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Assessing the limitations of
commercial sensors and models
for supporting marine carbon
dioxide removal monitoring: a
case study

Tristen Stewart?, Peter Regier*, Kyle E. Hinson?,
Carolina Torres Sanchez?, Quinn Mackay?, Nicholas D. Ward*?
and Jessica N. Cross?

!Coastal Sciences Division, Pacific Northwest National Laboratory, Sequim, WA, United States, ?School
of Oceanography, University of Washington, Seattle, WA, United States

Several unknowns remain surrounding marine Carbon Dioxide Removal (mCDR)
monitoring, reporting, and verification (MRV) practices and capabilities. Current
in-situ sensor technology is limited (primarily pH and pCO,), requiring calculations
and assumptions to estimate changes in carbonate chemistry parameters,
including total alkalinity (TA). Considering that cost, energy consumption, and
accuracy of commercial sensors can vary by orders of magnitude, understanding
how well existing sensors perform in an mMCDR context is important for this
emerging community. Likewise, documenting sensor limitations and how relatively
simple models can optimize sensor deployments will improve MRV efforts and
support protocol development. Here we (1) compare performance a variety of
commercially available sensors in a blind mesocosm experiment simulating ocean
alkalinity enhancement (OAE), and how sensor performance impacted carbonate
chemistry estimates; (2) evaluate if sensors can distinguish the OAE signal from
natural variability during a small scale OAE field test in Sequim Bay, WA, USA, and
(3) use an idealized ocean biogeochemistry model to explore optimal sensor
network design based on (1) and (2). Our mesocosm results indicate that correctly
constraining pH uncertainty will be critical for accurate TA estimates with current
sensor technology compared to the less impactful variation caused by uncertainty
in pCO, (pH data that are presented throughout are reported on the total scale
(pH7) unless otherwise noted). Our pilot field test demonstrated that sensors were
capable of distinguishing mCDR signatures from natural variability under optimal
real-world conditions. Idealized modeling simulations of the field test showed
that a range of sparse and dense (3 to 100) sensors sampling areas of detectable
increases will underestimate the net change in surface pH by at least 35-55%,
at both realistic and highly elevated alkalinity input levels. We also highlight the
limitations of current sensing technology for MRV, and the importance of ocean
biogeochemistry models as critical tools for predicting when and where mCDR
signals will be detectable using available sensors. Overall, our findings suggest
that commercially available pCO, sensors and some pH sensors will form an
important backbone for mCDR MRV tasks, though complete MRV characterization
will require these data to be used in combination with other tools.
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1 Background/introduction

Marine carbon dioxide removal (mCDR) comprises a collection
of techniques designed to durably store (>100 years) atmospheric
carbon dioxide (CO,) in marine settings and/or directly capture CO,
from seawater. Establishing mCDR carbon markets and understanding
potential environmental impacts will require both advancing mCDR
technologies to field deployment scales as well as refining monitoring,
reporting, and verification (MRV) protocols that rely on both
measurements and models.

Ocean alkalinity enhancement (OAE) facilitates the oceanic
uptake of atmospheric CO, through the addition of alkalinity that can
be generated electrochemically or through the addition of minerals
like olivine and calcite (Renforth and Henderson, 2017). Mineral-
based alkalinity generation enhances natural weathering cycles by
returning ground minerals to the ocean to release alkaline molecules
as they dissolve; this enhanced mineral weathering for CO,
sequestration is being assessed for coastal and open ocean applications
(Feng et al., 2017; Ilyina et al., 2013; Kéhler et al., 2010; Meysman and
Montserrat, 2017; Montserrat et al., 2017). While alkaline rocks are
readily abundant on Earth, logistical constraints related to mining,
transportation, and milling large quantities of minerals to an
appropriate grain size represent unresolved hurdles that may limit the
extent of CO, removal from the overall process (Rau et al., 2007). By
contrast, electrochemical methods (e.g., electrolysis, electrodialysis)
can be used to produce aqueous hydroxides, including sodium
hydroxide (NaOH), directly from seawater (Eisaman et al., 2012;
Eisaman, 2024; Lannoy et al., 2018). The alkaline solution can then
be returned to the ocean, thereby shifting the carbonate system and
allowing for the uptake of atmospheric CO,. The byproduct of this
OAE approach is dilute acid removed from seawater, generally in the
form of HCI (Eisaman, 2024), which can be used for a variety of
potential applications such as replacing industrially-produced acids
(Ferella et al., 2025). While electrodialysis-based mCDR trials remain
in their early stages, field sites and research centers are emerging (Burt
et al., 2024), especially given the high potential scalability and
durability of carbon stored (Agbo et al., 2024; Cross et al., 2023).
Accordingly, this case study focused on electrochemically generated
NaOH from a bipolar membrane electrodialysis system (Lannoy et al.,
2018; Savoie et al., 2025).

Despite the theoretical promise of OAE, the early stages of MRV
development will be critical for OAE research, environmental impact
monitoring, and ultimately, for markets (Doney et al., 2024; Ho et al,,
2023). Monitoring mCDR will be needed to quantify the additional
removal of CO, outside of a baseline scenario (Doney et al., 2024),
regardless of the scale of deployment. However, there are currently
numerous unknowns relating to monitoring and a need for established
MRYV protocols (Duke et al., 2023; Oschlies et al., 2023). The majority
of MRV frameworks for OAE suggest the need for marine carbonate
system data and improvements to sensors and ocean biogeochemical
models (Bresnahan et al., 2023; Briciu-Burghina et al., 2023; Duke
etal, 2023; Wang et al., 2019) including the development of a strong
monitoring program (Cross et al., 2023; Oschlies et al., 2023).

Effectively measuring OAE to meet MRV requirements for a
viable carbon market requires the ability to constrain observed
changes in carbonate chemistry. This can be accomplished by directly
measuring the impacts of marine carbonate system parameters,
including total alkalinity (TA) and dissolved inorganic carbon (DIC),
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to constrain the uptake efficiency of atmospheric CO, To adequately
capture changes in the marine carbonate system and the associated
environment driven by mCDR interventions, a combination of
monitoring methods that capture these responses at relevant spatial
and temporal scales will be required. At a minimum, this will likely
include in-situ water monitoring using autonomous sensors and
biogeochemical modeling. However, both TA and DIC are currently
only measurable in a laboratory setting, limiting the temporal and
spatial resolution of measurements. It should be noted that a few
in-situ alkalinity sensors are in development, but are typically not as
mature or commercially available compared to the other sensors
discussed here (Briggs et al., 2017, 2020; Shangguan et al., 2021).
Alternatively, commercially available in-situ sensors for monitoring
the partial pressure of CO, (pCO,) and pH can help constrain the
marine carbonate system. Although this approach enables high-
frequency data collection, the estimates of marine carbonate chemistry
from these sensor measurements typically carry substantial
uncertainty and may therefore be inadequate for capturing changes in
TA due to mCDR interventions in coastal systems. Numerical
simulations are therefore likely also required for the development and
refinement of mCDR MRV procedures (Ho et al., 2023). Monitoring
will likely rely heavily on biogeochemical models and mixing zone
models to adequately predict CO, removal and environmental
implications (Fennel et al., 2023; Ho et al., 2023). Well-validated
models can be used to inform monitoring gaps, predict responses
from OAE applications, and aid in understanding environmental
changes in relation to OAE deployments.

Several unknowns remain around field trials and deployment-
scale applications of mCDR (Cyronak et al, 2023), including
monitoring limitations, sensor performance, and energy consumption
needs. While previous work has summarized available marine sensors
(Briciu-Burghina et al., 2023) and sensor technology for ocean
acidification (OA) research (Martz et al., 2015; Sastri et al., 2019),
limited research has been conducted on sensor performance under
mCDR scenarios. Additionally, some research has explored a range of
renewable energy sources, including marine energy (e.g., wave or
tidal), that may be feasible for either powering mCDR itself or the
tools used for MRV (Cotter et al., 2021; Niffenegger et al., 2023).
Considering the goal of mCDR is net CO, uptake, the energy
consumption and carbon footprint for all steps of the process must
be considered, including the measurements we make to evaluate an
intervention’s effectiveness.

This study explores how commercially available pCO, and pH
sensors and modeling can be used effectively for monitoring the
efficacy of mCDR in dynamic coastal environments. We first
conducted a blind mesocosm experiment (sensors not explicitly
identified) to assess sensor performance and power consumption in a
closed system, and establish relationships between sensor performance
and estimates of marine carbonate chemistry uncertainty. We next
conducted a field test as a proof-of-concept study to assess the
detection limits of current sensor technology from point source
interventions in real-world conditions within a complex coastal
ecosystem. Finally, we used sensor performance metrics from the
mesocosm experiment and release metrics from the field test to
parameterize an idealized model. These model results were used to
guide potential sensor deployments and better quantify sensor
limitations and the ability to capture the efficiency and impacts of
OAE in a small coastal environment.
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2 Methods
2.1 Site description

This case study focuses on Sequim Bay (WA, United States).
Sequim Bay is a semi-enclosed tidally influenced basin in the Greater
Puget Sound. The study was based out of the Pacific Northwest
National Laboratory (PNNL)’s Sequim campus (PNNL-Sequim,
Figure 1A) in western Washington state. PNNL-Sequim laboratories
are situated along the Sequim Bay shoreline and are plumbed with raw
and filtered seawater that is pumped directly from the Bay. Ambient
Sequim Bay seawater and environmental conditions were utilized
throughout the mesocosm experiment, field test, and modeling study
(sections 2.2, 2.3, and 2.4, respectively).

Sequim Bay is a fjord-like tidally influenced semi-enclosed basin
in the Pacific Northwest with a single narrow inlet at the northernmost
point of the bay (Figure 1A). It has minimal freshwater influence and
flushes at an approximate rate of once every 10 days (Khangaonkar
et al,, 2024). Tidal exchange in Sequim Bay averages ~2.5 m but can
increase to more than 3 m during peak spring tides that result in tidal
currents that can reach 2 m s™'. Temperature and salinity in the Bay
vary annually, and range between 29 and 32 PSU and 6-12 °C,
respectively. Values for pHygs generally range from 7.6 to 8.3,
depending on time of year and tidal conditions (Jones et al., 2025).

The mixing and dilution controls relating to alkalinity
enhancement have been previously modeled in Sequim Bay
(Khangaonkar et al., 2024). Sequim Bay is a unique location for testing
point source release OAE due to its narrow inlet and high tidal
currents that can potentially act to spread an alkaline plume over a
large surface area, thereby increasing contact with the atmosphere.
However, these rapid currents do not guarantee any confinement of
elevated alkaline water at the surface, which poses challenges for
determining the timing and location of an ideal release point.

2.2 Mesocosm sensors experiment

We conducted a mesocosm experiment to assess the performance
of five commercially available pH sensors (Sunburst iSAMI, Seabird
HydroCAT, Idronaut OS315, Yellow Springs Instruments (YSI) EXO2,
and YSI ProDSS) and two commercially available pCO, sensors

10.3389/fclim.2025.1649723

(Turner C-Sense and Batelle MAPCO,/ASVCO,) for monitoring
alkalinity releases in coastal marine waters (Table 1). PNNLs policy
prohibits endorsement of commercial products; therefore, sensor
manufacturers will not be explicitly linked to a specific sensor-
measured data set in the mesocosm experiment. The sensors in the
mesocosm experiment will be referred to as Sensors 1-5 from this
point forward (Table 1). A 4000 L mesocosm tank was filled with raw
Sequim Bay seawater and mixed continuously by two submersible
bilge pumps placed in the tank on opposite ends (Figure 1B). All
sensors were placed in the tank prior to the atmospheric
pre-equilibration period and located in the same area within the tank.
Atmospheric pre-equilibration of Sequim Bay seawater in the tank
lasted 5 days before starting the experiment, allowing the sensors’
response to tank water to stabilize. Alkalinity (9.03 L of 0.5 M NaOH)
was then added to the tank as a single dose, which was monitored for
28 days, until it reached near atmospheric equilibration in terms of
pCO, values. After the 28 day, the sensors were removed and all data
were exported for analysis.

All pH sensors across all experiments were calibrated to
manufacturer specifications before and after deployment. pH Sensor
4 was calibrated with Tris buffer solution, in artificial seawater of
salinity 35 [acquired from the Scripps Institution of Oceanography (La
Jolla, CA, United States)], per manufacturer recommendations and
measured pH on the total scale (pHr). Sensor 3 was factory calibrated
and measured pH on the total scale. All other pH sensors, measuring
pH on the NBS scale (pHygs), were calibrated using a three-point
calibration with National Institute of Standards and Technology
(NIST) low ionic strength buffers at pH 4, 7, and 10. Pre and post-
calibration values were compared to assess drift in sensor calibrations
over the course of the experiment. All pH sensors were set to log at
hourly intervals for the mesocosm experiment, with the exception of
a hand-held sensor, which we used to measure pH twice daily during
weekdays. Additionally, all pH sensor data not measured in pHy were
converted to the total scale following methods outlined by the seacarb
R package (Gattuso et al., 2024) by first converting to seawater scale
(SWS), then converting to total scale, and will be presented throughout
the manuscript as pHr, unless otherwise stated. One pCO, sensor had
a continuous gas reference and did not require calibration, while the
other sensors’ response was calibrated against a 411 ppm CO,
reference gas standard prior to the experiment. The pCO, sensors were
set to log at 3-h intervals during the mesocosm experiment.

© Outfall & Sensors

FIGURE 1

(A) Map of Sequim Bay channel and PNNL-Sequim. (B) Laboratory mesocosm used for both the sensor experiment and for the field experiment.
(C) Deployment of YSI EXO2 pH sensor 15-20 cm from outfall pipes in the Sequim Bay channel.
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TABLE 1 Sensors used in the mesocosm experiment, including their estimated cost, relative accuracy based on mesocosm measurements (based on
differences from Sensor 4, which was used as the reference), stability based on variance in hourly mesocosm measurements during the end of the
experiment when values were most stable, and estimated power consumption.

Sensors used to measure pH during the alkalinity addition experiment

Sensor Est. Measured Measured Est. power Max Response Measurement
number cost accuracy stability consumption Sampling Time Range (pH-)
Rate

Sensor 1 $$$ 0.04 0.010 80 mW* 1s 3s 0-14

Sensor 2 $$$ 0.04 0.005 170 mW*#* 6 min not provided 0-14

Sensor 3 $$ 0.07 0.113 100 mW#* 15 min 3 min 7-9

Sensor 4 $$$ reference 0.016 2,500 mW#* <ls 3s 0-14

Sensor 5 $$ 0.09 0.015 not provided 1s 3s 0-14

$$ =5-10 k (USD), $$$ = 10-20 k (USD), *measured, **estimated from manual. Max sampling rate, measurement range, and sensor response time were collected from sensor specification
sheets. The sampling rate may exceed the sensor response time for some sensors as they are multiparameter sondes. Sensors in the mesocosm experiment were all set to log at 1-h frequencies.

All values in the table are referencing the pH Total scale.

To provide a ground truth for pH measurements, discrete samples
for DIC and TA were collected daily in 250 mL glass bottles from the
mesocosm tank, referencing methods from Dickson et al., 2007.
Samples were preserved with 100 pL of HgCl, and analyzed via an
Apollo SciTech Total Alkalinity Titrator (AS-ALK3) and Dissolved
Inorganic Carbon Analyzer (AS-C6L), referenced against certified
reference materials (CRMs). CRMs were run before and after TA and
DIC sample analysis, resulting in a precision of + 1 pmol kg™' for both
parameters. pHy was then calculated from the DIC and TA samples
using the seacarb R package (Gattuso et al., 2024) referencing K1 and
K2 dissociation constants from Lucker et al., 2000. The bisulfate
dissociation constant from Dickson (1990) and total boron from
Uppstrom (1974) were also used in the pHr calculations.

2.3 Field test: Sequim Bay release

To test if alkalinity additions could be detected under real-world
conditions and distinguished from natural variability, we conducted
an alkalinity release from the PNNL-Sequim wastewater treatment
facility’s outfall into Sequim Bay on February 7, 2025 (Figures 1A,C).
(In this context, we use the term “test” deliberately: test deployments
assess a single component or mechanism that is part of a larger
technology or technical system, as here we test the capability of a
particular sensor deployment configuration to detect discharge. A
field trial, by contrast, is a rigorous performance evaluation of a well-
established and previously demonstrated technology or technical
system. A field trial would comprise a much longer and larger study
across a series of discharges than was conducted by this study.) The
same tank used in the mesocosm experiment was filled and
maintained at a constant level with flowing raw seawater that was
dosed with 0.5 M NaOH via a peristaltic pump at a rate that could
maintain a pHygs < 9.0 (as listed in NPDES permits). The outlet of the
tank was plumbed into a wastewater treatment system where the pH
was monitored and confirmed not to exceed a pHygs of approximately
9 (~8.9 pHy) to maintain compliance with wastewater treatment
facility discharge permits. The wastewater treatment system consisted
of four cells that were sequentially filled with the effluent from the
mesocosm experimental tank that connected to an outfall pipe in
Sequim Bay. A total volume of 381 L (251 mol) of NaOH was diluted
with ~180,000 L of ambient seawater, which was released from the
outfall in four pulses, each separated by an hour, for a total of 8 h.
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Average flow conditions characterized by a ~ 2.5 m tidal exchange
were observed during the release period, which allowed for a
representative assessment of detection limits in this region.

‘We monitored the response in Sequim Bay to our pilot alkalinity
release using a YSI EXO2 Sonde pH sensor attached directly to the
outfall approximately 15-20 cm from the pipes (Figure 1C). The
sensor was calibrated before and after deployment to the
manufacturer’s recommendations, via the same methods listed in
Section 2.2 for a three-point calibration, to account for drift and verify
accuracy. The EXO sensor was installed 3 days before the release and
recovered 9 days after the release. These data and a complete
description of the field test methods are described by Savoie et al., 2025.

2.4 ldealized modeling experiments

We developed a simplified model based on Sequim Bay to explore
the capabilities of multiple sensors to inform MRV efforts in a relevant
coastal environment. These model scenarios were designed to quantify
the MRV capabilities of commercially available sensors by
incorporating (a) sensor performance metrics from the mesocosm
experiment (Section 2.2) and (b) a similar-scale alkalinity release to
the field test (Section 2.3). Averaged model outputs over a region of a
detectable plume area were compared to model outputs sampled at
discrete locations within said plume, mimicking the deployment of
commercial sensors. This analysis provided a framework for assessing
sensor capabilities to capture dilution and advection of an alkalinity
release in a simplified channel that mirrors our field test environment.

The idealized model was developed within the Regional Ocean
Modeling System (ROMS) framework (Shchepetkin and McWilliams,
2005) based on the marine carbonate system characteristics that roughly
correspond to average Sequim Bay conditions (Figure 2). The idealized
domain was developed with sloping boundaries in the across-channel
direction and a maximum depth of 40 m to generally represent this type
of coastal environment (Figure 2). This model grid has an average
horizontal spatial resolution of ~60 m, an open boundary at the
northern end of the simplified domain, a diurnally varying wind equal
to+2 m s~ in the across-channel direction and + 0.5 m s™" in the along-
channel direction, and a regular tidal exchange of 3.5m that is
representative of regional tidal dynamics. Model outputs were saved
every 2 h, and the barotropic time step was set to 20 s. Biogeochemical
processes in this model are simplified and essentially contain only
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FIGURE 2
(B) Along channel slice of model temperature.

Sequim Bay, WA, idealized model domain with sloping walls and a maximum depth of 40 meters. (A) Plan view of surface salinity, constant with depth.
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variables necessary for marine carbonate chemistry (i.e., model state
variables include carbonate (CO,*7), bicarbonate (HCO;~), and total
alkalinity (TA)). Total alkalinity is represented as carbonate alkalinity
(computed as the sum of CO;*” and HCO;") and is permitted to
equilibrate with a constant atmospheric CO, concentration of 422.5 ppm
according to a standard ROMS subroutine (Fennel et al., 2008).

The model was initialized from rest with a latitudinal salinity
gradient and a vertical temperature gradient representative of average
Sequim Bay conditions (29-32 PSU and 6-12 °C, respectively, Figure 2).
Vertically varying biogeochemical values (higher at the surface, lower
at the bottom) were applied throughout the domain at the initial time
step (DIC = 2,110-2,350 pmol kg™', HCO;~, = 1800-2000 pmol kg™,
CO;* =158-176 pmol kg™, TA =2,250 pmol kg™'). 'These initial
conditions were mirrored by the same constant open boundary
conditions throughout the simulation. Two baseline simulations, with
and without tidal exchanges, were first conducted over a period of
31 days to quantify the influence of open boundary changes on DIC and
TA (S=32, T=9°C). The closed boundary baseline experiment
(‘Baseline Closed;, Table 2), while unrealistic in a marine system,
essentially provides an upper limit on the capabilities of sensors to track
changes to DIC and TA in a given domain and demonstrates the impact
of natural variability in this region. Because the ‘Baseline Open’
experiment added no alkalinity, all changes to inorganic carbon in the
model domain can be attributed to exchange processes with the open
boundary (constant average DIC of 2,233 pmol kg™).

Several modeling experiments were also conducted that increased
alkalinity in a manner designed to simulate the addition of alkalinity in
the SBR field test and explore the range of sensor sensitivities to increased
fluxes. A surface flux of carbonate (CO,*") was injected into the center
grid cell of the model domain over a period of 8 h, equaling the total
applied in the SBR field test (1x, Table 2) for both a model domain with
closed boundaries (Alk Closed’) and one with a single open boundary

Frontiers in Climate

TABLE 2 Model experimental scenarios and descriptions.

Experiment n open Alkalinity Added
boundaries (mol m=2s7?)

Baseline closed 0 0

Baseline open 1 0

Alk closed 0 SBR field test Amt., 2x,
5x, 10x, 20x, 50x, 100x

Alk open 1 SBR field test Amt., 2x,
5x, 10x, 20x, 50x, 100x

Alkalinity release amounts are based on the Sequim Bay field test discharge (251 mols
alkalinity) and were increasingly scaled within both a closed model domain and open
domain representative of a coastal inlet.

(‘Alk Oper’). Additional alkalinity scenarios for the open and closed
modeling domains were also conducted, where alkalinity was increased
between two (2x) and one hundred times (100x) the amount of the SBR
field test (251 mols of Alkalinity). While the closed boundary simulations
are an unrealistic scenario for a marine system, they still present an
opportunity to explore a hypothetical maximum limit on the ability of
sensors to detect changes in the marine carbonate system that would
be otherwise advected away or flushed through tidal mixing and
currents. Values of pH; were computed using PyCO,SYS (Humphreys
etal,, 2025) to represent the sampling capabilities of multiple sensors for
a plume in the idealized domain. Sampling bias was calculated by first
taking the difference in mean pHr (converted to [H+]) between
alkalinity addition and baseline simulations, calculated for a specified
number of stations (ranging from 3 to 100) and all available model cells.
However, the average difference in modeled pH; between the baseline
simulation and an alkalinity addition was spatially limited to only
include model cells where the pH; change would be detectable at any

frontiersin.org


https://doi.org/10.3389/fclim.2025.1649723
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org

Stewart et al.

point throughout the course of the simulation (A pHy > 0.01). Therefore,
this bias calculation is constrained to only include areas of potentially
detectable signals, which will likely remain uncertain prior to real-world
alkalinity additions. After calculating the spatially limited differences
between sampled cells and modeled cells versus a baseline (ASample and
AModel), we calculated the percentage difference between ASample and
AModel to determine the proportion of the pH; signal that was capable
of being captured by the sampling regime. Underestimates and
overestimates of the captured signal are presented as negative and
positive percentages, respectively. The positions of selected sampling
points were randomly chosen in this subset of the model domain without
replacement 10,000 times to more thoroughly evaluate possible surface
sampling outcomes, with average changes and their associated standard
errors computed for each sensor/alkalinity addition combination.

10.3389/fclim.2025.1649723

technologies that can be relatively easily deployed in coastal systems.
The pH sensors described encompass a wide range of manufacturer-
reported accuracies and can be broken down broadly into two
categories: ion-selective electrode (ISE)-based sensors, spanning
accuracies from 0.01-0.2 pH (NBS scale), and colorimetric/
spectrophotometric sensors with accuracies of < 0.01 pH (total scale).
We observed general correspondence between accuracy and estimated
cost, where sensors with lower accuracy were generally less expensive,
although we note that estimated costs often included platforms (e.g.,
sondes, external batteries) as opposed to just the pH probe itself. All
pCO, sensors included in Table 3 use the same measurement principle
for quantifying gaseous pCO, (infrared (IR) absorption). However,
they vary in terms of how CO, gas is extracted from water (e.g., gas
permeable membranes vs. active equilibration) and how frequently

calibrations are performed (e.g., prior to deployment vs. onboard span
gas used to calibrate before each measurement). Similar to pH sensors,
3 Results differences in cost often relate to the equipment necessary for proper
operation of the sensor, including internal calibration capabilities and
3.1 Case study: commercial sensor

evaluation and mesocosm tests

pumped heads for membrane-based sensors. On average, pCO,
sensors cost more and have a wider range of accuracy compared to
pH sensors.

We first compare the specifications of 11 different commercially We conducted a mesocosm alkalinity addition experiment to

available pH sensors and eight pCO, sensors (Table 3), focusing on  directly compare the performance of pH and pCO, sensors available

TABLE 3 Summary of commercially available in-situ sensors for monitoring mCDR applications in coastal marine systems.

Selected sensors for measuring pH and pCO, relevant to mCDR

Measurement Cost range
Parameter Brand Model Accuracy technology* (USD)**
Eureka Manta 0.1 NBS scale ISE $
HydroLab HL7 0.2 NBS scale ISE $
Idronaut 08315 0.01 total scale ISE $$
In-Situ AquaTROLL 0.1 NBS scale ISE $
NKE WiMO 0.1 NBS scale ISE $$
Onset MX2501 0.1 NBS scale ISE $
RBR Maestro 0.01NBS scale ISE $$$
P Seabird HydroCAT 0.1 NBS scale ISE $$$
YSI EXO 0.1 NBS scale ISE $$
Seabird SeaFET V2 0.05 total scale ISE $$
Seabird SeapHOx V2 0.05 total scale ISE $$$$
Sunburst iSAMI 0.01 total scale spectrophotometric $
Sensor Lab SP200-SM 0.005 total scale spectrophotometric ok
Clearwater High Accuracy pH 0.004 total scale spectrophotometric $$$$
Battelle MAPCO,/ASVCO, IR absorption *kok
CONTROS Hydro C-CO, 0.50% IR absorption $$$
Dakunalytics Burkolator 0.2% (TCO,) 2% (pCO,) IR absorption $$$$
General Oceanics 8,060 0.5% at 400 ppm IR absorption $$$$
peo: Pro-Oceanus CO,-pro 0.50% IR absorption $$$
Sunburst SAMI-CO, 0.50-1.5% IR absorption $$$
Sea & Sun AMT CO, 1-5% IR absorption ok
Turner C-Sense 3% of full scale IR absorption $

*ISE = Ion-selective electrode, IR = Infrared. **$ = <10 k, $$ = 10-20 k, $$$ = 20-30 k, $$$$ = > 30 k. ***quote not available.

sensor specification sheets.
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for our specific application. To do this, we deployed a subset of the
sensors (Table 3), including five pH sensors capable of being deployed
in-situ in coastal waters and two pCO, sensors, representing a range
of costs (Table 1). All sensors detected similar responses to the
alkalinity addition and subsequent re-equilibration period over the
course of the 28-day experiment, but some performed better than
others (Figure 3). The initial spike in pHy was detected by all sensors
except Sensor 5, which had a delayed and decreased detection of the
maximum extent, at least partially explained by a slower sampling rate
relative to the other sensors (Figure 3A; Table 1). Sensors 3 and 5 had
the greatest variability in pHy during the least variable period, finding
a change of roughly 0.07 and 0.09 pHy, respectively. Additionally,
Sensor 3 showed the most variability during the experiment
(Figure 3A). The pCO, sensors had similar performance, with an
average offset of 36 ppm (12% of benchtop sensor value) between the
two sensors throughout the experiment. Offsets were the lowest
immediately after alkalinity addition and increased as the experiment
progressed (Figure 3B). The differences in pCO, values between the
two pCO, sensors is likely due to autocalibration protocols unique to
one sensor and the limited flow across the membrane of the other

10.3389/fclim.2025.1649723

sensor, which would slow equilibration and result in consistently
lower pCO, values, as was observed. To understand the deviation
between each sensor and our reference sensor (Sensor 4, Table 1)
during the experiment, we calculated point-by-point differences
(Figure 3C). With the exception of one point for Sensor 5 showing a
difference of > 1 pHy during the period of largest change (e.g., the
alkalinity addition), all sensors generally clustered near a difference of
0 with no clear temporal trends. We also plotted the linear relationship
between pHy measured by Sensor 4 and pHr calculated using seacarb
and TA and DIC samples measured in the lab (Figure 3D).
We observed strong linearity and clustering around the 1:1 line, with
an R? 0f 0.982 and an RMSE of 0.037 (or <1% of pHy = 9).

We estimated sensor accuracy and resolution based on data in
Figure 3, Table 1. We selected one sensor (Sensor 4) to be our reference
sensor for calculating measured accuracy as it had the highest
manufacturer-listed accuracy (0.01 pHr), showed lower variability
during the experiment, and had a dedicated reference probe (stable
electrical potential to which the measuring electrode was compared).
Estimated accuracies (relative to pH measured by Sensor 4) based on
the measurements we collected in our mesocosm experiment were
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FIGURE 3
Time series for (A) pH+ (calculated pH values presented as black dots) and (B) pCO, measured during a 28-day alkalinity addition experiment
conducted in the mesocosm tank shown in Figure 1. (C) We assessed the variance of each sensor relative to the reference pH sensor (Sensor 4) and
(D) the relationship between pH: measured by Sensor 4 and pHr calculated using TA and DIC laboratory measurements. The dashed black line
represents a 1:1 relationship, and in-plot statistics present goodness-of-fit (R* of 0.982) and root-mean-square error (RMSE of 0.037).
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within the ranges reported by manufacturers (Table 3) and match the
pattern that cost generally correlates with accuracy (e.g., lower cost
equates to lower accuracy, Table 1). We observed almost two orders of
magnitude in the range of our estimated sensor resolutions based on
our datasets (Table 1).

To assess energy consumption under an OAE scenario, power
consumption was measured for a subset of sensors used in the
mesocosm experiment, also shown in Table 1. We report either values
that we directly measured during sensor operations or estimates based
on manufacturer-reported power consumption values when we could
not directly measure power consumption without compromising the
sensor. It should also be noted that no power-saving features, such as
sleep modes or intermittent sampling strategies, were employed
during this experiment. Power consumption (power use per day)
varied between sensors by more than an order of magnitude, ranging
from less than 100 mW to more than 2,000 mW (Table 1). While
sensor energy consumption is likely minuscule compared to that of a
given mCDR technology, there are both practical logistical
considerations (e.g., time frame of deployment) and carbon
accounting considerations (e.g., if a very large sensor network is
required). Energy consumption is a particularly important
consideration during remote and/or long-term deployments, where
local offshore power sources, particularly tidal and solar, may be a
primary limitation of sensor deployment length.

To understand how these differences in accuracy between sensors
relate to estimates of marine carbonate chemistry, we conducted a
sensitivity analysis where we set all parameters to assumed defaults
(temperature = 25 °C, salinity = 35 PSU, pCO, = 420 ppm, pHr = 8.0)
and then manipulated either pH or pCO, values to replicate differences
in accuracy represented across the sensors summarized in Table 1. For
pHr, we looked at accuracies ranging from 0.01 to 0.2 (Figure 4A). For
all defaults, seacarb calculates an alkalinity of 2,145 pmol kg™". Using
a pHy sensor accuracy of + 0.01, estimated alkalinity values had a
range of 57 pmol kg ™', with a maximum difference of 1.4% (percentage
of the maximum difference from the default value of 2,145 pmol kg™).
However, for the most common pHr resolution (+ 0.1), we observed
a much larger range (1,107 pmol kg™'), equivalent to a maximum

10.3389/fclim.2025.1649723

difference of 29.4%. For the lowest accuracy represented in Table 3
(0.2) for a pH; sensor, we observed a range of 2,383 pmol kg™,
equivalent to a maximum difference of 71.2% (Figure 4A).

We conducted an equivalent sensitivity analysis where pHy was
held stable at 8.0, but pCO, values were manipulated from 0 to +
20 ppm (approximately 5% of baseline pCO,) at 2 ppm intervals
(Figure 4B). Using a pCO, sensor accuracy of 2 ppm (~0.5% at
420 ppm), estimated alkalinity values had a range of 10 pmol kg™',
with a maximum difference of 0.2%. The lowest accuracy sensor in

-

Table 3 (+ 5%) gave a range of 186 pmol kg™', with a maximum
difference of 4.4%. Ultimately, there is better internal consistency
when calculating the marine carbonate system using pCO, compared
to pHr in this analysis. To understand the combined impacts of the
accuracy of pHy and pCO, sensors on TA estimates, we constructed
an error-space diagram (Figure 4C). Consistent with Figures 4A,B, the
error-space diagram demonstrates that the accuracy of the pH sensor
is considerably more important for reducing uncertainty in alkalinity

estimates than the accuracy of the pCO, sensor.

3.2 Case study: SBR field test

Only a handful of OAE field trials have been conducted to date,
turning a focus toward answering critical monitoring, reporting, and
verification questions. Here, a proof-of-concept test was conducted to
determine if in-situ pH sensors could detect a signal for an alkalinity
release from an outfall into a tidally influenced channel in Sequim Bay;,
WA. Initial results from a YSI EXO2 pH sensor placed directly at the
outfall indicate that, at close proximities, sensors could detect a signal
as all four pulsed releases were detected outside of the range of normal
observed variability (Figures 5A,B). However, the pHr signals detected
(15-20 cm from the outfall) were significantly diluted (~7.8-8.25)
compared to the pHy measured at the end member of the wastewater
treatment system (~8.9).

The baseline pHr conditions prior to the release were between 7.5
and 7.6. Each pHy pulse released from the wastewater treatment
system was detected between 7.8 and 8.3 (Figure 5). The variability
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observed along the baseline prior to and during the first step is likely
due to tidal influence, followed by unmixed freshwater also exiting the
cell during the first release (Figure 5, Panel B). Following the first
release, the pHy signal was observed to drop sharply off after each
release, returning near the baseline almost immediately each time. The
gradual slope, showing an increase in alkalinity during each of the
four releases, is likely because the drainage of the wastewater cells was
faster than the dilution of the system around the sensors (Figure 5).
These sensors performed adequately from a permit compliance
standpoint, verifying that we did not exceed the pHr ~ 8.9 threshold
of our NPDES permit (converted from NPDES permit threshold of
pHues 9.0). However, the sensor performance indicates that
detectability beyond the outfall for carbon accounting purposes is a
much larger challenge. More details about this field test can be found
in Savoie et al., 2025.

3.3 Case study: modeling

A surface flux of alkalinity in the center grid cell of the idealized
model domain was applied to simulate the dilution and detectability
of an alkaline plume under hydrodynamic and tidal conditions
representative of Sequim Bay. At the release level of the Sequim Bay
field test, there were extremely low to no levels of detectable change,
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depending on the use of a 0.01 or 0.001 pHr threshold. Therefore, the
model results for the 100x experiment are plotted to show a larger
areal extent of pHr changes that would have a greater likelihood of
detection (Figure 6). Results from the two baseline experiments
demonstrate that ~10-11% of the apparent signal at the surface of the
domain cannot be captured by pHr sensors with an accuracy of
0.01 units [referencing Sensor 4 manufacturer reported accuracy of
0.01 pHy (Table 1)] with an open boundary after a period of 1 week
due to the effects of vertical and lateral mixing. Subsurface plume
mixing and advection out of the inlet both contributed to continuous
dilution, challenging the coherence of a signal corresponding to
increased pHr (Figure 6). When compared to the full volume of the
idealized domain, tidal exchange irreversibly diluted this signal after
~3 days, and this fraction of alkalinity-enhanced waters exiting the
surface of the model domain steadily increased thereafter for the
remainder of the simulation.

Changes to pHr levels (calculated from modeling results using
PyCO,YS; Humphreys et al., 2025) show that the limits of detectable
changes are confined to a small area near the alkalinity addition point
in the center of the model domain, even at alkalinity release levels 100
times greater than the SBR field test (Figure 6A). For an alkalinity
addition equal to the SBR field test (1x, Table 2), the maximum signal
is undetectable at a 0.01 pHr threshold for the area surrounding the
deployment site over the first 10 days following the alkalinity addition,
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Sequim Bay over the same duration. Note that the color bars and scales differ between panels (A,B).

and only covers an area of approximately 0.11 km? if a 0.001 pHy
threshold is applied instead. As expected, this detectable range
expands as the amount of added alkalinity increases: at 10 times the
SBR field test, the maximum extent of pHr covers an area equal to
~0.11 km?, increasing further to 7.4 km? at 100 times the SBR field test
for a 0.01 pHy threshold. Even with a comprehensive sampling
network of 75 sensors evenly spaced throughout the inlet at regular

Frontiers in Climate

1 km intervals, ~93% of the sampled stations would be unable to
detect a signal in a scaled version of the SBR field test model
experiment (100x) based on current precision levels of market-
available pHy sensors assessed during the mesocosm experiment
(Tables 1, 2).

With an increasing number of sensors, we find that the uncertainty
in capturing the change in the overall pH; signal improves (decreased
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standard error bars), but consistently under-reports the true change
in modeled pHy (Figure 7). With a much larger release of alkalinity
(100x), the number of sensors underestimates the true change in pHr
signal by approximately —35.9 + 18.1% (—0.003 + 0.002 pHy) and
—36.4 £ 0.5% (—0.003 + 3.8E-5 pHy) for the sparsest (3 sensors) and
densest (100 sensors) observational configurations, respectively. This
inability to fully capture the average change in surface pHy is likely due
to imperfect mixing of the change in DIC within the region where
sampling occurs and where any signal is potentially detectable by
sensors (> 0.01 pHy). A fraction of the change to surface alkalinity
that lies below the detection limit will also consequently be lost to
monitoring efforts. At relatively small releases (1x, 2x), 5 sensors are
adequate to fully sample the area that is affected by increased alkalinity
changes within the specified detection limit (> 0.01 pHy). At larger
releases (50x, 100x), a release of 100 sampling sensors will only capture
~5-13% of the total surface pH; change for an area where the
detection limit will meet the specified threshold for a single time step
in the model simulation (increasing to ~14-19% for a pH; threshold
of 0.001). Over time, alkalinity changes are mixed deeper in this
idealized domain, where no air-sea equilibration can occur. This
represents another limitation of capturing the total change in
pHr. Some percentage of this subducted alkalinity eventually is
exchanged with the open boundary, which challenges even the most
comprehensive surface monitoring network that could be deployed in
a small coastal inlet. In model simulations with no open boundaries,
the ability to detect the true signal with surface-only observation
points slightly improves while the standard errors hardly differ (e.g.,
underestimated by 34.7 + 0.4% at 100x the SBR release levels for 100
sensors). These findings are well-aligned with near-field plume
modeling results that suggest the pHr signal will rapidly dissipate

10.3389/fclim.2025.1649723

within several meters of the outfall (Savoie et al., accepted),
highlighting the need to integrate subsurface monitoring assets into
mCDR and MRV applications.

4 Discussion
4.1 Monitoring: sensing

Accurate monitoring, reporting, and verification of mCDR
applications are constrained by our ability to measure impacts at
relevant spatial and temporal scales. This is a difficult task, particularly
in coastal systems, where tidal, diurnal, and seasonal patterns all
influence water chemistry. To better understand our monitoring
limitations, sensors and models need to be assessed in these conditions.

Accurate monitoring of OAE 1is partially limited by the
instruments available to measure parameters with suitable accuracy,
which are currently benchtop instruments that require discrete
samples with sufficient volume and careful sampling procedures to
avoid atmospheric contamination. Alternatively, measurements can
be collected to parameterize the marine carbonate system and then
estimate all other components, including TA and DIC, using popular
packages like CO,YS (Pierrot et al.,, 2021) or the seacarb R package
(Gattuso et al., 2024). These algorithms require measurements for two
of four components: pH, pCO,, TA, and DIC. In-situ pH and pCO,
sensors are the most established to date (Briggs et al., 2020; Briggs
etal, 2017; Byrne et al., 2010; Shangguan et al., 2022; Shangguan et al.,
2021), can measure at high temporal resolutions, and provide an
alternative to the collection of discrete samples. While this approach
allows for a large increase in the frequency of measurements that can
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be collected autonomously, it is also subject to propagation of errors
from sensor accuracy, sensor calibrations, and uncertainty introduced
by estimating marine carbonate chemistry conditions from these
measurements (Miller et al., 2021b; Miller and Kelley, 2021a). Sensors
will need to be carefully selected for a given environment with
consideration given to maximum sampling rates, measurement range,
and sensor response time. For OAE, accurate measurements of TA
and DIC are a current limiting factor: both are required for accurate
accounting of sequestered carbon, and they are spatiotemporally
variable with limited reliable in-situ sensing solutions available
for either (Briggs et al., 2017, 2020; Byrne et al., 2010; Shangguan
etal., 2021).

A range of pCO, sensors of varying costs and accuracies are
currently available (Briciu-Burghina et al., 2023), but the underlying
detection method of each sensor has its own limitations (Clarke et al.,
2017). This also includes the limitations associated with the skill and
experience of sensor operators (McLaughlin et al, 2017). pCO,
sensors typically cost more than pH sensors (Table 3), but there is
better internal consistency in the marine carbonate system when using
pCO,. While pH is a comparatively cheap and simple measurement to
collect with an in-situ sensor, it is challenging to capture high-quality
samples in coastal systems (Gonski et al., 2024; Herrmann et al., 20205
Miller et al., 2018), where many early OAE deployments are likely to
take place. Calibration is critical for pH sensors, and in environments
with dynamic salinities, it can be challenging to consistently match the
salinity of the sample being tested to the salinity of the calibration
buffer (Dickson et al., 2007; Easley and Byrne, 2012; Martell-Bonet
and Byrne, 2020). To combat this several methods have been
developed to calibrate pH sensors in dynamic systems, including
in-situ or field calibrations (Bresnahan et al., 2014; Gonski et al., 2024).
Drift can also become an issue for pH sensors over time due to
biofouling and degradation (Briciu-Burghina et al., 2023; Delauney
etal., 2010; Martz et al., 2015), as well as instability issues arising from
temperature fluctuations during the day (Shen et al., 2024). However,
with the current state of technology, when done well, pH will be a
critical parameter for monitoring OAE. A well-constrained pH
measurement will be critical for accurate monitoring of mCDR efforts
if pH and pCO, are chosen as primary measured marine carbonate
system parameters. Our results show that the pH sensors’ estimated
accuracy was better than the manufacturer’s reported accuracy for all
except one sensor during the mesocosm trials (Table 1). This suggests
that rigorous accuracy testing using redundant sensors and/or discrete
samples by sensor users is one potential way to increase confidence in
lower-cost sensor data. Our results also highlight that more error is
induced when calculating other marine carbonate system parameters,
specifically TA, when pH is poorly constrained compared to pCO,
(Figures 4A,B).

Outside of error propagation, understanding the detection limits of
in-situ sensors due to dilution will be critical for determining the number
and appropriate spatial distribution of sensors during OAE monitoring
efforts. The mesocosm study highlights sensor performance in a closed
system, but the field test and model showcase how quickly dilution
impacts detection capability in an open system. During the SBR field test,
at a 15-20 cm spacing away from the outfall, a dilution from pHr 8.9
(measured before release) to ~7.9-8.1 was observed (Figure 5). At the
same level of release, with any further distance from the outfall, detecting
a measurable signal would be challenging with current pH sensor
capabilities (sampling rates and sensor response times). Additionally, the
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influence of tidal exchange during the release was average for Sequim
Bay. Increased dilution effects during larger tidal exchanges will also
decrease the likelihood of signal detection, even at close proximities.
These environmental challenges highlight the complexity of working in
dynamic (tidally influenced) areas. Importantly, we note that matching
sensing capabilities/settings to the persistence of the perturbation being
measured is important not just across space but also through time.
Accurately capturing system responses to mCDR interventions, critical
for effective MRV, depends on three separate time-scales aligning: (1) the
sensor response time- how rapidly the sensor can complete a
measurement, (2) the sensor measurement interval — how frequently
measurements are collected, and (3) the persistence of the perturbation -
how long is the measurable signal present in the volume sampled by the
sensor. As an example of how these three time-scales interact, a sensor
with a response time of 1 s can measure a perturbation lasting 2 min.
However, if the sensor is set to measure at 5-min intervals (a common
measurement frequency that provides temporal resolution while saving
battery and memory), it is likely it will miss the peak of the event, and
may miss the event entirely. To improve the chance of signal detection,
consideration during sensor selection should be given to the timescale
of sensor response time, measurement range, and sensor measurement
frequency. Ultimately, sensor accuracy will be irrelevant if it is not
deployed in the correct location and sampled at sufficient temporal
resolution and response time to capture the system’s response.

Powering sensing efforts in marine environments can be complex,
especially at scale. Energy consumption, more broadly for all parts of
mCDR deployment efforts, should be evaluated, including tools for
MRYV. Whereas general power consumption information provided on
manufacturer sensor specification sheets is typically based on ‘normal’
operating conditions. These are far less dynamic than coastal regions
and ranges that may be experienced during OAE deployments. Energy
consumption for the five sensors tested ranged from 80 to 2,500 mW,
which would be easily supplied by most tidal or floating solar setups
(Table 1).In 1 year, at the measured rates of consumption, the sensors
tested would consume 0.7 to 21.9 kWh of energy if run continuously.
For context, a tidal turbine, with a 1 m* cross-sectional area, placed in
Washington State tidal hotspots (annual available energy ranging from
411 to 19,657 kWh m~?) would have the potential to generate 102.75
to 4914.25 kWh annually (calculated using a conservative estimate of
turbine energy conversion efficiency of 25%) (Yang et al., 2021).

That is two orders of magnitude more power than the sensors’ max
draw. To power sensors at 2500 mW, you would need almost 6,000
18,650-format lithium iron phosphate batteries a year. However, these
power consumption estimates do not account for additional factors,
including ancillary power needs (e.g., active anti-fouling solutions
and/or pumped water or air), user-configured deployment
configuration (e.g., sample averages and measurement frequencies), or
variation in power production in response to dynamic environmental
conditions. Our results suggest that sensor energy consumption is an
important consideration but likely will not be a limiting factor for field
trials. Instead, we suggest that further research is needed to determine
appropriate power sources for scaled-offshore mCDR deployments.

4.2 Models informing monitoring

Due to the cost and complexity of high-resolution sampling,
practitioners will have to rely on models (in tandem with sensors) to
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adequately monitor OAE application and impacts. Models have the
potential to forecast changes to key marine carbonate system variables,
inform the total potential for the scale of CO, removal, and assist in
predicting long-term impacts on biogeochemical processes. Our
results highlight the utility of relatively simple idealized models for
designing measurement strategies and predicting changes in the
marine carbonate system. The use of more complex numerical
Observing System Simulation Experiments (e.g., Hoffman and Atlas,
2016) is common practice for designing large-scale open ocean sensor
deployments (e.g., Gasparin et al., 2019; Valsala et al., 2021; Vecchi
and Harrison, 2007) but is less commonly employed for nearshore
coastal studies. Such experiments are critical for coastal environments,
given the highly variable conditions in which OAE interventions
might be deployed and the uncertainty of the spatiotemporal
resolution and number of sensors needed for a given environment.
Prior to deployments, such models can be used to determine the
number of sensors or monitoring stations required to capture some
percentage of the total signal, given the detection limit of a sensor. As
shown in Figure 7, increasing the number of stations can substantially
reduce the level of uncertainty among a sampled average, and this
effect is greatest when smaller amounts of alkalinity are released.
Consequently, reducing uncertainty in observed changes to pH or
pCO, will also require more power for the sensors utilized.
Additionally, models can be used to better determine where sensors
should be deployed in order to increase the probability of success that
an OAE signal can be effectively targeted and detected for a specified
period of time.

Our results highlight how a comparatively simple model can
be used as a MRV testing tool, informing field trials and deployments
before they are conducted. Alkalinity added to the idealized model is
rapidly diluted despite the domain starting at rest and applying a
minimal wind. This emphasizes the narrow period over which changes
can be detected and accurate accounting of the carbon budget through
monitoring efforts can be carried out (Figure 6). The relatively brief
window over which changes can be detected also holds true for a
closed basin that has no tidal exchanges, demonstrating that the speed
of dilution presents a substantial challenge for monitoring efforts.
Some of this OAE signal is also lost to depth, meaning that a more
complete accounting of the alkaline plume would also require an
increased number of subsurface sensors that are not evaluated here
(Figure 6B). Further, accurate detection of an OAE signal by surface
pH; sensors underestimated the total detectable change by ~35-55%
on average across all model experiments, whenever the number of
model cells experiencing a pHr threshold > 0.01 exceeded the number
of sensors released (Figure 7). The role of spatial variability within the
region of detectable pHy changes also acts to limit the accuracy of
sensors in capturing the average change, even at high sampling
densities (50-100 sensors). Point measurements in this framework are
limited, and a residual bias may be reduced if the sensors were
permitted to drift, rather than remain in fixed positions. However,
such an adjustment naively implemented is also an inherently limited
strategy. Selecting random locations within the region of detectable
influence based on the approach taken in this work only slightly
reduces the uncertainty of measurements without meaningfully
affecting sampling bias (Figure 8). Optimizing sensor placement to
accurately capture changes to pHy and alkalinity in real-world field
trials will face additional hurdles. Chief among these challenges are
the uncertainties in simulated trajectories of an alkalinity plume
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which will limit the ability of more robust sensor placement
approaches to accurately predict changes in pHy and alkalinity. MRV
efforts may be best supported by regular gridded sampling over an
area where a plume is expected to reside for a period of time, through
drones or other novel technologies like towed sensors or pH-sensing
cables. More statistically robust sampling methods should also
be investigated to be paired with novel sensing technologies. Selecting
points with the highest gradient in concentration of alkalinity may
over-represent expected changes, while k-means clustering type
algorithms may more accurately represent average conditions over the
lifetime of a deployment. A more thorough investigation of possible
techniques in conjunction with field trials will likely help to identify
additional promising sampling approaches that are beyond the scope
of this paper. Altogether, these results highlight that high-resolution
models are likely the best option to represent alkalinity plume
dynamics in complex environments and will be a critical tool to help
inform the optimal placement and distribution of in-situ sensors.

4.3 Key recommendations

4.3.1 Improvements: sensors and models

High-quality mCDR projects should strive to implement best
practices that reduce uncertainty and minimize error in detecting and
quantifying total rates of carbon removal. Making direct
measurements of TA and pairing TA with DIC to calculate the rest of
the marine carbonate system would reduce error propagation (Orr
etal, 2018). However, TA and DIC are challenging to measure in-situ,
creating important bottlenecks and limitations for the amount of data
that could be collected, especially in cost-limited contexts. At least for
now, autonomous, high-resolution pCO, and pH sensors are likely to
form the backbone of mCDR MRV data collection. Reducing the costs
of these sensors and improving their drift could support incremental
improvements to the uncertainty of data collected by these sensors
and cost-effective monitoring campaigns. Biofouling represents
another key source of uncertainty not assessed in the short sensor
deployment described here. Research is being conducted to determine
how to combat biofouling, including using coatings and wipers, but
only a handful are commercially available (Delauney et al., 2010).

In addition to the environmental challenges, sensor response time
and maximum sampling frequencies may dictate or skew what
perturbations can be captured through sensing alone. Sensor selection
should be guided by the three time-scales described above (sensor
response time, sensor measurement frequency, and persistence of
perturbation). As an example, deploying less accurate sensors capable
of finer temporal resolution alongside more accurate sensors with
coarser sampling frequencies could provide opportunities to
effectively interpolate higher-accuracy, sparser measurements based
on the lower-accuracy, temporally resolved time-series.

While the accuracy of data collected is essential, sometimes
even the most accurate sensors will struggle to detect a large signal
against dynamic background variability. Within existing literature
and frameworks, there has been a call for establishing and
collecting baseline measurements prior to conducting mCDR
activities (Boyd et al., 2023; Cross et al., 2023; Ho et al., 2023;
Niffenegger et al., 2023). To adequately understand the chemical
changes, biological response, and long-term impacts of OAE
application, an understanding of the local marine carbonate system
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FIGURE 8

Comparison of synthetic sampling approaches characterized by the random placement of sensors within a detectable plume area. In the top row, a
number of random points are selected for model sampling in a given Monte Carlo iteration. These points remain fixed over the duration of the
sampling process, and the overall estimate of bias and associated standard error are equivalent to the 100x alkalinity release using 100 sensors shown
in Figure 6. In the lower panel, these sampling locations are permitted to randomly adjust at each time step. Allowing the locations of the sampling
points to move does not substantially lower the average bias but does reduce the associated standard error.

is crucial. Additionally, it has been noted that understanding the
‘additionality problem, in relation to the extent that anthropogenic
alkalinity alters the baseline or delivery of natural alkalinity, also
needs to be addressed in monitoring efforts (Bach, 2024).
Ultimately, monitoring practices long-term will need to be able to
address both additionality and durability (Ho et al., 2023).
Improvements to sensors would therefore benefit the development
of readily available baseline data sets for OAE applications in
environments of interest. In turn, this would advance the
capabilities of sensors used to validate and inform models, quantify
shifts outside ambient background variability, and support carbon
markets. Historic environmental data can also be leveraged to
support this effort, and improve the understanding of long-
term trends.

Regardless of sensing method, direct observations will not be able
to track 100% of changes induced from OAE (Ho et al., 2023),
especially at large spatial scales. To adequately support these efforts,
models will first need to accurately simulate key physical dynamics for
extended periods (weeks to months) to capture equilibration
timescales. Additionally, improvements in the representation of fine-
scale dynamics and biogeochemical dynamics (e.g., secondary
precipitation and potential modifications to air-sea fluxes) may
be required, which can be very computationally demanding (Ward
etal, 2025). These conditions should be explored further as real-world
releases of mCDR efforts are likely to push many existing regional
biogeochemical models outside the range of historically simulated
model limits. More generally, expanding the user interface and
accessibility will also be critical to the long-term development and
support of these models for MRV efforts.
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4.4 Clear MRV standards

Although mCDR research continues to advance, general guidelines
are needed to structure current and future research to advance the field
in tandem with sound science. Specific MRV guidelines will need to
be developed in tandem to adequately support the development of the
field. Some progress has recently been made clarifying suggested MRV
practices related to specific technologies and carbon registries more
generally (e.g., Agbo et al.,, 2024; Isometric, 2025; Myers et al., 2024).
Scientists have also begun to compile best practices guides (e.g.,
Oschlies et al., 2023). Work to develop consensus standards among
scientists and professionals is ongoing, and will need to be routinely
assessed and updated as more sensors and models are developed, more
field tests and trials are completed, and more regulations are enacted.

4.5 mCDR collaboration

Collaboration between mCDR monitoring campaigns is likely to
be crucial to the success of each individual effort. This research could
not have been completed without collaborating with scientists from
various backgrounds and expertise. However, with the current lack of
data sharing, it was challenging to collect sensor specifications and
costing and compare results to similar mCDR studies. Previously,
laboratory and sensor intercomparison projects (e.g., Bockmon and
Dickson, 2015) have also identified analytical differences across
different expert users, and this has been especially pronounced for pH
accuracy and stability (Okazaki et al., 2017). Sharing data between
projects, specific intercomparison efforts, and collecting redundant data
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that overconstrains the carbon system may all be integral to developing
MRV protocols for this newly emerging field. Similar data quality
standards have been developed for ocean acidification (Jiang et al.,
2021; Newton et al., 2015). Bidirectional information sharing and
shared data storing platforms should be established to support
collaboration (National Academies of Sciences, Engineering, and
Medicine, 2022; Oschlies et al., 2023). Additionally, the transparency of
MRV will be critical to public perception and long-term adoption of
these approaches. Accordingly, collaboration is likely to extend to
public-private partnerships. Data management standards should
certainly include protections for private sector IP, but must also allow
for independent verification and validation, as well as scientific
synthesis (Jiang et al., 2023; Palter et al., 2023). Observing networks that
extend beyond the scientific community also build trust in scientific
information and support evidence-based decision making (e.g., Cross
etal., 2019; Tilbrook et al., 2019).

5 Conclusion

In addition to sensor technological advancements, understanding
and documenting the successes and limitations of current sensor
technologies in specific environmental scenarios will improve the
ability to accurately monitor OAE deployments. Here, we conducted a
case study in Sequim Bay (WA, United States) to assess the performance
of sensors in a close. Our results show that it will be critical to constrain
pH during OAE field deployments, given that errors in pH
measurement can quickly propagate when used to calculate other
parameters in the marine carbonate system, as will be essential in MRV
calculations. While our pilot test showed that sensors could detect
mCDR signatures from natural variability, they also showed how
quickly signals can dissipate via dilution in real-world settings. This
was confirmed by a simplified numerical mCDR simulation, which
showed that sensors would struggle to capture the entirety of an OAE
signal without accompanying large uncertainties. This finding also
reinforces the benefits of model applications prior to mCDR
deployments as a comparatively low-cost supplement to monitoring
efforts that can inform decisions like sensor deployment location and
the number and type of sensor packages needed. In the end, diverse
and robust monitoring approaches will be critical to precisely assessing
mCDR field deployments. Combining models, remote sensing, field
observations, and autonomous systems will provide the lowest levels of
uncertainty in determining changes in the marine carbonate system.
Based on these findings, we recommend that future research consider
coordinated and collaborative technical improvements to both
measurements and model development that align with MRV standards.
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