). Another dataset is the
proportions of carbon emission from the production of primary,
secondary, and tertiary industries to the total amount of carbon
emission for each province region between 2001 and 2019, giving 30
three-dimensional time series of length 19 years. Noticing that
Euclidean distance are used in the DTW for the distance measure
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between observations, it is necessary to apply a transformation on
each dimension, respectively, to the same scale in order to carry the
same “dissimilarity” level (Jiang et al., 2017). A cross-sectional
standardization is used to equally scale each dimension, defined as
following (Equation 5):

X — X
— t t
Zti :71 (5)
oX;
and in this case:
X n X n X n
. D VRTINS VRSN y
Z 7 = <thi>22ti’z3ti> = 5, i, s (6)

o Xy o Xosi o X34

Where z,,; is the transformed variable of first dimension for
province i in year t, X, is the first raw variable for province i in year t,
Gy, is the standard deviation of first raw variable for all provinces in
year t, and n=30 for 30 provinces in the study population
(Equation 6). Then DTW is applied for each dataset to calculate the
pairwise distance between series. Obtained the distance matrix D of
size (30, 30), it is scaled by its maximum to interval [0.1]. These two
distance matrices along with Average Linkage function are feed into
the AHC algorithm for training to obtain clusters.

3 Result
3.1 Covariance analysis of CO, emissions

3.1.1 Spatial autocorrelation analysis

In order to better assess the driving mechanisms of CO,
concentration changes as a whole, a spatio-temporal weighted
regression model (SGTWR) was measured in this paper for five types
of drivers, including food, water, domestic, transportation, and energy.
Taking carbon emissions as an example, it can be seen from Figure 1
that carbon emissions in each domain show unevenly distributed
spatial and temporal differences, and carbon emissions have spatial
and temporal non-smoothness. Based on the data of carbon dioxide
emissions in total, food, water, domestic, transportation, and energy
in China from 1996 to 2019, a spatio-temporal weighted regression
model (SGTWR) was used to estimate the influencing factors of
carbon emissions in different regions in different periods. The results
of multicollinearity show that the reporting model is stable and
reliable (Table 1).

For higher data reference value, we calculated the Moran’s I index
values of total carbon emissions for each province in China from 2010
to 2019 using ArcGIS software, and the results are shown in Table 2.
The data indicate the existence of spatial correlations and spatial
aggregation patterns, indicating that the spatial aggregation of carbon
emissions in each province and city has been decreasing and the trend
of discrete distribution is obvious. The weakening of spatial
agglomeration of carbon emissions after 2015 may be related to the
regional differentiated emission reduction policies, industrial
structure adjustment and renewable energy promotion proposed in
the national “13th Five-Year Plan”. In particular, the eastern coastal
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FIGURE 1

Regional differences in carbon emissions. Regional differences in carbon emissions in 2010 (A); Regional differences in carbon emissions in 2019 (B).

TABLE 2 Moran’s | index of provincial CO, emissions from 2010 to
2019 in China.

Coordinate Moran's Z score p value
l index
2010 0.074565 1.310702 0.189958
2011 0.05805 1.112797 0.265796
2012 0.043836 0.949007 0.342617
2013 0.024718 0.718167 0.472655
2014 0.020622 0.667049 0.504741
2015 —0.048076 —0.15973 0.873094
2016 0.009056 0.533264 0.593851
2017 —0.069858 —0.438938 0.660707
2018 —0.005855 0.356827 0.721221
2019 —0.010388 0.302397 0.762349

areas have achieved a slowdown in emission growth through industrial
upgrading and energy structure optimization, while the central and
western regions still rely on traditional energy, resulting in enhanced
spatial heterogeneity.

3.1.2 Analysis of carbon emission dynamics in
multiple sectors

The statistical results showed that the individual coefficients of
food, water, living, transportation, and energy drivers have large
variance. It indicates that when studying regional carbon emission
scale and carbon emission intensity, each carbon emission driver has
a large variation, and it is necessary to discuss the spatial and temporal
heterogeneity in carbon emission scale and carbon emission intensity
from each field of in-depth analysis, and SGTWR has obvious
advantages by considering both temporal and spatial differences.

As can be seen from Figure 2, the total carbon emissions in China
from 1996 to 2019 show a continuous increase. It increased from
2935.92 Mt. in 1996 to 10864.41 Mt. in 2019, with an average annual
growth rate of 5.85%. The overall phase can be divided into 4 stages
according to the characteristics of carbon emission dynamic change.
The first stage is 1996-2000, which is characterized by small carbon
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emissions and slow growth rate, with carbon emissions increasing
from 2935.92 Mt. in 1996 to 3053.31 Mt. in 2000, with an average
annual growth rate of 0.98%. The second stage is from 2000 to 2007,
the growth rate of carbon emission is obviously accelerated, from
3053.31 Mt. in 2000 to 6822.27 Mt. in 2007, with an average annual
growth rate of 12.17%. The third stage is 2007-2013, when the growth
of carbon emissions slowed down: from 6822.26 Mt. in 2007 to
9778.95 Mt. in 2013, with an average annual growth rate of 6.18%,
with China’s overall carbon emissions reaching the highest in 2013.
Phase 4 is from 2013 to 2019, where carbon emissions show a slight
decreasing trend: from 9778.95 Mt. in 2013 to 10864.41 t in 2019, with
an average annual reduction rate of 1.77%. Analyzing several
categories of drivers in terms of food, water and living, we can see that
carbon emissions from energy consumption are in line with the trend
of overall carbon emissions. This indicated the dominant role of
carbon emissions from energy activities. Carbon emissions from daily
life and transportation also show a gradual increase from 1996 to
2019, and their growth trend is not very different from the overall
carbon emissions. Such a change is probably due to the increase in
population and the significant improvement in living conditions.
Interestingly, around 2012, CO, emissions from food and water start
to decline, to 10 Mt. and 10 Mt., respectively, by 2019. This may be due
to the change in population size and the development of environmental
awareness. The decline in food and water sector emissions is mainly
due to the promotion and application of green technologies such as
water-saving irrigation technology, precision fertilization, sewage
treatment and reuse. Especially in major agricultural provinces such
as Henan and Shandong, these technologies combined with policy
subsidies have significantly reduced carbon emissions per unit
of output.

3.1.3 Analysis of shift of carbon emission focus

In order to further analyze the relationship between each driver
and the spatial distribution of CO, concentration, the carbon dioxide
emission rates from 1996 to 2019 were plotted for different types of
CO, emissions in China, such as total, food, water, domestic,
transportation, and energy. In terms of total carbon emissions from
1996-2019 (Figure 3), it is clear that GDP has the most significant
impact on the total. We can see that population is also a factor with a
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CO, emissions from total, food, water, live, traffic, energy and other in China from 1996 to 2019.
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large degree of influence. Compared to population and GDP, the five
drivers we focus on, such as water, food, and transportation, have a
smaller impact on the total amount of carbon emissions during 1996—
2019. In contrast, the carbon emissions from live and water have a
relatively large proportion in terms of emissions. This trend is mainly
due to the population growth and economic development of the
society, which brought about a significant increase in the standard of
living, resulting in more the carbon emissions from live. At the same
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time, we cannot deny that the carbon emissions from water are mainly
due to the ecological changes of rivers in mainland China (Raymond
etal., 2013). Water is the more significant biogeographic link between
continents, oceans and atmosphere, therefore, when analyzing water
as a driver, we need to integrate the net ecosystem production of
Chinese rivers and the impact of CO, emissions on organic carbon
and carbon emissions (Song and Wang, 2021). For both food, traffic,
the changes in the relative total amount of carbon emissions are not
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FIGURE 3
The average distribution of CO, emissions from total, food, water, live, traffic, energy and other for all regions in China from 2009 to 2019

significant. Combining the analysis results in Figure 3, we believe that
Different types of carbon emission from total, food, water, live, traffic,
energy and other in China from 2009 to 2019 all have an increasing
trend, but the magnitude of the increase and the change This is mainly
due to the inconsistent trends in energy consumption, industrial
structure, population and GDP.

3.2 Carbon emission intensity analysis and
prediction

3.2.1 Analysis of spatial heterogeneity of carbon
emission intensity

The contributions of live, water, traffic, energy, and food to carbon
emission intensity are different, and the spatial spillover effects of
different drivers vary greatly. Taking carbon emission intensity as an
example, it can be seen from Figure 3 that carbon emission intensity
shows an uneven distribution of spatial and temporal differences, and
carbon emission has spatial and temporal non-stationarity (Figure 4).

Based on the provincial regional panel data from 1996 to 2019, the
GTWR is applied to estimate the parameters of carbon emission
drivers for each region from time to time, and the results of the spatio-
temporal geographically weighted regression model with the natural
log In(CS) of carbon emission intensity as the explanatory variable for
the parameters of carbon emission scale drivers are described in
Table 3. The optimal bandwidth of the GTWR model is 2.88, which is
based on the Gaussian function of the spatio-temporal weighting
function. The large variation in the coefficients of live, water, traffic,
energy, and food indicates that there are large differences in the drivers
of carbon emissions in each province when studying regional carbon
emissions intensity, and the spatial and temporal heterogeneity in
regional carbon emissions intensity needs to be considered locally.
Resource dependent clusters (such as Shanxi and Inner Mongolia) face
challenges such as high coal dependence, single industrial structure,
and high ecological restoration pressure, and need to focus on
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promoting the application of CCUS technology and ecological
compensation mechanisms. Rapid growth clusters need to prevent
difficulties in decoupling economic growth from emissions, and it is
recommended to strengthen the construction of green infrastructure.

Through the global Moran ‘s I test, China ‘s inter-provincial CO,
emissions from 2009 to 2019 showed a significant positive spatial
autocorrelation (I > 0, P 2.58), while the western region was the cold
spot area. From 2009 to 2019, the spatial distribution of per capita CO,
emissions shows a significant increase in emission intensity in the
eastern coastal provinces (Figures 5A-C), especially in energy-
intensive industrial concentration areas, due to the adjustment of
industrial structure in the central and western regions, the growth rate
of emissions in some provinces has slowed down. From the perspective
of sectors, the spatial expansion of transportation and residential
carbon emissions is the most significant (Figures 5D-F), which is
closely related to the urbanization process and the growth of private
car ownership.

3.2.2 Regression curves and forecast for CO,
emissions

The regression curves for CO, emissions in China reveal strong
positive correlations between total emissions and GDP and population
growth, indicating economic expansion and urbanization as dominant
drivers. Energy-related emissions exhibited the highest elasticity to
GDBP, driven by coal-dependent industrialization, particularly post-
2008. Further analysis shows that coal-fired power remains the main
source of emissions from the energy sector, especially in the northern
provinces. Road freight and private vehicle growth are the main
drivers of traffic emissions. It is suggested that future research should
subdivide energy types and transportation modes to more accurately
identify emission reduction priorities. Traffic emissions showed the
steepest growth trajectory, aligning with rising private vehicle
ownership and freight demand. Water and food-related emissions
remained stable or declined post-2016, reflecting technological
improvements, while energy and traffic sectors dominated structural
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Spatial distribution of changes in CO, emissions per capita from total, food, water, live, traffic, energy and other in China in 2009 (A,D,G,J), 2014
(B,E.H,K), and 2019 (C,FI,L).

TABLE 3 The natural log In(CS) of the carbon emission scale as the explanatory variable of GTWR parameter estimation descriptive statistics.

Coordinate Y4 quartile 3/a quartile Quartile
distance
X1 —0.55065 0.008734 0.020941 0.03758 0371038 0.028847
X2 —0.00706 0.005129 0.006545 0.009372 0.050323 0.004243
X3 —2039.69 —80.921 —93.936 —53.2358 877.549 627.6856
X4 —273.349 253.275 421.5895 1177.19 1953.71 923.915
constant ~571.953 ~135.49 —5.2088 1.641543 1456.15 137.131
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inertia. These results underscore the need for region-specific
decarbonization policies, prioritizing energy transition (renewables),
transportation electrification, and green urban planning to decouple
emissions from economic growth (Figure 6).

We make a forecast of each carbon emission data in 2050
according to the analysis results of the data and the future development
trend in accordance with the calculation law, and the specific forecast
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trend is shown in Figure 7. Using multiple linear regression analysis,
the national carbon emissions are all on the rise, with housing and
transportation accounting for a significant proportion, and energy
conservation and emission reduction becoming a national effort
(Figure 6).

Cities played a vital role in achieving China’s carbon peak and
carbon neutrality goals. However, due to various factors, there are
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Carbon emission, GDP, ACCP for rapid growth cluster.

significant differences in carbon emissions in different cities.
Therefore, carbon peak actions at the city level need to be distinguished
according to different types of cities. In this study, the classification
method is used to classify Chinese cities, which provides a
classification model for the carbon emission path nationwide.

3.3 TCE-GDP-ACCP clustering

Based on the results of hierarchical clustering on TCE-GDP-
ACCEP, four clusters can be visualized with a dendrogram showing the
hierarchical structure for each cluster. From the analysis of their
carbon emission, GDP, and ACCP paths, we classify the four clusters
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as “Rapid Growth Cluster;” “Low-Carbon Exemplar Region Cluster,”
“Typical Growth Cluster, and “Resource Dependent Cluster”
respectively with their children regions shown in Table 4.

In order to illustrate the dynamic path evaluation of each cluster,
we divide the data to two sub-periods with the first period from 2000
to 2011 and the second period from 2012 to 2019. This is from
empirical observation that 2011 is the turning elbow for the carbon
footprint paths of all four clusters. The average percentage changes of
Total Carbon Emissions, industrial GDP, and ACCP for two periods
are reported in Table 5 for comparison.

3.3.1 Rapid growth cluster

“Rapid Growth Cluster” includes provinces characterized by high
economic growth and large industrial carbon emission amount in
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China, including Jiangsu, Guangdong, and Shandong, which plays an
important role in the economic development and the process of
industrialization in China. From Figure 8, GDP of this cluster showed
a powerful trend of growth and remains the highest among the four
clusters. Based on the data averaging from 2001 to 2019, Rapid Growth
Cluster contributed 55.58% of the total GDP. In the first period from
2001 to 2011, the rapid growth cluster’s GDP grows from 980 billion
0 4,920 billion in 11 years, with second highest average annual growth
rate of 17.51%. In the period of 2012 to 2019, the GDP growth trend
of this cluster slows down but also remains the second highest average
annual growth rate of 8.56%. This reflects the strong economic strength
and sustained development momentum of regions in this cluster.

At the same time, this rapid economic growth is accompanied by
a corresponding increase in energy consumption and carbon
emissions, leading to a high level of total carbon emissions. The total
industrial carbon emission amount of “Rapid Growth Cluster” also
maintains at the highest with an average proportion of 43.34% over
the 19 years. In 2001, the total carbon emission amount of the rapid
growth cluster is 200.61 million tons and increases to 736.23 million
tons in 2019, with annualized average growth rate of 12.45 and 1.88%
for the first and second sub-periods.

The contradiction between economic growth and carbon emission
reduction brings up the challenging problem for many developing
countries during their rapid development phase, where economic growth
is achieved by the cost of rising energy consumption and environmental
pressures. The process of industrialization and urbanization caused the
significantly rising demand for energy with consequential increase in
carbon emissions. At the same time, traditional energy sources are
difficult to be fully replaced by cleaner energy sources in the short term,

TABLE 4 TCE-GDP-ACCP cluster classification.

Cluster name Children

Rapid growth cluster Jiangsu, Guangdong, Shandong

Low-carbon exemplar cluster Beijing, Shanghai, Fujian, Sichuan,

Hunan, Hubei

Typical growth cluster Anhui, Heilongjiang, Guangxi, Jiangxi,
Chonggqing, Tianjin, Shaanxi, Jilin,
Yunnan, Liaoning, Henan, Zhejiang,
Hebei, Xinjiang, Guizhou, Qinghai,

Gansu, Hainan

Resource dependent cluster Shanxi, Inner Mongolia, Ningxia

TABLE 5 Cluster statistics.

Variables Cluster  Cluster Cluster Cluster
1 2 3 4
Average A TCE 0.1245 0.1024 0.1129 0.1356
Over A GDP 0.1751 0.1632 0.1706 0.2273
2001-
A —0.0420 —0.0527 —0.0479 —0.0758
2011
ACCP
Average A TCE 0.0188 —0.0007 0.0173 0.0354
Over A GDP 0.0826 0.1031 0.0769 0.0407
2012-
A —0.0525 —0.0946 —0.0460 —0.0092
2019
ACCP
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thus inevitably bringing a huge challenge in the process of carbon
neutral. With urbanization and increasing productivity demand in
developing countries, it is essential to answer the important question
behind the “Rapid Growth Cluster”: how to achieve economic growth
while realizing the control and reduction of carbon emissions (Figure 7).

3.3.2 Low-carbon exemplar cluster

The Low-Carbon Exemplar cluster represents the regions with
significant progresses in carbon-natural process as well as maintaining
rapid GDP growth. The GDP of this cluster shows a steady growth
power, increases from 410 billion in 2001 to 4,135 billion in 2019, with
average growth rates of 16.32 and 10.31% for the two sub-periods,
respectively. During the sub-period from 2012 to 2019, while the
average growth rate of GDP slows down for Chinese economy;, this
cluster achieves the highest average annual growth rate among four
clusters, evidencing the great successes with respect to economic
development in these regions. As for carbon emission, it is remarkable
that, starting from 2011, the industrial carbon emissions amount
started to decline and maintains at the level of approximately 220
million tons per year, indicating an important step toward greener and
more sustainable economic practices. The average annual growth rate
of industrial carbon emission changes from 10.23% in the first
sub-period to —0.06% in the second sub-period, which is also the only
cluster with declined carbon emission trend.

Furthermore, an interesting aspect exhibited by this cluster is the
significant reduction in the Average Carbon Cost of Production
(ACCP) since 2004. The ACCP ratio drops from 2.11 in 2001 to
0.55 in 2019, with an average annual decreasing rate of 7.2%. This
reduction in ACCP demonstrates the successful alignment of
economic activities with environmental goals, further proving the
effectiveness of carbon reduction strategies within Low-Carbon
Exemplar Cluster. The confluence of these trends, reduced carbon
emissions, lower ACCP values, and sustained GDP growth,
underscores the effectiveness of the carbon reduction policies
implemented by these regions. It not only contributes to the country’s
carbon reduction targets, but also sets a precedent for other regions in
their efforts to find a balance between the pursuit of economic
prosperity and environmental responsibility (Figure 8).

3.3.3 Resource dependent cluster

Resource Dependent Cluster is an important group in cluster
analysis, which has distinctive characteristics in carbon emission and
economic growth. Inner Mongolia, Shanxi, and Ningxia, as regions that
rely on resource-based industries, show similar trends in the following
aspects. The most noticeable difference between this cluster and the
others is the extremely high ACCP ratio. The ACCP of this cluster
remains the highest across the period from 2001 to 2019. In 2001, its
ACCP is approximately 11.22 (estimated with the imputed missing data
of Ningxia), which is 3 to 5 times higher than other clusters, and the ratio
is 4.45 in 2019, increasing to 7 times higher than Low-Carbon Exemplar
Cluster. This cluster also takes a huge proportion of the net carbon
emission amount in China, grows from 22.69% in 2001 to 28.99% in
2019, while its corresponding GDP only takes 6.73 and 7.44% of the total
GDP. Combining these features of Resource Dependent Cluster, it
determines the fact how to manage the carbon emission in these regions
would be a huge challenge for achieving the carbon neutral goal of China.

To address the issues of this cluster, we look into the industrial
structure of Inner Mongolia, Shanxi and Ningxia, which is
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Carbon emission, GDP, ACCP for low-carbon exemplar cluster.

dominated by industries that highly rely on natural resources such
as coal, oil and gas. Due to the nature of resource-based industries,
energy plays an important role in their economic activities, and
higher energy consumption is usually closely associated with
increase in carbon emissions. These energy-intensive industries
are accompanied by high carbon emissions during extraction,
processing and utilization. Furthermore, the industrial structure
of these regions is highly homogeneous leading to the difficulties
with industrial upgrading and transformation. In addition to the
resource dominated industrial structure, the energy structure in
these regions also has a huge impact on the carbon emission
pathways. The energy structure of Inner Mongolia, Shanxi and
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Ningxia favors fossil fuels, contributing to the higher carbon-
intensive component of their energy sources, thus further pushing
up the level of carbon emissions (Figure 9).

3.3.4 CE structure clustering

From the proportions of carbon emissions for three industries,
three clusters are obtained from the hierarchical cluster analysis. The
first cluster represents the general Chinese provinces and regions
containing 27 provincial regions. Beijing and Shanghai belong to the
second cluster, and Hainan forms the third clusters by itself. We named
the first cluster as Benchmark Cluster. It remains a relatively stable
industrial structure throughout the years with a slight but consistent
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increase in the tertiary industry’s proportion from 6.41% in 2001 to
8.07% in 2019, indicating a shift toward service-oriented economic
activities. There is also a tiny increase from the secondary industry
corresponding to the nation-wide industrialization development in the
past two decades, while the first industry industry’s weight drops from
7.77 to 4.03% over the study period. Benchmark Cluster gives a clear
illustration about the patterns of Chinese industrial structure with
respect to carbon emission and also can be viewed as a perfect standard
for comparing the structural shifts for the other two clusters. The
second cluster, named as Service- Booming Cluster, exhibits a clear
transition characterized by significant decline in the primary industry,
which is replaced by remarkable growth in the tertiary industry. The
third cluster shows a very unique pattern of shrinking proportions in
the tertiary industry as well as the first industry. We name it as
Strategic-Transition Cluster after a deep analysis of the driven forces
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behind its industrial structure change. Detailed investigation and
discussion on these innovative phenomenons observed in the following
sections (Figure 10).

4 Discussion

Based on provincial panel data from China (1996-2019), this
study systematically explores the spatiotemporal patterns, driving
mechanisms, and regional heterogeneity of carbon dioxide emissions
using spatiotemporal geographically weighted regression (GTWR/
SGTWR), spatial autocorrelation analysis, and clustering methods.
The analysis reveals significant spatial aggregation and periodic
with
pronounced regional differences in how driving factors influence

evolution characteristics in Chinas carbon emissions,
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Carbon emission, GDP, ACCP for resource dependent cluster.

emissions. By constructing the TCE-GDP-ACCP clustering model,
we classify provincial regions into four distinct development clusters,
providing a scientific foundation for differentiated emission
reduction policies.

4.1 Spatial and temporal dynamic
characteristics of carbon emissions

In this study, the dynamic characteristic of urban-scale building
CO, emissions in China was investigated through the calculation of
total, food, water, live, traffic, energy and other and the population.
Global Moran’s I analysis confirms significant positive spatial
autocorrelation (I > 0, p < 0.05), with eastern coastal provinces (e.g.,
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Shandong, Jiangsu) forming “high-high” clusters due to concentrated
energy-intensive industries and urban sprawl, while western regions
(e.g., Qinghai, Tibet) displayed “low-low” aggregation (Zhang et al.,
2025; Liu and Ly, 2024; Liu et al., 2024; Dong et al., 2024). Sectoral
disparities further highlight spatial heterogeneity: residential and
transportation emissions dominate urban hubs (e.g., Beijing-Tianjin-
Hebei, Yangtze River Delta), correlating strongly with population
density and private vehicle proliferation (9.3% annual growth) (Wang
etal,, 2023). Conversely, agricultural emissions cluster in the North
China Plain, linked to intensive farming practices, whereas energy-
dependent northern provinces (e.g., Shanxi) face elevated residential
emissions from coal-reliant heating systems. These patterns
emphasized the coupling between urbanization and carbon intensity,
underscoring the need for spatially differentiated policies to address
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sectoral and regional imbalances. Notably, in key Chinese metropolises
like Beijing, Shanghai, Guangzhou, and Shenzhen, building CO,
emission growth remained comparatively low (Jia et al., 2025; Li et al,,
20255 Zhou et al,, 2024). In contrast, surrounding regions showed
faster growth in building CO, emissions. Several factors explain the
lower emission growth rates observed in highly developed cities:
Firstly, economic growth in these cities has stabilized at high levels,
and urbanization is already advanced, naturally limiting the expansion
of energy demand. Secondly, these cities have likely implemented
comprehensive emission reduction policies and technical measures,
such as developing the renewable energy sector, which effectively curb
the rise in CO, emissions (Zhang et al., 2020). In our study, China’s
carbon emissions exhibited distinct spatiotemporal heterogeneity
during 1996-2019, characterized by four evolutionary phases (Section
3.1.2). The surge during 2000-2007 (12.17%/yr) aligns with rapid
industrialization and urbanization, while the post-2013 decline
(—=1.77%/yr) directly reflects the efficacy of policy interventions such
as the Air Pollution Prevention and Control Action Plan (2013) and
renewable energy investments. Spatial autocorrelation analysis
(Table 2) revealed weakening aggregation patterns after 2015 (Moran’s
I shifting from positive to negative), indicating increasing regional
divergence in emission trajectories. This decentralization underscores
the need for region-specific governance frameworks, as high-emission
clusters (e.g., Inner Mongolia, Shanxi) persisted due to fossil fuel
dependency, while coastal provinces (e.g., Jiangsu, Guangdong)
demonstrated economic growth with moderated emissions through
industrial upgrading.

4.2 Sectoral drivers and heterogeneous
responses

Energy and transport sectors dominated post-2008 emissions
highlighted structural challenges in decarbonizing heavy industry and
mobility infrastructure. Conversely, food/water emissions declined
post-2012, attributed to precision agriculture, wastewater treatment

TABLE 6 Variable definitions.

Variable ‘ Definition ‘ Unit ‘ Source
Total Carbon
TCE Mt CO, CEADs (2023)
Emissions
Avg. Carbon Cost tCO,/10* CNY Calculated
ACCP
of Production GDP (GDP/TCE)
China
Gross Domestic
GDP 10' CNY Statistical
Product
Yearbook
CO; from IPCC
Food Emissions | agricultural Mt CO, Guidelines
production (2001-2020)
China Energy
Energy CO, from fossil fuel
Mt CO, Statistical
Emissions combustion
Yearbook
Spatial
Calculated via
Moran’s I autocorrelation Dimensionless
ArcGis
index
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technologies, and rising environmental awareness (Liu et al., 2024).
This divergence exemplified a critical insight: While energy/transport
require systemic transitions (e.g., grid decarbonization, electrification),
food/water sectors offer a model for rapid mitigation via innovation
and behavioral change. Spatiotemporal regression (GTWR/SGTWR)
further quantified regional heterogeneity (Tables 6, 2): Northern
China showed higher carbon intensity linked to coal-reliant heating
and energy-intensive industries (e.g., ACCP = 4.45 tCO,/10* CNY
GDP in Shanxi). Eastern coastal cities (e.g., Shanghai) achieved
emission decoupling through service-sector dominance (>80%
tertiary industry) and clean energy adoption. Western regions
exhibited lower emissions but faced ecological constraints (e.g.,
riverine CO, fluxes), necessitating nature-based solutions (Han
etal., 2024).

4.3 Regional clustering and emission
reduction path

Provincial emission trajectories are profoundly shaped by energy
mix and industrial restructuring. Resource-dependent regions (e.g.,
Shanxi, Inner Mongolia), where coal dominates (>70% of energy
consumption), exhibit the highest carbon intensity (ACCP = 4.45
tCO,/10* CNY GDP in 2019) and sluggish post-policy mitigation
(ATCE = 3.54%, 2012-2019), reflecting structural inertia in fossil
fuel-reliant economies (Chen and Lu, 2023). In contrast, low-carbon
exemplars (e.g., Beijing, Shanghai) achieved emission decoupling
(ATCE = —0.06%) through service-sector expansion (>80% tertiary
industry) and clean energy adoption (>14% non-fossil share),
validating the efficacy of “service-led decarbonization” strategies
(Xiang et al., 2024; Wu and Zhang, 2024). However, typical growth
provinces (e.g., Anhui, Heilongjiang) struggle with industrial path
dependency, as secondary industries (>45% GDP share) and slow
ACCP declines (—4.6% annually) sustain emission growth
(ATCE = 1.73%) (Wang et al., 2018). These findings echo Wang, who
stressed the role of energy transitions in breaking carbon lock-ins,
advocating for renewable integration in coal-dependent regions and
green financing to accelerate digital-industrial transitions in emerging
economies. Such tailored approaches are critical to aligning regional

>

pathways with China’s “dual carbon” goals (Zan et al., 2024). Based on
cluster-specific traits, we propose actionable policies: Resource-
Dependent (e.g., Shanxi): Deploy CCUS in coal plants; hybrid wind-
PV-hydrogen infrastructures. Ecological compensation for mining
areas (e.g., Inner Mongolia’s grassland restoration). Rapid Growth
(e.g., Guangdong): Mandate renewable corridors (solar highways);
green bonds for industrial park retrofits. Carbon tax pilot for high-
emission export industries. Low-Carbon Exemplar (e.g., Shanghai):
Scale carbon trading to households; EV subsidies via tax credits.
Export “smart city” decarbonization models to ASEAN. Typical
Growth (e.g., Anhui): Biomass co-firing subsidies for coal plants; skills
training for green jobs.

This study reveals the evolution path of carbon emissions in four
provinces through spatial clustering (Table 7). This typology
underscores the spatial and structural heterogeneity of emission
pathways, where rapidly industrializing provinces (e.g., Jiangsu,
Guangdong) require prioritized investments in smart grids and
renewable energy integration to decouple economic growth from
carbon intensity, while resource-dependent regions (e.g., Shanxi,
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TABLE 7 Policy recommendations.

Cluster Policy recommendations

Deploy CCUS in Shanxi’s coal plants; diversify
Resource-dependent to wind/solar-hydrogen hybrids in Inner

Mongolia

Mandate renewable corridors in Jiangsu/
Rapid growth Guangdong; green infrastructure bonds for

industrial parks

Scale carbon trading in Beijing/Shanghai;
Low-carbon exemplar
incentivize public EV adoption via tax credits

Subsidize biomass retrofits in Anhui; green
Typical growth
financing for Heilongjiang’s heavy industry

Inner Mongolia) demand accelerated transitions to clean energy
systems, such as CCUS and hybrid wind-PV-hydrogen infrastructures
(Sikarwar et al, 2024; Song et al, 2019). Resource-dependent
provinces can establish a “coal-new energy” hybrid power generation
system, and support a carbon market trading mechanism;
low-emission demonstration areas can further promote the carbon
inclusive system and encourage public participation. Low-carbon
exemplars (e.g., Beijing, Shanghai) exemplify the efficacy of service-
sector dominance and policy-driven innovation, yet their success
highlights the need for scaling carbon-inclusive mechanisms to
incentivize public participation in broader regions (Lou et al., 2014).
Meanwhile, typical growth clusters face structural inertia, necessitating
green financing to overcome industrial lock-ins and adopt biomass
solutions (Gopikrishnan and Kuttippurath, 2025; Liu et al., 2025).
Different regions face different challenges in policy implementation:
the eastern region has obvious advantages in capital and technology,
but the marginal cost of emission reduction is rising; the western
region needs to overcome the problems of insufficient funds and
shortage of technical personnel. It is recommended to support its
low-carbon transformation through cross-regional cooperation and
transfer payment mechanisms. By aligning policies with cluster-
specific challenges and opportunities, this model not only enhances
the precision of urban decarbonization but also advances China’s dual
carbon goals through spatially adaptive governance, balancing
economic resilience with emission reduction imperatives.

5 Limitations and future directions

While this study provides a comprehensive analysis of China’s
CO,
acknowledgment. First, data constraints (exclusion of Tibet, Hong

provincial emissions, several limitations warrant
Kong, and Macao due to missing data) may affect the completeness of
spatial patterns. Second, the reliance on production-based accounting
omits embodied carbon in interprovincial trade and consumption,
potentially underestimating emissions in highly industrialized or
consumer regions. Third, the clustering methodology, though robust,
captures trajectories only up to 2019; post-pandemic economic shifts
and recent policy accelerations (e.g., renewable energy investments
post-2020) necessitate temporal extensions. Finally, the GTWR/
SGTWR models, while accounting for spatiotemporal heterogeneity,

do not fully integrate micro-scale urban dynamics (e.g., building-level
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energy use) or behavioral factors influencing residential/transport
emissions. Future research should: Adopt consumption-based
accounting to quantify cross-regional carbon flows and allocate
emission responsibilities more equitably. Develop integrated
assessment models coupling socioeconomic scenarios (e.g., population
aging, green tech diffusion) with climate targets. Explore technological
pathways (e.g., hydrogen adoption in Resource-Dependent clusters)
via techno-economic optimization. Addressing these gaps will
enhance the granularity of regional decarbonization strategies and
better align China’s “dual carbon” goals with global climate
governance frameworks.

6 Conclusion

This study pioneers a DTW-AHC-GTWR framework to decode
China’s provincial carbon trajectories. Key advances: (1) Dynamic
clustering: Identified four emission clusters via ACCP-augmented
paths, overcoming static K-means limitations. (2) Spatio-temporal
tipping point: Empirically validated 2015 as Morans I transition year
(positive—negative), demanding region-specific governance. (3)
Sectoral decoupling evidence: Tech-driven declines in food/water
emissions post-2016 contrast energy/transport inertia, offering rapid
mitigation templates. Policy integration leverages these insights: (1)
Resource-Dependent clusters prioritize CCUS-infrastructure hybrids.
(2) Rapid Growth zones embed renewables in urban planning. (3)
Limitations (e.g., Tibet data gaps) guide future remote-sensing
validation. This reframes ‘dual carbon’ policies beyond aggregate
targets, prioritizing spatial diversification through carbon-efficient
pathways. Only by formulating corresponding strategies based on the
characteristics and trends of each city can we effectively drive carbon
peak actions at the city level and contribute to the nationwide carbon
neutrality goals.
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