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Introduction: To support China’s “dual carbon” goals (carbon emission peak by 
2030 and carbon neutrality by 2060), this study systematically investigates the 
spatio-temporal evolution and decarbonization pathways of CO2 emissions across 
30 Chinese provinces. As regional disparities significantly influence national climate 
strategies, a detailed provincial-level analysis is essential for effective policy-making.
Methods: We integrate spatial autocorrelation analysis, spatio-temporal 
geographically weighted regression (GTWR/SGTWR), and agglomerative 
hierarchical clustering with dynamic time warping (DTW-AHC) to capture both 
spatial and temporal heterogeneities in emission patterns.
Results: The findings reveal that provincial CO2 emissions exhibit weakening 
spatial aggregation after 2015, with northern provinces maintaining higher 
carbon intensity due to heavy reliance on fossil fuels. Energy consumption and 
transportation collectively account for over 70% of emissions growth after 2008, 
while emissions from food and water sectors decline after 2016, largely driven 
by technological advances. Four distinct emission clusters are identified: Rapid 
Growth, Resource-Dependent, Typical Growth, and Low-Carbon Exemplar.
Discussion: Tailored decarbonization strategies are proposed for each cluster: 
integrating renewable energy corridors with urban green infrastructure for 
Rapid Growth provinces; prioritizing ecological restoration and carbon capture, 
utilization, and storage (CCUS) in Resource-Dependent regions; accelerating 
green industrial transitions in Typical Growth provinces; and reinforcing existing 
low-carbon policies for Exemplar provinces. This research provides a spatially 
explicit framework for regionally differentiated carbon governance, supporting 
the achievement of China’s national climate targets.
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1 Introduction

Anthropogenic carbon dioxide (CO2) emissions from fossil fuel combustion have been 
identified as the dominant driver of atmospheric CO2 concentrations since the Industrial revolution 
(Zhang and Zhao, 2024). As the world’s largest carbon emitter, China plays a pivotal role in global 
efforts to combat climate change. Given that the industrial sector constitutes a major portion of 
China’s carbon emissions, rigorous analysis of provincial-level industrial emissions becomes 
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imperative (Wu et al., 2023). In 2020, the Chinese government officially 
proposed the “double carbon” strategic goals - achieving carbon peaking 
by 2030 and carbon neutrality by 2060. This commitment entails 
profound transformations of the energy system and industrial structure 
optimization (Liang et al., 2024), demonstrating China’s international 
climate responsibility while offering a distinctive sustainable 
development model.

To advance carbon reduction objectives, scholars predominantly 
employ spatial econometric methods for qualitative and quantitative 
investigations (Chen et al., 2018; Meng et al., 2021). These approaches, 
combined with advanced modeling techniques, reveal spatial 
agglomeration effects and distribution heterogeneity (Song et al., 2018; 
Lim et al., 2019) while enabling emissions trajectory projections (Wei 
and Liu, 2022). For instance, the ESDA-GWR(Exploratory Spatial Data 
Analysis-Geographically Weighted Regression) methodology was 
employed to systematically examine the spatial distribution patterns of 
China’s carbon emissions and the spatial heterogeneity of multiple 
driving factors at the prefecture-level city scale in 2012 (Qin et al., 
2019), revealed a pronounced spatial spillover effect predominantly 
concentrated in eastern regions, where demographic, economic, and 
industrial factors exerted significantly stronger influences on carbon 
emissions compared to central and western regions. Similarly, Moran’s 
I and hotspot analyses confirmed positive spatial autocorrelation in 
shrinking Chinese cities during 2012–2019, with Northeast China 
emerging as a significant emission hotspot due to concentrated urban 
contraction (Yang et  al., 2022). Complementary research utilizing 
GWR models established urbanization as the dominant factor in 
China’s annual carbon dioxide emission growth, which indicated that 
both energy intensity and industrial structure positively influenced 
carbon emissions, providing valuable insights for emission reduction 
strategies (Wang et al., 2018). Despite these advances, current research 
has not systematically elucidated spatial differentiation across emission 
types or their city-specific response mechanisms.

On the basis of systematically combing the spatial heterogeneity of 
carbon emissions and its driving factors, it is necessary to further pay 
attention to the multi-dimensional influence mechanism of human 
activity pattern changes on carbon emissions in the process of 
urbanization. Previous research consistently demonstrated the significant 
impact of human activity patterns on carbon emission growth through 
complex environmental changes (Liu et al., 2015; Sheng and Guo, 2016). 
By constructing the urbanization index system including population, 
public services, infrastructure and environment, the coupling 
coordination degree of China ‘s low-carbon development and 
urbanization system was measured, which showed that the coordination 
degree of the eastern and western regions was at the highest and lowest 
levels, respectively, (Song et al., 2018). Spatial autocorrelation analyses of 
30 provinces (2010–2019) using a multidimensional urbanization 
evaluation system further identified a ladder-like spatial gradient in 
coordination, decreasing from southeastern coastal areas to central and 
western regions, with significant positive spatial correlation (Jiang et al., 
2022). Nevertheless, systematic analyses of emission differentiation 
mechanisms and regional response variations under diverse human 
activities remain lacking.

This study extends existing frameworks by incorporating 
multidimensional human activity impacts on emission patterns. 
We investigate dynamic provincial carbon emission characteristics 
through integrated dynamic time series analysis and hierarchical 
clustering. By examining contributions from food, water, housing, 
transportation, and energy sectors to total emissions, we  explore 

spatial differentiation mechanisms across emission types. This study 
selects five key sectors of food, water, housing, transportation and 
energy as the analytical dimensions of carbon emissions, because they 
cover the core areas of basic human life and production activities, and 
each has obvious carbon emission characteristics and driving 
mechanisms. In recent years, the proportion of these sectors in total 
carbon emissions and their changing trends have become the focus of 
regional low-carbon transformation policies (Zhang et al., 2023; Li 
et al., 2024; Wang and Chen, 2025). This approach provides precise 
scientific evidence for formulating differentiated mitigation policies. 
Industrial carbon emissions warrant particular attention given their 
profound ecological and public health implications. Through temporal 
evolution pattern analysis, we reveal provincial emission trajectories 
and regional disparities. Specifically, t dynamic time warping (DTW) 
captures temporal dependencies and fluctuation characteristics across 
emission categories (Wen et  al., 2024), enabling comprehensive 
trajectory measurement to inform policy formulation. Hierarchical 
clustering techniques (Sabbir, 1998) group provinces with similar 
emission patterns, facilitating identification of distinct emission 
clusters through regional comparisons. This research enriches China’s 
carbon emission theoretical framework while providing policymakers 
with actionable references for climate mitigation strategies. 
Furthermore, it establishes methodological foundations for future 
exploration of carbon emission-socioeconomic relationships.

2 Method

2.1 Data source

This study is conducted with comprehensive and reliable data on 
carbon emissions at the provincial level, obtained from reputable sources 
such as the National Bureau of Statistics of China and relevant 
governmental departments. Our data is collected by Python and Java web 
parsing tools with pre-process of filtering and cleaning. The industrial 
energy and carbon emission data comes from China Carbon Emission 
Accounts and Datasets for Emerging Economies (CEADs, 2023) and the 
IPCC (Intergovernmental Panel on Climate Change) National 
Greenhouse Gas Inventory Guidelines (2001–2020) (IPCC, 2021) (Tibet, 
Taiwan, Hong Kong, and Macao are not available). Data on energy 
classification and consumption of each province are obtained from China 
Energy Statistical Yearbook 2001–2020 (Companies and Markets, 2008). 
Population and GDP data comes from China Statistical Yearbook 
(Research and Markets, 2008). Considering the data availability and 
completeness, our study focuses on the data during the target years 
between 2001 to 2019 including 30 provinces and municipalities from 
mainland China. Due to large portion of missing data, Tibet, Hong Kong, 
and Macao are excluded from investigation areas.

2.2 Calculation of spatial characteristics of 
interprovincial carbon dioxide emissions

The spatial characteristics of interprovincial carbon dioxide (CO₂) 
emissions are typically calculated through spatial autocorrelation 
analysis (identifying spatial aggregation patterns of emissions), 
hotspot analysis (locating high/low value clusters), and spatial 
regression models (SLM (Spatial Lag Model), SEM (Spatial Error 
Model), geographically weighted regression) to explore spatial effects. 
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These methods are combined with spatial weight matrices (adjacency, 
distance, or economic linkages) to quantify interprovincial 
associations, supported by GIS tools for visualization and modeling. 
Compared to GWR (spatial-only) and TWR (temporal-only), GTWR 
integrates spatio-temporal non-stationarity by weighting observations 
based on spatial proximity and temporal proximity (Yao et al., 2021; 
Wu et al., 2021). This is critical for China’s provincial emissions, where 
Moran’s I shifted from positive (2010–2014) to negative (2015–2019), 
indicating weakening spatial dependence and strengthening temporal 
heterogeneity (Table 1). GTWR’s dual kernel function captures such 
dynamics, enabling unbiased estimation of drivers like energy 
intensity in Inner Mongolia (spatial hotspot) post-2015.

2.3 Carbon emission intensity analysis and 
prediction

The algorithm of the model mainly involves the analysis of the least 
squares method of statistics. A linear regression analysis was performed 
on year-carbon emissions and year-food and water-related emissions. A 
comparative analysis of the two. And then to predict the country ‘s carbon 
emissions. And for the convenience of the next calculation, the carbon 
emissions of the four categories of food, water, housing and transportation 
in the country are also predicted. At the same time, in order to analyze the 
impact of food, water, housing, and transportation on the total carbon 
emissions, a multiple regression analysis was also performed with the total 
emissions. The above analysis and modeling are carried out for the data 
of the whole country and 30 queried provinces.

The data processing in the above regression analysis mainly uses 
python language and java language. For data in standard message 
format, it mainly uses alibaba’s fastjson toolkit to split and reorganize 
messages, extract and calculate data, and finally output. For the most 
primitive data, scrapy crawler technology is needed to obtain keyword 
pages. For the analysis of linear regression by putting the processed 
data into the model, the third-party scientific computing software 
package pandas and statsmodels. Api of python are mainly used to 
train and calculate the data, so as to obtain the result formula. For the 
high-precision calculation in the data, python ‘s accuracy package is 
used to ensure the calculation accuracy. It is also necessary to use the 
third-party software tools ArcGis and python’s graphics toolkit for 
visual analysis and display of model results.

2.4 Data preparation

Carbon Emission and GDP data are characterized into the first, 
second, and tertiary industry with 44 sub-level industries, according 

to the provisions on the division of three industries posted by the 
National Bureau of Statistics in 2012 (Xu, 2019). Unclassified carbon 
emission sources such as the carbon emissions in daily life from 
urban, rural area and other sources are also removed from the 
analysis process.

Population growth is broadly used as one of the essential factors 
to evaluate regional carbon emission, and population weighted factors 
are commonly used in economitric-based models, such as GDP per 
capita and carbon emission per capita. However, our study starts from 
the absolute sizes of industrial carbon emission and GDP over 
observation time horizon. In order to eliminate the effect of population 
growth, a new factor, Average Carbon Cost of Production (ACCP), is 
proposed for a better understanding of the evolution of carbon 
emission paths with provincial level industrial data. ACCP is defined 
as yearly regional GDP divided by corresponding amount of carbon 
emission (Unit: Tons of Carbon Dioxide Emitted per 10,000 CNY). It 
is a simple but strong indicator for the relationship between 
production and carbon emission, as ACCP allows direct comparison 
on the longitudinal observations from different observation time 
by mathematically.

2.5 Clustering methodology

Clustering is an unsupervised learning technique used to explore and 
identify the common patterns for study population. There have been 
plenty of studies on cross-sectional carbon emission data with clustering. 
Li et al. (2022) used a combination of static and dynamic indices as the 
inputs for clustering. Static includes population, Economic level, industrial 
structure, and dynamic indices includes the growth in population, GDP, 
city expansion, and carbon emission. He et al. (2022)’s study used selected 
factors of GDP per capita (GPC), GDP intensity of power (GIP), TPG 
energy efficiency (TEE), and share of non-fossil power (SNP) from 
Logistic Mean Divided Index (LMDI) with a K-means clustering. 
Similarly, Jiang et al. (2017) combines a multi-layer LMDI model with 
hierarchical clustering. One major deficiency of the cross-sectional 
analysis is that data is observed from each single time point, which cannot 
reflect the time lagging and speed of carbon emission paths. For example, 
local carbon neutral policy might be promoted to other regions and 
leading to similar carbon emission paths but with temporal differences. 
To capture the overall path similarity, Dynamic Time Warping (DTW) is 
introduced as the similarity measure for comparing two times series. 
Considering the fact that it is hard to define an interpretable “central 
series” for multivariate time series data under DTW distance, centroid-
based clustering algorithms, such as widely used K-Means, are no long 
applicable here.

Dynamic Time Warping (DTW) is employed as an algorithmic 
approach aimed at quantifying the similarity between two temporal 
sequences that exhibit variability in terms of pace (Salvador and Chan, 
2007). Applications of DTW have been found in the analysis of video 
sequences, audio streams, and graphic data, which underlines its 
versatility in handling diverse forms of data while maintaining high 
levels of accuracy in identifying temporal correlations. The DTW is 
formulated as following: Given two times series X and Y of length n 
and m, where (Equations 1, 2),

	 = … = …1 2 1 2, , , , , , ,n mX x x x Y y y y 	 (1)

TABLE 1  Results of multicollinearity analysis.

Coordinate Tolerance VIF

x1 0.237 4.216

x2 0.226 4.426

x3 0.658 1.521

x4 0.488 2.049

VIF values <5 for all drivers (Food: 4.216; Water: 4.426; etc.) confirm no severe 
multicollinearity (Hair et al., 2010).
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a warp path W is a list of index pairs with length K given by.

	 ( ) { } { }= … = ∈ … ∈ …  1 2, , , , , 1, , , 1, ,K k k k k kW w w w with w i j i n j m 	(2)

	 ( ) ( ) ( ){ }−− ∈ ∀ ∈  1. . 1,0 , 0,1 , 1,1 1:k k ks t w w for K

The optimal warp path is the warp path W has the minimum-
distance, where the distance of a warp path is (Equation 3)
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And d is a distance function d: Rdim(x) × Rdim(y) → R1. For 
this study, we use Euclidean distance as the distance function for 
calculation. Then distance of the optimal DTW path is used as the 
dissimilarity measure between X and Y. Instead of vanilla DTW, 
we use an accurate approximation to DTW with higher computation 
efficiency provided by Salvador and Chan (2007). Notice that all the 
above calculation is based on one-dimensional time series, but it 
can be easily expanded to multivariate time series by calculating the 
Euclidean distance for each xt and yt ∈ Rz, where z ∈ Z > 1.

Agglomerative Hierarchical Clustering (AHC) is a bottom-up 
algorithm aiming to partition data points into distinct clusters based 
on their similarities or dissimilarities. The AHC algorithm first 
assumes individual observations as different clusters with only one 
member, then iteratively merges two clusters until there is only one 
cluster left. Linkage functions as measurements of similarities between 
clusters determines the clusters to be merged. We used the unweighted 
average linkage function as following (Qin et al., 2019):

	
( ) ( )1, ,X A Y BL A B dDTW X Y

NA NB
∈ ∈∗

= Σ Σ
	

(4)

Where A, B are two different cluster sets, N is the cardinality of 
given set. This linkage function minimizes the average distance of each 
observation of the two sets (Equation 4). From above definition, it is 
easy to see that AHC only depends on pairwise distance calculation 
between observations and avoids the problem of missing centroids. 
Moreover, AHC forms a tree structure usually interpreted with 
dendrograms reflecting the cluster merging process, which enables a 
systemic analysis for different regions.

2.6 Data processing

DTW-AHC is implemented on two datasets, with each of the 
dataset as a three-dimensional multivariate time series. First dataset 
is from a combination of Total Carbon Emission (TCE, in tons), 
Gross Domestic Production (GDP, in 10,000 CNY), and Average 
Carbon Cost of Production (ACCP). Another dataset is the 
proportions of carbon emission from the production of primary, 
secondary, and tertiary industries to the total amount of carbon 
emission for each province region between 2001 and 2019, giving 30 
three-dimensional time series of length 19 years. Noticing that 
Euclidean distance are used in the DTW for the distance measure 

between observations, it is necessary to apply a transformation on 
each dimension, respectively, to the same scale in order to carry the 
same “dissimilarity” level (Jiang et  al., 2017). A cross-sectional 
standardization is used to equally scale each dimension, defined as 
following (Equation 5):

	 σ

−
→ −
= ti t
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t

X XZ
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and in this case:
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(6)

Where z1ti is the transformed variable of first dimension for 
province i in year t, x1ti is the first raw variable for province i in year t, 
σx1t is the standard deviation of first raw variable for all provinces in 
year t, and n = 30 for 30 provinces in the study population 
(Equation 6). Then DTW is applied for each dataset to calculate the 
pairwise distance between series. Obtained the distance matrix D of 
size (30, 30), it is scaled by its maximum to interval [0.1]. These two 
distance matrices along with Average Linkage function are feed into 
the AHC algorithm for training to obtain clusters.

3 Result

3.1 Covariance analysis of CO2 emissions

3.1.1 Spatial autocorrelation analysis
In order to better assess the driving mechanisms of CO2 

concentration changes as a whole, a spatio-temporal weighted 
regression model (SGTWR) was measured in this paper for five types 
of drivers, including food, water, domestic, transportation, and energy. 
Taking carbon emissions as an example, it can be seen from Figure 1 
that carbon emissions in each domain show unevenly distributed 
spatial and temporal differences, and carbon emissions have spatial 
and temporal non-smoothness. Based on the data of carbon dioxide 
emissions in total, food, water, domestic, transportation, and energy 
in China from 1996 to 2019, a spatio-temporal weighted regression 
model (SGTWR) was used to estimate the influencing factors of 
carbon emissions in different regions in different periods. The results 
of multicollinearity show that the reporting model is stable and 
reliable (Table 1).

For higher data reference value, we calculated the Moran’s I index 
values of total carbon emissions for each province in China from 2010 
to 2019 using ArcGIS software, and the results are shown in Table 2. 
The data indicate the existence of spatial correlations and spatial 
aggregation patterns, indicating that the spatial aggregation of carbon 
emissions in each province and city has been decreasing and the trend 
of discrete distribution is obvious. The weakening of spatial 
agglomeration of carbon emissions after 2015 may be related to the 
regional differentiated emission reduction policies, industrial 
structure adjustment and renewable energy promotion proposed in 
the national “13th Five-Year Plan”. In particular, the eastern coastal 
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areas have achieved a slowdown in emission growth through industrial 
upgrading and energy structure optimization, while the central and 
western regions still rely on traditional energy, resulting in enhanced 
spatial heterogeneity.

3.1.2 Analysis of carbon emission dynamics in 
multiple sectors

The statistical results showed that the individual coefficients of 
food, water, living, transportation, and energy drivers have large 
variance. It indicates that when studying regional carbon emission 
scale and carbon emission intensity, each carbon emission driver has 
a large variation, and it is necessary to discuss the spatial and temporal 
heterogeneity in carbon emission scale and carbon emission intensity 
from each field of in-depth analysis, and SGTWR has obvious 
advantages by considering both temporal and spatial differences.

As can be seen from Figure 2, the total carbon emissions in China 
from 1996 to 2019 show a continuous increase. It increased from 
2935.92 Mt. in 1996 to 10864.41 Mt. in 2019, with an average annual 
growth rate of 5.85%. The overall phase can be divided into 4 stages 
according to the characteristics of carbon emission dynamic change. 
The first stage is 1996–2000, which is characterized by small carbon 

emissions and slow growth rate, with carbon emissions increasing 
from 2935.92 Mt. in 1996 to 3053.31 Mt. in 2000, with an average 
annual growth rate of 0.98%. The second stage is from 2000 to 2007, 
the growth rate of carbon emission is obviously accelerated, from 
3053.31 Mt. in 2000 to 6822.27 Mt. in 2007, with an average annual 
growth rate of 12.17%. The third stage is 2007–2013, when the growth 
of carbon emissions slowed down: from 6822.26 Mt. in 2007 to 
9778.95 Mt. in 2013, with an average annual growth rate of 6.18%, 
with China’s overall carbon emissions reaching the highest in 2013. 
Phase 4 is from 2013 to 2019, where carbon emissions show a slight 
decreasing trend: from 9778.95 Mt. in 2013 to 10864.41 t in 2019, with 
an average annual reduction rate of 1.77%. Analyzing several 
categories of drivers in terms of food, water and living, we can see that 
carbon emissions from energy consumption are in line with the trend 
of overall carbon emissions. This indicated the dominant role of 
carbon emissions from energy activities. Carbon emissions from daily 
life and transportation also show a gradual increase from 1996 to 
2019, and their growth trend is not very different from the overall 
carbon emissions. Such a change is probably due to the increase in 
population and the significant improvement in living conditions. 
Interestingly, around 2012, CO2 emissions from food and water start 
to decline, to 10 Mt. and 10 Mt., respectively, by 2019. This may be due 
to the change in population size and the development of environmental 
awareness. The decline in food and water sector emissions is mainly 
due to the promotion and application of green technologies such as 
water-saving irrigation technology, precision fertilization, sewage 
treatment and reuse. Especially in major agricultural provinces such 
as Henan and Shandong, these technologies combined with policy 
subsidies have significantly reduced carbon emissions per unit 
of output.

3.1.3 Analysis of shift of carbon emission focus
In order to further analyze the relationship between each driver 

and the spatial distribution of CO2 concentration, the carbon dioxide 
emission rates from 1996 to 2019 were plotted for different types of 
CO2 emissions in China, such as total, food, water, domestic, 
transportation, and energy. In terms of total carbon emissions from 
1996–2019 (Figure 3), it is clear that GDP has the most significant 
impact on the total. We can see that population is also a factor with a 

FIGURE 1

Regional differences in carbon emissions. Regional differences in carbon emissions in 2010 (A); Regional differences in carbon emissions in 2019 (B).

TABLE 2  Moran’s I index of provincial CO2 emissions from 2010 to 
2019 in China.

Coordinate Moran’s 
I index

z score p value

2010 0.074565 1.310702 0.189958

2011 0.05805 1.112797 0.265796

2012 0.043836 0.949007 0.342617

2013 0.024718 0.718167 0.472655

2014 0.020622 0.667049 0.504741

2015 −0.048076 −0.15973 0.873094

2016 0.009056 0.533264 0.593851

2017 −0.069858 −0.438938 0.660707

2018 −0.005855 0.356827 0.721221

2019 −0.010388 0.302397 0.762349
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large degree of influence. Compared to population and GDP, the five 
drivers we focus on, such as water, food, and transportation, have a 
smaller impact on the total amount of carbon emissions during 1996–
2019. In contrast, the carbon emissions from live and water have a 
relatively large proportion in terms of emissions. This trend is mainly 
due to the population growth and economic development of the 
society, which brought about a significant increase in the standard of 
living, resulting in more the carbon emissions from live. At the same 

time, we cannot deny that the carbon emissions from water are mainly 
due to the ecological changes of rivers in mainland China (Raymond 
et al., 2013). Water is the more significant biogeographic link between 
continents, oceans and atmosphere, therefore, when analyzing water 
as a driver, we need to integrate the net ecosystem production of 
Chinese rivers and the impact of CO2 emissions on organic carbon 
and carbon emissions (Song and Wang, 2021). For both food, traffic, 
the changes in the relative total amount of carbon emissions are not 

FIGURE 2

CO2 emissions from total, food, water, live, traffic, energy and other in China from 1996 to 2019.
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significant. Combining the analysis results in Figure 3, we believe that 
Different types of carbon emission from total, food, water, live, traffic, 
energy and other in China from 2009 to 2019 all have an increasing 
trend, but the magnitude of the increase and the change This is mainly 
due to the inconsistent trends in energy consumption, industrial 
structure, population and GDP.

3.2 Carbon emission intensity analysis and 
prediction

3.2.1 Analysis of spatial heterogeneity of carbon 
emission intensity

The contributions of live, water, traffic, energy, and food to carbon 
emission intensity are different, and the spatial spillover effects of 
different drivers vary greatly. Taking carbon emission intensity as an 
example, it can be seen from Figure 3 that carbon emission intensity 
shows an uneven distribution of spatial and temporal differences, and 
carbon emission has spatial and temporal non-stationarity (Figure 4).

Based on the provincial regional panel data from 1996 to 2019, the 
GTWR is applied to estimate the parameters of carbon emission 
drivers for each region from time to time, and the results of the spatio-
temporal geographically weighted regression model with the natural 
log ln(CS) of carbon emission intensity as the explanatory variable for 
the parameters of carbon emission scale drivers are described in 
Table 3. The optimal bandwidth of the GTWR model is 2.88, which is 
based on the Gaussian function of the spatio-temporal weighting 
function. The large variation in the coefficients of live, water, traffic, 
energy, and food indicates that there are large differences in the drivers 
of carbon emissions in each province when studying regional carbon 
emissions intensity, and the spatial and temporal heterogeneity in 
regional carbon emissions intensity needs to be considered locally. 
Resource dependent clusters (such as Shanxi and Inner Mongolia) face 
challenges such as high coal dependence, single industrial structure, 
and high ecological restoration pressure, and need to focus on 

promoting the application of CCUS technology and ecological 
compensation mechanisms. Rapid growth clusters need to prevent 
difficulties in decoupling economic growth from emissions, and it is 
recommended to strengthen the construction of green infrastructure.

Through the global Moran ‘s I test, China ‘s inter-provincial CO2 
emissions from 2009 to 2019 showed a significant positive spatial 
autocorrelation (I > 0, P 2.58), while the western region was the cold 
spot area. From 2009 to 2019, the spatial distribution of per capita CO2 
emissions shows a significant increase in emission intensity in the 
eastern coastal provinces (Figures  5A–C), especially in energy-
intensive industrial concentration areas, due to the adjustment of 
industrial structure in the central and western regions, the growth rate 
of emissions in some provinces has slowed down. From the perspective 
of sectors, the spatial expansion of transportation and residential 
carbon emissions is the most significant (Figures 5D–F), which is 
closely related to the urbanization process and the growth of private 
car ownership.

3.2.2 Regression curves and forecast for CO2 
emissions

The regression curves for CO₂ emissions in China reveal strong 
positive correlations between total emissions and GDP and population 
growth, indicating economic expansion and urbanization as dominant 
drivers. Energy-related emissions exhibited the highest elasticity to 
GDP, driven by coal-dependent industrialization, particularly post-
2008. Further analysis shows that coal-fired power remains the main 
source of emissions from the energy sector, especially in the northern 
provinces. Road freight and private vehicle growth are the main 
drivers of traffic emissions. It is suggested that future research should 
subdivide energy types and transportation modes to more accurately 
identify emission reduction priorities. Traffic emissions showed the 
steepest growth trajectory, aligning with rising private vehicle 
ownership and freight demand. Water and food-related emissions 
remained stable or declined post-2016, reflecting technological 
improvements, while energy and traffic sectors dominated structural 

FIGURE 3

The average distribution of CO2 emissions from total, food, water, live, traffic, energy and other for all regions in China from 2009 to 2019.
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FIGURE 4

Spatial distribution of changes in CO2 emissions per capita from total, food, water, live, traffic, energy and other in China in 2009 (A,D,G,J), 2014 
(B,E,H,K), and 2019 (C,F,I,L).

TABLE 3  The natural log ln(CS) of the carbon emission scale as the explanatory variable of GTWR parameter estimation descriptive statistics.

Coordinate Min ¼ quartile Median ¾ quartile Max Quartile 
distance

X1 −0.55065 0.008734 0.020941 0.03758 0.371038 0.028847

X2 −0.00706 0.005129 0.006545 0.009372 0.050323 0.004243

X3 −2039.69 −80.921 −93.936 −53.2358 877.549 627.6856

X4 −273.349 253.275 421.5895 1177.19 1953.71 923.915

constant −571.953 −135.49 −5.2088 1.641543 1456.15 137.131
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inertia. These results underscore the need for region-specific 
decarbonization policies, prioritizing energy transition (renewables), 
transportation electrification, and green urban planning to decouple 
emissions from economic growth (Figure 6).

We make a forecast of each carbon emission data in 2050 
according to the analysis results of the data and the future development 
trend in accordance with the calculation law, and the specific forecast 

trend is shown in Figure 7. Using multiple linear regression analysis, 
the national carbon emissions are all on the rise, with housing and 
transportation accounting for a significant proportion, and energy 
conservation and emission reduction becoming a national effort 
(Figure 6).

Cities played a vital role in achieving China‘s carbon peak and 
carbon neutrality goals. However, due to various factors, there are 

FIGURE 5

(A–F) Regression curves for CO2 emissions from total, food, water, live, traffic, energy and other and the population of China.

FIGURE 6

Projection of carbon emission results in China (2050).
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significant differences in carbon emissions in different cities. 
Therefore, carbon peak actions at the city level need to be distinguished 
according to different types of cities. In this study, the classification 
method is used to classify Chinese cities, which provides a 
classification model for the carbon emission path nationwide.

3.3 TCE-GDP-ACCP clustering

Based on the results of hierarchical clustering on TCE-GDP-
ACCP, four clusters can be visualized with a dendrogram showing the 
hierarchical structure for each cluster. From the analysis of their 
carbon emission, GDP, and ACCP paths, we classify the four clusters 

as “Rapid Growth Cluster,” “Low-Carbon Exemplar Region Cluster,” 
“Typical Growth Cluster,” and “Resource Dependent Cluster” 
respectively with their children regions shown in Table 4.

In order to illustrate the dynamic path evaluation of each cluster, 
we divide the data to two sub-periods with the first period from 2000 
to 2011 and the second period from 2012 to 2019. This is from 
empirical observation that 2011 is the turning elbow for the carbon 
footprint paths of all four clusters. The average percentage changes of 
Total Carbon Emissions, industrial GDP, and ACCP for two periods 
are reported in Table 5 for comparison.

3.3.1 Rapid growth cluster
“Rapid Growth Cluster” includes provinces characterized by high 

economic growth and large industrial carbon emission amount in 

FIGURE 7

Carbon emission, GDP, ACCP for rapid growth cluster.
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China, including Jiangsu, Guangdong, and Shandong, which plays an 
important role in the economic development and the process of 
industrialization in China. From Figure 8, GDP of this cluster showed 
a powerful trend of growth and remains the highest among the four 
clusters. Based on the data averaging from 2001 to 2019, Rapid Growth 
Cluster contributed 55.58% of the total GDP. In the first period from 
2001 to 2011, the rapid growth cluster’s GDP grows from 980 billion 
to 4,920 billion in 11 years, with second highest average annual growth 
rate of 17.51%. In the period of 2012 to 2019, the GDP growth trend 
of this cluster slows down but also remains the second highest average 
annual growth rate of 8.56%. This reflects the strong economic strength 
and sustained development momentum of regions in this cluster.

At the same time, this rapid economic growth is accompanied by 
a corresponding increase in energy consumption and carbon 
emissions, leading to a high level of total carbon emissions. The total 
industrial carbon emission amount of “Rapid Growth Cluster” also 
maintains at the highest with an average proportion of 43.34% over 
the 19 years. In 2001, the total carbon emission amount of the rapid 
growth cluster is 200.61 million tons and increases to 736.23 million 
tons in 2019, with annualized average growth rate of 12.45 and 1.88% 
for the first and second sub-periods.

The contradiction between economic growth and carbon emission 
reduction brings up the challenging problem for many developing 
countries during their rapid development phase, where economic growth 
is achieved by the cost of rising energy consumption and environmental 
pressures. The process of industrialization and urbanization caused the 
significantly rising demand for energy with consequential increase in 
carbon emissions. At the same time, traditional energy sources are 
difficult to be fully replaced by cleaner energy sources in the short term, 

thus inevitably bringing a huge challenge in the process of carbon 
neutral. With urbanization and increasing productivity demand in 
developing countries, it is essential to answer the important question 
behind the “Rapid Growth Cluster”: how to achieve economic growth 
while realizing the control and reduction of carbon emissions (Figure 7).

3.3.2 Low-carbon exemplar cluster
The Low-Carbon Exemplar cluster represents the regions with 

significant progresses in carbon-natural process as well as maintaining 
rapid GDP growth. The GDP of this cluster shows a steady growth 
power, increases from 410 billion in 2001 to 4,135 billion in 2019, with 
average growth rates of 16.32 and 10.31% for the two sub-periods, 
respectively. During the sub-period from 2012 to 2019, while the 
average growth rate of GDP slows down for Chinese economy, this 
cluster achieves the highest average annual growth rate among four 
clusters, evidencing the great successes with respect to economic 
development in these regions. As for carbon emission, it is remarkable 
that, starting from 2011, the industrial carbon emissions amount 
started to decline and maintains at the level of approximately 220 
million tons per year, indicating an important step toward greener and 
more sustainable economic practices. The average annual growth rate 
of industrial carbon emission changes from 10.23% in the first 
sub-period to −0.06% in the second sub-period, which is also the only 
cluster with declined carbon emission trend.

Furthermore, an interesting aspect exhibited by this cluster is the 
significant reduction in the Average Carbon Cost of Production 
(ACCP) since 2004. The ACCP ratio drops from 2.11  in 2001 to 
0.55 in 2019, with an average annual decreasing rate of 7.2%. This 
reduction in ACCP demonstrates the successful alignment of 
economic activities with environmental goals, further proving the 
effectiveness of carbon reduction strategies within Low-Carbon 
Exemplar Cluster. The confluence of these trends, reduced carbon 
emissions, lower ACCP values, and sustained GDP growth, 
underscores the effectiveness of the carbon reduction policies 
implemented by these regions. It not only contributes to the country’s 
carbon reduction targets, but also sets a precedent for other regions in 
their efforts to find a balance between the pursuit of economic 
prosperity and environmental responsibility (Figure 8).

3.3.3 Resource dependent cluster
Resource Dependent Cluster is an important group in cluster 

analysis, which has distinctive characteristics in carbon emission and 
economic growth. Inner Mongolia, Shanxi, and Ningxia, as regions that 
rely on resource-based industries, show similar trends in the following 
aspects. The most noticeable difference between this cluster and the 
others is the extremely high ACCP ratio. The ACCP of this cluster 
remains the highest across the period from 2001 to 2019. In 2001, its 
ACCP is approximately 11.22 (estimated with the imputed missing data 
of Ningxia), which is 3 to 5 times higher than other clusters, and the ratio 
is 4.45 in 2019, increasing to 7 times higher than Low-Carbon Exemplar 
Cluster. This cluster also takes a huge proportion of the net carbon 
emission amount in China, grows from 22.69% in 2001 to 28.99% in 
2019, while its corresponding GDP only takes 6.73 and 7.44% of the total 
GDP. Combining these features of Resource Dependent Cluster, it 
determines the fact how to manage the carbon emission in these regions 
would be a huge challenge for achieving the carbon neutral goal of China.

To address the issues of this cluster, we look into the industrial 
structure of Inner Mongolia, Shanxi and Ningxia, which is 

TABLE 5  Cluster statistics.

Variables Cluster 
1

Cluster 
2

Cluster 
3

Cluster 
4

Average 

Over

2001–

2011

∆ TCE 0.1245 0.1024 0.1129 0.1356

∆ GDP 0.1751 0.1632 0.1706 0.2273

∆ 

ACCP

−0.0420 −0.0527 −0.0479 −0.0758

Average 

Over

2012–

2019

∆ TCE 0.0188 −0.0007 0.0173 0.0354

∆ GDP 0.0826 0.1031 0.0769 0.0407

∆ 

ACCP

−0.0525 −0.0946 −0.0460 −0.0092

TABLE 4  TCE-GDP-ACCP cluster classification.

Cluster name Children

Rapid growth cluster Jiangsu, Guangdong, Shandong

Low-carbon exemplar cluster Beijing, Shanghai, Fujian, Sichuan, 

Hunan, Hubei

Typical growth cluster Anhui, Heilongjiang, Guangxi, Jiangxi, 

Chongqing, Tianjin, Shaanxi, Jilin, 

Yunnan, Liaoning, Henan, Zhejiang, 

Hebei, Xinjiang, Guizhou, Qinghai, 

Gansu, Hainan

Resource dependent cluster Shanxi, Inner Mongolia, Ningxia
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dominated by industries that highly rely on natural resources such 
as coal, oil and gas. Due to the nature of resource-based industries, 
energy plays an important role in their economic activities, and 
higher energy consumption is usually closely associated with 
increase in carbon emissions. These energy-intensive industries 
are accompanied by high carbon emissions during extraction, 
processing and utilization. Furthermore, the industrial structure 
of these regions is highly homogeneous leading to the difficulties 
with industrial upgrading and transformation. In addition to the 
resource dominated industrial structure, the energy structure in 
these regions also has a huge impact on the carbon emission 
pathways. The energy structure of Inner Mongolia, Shanxi and 

Ningxia favors fossil fuels, contributing to the higher carbon-
intensive component of their energy sources, thus further pushing 
up the level of carbon emissions (Figure 9).

3.3.4 CE structure clustering
From the proportions of carbon emissions for three industries, 

three clusters are obtained from the hierarchical cluster analysis. The 
first cluster represents the general Chinese provinces and regions 
containing 27 provincial regions. Beijing and Shanghai belong to the 
second cluster, and Hainan forms the third clusters by itself. We named 
the first cluster as Benchmark Cluster. It remains a relatively stable 
industrial structure throughout the years with a slight but consistent 

FIGURE 8

Carbon emission, GDP, ACCP for low-carbon exemplar cluster.
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increase in the tertiary industry’s proportion from 6.41% in 2001 to 
8.07% in 2019, indicating a shift toward service-oriented economic 
activities. There is also a tiny increase from the secondary industry 
corresponding to the nation-wide industrialization development in the 
past two decades, while the first industry industry’s weight drops from 
7.77 to 4.03% over the study period. Benchmark Cluster gives a clear 
illustration about the patterns of Chinese industrial structure with 
respect to carbon emission and also can be viewed as a perfect standard 
for comparing the structural shifts for the other two clusters. The 
second cluster, named as Service- Booming Cluster, exhibits a clear 
transition characterized by significant decline in the primary industry, 
which is replaced by remarkable growth in the tertiary industry. The 
third cluster shows a very unique pattern of shrinking proportions in 
the tertiary industry as well as the first industry. We  name it as 
Strategic-Transition Cluster after a deep analysis of the driven forces 

behind its industrial structure change. Detailed investigation and 
discussion on these innovative phenomenons observed in the following 
sections (Figure 10).

4 Discussion

Based on provincial panel data from China (1996–2019), this 
study systematically explores the spatiotemporal patterns, driving 
mechanisms, and regional heterogeneity of carbon dioxide emissions 
using spatiotemporal geographically weighted regression (GTWR/
SGTWR), spatial autocorrelation analysis, and clustering methods. 
The analysis reveals significant spatial aggregation and periodic 
evolution characteristics in China’s carbon emissions, with 
pronounced regional differences in how driving factors influence 

FIGURE 9

Carbon emission, GDP, ACCP for typical growth cluster.
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emissions. By constructing the TCE-GDP-ACCP clustering model, 
we classify provincial regions into four distinct development clusters, 
providing a scientific foundation for differentiated emission 
reduction policies.

4.1 Spatial and temporal dynamic 
characteristics of carbon emissions

In this study, the dynamic characteristic of urban-scale building 
CO2 emissions in China was investigated through the calculation of 
total, food, water, live, traffic, energy and other and the population. 
Global Moran’s I  analysis confirms significant positive spatial 
autocorrelation (I > 0, p < 0.05), with eastern coastal provinces (e.g., 

Shandong, Jiangsu) forming “high-high” clusters due to concentrated 
energy-intensive industries and urban sprawl, while western regions 
(e.g., Qinghai, Tibet) displayed “low-low” aggregation (Zhang et al., 
2025; Liu and Lv, 2024; Liu et al., 2024; Dong et al., 2024). Sectoral 
disparities further highlight spatial heterogeneity: residential and 
transportation emissions dominate urban hubs (e.g., Beijing-Tianjin-
Hebei, Yangtze River Delta), correlating strongly with population 
density and private vehicle proliferation (9.3% annual growth) (Wang 
et al., 2023). Conversely, agricultural emissions cluster in the North 
China Plain, linked to intensive farming practices, whereas energy-
dependent northern provinces (e.g., Shanxi) face elevated residential 
emissions from coal-reliant heating systems. These patterns 
emphasized the coupling between urbanization and carbon intensity, 
underscoring the need for spatially differentiated policies to address 

FIGURE 10

Carbon emission, GDP, ACCP for resource dependent cluster.
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sectoral and regional imbalances. Notably, in key Chinese metropolises 
like Beijing, Shanghai, Guangzhou, and Shenzhen, building CO2 
emission growth remained comparatively low (Jia et al., 2025; Li et al., 
2025; Zhou et al., 2024). In contrast, surrounding regions showed 
faster growth in building CO2 emissions. Several factors explain the 
lower emission growth rates observed in highly developed cities: 
Firstly, economic growth in these cities has stabilized at high levels, 
and urbanization is already advanced, naturally limiting the expansion 
of energy demand. Secondly, these cities have likely implemented 
comprehensive emission reduction policies and technical measures, 
such as developing the renewable energy sector, which effectively curb 
the rise in CO2 emissions (Zhang et al., 2020). In our study, China’s 
carbon emissions exhibited distinct spatiotemporal heterogeneity 
during 1996–2019, characterized by four evolutionary phases (Section 
3.1.2). The surge during 2000–2007 (12.17%/yr) aligns with rapid 
industrialization and urbanization, while the post-2013 decline 
(−1.77%/yr) directly reflects the efficacy of policy interventions such 
as the Air Pollution Prevention and Control Action Plan (2013) and 
renewable energy investments. Spatial autocorrelation analysis 
(Table 2) revealed weakening aggregation patterns after 2015 (Moran’s 
I shifting from positive to negative), indicating increasing regional 
divergence in emission trajectories. This decentralization underscores 
the need for region-specific governance frameworks, as high-emission 
clusters (e.g., Inner Mongolia, Shanxi) persisted due to fossil fuel 
dependency, while coastal provinces (e.g., Jiangsu, Guangdong) 
demonstrated economic growth with moderated emissions through 
industrial upgrading.

4.2 Sectoral drivers and heterogeneous 
responses

Energy and transport sectors dominated post-2008 emissions 
highlighted structural challenges in decarbonizing heavy industry and 
mobility infrastructure. Conversely, food/water emissions declined 
post-2012, attributed to precision agriculture, wastewater treatment 

technologies, and rising environmental awareness (Liu et al., 2024). 
This divergence exemplified a critical insight: While energy/transport 
require systemic transitions (e.g., grid decarbonization, electrification), 
food/water sectors offer a model for rapid mitigation via innovation 
and behavioral change. Spatiotemporal regression (GTWR/SGTWR) 
further quantified regional heterogeneity (Tables 6, 2): Northern 
China showed higher carbon intensity linked to coal-reliant heating 
and energy-intensive industries (e.g., ACCP = 4.45 tCO₂/104 CNY 
GDP in Shanxi). Eastern coastal cities (e.g., Shanghai) achieved 
emission decoupling through service-sector dominance (>80% 
tertiary industry) and clean energy adoption. Western regions 
exhibited lower emissions but faced ecological constraints (e.g., 
riverine CO₂ fluxes), necessitating nature-based solutions (Han 
et al., 2024).

4.3 Regional clustering and emission 
reduction path

Provincial emission trajectories are profoundly shaped by energy 
mix and industrial restructuring. Resource-dependent regions (e.g., 
Shanxi, Inner Mongolia), where coal dominates (>70% of energy 
consumption), exhibit the highest carbon intensity (ACCP = 4.45 
tCO₂/104 CNY GDP in 2019) and sluggish post-policy mitigation 
(ΔTCE = 3.54%, 2012–2019), reflecting structural inertia in fossil 
fuel-reliant economies (Chen and Lu, 2023). In contrast, low-carbon 
exemplars (e.g., Beijing, Shanghai) achieved emission decoupling 
(ΔTCE = −0.06%) through service-sector expansion (>80% tertiary 
industry) and clean energy adoption (>14% non-fossil share), 
validating the efficacy of “service-led decarbonization” strategies 
(Xiang et al., 2024; Wu and Zhang, 2024). However, typical growth 
provinces (e.g., Anhui, Heilongjiang) struggle with industrial path 
dependency, as secondary industries (>45% GDP share) and slow 
ACCP declines (−4.6% annually) sustain emission growth 
(ΔTCE = 1.73%) (Wang et al., 2018). These findings echo Wang, who 
stressed the role of energy transitions in breaking carbon lock-ins, 
advocating for renewable integration in coal-dependent regions and 
green financing to accelerate digital-industrial transitions in emerging 
economies. Such tailored approaches are critical to aligning regional 
pathways with China’s “dual carbon” goals (Zan et al., 2024). Based on 
cluster-specific traits, we  propose actionable policies: Resource-
Dependent (e.g., Shanxi): Deploy CCUS in coal plants; hybrid wind-
PV-hydrogen infrastructures. Ecological compensation for mining 
areas (e.g., Inner Mongolia’s grassland restoration). Rapid Growth 
(e.g., Guangdong): Mandate renewable corridors (solar highways); 
green bonds for industrial park retrofits. Carbon tax pilot for high-
emission export industries. Low-Carbon Exemplar (e.g., Shanghai): 
Scale carbon trading to households; EV subsidies via tax credits. 
Export “smart city” decarbonization models to ASEAN. Typical 
Growth (e.g., Anhui): Biomass co-firing subsidies for coal plants; skills 
training for green jobs.

This study reveals the evolution path of carbon emissions in four 
provinces through spatial clustering (Table  7). This typology 
underscores the spatial and structural heterogeneity of emission 
pathways, where rapidly industrializing provinces (e.g., Jiangsu, 
Guangdong) require prioritized investments in smart grids and 
renewable energy integration to decouple economic growth from 
carbon intensity, while resource-dependent regions (e.g., Shanxi, 

TABLE 6  Variable definitions.

Variable Definition Unit Source

TCE
Total Carbon 

Emissions
Mt CO₂ CEADs (2023)

ACCP
Avg. Carbon Cost 

of Production

tCO₂/104 CNY 

GDP

Calculated 

(GDP/TCE)

GDP
Gross Domestic 

Product
104 CNY

China 

Statistical 

Yearbook

Food Emissions

CO₂ from 

agricultural 

production

Mt CO₂

IPCC 

Guidelines 

(2001–2020)

Energy 

Emissions

CO₂ from fossil fuel 

combustion
Mt CO₂

China Energy 

Statistical 

Yearbook

Moran’s I

Spatial 

autocorrelation 

index

Dimensionless
Calculated via 

ArcGis
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Inner Mongolia) demand accelerated transitions to clean energy 
systems, such as CCUS and hybrid wind-PV-hydrogen infrastructures 
(Sikarwar et  al., 2024; Song et  al., 2019). Resource-dependent 
provinces can establish a “coal-new energy” hybrid power generation 
system, and support a carbon market trading mechanism; 
low-emission demonstration areas can further promote the carbon 
inclusive system and encourage public participation. Low-carbon 
exemplars (e.g., Beijing, Shanghai) exemplify the efficacy of service-
sector dominance and policy-driven innovation, yet their success 
highlights the need for scaling carbon-inclusive mechanisms to 
incentivize public participation in broader regions (Lou et al., 2014). 
Meanwhile, typical growth clusters face structural inertia, necessitating 
green financing to overcome industrial lock-ins and adopt biomass 
solutions (Gopikrishnan and Kuttippurath, 2025; Liu et al., 2025). 
Different regions face different challenges in policy implementation: 
the eastern region has obvious advantages in capital and technology, 
but the marginal cost of emission reduction is rising; the western 
region needs to overcome the problems of insufficient funds and 
shortage of technical personnel. It is recommended to support its 
low-carbon transformation through cross-regional cooperation and 
transfer payment mechanisms. By aligning policies with cluster-
specific challenges and opportunities, this model not only enhances 
the precision of urban decarbonization but also advances China’s dual 
carbon goals through spatially adaptive governance, balancing 
economic resilience with emission reduction imperatives.

5 Limitations and future directions

While this study provides a comprehensive analysis of China’s 
provincial CO₂ emissions, several limitations warrant 
acknowledgment. First, data constraints (exclusion of Tibet, Hong 
Kong, and Macao due to missing data) may affect the completeness of 
spatial patterns. Second, the reliance on production-based accounting 
omits embodied carbon in interprovincial trade and consumption, 
potentially underestimating emissions in highly industrialized or 
consumer regions. Third, the clustering methodology, though robust, 
captures trajectories only up to 2019; post-pandemic economic shifts 
and recent policy accelerations (e.g., renewable energy investments 
post-2020) necessitate temporal extensions. Finally, the GTWR/
SGTWR models, while accounting for spatiotemporal heterogeneity, 
do not fully integrate micro-scale urban dynamics (e.g., building-level 

energy use) or behavioral factors influencing residential/transport 
emissions. Future research should: Adopt consumption-based 
accounting to quantify cross-regional carbon flows and allocate 
emission responsibilities more equitably. Develop integrated 
assessment models coupling socioeconomic scenarios (e.g., population 
aging, green tech diffusion) with climate targets. Explore technological 
pathways (e.g., hydrogen adoption in Resource-Dependent clusters) 
via techno-economic optimization. Addressing these gaps will 
enhance the granularity of regional decarbonization strategies and 
better align China’s “dual carbon” goals with global climate 
governance frameworks.

6 Conclusion

This study pioneers a DTW-AHC-GTWR framework to decode 
China’s provincial carbon trajectories. Key advances: (1) Dynamic 
clustering: Identified four emission clusters via ACCP-augmented 
paths, overcoming static K-means limitations. (2) Spatio-temporal 
tipping point: Empirically validated 2015 as Moran’s I transition year 
(positive→negative), demanding region-specific governance. (3) 
Sectoral decoupling evidence: Tech-driven declines in food/water 
emissions post-2016 contrast energy/transport inertia, offering rapid 
mitigation templates. Policy integration leverages these insights: (1) 
Resource-Dependent clusters prioritize CCUS-infrastructure hybrids. 
(2) Rapid Growth zones embed renewables in urban planning. (3) 
Limitations (e.g., Tibet data gaps) guide future remote-sensing 
validation. This reframes ‘dual carbon’ policies beyond aggregate 
targets, prioritizing spatial diversification through carbon-efficient 
pathways. Only by formulating corresponding strategies based on the 
characteristics and trends of each city can we effectively drive carbon 
peak actions at the city level and contribute to the nationwide carbon 
neutrality goals.
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