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Several unknowns remain surrounding marine Carbon Dioxide Removal (mCDR) 
monitoring, reporting, and verification (MRV) practices and capabilities. Current 
in-situ sensor technology is limited (primarily pH and pCO2), requiring calculations 
and assumptions to estimate changes in carbonate chemistry parameters, 
including total alkalinity (TA). Considering that cost, energy consumption, and 
accuracy of commercial sensors can vary by orders of magnitude, understanding 
how well existing sensors perform in an mCDR context is important for this 
emerging community. Likewise, documenting sensor limitations and how relatively 
simple models can optimize sensor deployments will improve MRV efforts and 
support protocol development. Here we (1) compare performance a variety of 
commercially available sensors in a blind mesocosm experiment simulating ocean 
alkalinity enhancement (OAE), and how sensor performance impacted carbonate 
chemistry estimates; (2) evaluate if sensors can distinguish the OAE signal from 
natural variability during a small scale OAE field test in Sequim Bay, WA, USA, and 
(3) use an idealized ocean biogeochemistry model to explore optimal sensor 
network design based on (1) and (2). Our mesocosm results indicate that correctly 
constraining pH uncertainty will be critical for accurate TA estimates with current 
sensor technology compared to the less impactful variation caused by uncertainty 
in pCO2 (pH data that are presented throughout are reported on the total scale 
(pHT) unless otherwise noted). Our pilot field test demonstrated that sensors were 
capable of distinguishing mCDR signatures from natural variability under optimal 
real-world conditions. Idealized modeling simulations of the field test showed 
that a range of sparse and dense (3 to 100) sensors sampling areas of detectable 
increases will underestimate the net change in surface pH by at least 35–55%, 
at both realistic and highly elevated alkalinity input levels. We also highlight the 
limitations of current sensing technology for MRV, and the importance of ocean 
biogeochemistry models as critical tools for predicting when and where mCDR 
signals will be detectable using available sensors. Overall, our findings suggest 
that commercially available pCO2 sensors and some pH sensors will form an 
important backbone for mCDR MRV tasks, though complete MRV characterization 
will require these data to be used in combination with other tools.
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1 Background/introduction

Marine carbon dioxide removal (mCDR) comprises a collection 
of techniques designed to durably store (>100 years) atmospheric 
carbon dioxide (CO2) in marine settings and/or directly capture CO2 
from seawater. Establishing mCDR carbon markets and understanding 
potential environmental impacts will require both advancing mCDR 
technologies to field deployment scales as well as refining monitoring, 
reporting, and verification (MRV) protocols that rely on both 
measurements and models.

Ocean alkalinity enhancement (OAE) facilitates the oceanic 
uptake of atmospheric CO2 through the addition of alkalinity that can 
be generated electrochemically or through the addition of minerals 
like olivine and calcite (Renforth and Henderson, 2017). Mineral-
based alkalinity generation enhances natural weathering cycles by 
returning ground minerals to the ocean to release alkaline molecules 
as they dissolve; this enhanced mineral weathering for CO2 
sequestration is being assessed for coastal and open ocean applications 
(Feng et al., 2017; Ilyina et al., 2013; Köhler et al., 2010; Meysman and 
Montserrat, 2017; Montserrat et al., 2017). While alkaline rocks are 
readily abundant on Earth, logistical constraints related to mining, 
transportation, and milling large quantities of minerals to an 
appropriate grain size represent unresolved hurdles that may limit the 
extent of CO2 removal from the overall process (Rau et al., 2007). By 
contrast, electrochemical methods (e.g., electrolysis, electrodialysis) 
can be  used to produce aqueous hydroxides, including sodium 
hydroxide (NaOH), directly from seawater (Eisaman et  al., 2012; 
Eisaman, 2024; Lannoy et al., 2018). The alkaline solution can then 
be returned to the ocean, thereby shifting the carbonate system and 
allowing for the uptake of atmospheric CO2. The byproduct of this 
OAE approach is dilute acid removed from seawater, generally in the 
form of HCl (Eisaman, 2024), which can be used for a variety of 
potential applications such as replacing industrially-produced acids 
(Ferella et al., 2025). While electrodialysis-based mCDR trials remain 
in their early stages, field sites and research centers are emerging (Burt 
et  al., 2024), especially given the high potential scalability and 
durability of carbon stored (Agbo et al., 2024; Cross et al., 2023). 
Accordingly, this case study focused on electrochemically generated 
NaOH from a bipolar membrane electrodialysis system (Lannoy et al., 
2018; Savoie et al., 2025).

Despite the theoretical promise of OAE, the early stages of MRV 
development will be critical for OAE research, environmental impact 
monitoring, and ultimately, for markets (Doney et al., 2024; Ho et al., 
2023). Monitoring mCDR will be needed to quantify the additional 
removal of CO2 outside of a baseline scenario (Doney et al., 2024), 
regardless of the scale of deployment. However, there are currently 
numerous unknowns relating to monitoring and a need for established 
MRV protocols (Duke et al., 2023; Oschlies et al., 2023). The majority 
of MRV frameworks for OAE suggest the need for marine carbonate 
system data and improvements to sensors and ocean biogeochemical 
models (Bresnahan et al., 2023; Briciu-Burghina et al., 2023; Duke 
et al., 2023; Wang et al., 2019) including the development of a strong 
monitoring program (Cross et al., 2023; Oschlies et al., 2023).

Effectively measuring OAE to meet MRV requirements for a 
viable carbon market requires the ability to constrain observed 
changes in carbonate chemistry. This can be accomplished by directly 
measuring the impacts of marine carbonate system parameters, 
including total alkalinity (TA) and dissolved inorganic carbon (DIC), 

to constrain the uptake efficiency of atmospheric CO2. To adequately 
capture changes in the marine carbonate system and the associated 
environment driven by mCDR interventions, a combination of 
monitoring methods that capture these responses at relevant spatial 
and temporal scales will be required. At a minimum, this will likely 
include in-situ water monitoring using autonomous sensors and 
biogeochemical modeling. However, both TA and DIC are currently 
only measurable in a laboratory setting, limiting the temporal and 
spatial resolution of measurements. It should be noted that a few 
in-situ alkalinity sensors are in development, but are typically not as 
mature or commercially available compared to the other sensors 
discussed here (Briggs et  al., 2017, 2020; Shangguan et  al., 2021). 
Alternatively, commercially available in-situ sensors for monitoring 
the partial pressure of CO2 (pCO2) and pH can help constrain the 
marine carbonate system. Although this approach enables high-
frequency data collection, the estimates of marine carbonate chemistry 
from these sensor measurements typically carry substantial 
uncertainty and may therefore be inadequate for capturing changes in 
TA due to mCDR interventions in coastal systems. Numerical 
simulations are therefore likely also required for the development and 
refinement of mCDR MRV procedures (Ho et al., 2023). Monitoring 
will likely rely heavily on biogeochemical models and mixing zone 
models to adequately predict CO2 removal and environmental 
implications (Fennel et  al., 2023; Ho et  al., 2023). Well-validated 
models can be used to inform monitoring gaps, predict responses 
from OAE applications, and aid in understanding environmental 
changes in relation to OAE deployments.

Several unknowns remain around field trials and deployment-
scale applications of mCDR (Cyronak et  al., 2023), including 
monitoring limitations, sensor performance, and energy consumption 
needs. While previous work has summarized available marine sensors 
(Briciu-Burghina et  al., 2023) and sensor technology for ocean 
acidification (OA) research (Martz et al., 2015; Sastri et al., 2019), 
limited research has been conducted on sensor performance under 
mCDR scenarios. Additionally, some research has explored a range of 
renewable energy sources, including marine energy (e.g., wave or 
tidal), that may be feasible for either powering mCDR itself or the 
tools used for MRV (Cotter et  al., 2021; Niffenegger et al., 2023). 
Considering the goal of mCDR is net CO2 uptake, the energy 
consumption and carbon footprint for all steps of the process must 
be considered, including the measurements we make to evaluate an 
intervention’s effectiveness.

This study explores how commercially available pCO2 and pH 
sensors and modeling can be  used effectively for monitoring the 
efficacy of mCDR in dynamic coastal environments. We  first 
conducted a blind mesocosm experiment (sensors not explicitly 
identified) to assess sensor performance and power consumption in a 
closed system, and establish relationships between sensor performance 
and estimates of marine carbonate chemistry uncertainty. We next 
conducted a field test as a proof-of-concept study to assess the 
detection limits of current sensor technology from point source 
interventions in real-world conditions within a complex coastal 
ecosystem. Finally, we used sensor performance metrics from the 
mesocosm experiment and release metrics from the field test to 
parameterize an idealized model. These model results were used to 
guide potential sensor deployments and better quantify sensor 
limitations and the ability to capture the efficiency and impacts of 
OAE in a small coastal environment.
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2 Methods

2.1 Site description

This case study focuses on Sequim Bay (WA, United  States). 
Sequim Bay is a semi-enclosed tidally influenced basin in the Greater 
Puget Sound. The study was based out of the Pacific Northwest 
National Laboratory (PNNL)’s Sequim campus (PNNL-Sequim, 
Figure 1A) in western Washington state. PNNL-Sequim laboratories 
are situated along the Sequim Bay shoreline and are plumbed with raw 
and filtered seawater that is pumped directly from the Bay. Ambient 
Sequim Bay seawater and environmental conditions were utilized 
throughout the mesocosm experiment, field test, and modeling study 
(sections 2.2, 2.3, and 2.4, respectively).

Sequim Bay is a fjord-like tidally influenced semi-enclosed basin 
in the Pacific Northwest with a single narrow inlet at the northernmost 
point of the bay (Figure 1A). It has minimal freshwater influence and 
flushes at an approximate rate of once every 10 days (Khangaonkar 
et al., 2024). Tidal exchange in Sequim Bay averages ~2.5 m but can 
increase to more than 3 m during peak spring tides that result in tidal 
currents that can reach 2 m s−1. Temperature and salinity in the Bay 
vary annually, and range between 29 and 32 PSU and 6–12 °C, 
respectively. Values for pHNBS generally range from 7.6 to 8.3, 
depending on time of year and tidal conditions (Jones et al., 2025).

The mixing and dilution controls relating to alkalinity 
enhancement have been previously modeled in Sequim Bay 
(Khangaonkar et al., 2024). Sequim Bay is a unique location for testing 
point source release OAE due to its narrow inlet and high tidal 
currents that can potentially act to spread an alkaline plume over a 
large surface area, thereby increasing contact with the atmosphere. 
However, these rapid currents do not guarantee any confinement of 
elevated alkaline water at the surface, which poses challenges for 
determining the timing and location of an ideal release point.

2.2 Mesocosm sensors experiment

We conducted a mesocosm experiment to assess the performance 
of five commercially available pH sensors (Sunburst iSAMI, Seabird 
HydroCAT, Idronaut OS315, Yellow Springs Instruments (YSI) EXO2, 
and YSI ProDSS) and two commercially available pCO2 sensors 

(Turner C-Sense and Batelle MAPCO2/ASVCO2) for monitoring 
alkalinity releases in coastal marine waters (Table 1). PNNL’s policy 
prohibits endorsement of commercial products; therefore, sensor 
manufacturers will not be  explicitly linked to a specific sensor-
measured data set in the mesocosm experiment. The sensors in the 
mesocosm experiment will be referred to as Sensors 1–5 from this 
point forward (Table 1). A 4000 L mesocosm tank was filled with raw 
Sequim Bay seawater and mixed continuously by two submersible 
bilge pumps placed in the tank on opposite ends (Figure 1B). All 
sensors were placed in the tank prior to the atmospheric 
pre-equilibration period and located in the same area within the tank. 
Atmospheric pre-equilibration of Sequim Bay seawater in the tank 
lasted 5 days before starting the experiment, allowing the sensors’ 
response to tank water to stabilize. Alkalinity (9.03 L of 0.5 M NaOH) 
was then added to the tank as a single dose, which was monitored for 
28 days, until it reached near atmospheric equilibration in terms of 
pCO2 values. After the 28 day, the sensors were removed and all data 
were exported for analysis.

All pH sensors across all experiments were calibrated to 
manufacturer specifications before and after deployment. pH Sensor 
4 was calibrated with Tris buffer solution, in artificial seawater of 
salinity 35 [acquired from the Scripps Institution of Oceanography (La 
Jolla, CA, United States)], per manufacturer recommendations and 
measured pH on the total scale (pHT). Sensor 3 was factory calibrated 
and measured pH on the total scale. All other pH sensors, measuring 
pH on the NBS scale (pHNBS), were calibrated using a three-point 
calibration with National Institute of Standards and Technology 
(NIST) low ionic strength buffers at pH 4, 7, and 10. Pre and post-
calibration values were compared to assess drift in sensor calibrations 
over the course of the experiment. All pH sensors were set to log at 
hourly intervals for the mesocosm experiment, with the exception of 
a hand-held sensor, which we used to measure pH twice daily during 
weekdays. Additionally, all pH sensor data not measured in pHT were 
converted to the total scale following methods outlined by the seacarb 
R package (Gattuso et al., 2024) by first converting to seawater scale 
(SWS), then converting to total scale, and will be presented throughout 
the manuscript as pHT, unless otherwise stated. One pCO2 sensor had 
a continuous gas reference and did not require calibration, while the 
other sensors’ response was calibrated against a 411 ppm CO2 
reference gas standard prior to the experiment. The pCO2 sensors were 
set to log at 3-h intervals during the mesocosm experiment.

FIGURE 1

(A) Map of Sequim Bay channel and PNNL-Sequim. (B) Laboratory mesocosm used for both the sensor experiment and for the field experiment. 
(C) Deployment of YSI EXO2 pH sensor 15–20 cm from outfall pipes in the Sequim Bay channel.
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To provide a ground truth for pH measurements, discrete samples 
for DIC and TA were collected daily in 250 mL glass bottles from the 
mesocosm tank, referencing methods from Dickson et  al., 2007. 
Samples were preserved with 100 μL of HgCl2 and analyzed via an 
Apollo SciTech Total Alkalinity Titrator (AS-ALK3) and Dissolved 
Inorganic Carbon Analyzer (AS-C6L), referenced against certified 
reference materials (CRMs). CRMs were run before and after TA and 
DIC sample analysis, resulting in a precision of ± 1 μmol kg−1 for both 
parameters. pHT was then calculated from the DIC and TA samples 
using the seacarb R package (Gattuso et al., 2024) referencing K1 and 
K2 dissociation constants from Lueker et  al., 2000. The bisulfate 
dissociation constant from Dickson (1990) and total boron from 
Uppström (1974) were also used in the pHT calculations.

2.3 Field test: Sequim Bay release

To test if alkalinity additions could be detected under real-world 
conditions and distinguished from natural variability, we conducted 
an alkalinity release from the PNNL-Sequim wastewater treatment 
facility’s outfall into Sequim Bay on February 7, 2025 (Figures 1A,C). 
(In this context, we use the term “test” deliberately: test deployments 
assess a single component or mechanism that is part of a larger 
technology or technical system, as here we test the capability of a 
particular sensor deployment configuration to detect discharge. A 
field trial, by contrast, is a rigorous performance evaluation of a well-
established and previously demonstrated technology or technical 
system. A field trial would comprise a much longer and larger study 
across a series of discharges than was conducted by this study.) The 
same tank used in the mesocosm experiment was filled and 
maintained at a constant level with flowing raw seawater that was 
dosed with 0.5 M NaOH via a peristaltic pump at a rate that could 
maintain a pHNBS ≤ 9.0 (as listed in NPDES permits). The outlet of the 
tank was plumbed into a wastewater treatment system where the pH 
was monitored and confirmed not to exceed a pHNBS of approximately 
9 (~8.9 pHT) to maintain compliance with wastewater treatment 
facility discharge permits. The wastewater treatment system consisted 
of four cells that were sequentially filled with the effluent from the 
mesocosm experimental tank that connected to an outfall pipe in 
Sequim Bay. A total volume of 381 L (251 mol) of NaOH was diluted 
with ~180,000 L of ambient seawater, which was released from the 
outfall in four pulses, each separated by an hour, for a total of 8 h. 

Average flow conditions characterized by a ~ 2.5 m tidal exchange 
were observed during the release period, which allowed for a 
representative assessment of detection limits in this region.

We monitored the response in Sequim Bay to our pilot alkalinity 
release using a YSI EXO2 Sonde pH sensor attached directly to the 
outfall approximately 15–20 cm from the pipes (Figure  1C). The 
sensor was calibrated before and after deployment to the 
manufacturer’s recommendations, via the same methods listed in 
Section 2.2 for a three-point calibration, to account for drift and verify 
accuracy. The EXO sensor was installed 3 days before the release and 
recovered 9 days after the release. These data and a complete 
description of the field test methods are described by Savoie et al., 2025.

2.4 Idealized modeling experiments

We developed a simplified model based on Sequim Bay to explore 
the capabilities of multiple sensors to inform MRV efforts in a relevant 
coastal environment. These model scenarios were designed to quantify 
the MRV capabilities of commercially available sensors by 
incorporating (a) sensor performance metrics from the mesocosm 
experiment (Section 2.2) and (b) a similar-scale alkalinity release to 
the field test (Section 2.3). Averaged model outputs over a region of a 
detectable plume area were compared to model outputs sampled at 
discrete locations within said plume, mimicking the deployment of 
commercial sensors. This analysis provided a framework for assessing 
sensor capabilities to capture dilution and advection of an alkalinity 
release in a simplified channel that mirrors our field test environment.

The idealized model was developed within the Regional Ocean 
Modeling System (ROMS) framework (Shchepetkin and McWilliams, 
2005) based on the marine carbonate system characteristics that roughly 
correspond to average Sequim Bay conditions (Figure 2). The idealized 
domain was developed with sloping boundaries in the across-channel 
direction and a maximum depth of 40 m to generally represent this type 
of coastal environment (Figure  2). This model grid has an average 
horizontal spatial resolution of ~60 m, an open boundary at the 
northern end of the simplified domain, a diurnally varying wind equal 
to ± 2 m s−1 in the across-channel direction and ± 0.5 m s−1 in the along-
channel direction, and a regular tidal exchange of 3.5 m that is 
representative of regional tidal dynamics. Model outputs were saved 
every 2 h, and the barotropic time step was set to 20 s. Biogeochemical 
processes in this model are simplified and essentially contain only 

TABLE 1  Sensors used in the mesocosm experiment, including their estimated cost, relative accuracy based on mesocosm measurements (based on 
differences from Sensor 4, which was used as the reference), stability based on variance in hourly mesocosm measurements during the end of the 
experiment when values were most stable, and estimated power consumption.

Sensors used to measure pH during the alkalinity addition experiment

Sensor 
number

Est. 
cost

Measured 
accuracy

Measured 
stability

Est. power 
consumption

Max 
Sampling 

Rate

Response 
Time

Measurement 
Range (pHT)

Sensor 1 $$$ 0.04 0.010 80 mW* 1 s 3 s 0–14

Sensor 2 $$$ 0.04 0.005 170 mW** 6 min not provided 0–14

Sensor 3 $$ 0.07 0.113 100 mW* 15 min 3 min 7–9

Sensor 4 $$$ reference 0.016 2,500 mW* <1 s 3 s 0–14

Sensor 5 $$ 0.09 0.015 not provided 1 s 3 s 0–14

$$ = 5-10 k (USD), $$$ = 10-20 k (USD), *measured, **estimated from manual. Max sampling rate, measurement range, and sensor response time were collected from sensor specification 
sheets. The sampling rate may exceed the sensor response time for some sensors as they are multiparameter sondes. Sensors in the mesocosm experiment were all set to log at 1-h frequencies. 
All values in the table are referencing the pH Total scale.
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variables necessary for marine carbonate chemistry (i.e., model state 
variables include carbonate (CO3

2−), bicarbonate (HCO3
−), and total 

alkalinity (TA)). Total alkalinity is represented as carbonate alkalinity 
(computed as the sum of CO3

2− and HCO3
−) and is permitted to 

equilibrate with a constant atmospheric CO2 concentration of 422.5 ppm 
according to a standard ROMS subroutine (Fennel et al., 2008).

The model was initialized from rest with a latitudinal salinity 
gradient and a vertical temperature gradient representative of average 
Sequim Bay conditions (29–32 PSU and 6–12 °C, respectively, Figure 2). 
Vertically varying biogeochemical values (higher at the surface, lower 
at the bottom) were applied throughout the domain at the initial time 
step (DIC = 2,110–2,350 μmol kg−1, HCO3

−, = 1800–2000 μmol kg−1, 
CO3

2− = 158–176 μmol kg−1, TA = 2,250 μmol kg−1). These initial 
conditions were mirrored by the same constant open boundary 
conditions throughout the simulation. Two baseline simulations, with 
and without tidal exchanges, were first conducted over a period of 
31 days to quantify the influence of open boundary changes on DIC and 
TA (S = 32, T = 9 °C). The closed boundary baseline experiment 
(‘Baseline Closed’, Table  2), while unrealistic in a marine system, 
essentially provides an upper limit on the capabilities of sensors to track 
changes to DIC and TA in a given domain and demonstrates the impact 
of natural variability in this region. Because the ‘Baseline Open’ 
experiment added no alkalinity, all changes to inorganic carbon in the 
model domain can be attributed to exchange processes with the open 
boundary (constant average DIC of 2,233 μmol kg−1).

Several modeling experiments were also conducted that increased 
alkalinity in a manner designed to simulate the addition of alkalinity in 
the SBR field test and explore the range of sensor sensitivities to increased 
fluxes. A surface flux of carbonate (CO3

2−) was injected into the center 
grid cell of the model domain over a period of 8 h, equaling the total 
applied in the SBR field test (1x, Table 2) for both a model domain with 
closed boundaries (‘Alk Closed’) and one with a single open boundary 

(‘Alk Open’). Additional alkalinity scenarios for the open and closed 
modeling domains were also conducted, where alkalinity was increased 
between two (2x) and one hundred times (100x) the amount of the SBR 
field test (251 mols of Alkalinity). While the closed boundary simulations 
are an unrealistic scenario for a marine system, they still present an 
opportunity to explore a hypothetical maximum limit on the ability of 
sensors to detect changes in the marine carbonate system that would 
be  otherwise advected away or flushed through tidal mixing and 
currents. Values of pHT were computed using PyCO2SYS (Humphreys 
et al., 2025) to represent the sampling capabilities of multiple sensors for 
a plume in the idealized domain. Sampling bias was calculated by first 
taking the difference in mean pHT (converted to [H+]) between 
alkalinity addition and baseline simulations, calculated for a specified 
number of stations (ranging from 3 to 100) and all available model cells. 
However, the average difference in modeled pHT between the baseline 
simulation and an alkalinity addition was spatially limited to only 
include model cells where the pHT change would be detectable at any 

FIGURE 2

Sequim Bay, WA, idealized model domain with sloping walls and a maximum depth of 40 meters. (A) Plan view of surface salinity, constant with depth. 
(B) Along channel slice of model temperature.

TABLE 2  Model experimental scenarios and descriptions.

Experiment n open 
boundaries

Alkalinity Added 
(mol m−2 s−1)

Baseline closed 0 0

Baseline open 1 0

Alk closed 0 SBR field test Amt., 2x, 

5x, 10x, 20x, 50x, 100x

Alk open 1 SBR field test Amt., 2x, 

5x, 10x, 20x, 50x, 100x

Alkalinity release amounts are based on the Sequim Bay field test discharge (251 mols 
alkalinity) and were increasingly scaled within both a closed model domain and open 
domain representative of a coastal inlet.
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point throughout the course of the simulation (Δ pHT ≥ 0.01). Therefore, 
this bias calculation is constrained to only include areas of potentially 
detectable signals, which will likely remain uncertain prior to real-world 
alkalinity additions. After calculating the spatially limited differences 
between sampled cells and modeled cells versus a baseline (ΔSample and 
ΔModel), we calculated the percentage difference between ΔSample and 
ΔModel to determine the proportion of the pHT signal that was capable 
of being captured by the sampling regime. Underestimates and 
overestimates of the captured signal are presented as negative and 
positive percentages, respectively. The positions of selected sampling 
points were randomly chosen in this subset of the model domain without 
replacement 10,000 times to more thoroughly evaluate possible surface 
sampling outcomes, with average changes and their associated standard 
errors computed for each sensor/alkalinity addition combination.

3 Results

3.1 Case study: commercial sensor 
evaluation and mesocosm tests

We first compare the specifications of 11 different commercially 
available pH sensors and eight pCO2 sensors (Table 3), focusing on 

technologies that can be relatively easily deployed in coastal systems. 
The pH sensors described encompass a wide range of manufacturer-
reported accuracies and can be  broken down broadly into two 
categories: ion-selective electrode (ISE)-based sensors, spanning 
accuracies from 0.01–0.2 pH (NBS scale), and colorimetric/
spectrophotometric sensors with accuracies of ≤ 0.01 pH (total scale). 
We observed general correspondence between accuracy and estimated 
cost, where sensors with lower accuracy were generally less expensive, 
although we note that estimated costs often included platforms (e.g., 
sondes, external batteries) as opposed to just the pH probe itself. All 
pCO2 sensors included in Table 3 use the same measurement principle 
for quantifying gaseous pCO2 (infrared (IR) absorption). However, 
they vary in terms of how CO2 gas is extracted from water (e.g., gas 
permeable membranes vs. active equilibration) and how frequently 
calibrations are performed (e.g., prior to deployment vs. onboard span 
gas used to calibrate before each measurement). Similar to pH sensors, 
differences in cost often relate to the equipment necessary for proper 
operation of the sensor, including internal calibration capabilities and 
pumped heads for membrane-based sensors. On average, pCO2 
sensors cost more and have a wider range of accuracy compared to 
pH sensors.

We conducted a mesocosm alkalinity addition experiment to 
directly compare the performance of pH and pCO2 sensors available 

TABLE 3  Summary of commercially available in-situ sensors for monitoring mCDR applications in coastal marine systems.

Selected sensors for measuring pH and pCO2 relevant to mCDR

Parameter Brand Model Accuracy
Measurement 
technology*

Cost range 
(USD)**

pH

Eureka Manta 0.1 NBS scale ISE $

HydroLab HL7 0.2 NBS scale ISE $

Idronaut OS315 0.01 total scale ISE $$

In-Situ AquaTROLL 0.1 NBS scale ISE $

NKE WiMO 0.1 NBS scale ISE $$

Onset MX2501 0.1 NBS scale ISE $

RBR Maestro 0.01NBS scale ISE $$$

Seabird HydroCAT 0.1 NBS scale ISE $$$

YSI EXO 0.1 NBS scale ISE $$

Seabird SeaFET V2 0.05 total scale ISE $$

Seabird SeapHOx V2 0.05 total scale ISE $$$$

Sunburst iSAMI 0.01 total scale spectrophotometric $

Sensor Lab SP200-SM 0.005 total scale spectrophotometric ***

Clearwater High Accuracy pH 0.004 total scale spectrophotometric $$$$

pCO2

Battelle MAPCO2/ASVCO2 IR absorption ***

CONTROS Hydro C-CO2 0.50% IR absorption $$$

Dakunalytics Burkolator 0.2% (TCO2) 2% (pCO2) IR absorption $$$$

General Oceanics 8,060 0.5% at 400 ppm IR absorption $$$$

Pro-Oceanus CO2-pro 0.50% IR absorption $$$

Sunburst SAMI-CO2 0.50–1.5% IR absorption $$$

Sea & Sun AMT CO2 1–5% IR absorption ***

Turner C-Sense 3% of full scale IR absorption $

*ISE = Ion-selective electrode, IR = Infrared. **$ = <10 k, $$ = 10-20 k, $$$ = 20-30 k, $$$$ = > 30 k. ***quote not available. Accuracy and cost metrics were pulled from the manufacturer’s 
sensor specification sheets.

https://doi.org/10.3389/fclim.2025.1649723
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Stewart et al.� 10.3389/fclim.2025.1649723

Frontiers in Climate 07 frontiersin.org

for our specific application. To do this, we deployed a subset of the 
sensors (Table 3), including five pH sensors capable of being deployed 
in-situ in coastal waters and two pCO2 sensors, representing a range 
of costs (Table  1). All sensors detected similar responses to the 
alkalinity addition and subsequent re-equilibration period over the 
course of the 28-day experiment, but some performed better than 
others (Figure 3). The initial spike in pHT was detected by all sensors 
except Sensor 5, which had a delayed and decreased detection of the 
maximum extent, at least partially explained by a slower sampling rate 
relative to the other sensors (Figure 3A; Table 1). Sensors 3 and 5 had 
the greatest variability in pHT during the least variable period, finding 
a change of roughly 0.07 and 0.09 pHT, respectively. Additionally, 
Sensor 3 showed the most variability during the experiment 
(Figure  3A). The pCO2 sensors had similar performance, with an 
average offset of 36 ppm (12% of benchtop sensor value) between the 
two sensors throughout the experiment. Offsets were the lowest 
immediately after alkalinity addition and increased as the experiment 
progressed (Figure 3B). The differences in pCO2 values between the 
two pCO2 sensors is likely due to autocalibration protocols unique to 
one sensor and the limited flow across the membrane of the other 

sensor, which would slow equilibration and result in consistently 
lower pCO2 values, as was observed. To understand the deviation 
between each sensor and our reference sensor (Sensor 4, Table 1) 
during the experiment, we  calculated point-by-point differences 
(Figure 3C). With the exception of one point for Sensor 5 showing a 
difference of > 1 pHT during the period of largest change (e.g., the 
alkalinity addition), all sensors generally clustered near a difference of 
0 with no clear temporal trends. We also plotted the linear relationship 
between pHT measured by Sensor 4 and pHT calculated using seacarb 
and TA and DIC samples measured in the lab (Figure  3D). 
We observed strong linearity and clustering around the 1:1 line, with 
an R2 of 0.982 and an RMSE of 0.037 (or <1% of pHT = 9).

We estimated sensor accuracy and resolution based on data in 
Figure 3, Table 1. We selected one sensor (Sensor 4) to be our reference 
sensor for calculating measured accuracy as it had the highest 
manufacturer-listed accuracy (0.01 pHT), showed lower variability 
during the experiment, and had a dedicated reference probe (stable 
electrical potential to which the measuring electrode was compared). 
Estimated accuracies (relative to pH measured by Sensor 4) based on 
the measurements we collected in our mesocosm experiment were 

FIGURE 3

Time series for (A) pHT (calculated pH values presented as black dots) and (B) pCO2 measured during a 28-day alkalinity addition experiment 
conducted in the mesocosm tank shown in Figure 1. (C) We assessed the variance of each sensor relative to the reference pH sensor (Sensor 4) and 
(D) the relationship between pHT. measured by Sensor 4 and pHT calculated using TA and DIC laboratory measurements. The dashed black line 
represents a 1:1 relationship, and in-plot statistics present goodness-of-fit (R2 of 0.982) and root-mean-square error (RMSE of 0.037).
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within the ranges reported by manufacturers (Table 3) and match the 
pattern that cost generally correlates with accuracy (e.g., lower cost 
equates to lower accuracy, Table 1). We observed almost two orders of 
magnitude in the range of our estimated sensor resolutions based on 
our datasets (Table 1).

To assess energy consumption under an OAE scenario, power 
consumption was measured for a subset of sensors used in the 
mesocosm experiment, also shown in Table 1. We report either values 
that we directly measured during sensor operations or estimates based 
on manufacturer-reported power consumption values when we could 
not directly measure power consumption without compromising the 
sensor. It should also be noted that no power-saving features, such as 
sleep modes or intermittent sampling strategies, were employed 
during this experiment. Power consumption (power use per day) 
varied between sensors by more than an order of magnitude, ranging 
from less than 100 mW to more than 2,000 mW (Table 1). While 
sensor energy consumption is likely minuscule compared to that of a 
given mCDR technology, there are both practical logistical 
considerations (e.g., time frame of deployment) and carbon 
accounting considerations (e.g., if a very large sensor network is 
required). Energy consumption is a particularly important 
consideration during remote and/or long-term deployments, where 
local offshore power sources, particularly tidal and solar, may be a 
primary limitation of sensor deployment length.

To understand how these differences in accuracy between sensors 
relate to estimates of marine carbonate chemistry, we conducted a 
sensitivity analysis where we set all parameters to assumed defaults 
(temperature = 25 °C, salinity = 35 PSU, pCO2 = 420 ppm, pHT = 8.0) 
and then manipulated either pH or pCO2 values to replicate differences 
in accuracy represented across the sensors summarized in Table 1. For 
pHT, we looked at accuracies ranging from 0.01 to 0.2 (Figure 4A). For 
all defaults, seacarb calculates an alkalinity of 2,145 μmol kg−1. Using 
a pHT sensor accuracy of ± 0.01, estimated alkalinity values had a 
range of 57 μmol kg−1, with a maximum difference of 1.4% (percentage 
of the maximum difference from the default value of 2,145 μmol kg−1). 
However, for the most common pHT resolution (± 0.1), we observed 
a much larger range (1,107 μmol kg−1), equivalent to a maximum 

difference of 29.4%. For the lowest accuracy represented in Table 3 
(0.2) for a pHT sensor, we  observed a range of 2,383 μmol kg−1, 
equivalent to a maximum difference of 71.2% (Figure 4A).

We conducted an equivalent sensitivity analysis where pHT was 
held stable at 8.0, but pCO2 values were manipulated from 0 to ± 
20 ppm (approximately 5% of baseline pCO2) at 2 ppm intervals 
(Figure  4B). Using a pCO2 sensor accuracy of 2 ppm (~0.5% at 
420 ppm), estimated alkalinity values had a range of 10 μmol kg−1, 
with a maximum difference of 0.2%. The lowest accuracy sensor in 
Table  3 (± 5%) gave a range of 186 μmol kg−1, with a maximum 
difference of 4.4%. Ultimately, there is better internal consistency 
when calculating the marine carbonate system using pCO2 compared 
to pHT in this analysis. To understand the combined impacts of the 
accuracy of pHT and pCO2 sensors on TA estimates, we constructed 
an error-space diagram (Figure 4C). Consistent with Figures 4A,B, the 
error-space diagram demonstrates that the accuracy of the pH sensor 
is considerably more important for reducing uncertainty in alkalinity 
estimates than the accuracy of the pCO2 sensor.

3.2 Case study: SBR field test

Only a handful of OAE field trials have been conducted to date, 
turning a focus toward answering critical monitoring, reporting, and 
verification questions. Here, a proof-of-concept test was conducted to 
determine if in-situ pH sensors could detect a signal for an alkalinity 
release from an outfall into a tidally influenced channel in Sequim Bay, 
WA. Initial results from a YSI EXO2 pH sensor placed directly at the 
outfall indicate that, at close proximities, sensors could detect a signal 
as all four pulsed releases were detected outside of the range of normal 
observed variability (Figures 5A,B). However, the pHT signals detected 
(15–20 cm from the outfall) were significantly diluted (~7.8–8.25) 
compared to the pHT measured at the end member of the wastewater 
treatment system (~8.9).

The baseline pHT conditions prior to the release were between 7.5 
and 7.6. Each pHT pulse released from the wastewater treatment 
system was detected between 7.8 and 8.3 (Figure 5). The variability 

FIGURE 4

The relationships between sensor accuracy and alkalinity predicted by the seacarb R package for the accuracy ranges presented in Table 1 for (A) pH 
sensors, and (B) pCO2 sensors were assessed. The range of sensor accuracies are presented in Table 1. Additionally (C) an error-space diagram to 
understand the combination of uncertainty in estimates of alkalinity for pH and pCO2 sensors. The x-axis and y-axis are the ranges of accuracy 
presented in (A,B), and the contours represent the associated error (uncertainty presented as μmol kg−1) of alkalinity estimates based on combinations 
of pCO2 and pH sensor accuracies.
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observed along the baseline prior to and during the first step is likely 
due to tidal influence, followed by unmixed freshwater also exiting the 
cell during the first release (Figure 5, Panel B). Following the first 
release, the pHT signal was observed to drop sharply off after each 
release, returning near the baseline almost immediately each time. The 
gradual slope, showing an increase in alkalinity during each of the 
four releases, is likely because the drainage of the wastewater cells was 
faster than the dilution of the system around the sensors (Figure 5). 
These sensors performed adequately from a permit compliance 
standpoint, verifying that we did not exceed the pHT ~ 8.9 threshold 
of our NPDES permit (converted from NPDES permit threshold of 
pHNBS 9.0). However, the sensor performance indicates that 
detectability beyond the outfall for carbon accounting purposes is a 
much larger challenge. More details about this field test can be found 
in Savoie et al., 2025.

3.3 Case study: modeling

A surface flux of alkalinity in the center grid cell of the idealized 
model domain was applied to simulate the dilution and detectability 
of an alkaline plume under hydrodynamic and tidal conditions 
representative of Sequim Bay. At the release level of the Sequim Bay 
field test, there were extremely low to no levels of detectable change, 

depending on the use of a 0.01 or 0.001 pHT threshold. Therefore, the 
model results for the 100x experiment are plotted to show a larger 
areal extent of pHT changes that would have a greater likelihood of 
detection (Figure  6). Results from the two baseline experiments 
demonstrate that ~10–11% of the apparent signal at the surface of the 
domain cannot be  captured by pHT sensors with an accuracy of 
0.01 units [referencing Sensor 4 manufacturer reported accuracy of 
0.01 pHT (Table 1)] with an open boundary after a period of 1 week 
due to the effects of vertical and lateral mixing. Subsurface plume 
mixing and advection out of the inlet both contributed to continuous 
dilution, challenging the coherence of a signal corresponding to 
increased pHT (Figure 6). When compared to the full volume of the 
idealized domain, tidal exchange irreversibly diluted this signal after 
~3 days, and this fraction of alkalinity-enhanced waters exiting the 
surface of the model domain steadily increased thereafter for the 
remainder of the simulation.

Changes to pHT levels (calculated from modeling results using 
PyCO2YS; Humphreys et al., 2025) show that the limits of detectable 
changes are confined to a small area near the alkalinity addition point 
in the center of the model domain, even at alkalinity release levels 100 
times greater than the SBR field test (Figure 6A). For an alkalinity 
addition equal to the SBR field test (1x, Table 2), the maximum signal 
is undetectable at a 0.01 pHT threshold for the area surrounding the 
deployment site over the first 10 days following the alkalinity addition, 

FIGURE 5

(A) YSI EXO2 Sonde pH time series recorded during an alkalinity release from a wastewater treatment outfall in a tidally influenced channel. (B) Four 
pulses were detected during the release over 8 h, each separated by 1 h.
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and only covers an area of approximately 0.11 km2 if a 0.001 pHT 
threshold is applied instead. As expected, this detectable range 
expands as the amount of added alkalinity increases: at 10 times the 
SBR field test, the maximum extent of pHT covers an area equal to 
~0.11 km2, increasing further to 7.4 km2 at 100 times the SBR field test 
for a 0.01 pHT threshold. Even with a comprehensive sampling 
network of 75 sensors evenly spaced throughout the inlet at regular 

1 km intervals, ~93% of the sampled stations would be unable to 
detect a signal in a scaled version of the SBR field test model 
experiment (100x) based on current precision levels of market-
available pHT sensors assessed during the mesocosm experiment 
(Tables 1, 2).

With an increasing number of sensors, we find that the uncertainty 
in capturing the change in the overall pHT signal improves (decreased 

FIGURE 6

100x model scenario from SBR field test showing the maximum spatiotemporal extent of changes to pHT following an alkalinity release. Panel 
(A) shows surface pHT changes in a Sequim Bay-like basin with an overlaid 0.01 contour while panel (B) shows the horizontally averaged pHT changes 
at different depths (varying with the imposed tidal cycle) over the same domain for all cells that lie within the contour of 0.01 pHT detectability shown 
in (A). Both panels show the changes in pHT following a release that is 100 times the amount that was actually discharged (251 mols of alkalinity) into 
Sequim Bay over the same duration. Note that the color bars and scales differ between panels (A,B).
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standard error bars), but consistently under-reports the true change 
in modeled pHT (Figure 7). With a much larger release of alkalinity 
(100x), the number of sensors underestimates the true change in pHT 
signal by approximately −35.9 ± 18.1% (−0.003 ± 0.002 pHT) and 
−36.4 ± 0.5% (−0.003 ± 3.8E-5 pHT) for the sparsest (3 sensors) and 
densest (100 sensors) observational configurations, respectively. This 
inability to fully capture the average change in surface pHT is likely due 
to imperfect mixing of the change in DIC within the region where 
sampling occurs and where any signal is potentially detectable by 
sensors (≥ 0.01 pHT). A fraction of the change to surface alkalinity 
that lies below the detection limit will also consequently be lost to 
monitoring efforts. At relatively small releases (1x, 2x), 5 sensors are 
adequate to fully sample the area that is affected by increased alkalinity 
changes within the specified detection limit (≥ 0.01 pHT). At larger 
releases (50x, 100x), a release of 100 sampling sensors will only capture 
~5–13% of the total surface pHT change for an area where the 
detection limit will meet the specified threshold for a single time step 
in the model simulation (increasing to ~14–19% for a pHT threshold 
of 0.001). Over time, alkalinity changes are mixed deeper in this 
idealized domain, where no air-sea equilibration can occur. This 
represents another limitation of capturing the total change in 
pHT. Some percentage of this subducted alkalinity eventually is 
exchanged with the open boundary, which challenges even the most 
comprehensive surface monitoring network that could be deployed in 
a small coastal inlet. In model simulations with no open boundaries, 
the ability to detect the true signal with surface-only observation 
points slightly improves while the standard errors hardly differ (e.g., 
underestimated by 34.7 ± 0.4% at 100x the SBR release levels for 100 
sensors). These findings are well-aligned with near-field plume 
modeling results that suggest the pHT signal will rapidly dissipate 

within several meters of the outfall (Savoie et  al., accepted), 
highlighting the need to integrate subsurface monitoring assets into 
mCDR and MRV applications.

4 Discussion

4.1 Monitoring: sensing

Accurate monitoring, reporting, and verification of mCDR 
applications are constrained by our ability to measure impacts at 
relevant spatial and temporal scales. This is a difficult task, particularly 
in coastal systems, where tidal, diurnal, and seasonal patterns all 
influence water chemistry. To better understand our monitoring 
limitations, sensors and models need to be assessed in these conditions.

Accurate monitoring of OAE is partially limited by the 
instruments available to measure parameters with suitable accuracy, 
which are currently benchtop instruments that require discrete 
samples with sufficient volume and careful sampling procedures to 
avoid atmospheric contamination. Alternatively, measurements can 
be collected to parameterize the marine carbonate system and then 
estimate all other components, including TA and DIC, using popular 
packages like CO2YS (Pierrot et al., 2021) or the seacarb R package 
(Gattuso et al., 2024). These algorithms require measurements for two 
of four components: pH, pCO2, TA, and DIC. In-situ pH and pCO2 
sensors are the most established to date (Briggs et al., 2020; Briggs 
et al., 2017; Byrne et al., 2010; Shangguan et al., 2022; Shangguan et al., 
2021), can measure at high temporal resolutions, and provide an 
alternative to the collection of discrete samples. While this approach 
allows for a large increase in the frequency of measurements that can 

FIGURE 7

The magnitude of errors in the percentage of the pH signal captured using multiple stations compared to the model output in regions where a signal 
would be detectable. This percentage error varies based on the size of the alkalinity release. 1x is equal to the Sequim Bay field test release, 2x is two 
times that amount over the same time period (8 h), etc. The average difference between sampled and modeled surface pHT changes are divided by 
underestimates (negative values) and overestimates (positive values). Standard errors of the percent of the signal captured by the number of sensors 
are displayed as error bars. Points for alkalinity additions that lie on the zero line perfectly capture the modeled signal because the number of stations is 
greater than the number of model cells where a detectable signal can occur. The averages and standard errors are computed from 10,000 sampled 
estimates.

https://doi.org/10.3389/fclim.2025.1649723
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Stewart et al.� 10.3389/fclim.2025.1649723

Frontiers in Climate 12 frontiersin.org

be collected autonomously, it is also subject to propagation of errors 
from sensor accuracy, sensor calibrations, and uncertainty introduced 
by estimating marine carbonate chemistry conditions from these 
measurements (Miller et al., 2021b; Miller and Kelley, 2021a). Sensors 
will need to be  carefully selected for a given environment with 
consideration given to maximum sampling rates, measurement range, 
and sensor response time. For OAE, accurate measurements of TA 
and DIC are a current limiting factor: both are required for accurate 
accounting of sequestered carbon, and they are spatiotemporally 
variable with limited reliable in-situ sensing solutions available 
for either (Briggs et al., 2017, 2020; Byrne et al., 2010; Shangguan 
et al., 2021).

A range of pCO2 sensors of varying costs and accuracies are 
currently available (Briciu-Burghina et al., 2023), but the underlying 
detection method of each sensor has its own limitations (Clarke et al., 
2017). This also includes the limitations associated with the skill and 
experience of sensor operators (McLaughlin et  al., 2017). pCO2 
sensors typically cost more than pH sensors (Table 3), but there is 
better internal consistency in the marine carbonate system when using 
pCO2. While pH is a comparatively cheap and simple measurement to 
collect with an in-situ sensor, it is challenging to capture high-quality 
samples in coastal systems (Gonski et al., 2024; Herrmann et al., 2020; 
Miller et al., 2018), where many early OAE deployments are likely to 
take place. Calibration is critical for pH sensors, and in environments 
with dynamic salinities, it can be challenging to consistently match the 
salinity of the sample being tested to the salinity of the calibration 
buffer (Dickson et al., 2007; Easley and Byrne, 2012; Martell-Bonet 
and Byrne, 2020). To combat this several methods have been 
developed to calibrate pH sensors in dynamic systems, including 
in-situ or field calibrations (Bresnahan et al., 2014; Gonski et al., 2024). 
Drift can also become an issue for pH sensors over time due to 
biofouling and degradation (Briciu-Burghina et al., 2023; Delauney 
et al., 2010; Martz et al., 2015), as well as instability issues arising from 
temperature fluctuations during the day (Shen et al., 2024). However, 
with the current state of technology, when done well, pH will be a 
critical parameter for monitoring OAE. A well-constrained pH 
measurement will be critical for accurate monitoring of mCDR efforts 
if pH and pCO2 are chosen as primary measured marine carbonate 
system parameters. Our results show that the pH sensors’ estimated 
accuracy was better than the manufacturer’s reported accuracy for all 
except one sensor during the mesocosm trials (Table 1). This suggests 
that rigorous accuracy testing using redundant sensors and/or discrete 
samples by sensor users is one potential way to increase confidence in 
lower-cost sensor data. Our results also highlight that more error is 
induced when calculating other marine carbonate system parameters, 
specifically TA, when pH is poorly constrained compared to pCO2 
(Figures 4A,B).

Outside of error propagation, understanding the detection limits of 
in-situ sensors due to dilution will be critical for determining the number 
and appropriate spatial distribution of sensors during OAE monitoring 
efforts. The mesocosm study highlights sensor performance in a closed 
system, but the field test and model showcase how quickly dilution 
impacts detection capability in an open system. During the SBR field test, 
at a 15–20 cm spacing away from the outfall, a dilution from pHT 8.9 
(measured before release) to ~7.9–8.1 was observed (Figure 5). At the 
same level of release, with any further distance from the outfall, detecting 
a measurable signal would be  challenging with current pH sensor 
capabilities (sampling rates and sensor response times). Additionally, the 

influence of tidal exchange during the release was average for Sequim 
Bay. Increased dilution effects during larger tidal exchanges will also 
decrease the likelihood of signal detection, even at close proximities. 
These environmental challenges highlight the complexity of working in 
dynamic (tidally influenced) areas. Importantly, we note that matching 
sensing capabilities/settings to the persistence of the perturbation being 
measured is important not just across space but also through time. 
Accurately capturing system responses to mCDR interventions, critical 
for effective MRV, depends on three separate time-scales aligning: (1) the 
sensor response time– how rapidly the sensor can complete a 
measurement, (2) the sensor measurement interval – how frequently 
measurements are collected, and (3) the persistence of the perturbation – 
how long is the measurable signal present in the volume sampled by the 
sensor. As an example of how these three time-scales interact, a sensor 
with a response time of 1 s can measure a perturbation lasting 2 min. 
However, if the sensor is set to measure at 5-min intervals (a common 
measurement frequency that provides temporal resolution while saving 
battery and memory), it is likely it will miss the peak of the event, and 
may miss the event entirely. To improve the chance of signal detection, 
consideration during sensor selection should be given to the timescale 
of sensor response time, measurement range, and sensor measurement 
frequency. Ultimately, sensor accuracy will be  irrelevant if it is not 
deployed in the correct location and sampled at sufficient temporal 
resolution and response time to capture the system’s response.

Powering sensing efforts in marine environments can be complex, 
especially at scale. Energy consumption, more broadly for all parts of 
mCDR deployment efforts, should be evaluated, including tools for 
MRV. Whereas general power consumption information provided on 
manufacturer sensor specification sheets is typically based on ‘normal’ 
operating conditions. These are far less dynamic than coastal regions 
and ranges that may be experienced during OAE deployments. Energy 
consumption for the five sensors tested ranged from 80 to 2,500 mW, 
which would be easily supplied by most tidal or floating solar setups 
(Table 1). In 1 year, at the measured rates of consumption, the sensors 
tested would consume 0.7 to 21.9 kWh of energy if run continuously. 
For context, a tidal turbine, with a 1 m2 cross-sectional area, placed in 
Washington State tidal hotspots (annual available energy ranging from 
411 to 19,657 kWh m−2) would have the potential to generate 102.75 
to 4914.25 kWh annually (calculated using a conservative estimate of 
turbine energy conversion efficiency of 25%) (Yang et al., 2021).

That is two orders of magnitude more power than the sensors’ max 
draw. To power sensors at 2500 mW, you would need almost 6,000 
18,650-format lithium iron phosphate batteries a year. However, these 
power consumption estimates do not account for additional factors, 
including ancillary power needs (e.g., active anti-fouling solutions 
and/or pumped water or air), user-configured deployment 
configuration (e.g., sample averages and measurement frequencies), or 
variation in power production in response to dynamic environmental 
conditions. Our results suggest that sensor energy consumption is an 
important consideration but likely will not be a limiting factor for field 
trials. Instead, we suggest that further research is needed to determine 
appropriate power sources for scaled-offshore mCDR deployments.

4.2 Models informing monitoring

Due to the cost and complexity of high-resolution sampling, 
practitioners will have to rely on models (in tandem with sensors) to 
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adequately monitor OAE application and impacts. Models have the 
potential to forecast changes to key marine carbonate system variables, 
inform the total potential for the scale of CO2 removal, and assist in 
predicting long-term impacts on biogeochemical processes. Our 
results highlight the utility of relatively simple idealized models for 
designing measurement strategies and predicting changes in the 
marine carbonate system. The use of more complex numerical 
Observing System Simulation Experiments (e.g., Hoffman and Atlas, 
2016) is common practice for designing large-scale open ocean sensor 
deployments (e.g., Gasparin et al., 2019; Valsala et al., 2021; Vecchi 
and Harrison, 2007) but is less commonly employed for nearshore 
coastal studies. Such experiments are critical for coastal environments, 
given the highly variable conditions in which OAE interventions 
might be  deployed and the uncertainty of the spatiotemporal 
resolution and number of sensors needed for a given environment. 
Prior to deployments, such models can be  used to determine the 
number of sensors or monitoring stations required to capture some 
percentage of the total signal, given the detection limit of a sensor. As 
shown in Figure 7, increasing the number of stations can substantially 
reduce the level of uncertainty among a sampled average, and this 
effect is greatest when smaller amounts of alkalinity are released. 
Consequently, reducing uncertainty in observed changes to pH or 
pCO2 will also require more power for the sensors utilized. 
Additionally, models can be used to better determine where sensors 
should be deployed in order to increase the probability of success that 
an OAE signal can be effectively targeted and detected for a specified 
period of time.

Our results highlight how a comparatively simple model can 
be used as a MRV testing tool, informing field trials and deployments 
before they are conducted. Alkalinity added to the idealized model is 
rapidly diluted despite the domain starting at rest and applying a 
minimal wind. This emphasizes the narrow period over which changes 
can be detected and accurate accounting of the carbon budget through 
monitoring efforts can be carried out (Figure 6). The relatively brief 
window over which changes can be detected also holds true for a 
closed basin that has no tidal exchanges, demonstrating that the speed 
of dilution presents a substantial challenge for monitoring efforts. 
Some of this OAE signal is also lost to depth, meaning that a more 
complete accounting of the alkaline plume would also require an 
increased number of subsurface sensors that are not evaluated here 
(Figure 6B). Further, accurate detection of an OAE signal by surface 
pHT sensors underestimated the total detectable change by ~35–55% 
on average across all model experiments, whenever the number of 
model cells experiencing a pHT threshold > 0.01 exceeded the number 
of sensors released (Figure 7). The role of spatial variability within the 
region of detectable pHT changes also acts to limit the accuracy of 
sensors in capturing the average change, even at high sampling 
densities (50–100 sensors). Point measurements in this framework are 
limited, and a residual bias may be  reduced if the sensors were 
permitted to drift, rather than remain in fixed positions. However, 
such an adjustment naively implemented is also an inherently limited 
strategy. Selecting random locations within the region of detectable 
influence based on the approach taken in this work only slightly 
reduces the uncertainty of measurements without meaningfully 
affecting sampling bias (Figure 8). Optimizing sensor placement to 
accurately capture changes to pHT and alkalinity in real-world field 
trials will face additional hurdles. Chief among these challenges are 
the uncertainties in simulated trajectories of an alkalinity plume 

which will limit the ability of more robust sensor placement 
approaches to accurately predict changes in pHT and alkalinity. MRV 
efforts may be best supported by regular gridded sampling over an 
area where a plume is expected to reside for a period of time, through 
drones or other novel technologies like towed sensors or pH-sensing 
cables. More statistically robust sampling methods should also 
be investigated to be paired with novel sensing technologies. Selecting 
points with the highest gradient in concentration of alkalinity may 
over-represent expected changes, while k-means clustering type 
algorithms may more accurately represent average conditions over the 
lifetime of a deployment. A more thorough investigation of possible 
techniques in conjunction with field trials will likely help to identify 
additional promising sampling approaches that are beyond the scope 
of this paper. Altogether, these results highlight that high-resolution 
models are likely the best option to represent alkalinity plume 
dynamics in complex environments and will be a critical tool to help 
inform the optimal placement and distribution of in-situ sensors.

4.3 Key recommendations

4.3.1 Improvements: sensors and models
High-quality mCDR projects should strive to implement best 

practices that reduce uncertainty and minimize error in detecting and 
quantifying total rates of carbon removal. Making direct 
measurements of TA and pairing TA with DIC to calculate the rest of 
the marine carbonate system would reduce error propagation (Orr 
et al., 2018). However, TA and DIC are challenging to measure in-situ, 
creating important bottlenecks and limitations for the amount of data 
that could be collected, especially in cost-limited contexts. At least for 
now, autonomous, high-resolution pCO2 and pH sensors are likely to 
form the backbone of mCDR MRV data collection. Reducing the costs 
of these sensors and improving their drift could support incremental 
improvements to the uncertainty of data collected by these sensors 
and cost-effective monitoring campaigns. Biofouling represents 
another key source of uncertainty not assessed in the short sensor 
deployment described here. Research is being conducted to determine 
how to combat biofouling, including using coatings and wipers, but 
only a handful are commercially available (Delauney et al., 2010).

In addition to the environmental challenges, sensor response time 
and maximum sampling frequencies may dictate or skew what 
perturbations can be captured through sensing alone. Sensor selection 
should be guided by the three time-scales described above (sensor 
response time, sensor measurement frequency, and persistence of 
perturbation). As an example, deploying less accurate sensors capable 
of finer temporal resolution alongside more accurate sensors with 
coarser sampling frequencies could provide opportunities to 
effectively interpolate higher-accuracy, sparser measurements based 
on the lower-accuracy, temporally resolved time-series.

While the accuracy of data collected is essential, sometimes 
even the most accurate sensors will struggle to detect a large signal 
against dynamic background variability. Within existing literature 
and frameworks, there has been a call for establishing and 
collecting baseline measurements prior to conducting mCDR 
activities (Boyd et  al., 2023; Cross et  al., 2023; Ho et  al., 2023; 
Niffenegger et al., 2023). To adequately understand the chemical 
changes, biological response, and long-term impacts of OAE 
application, an understanding of the local marine carbonate system 
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is crucial. Additionally, it has been noted that understanding the 
‘additionality problem’, in relation to the extent that anthropogenic 
alkalinity alters the baseline or delivery of natural alkalinity, also 
needs to be  addressed in monitoring efforts (Bach, 2024). 
Ultimately, monitoring practices long-term will need to be able to 
address both additionality and durability (Ho et  al., 2023). 
Improvements to sensors would therefore benefit the development 
of readily available baseline data sets for OAE applications in 
environments of interest. In turn, this would advance the 
capabilities of sensors used to validate and inform models, quantify 
shifts outside ambient background variability, and support carbon 
markets. Historic environmental data can also be  leveraged to 
support this effort, and improve the understanding of long-
term trends.

Regardless of sensing method, direct observations will not be able 
to track 100% of changes induced from OAE (Ho et  al., 2023), 
especially at large spatial scales. To adequately support these efforts, 
models will first need to accurately simulate key physical dynamics for 
extended periods (weeks to months) to capture equilibration 
timescales. Additionally, improvements in the representation of fine-
scale dynamics and biogeochemical dynamics (e.g., secondary 
precipitation and potential modifications to air-sea fluxes) may 
be required, which can be very computationally demanding (Ward 
et al., 2025). These conditions should be explored further as real-world 
releases of mCDR efforts are likely to push many existing regional 
biogeochemical models outside the range of historically simulated 
model limits. More generally, expanding the user interface and 
accessibility will also be critical to the long-term development and 
support of these models for MRV efforts.

4.4 Clear MRV standards

Although mCDR research continues to advance, general guidelines 
are needed to structure current and future research to advance the field 
in tandem with sound science. Specific MRV guidelines will need to 
be developed in tandem to adequately support the development of the 
field. Some progress has recently been made clarifying suggested MRV 
practices related to specific technologies and carbon registries more 
generally (e.g., Agbo et al., 2024; Isometric, 2025; Myers et al., 2024). 
Scientists have also begun to compile best practices guides (e.g., 
Oschlies et al., 2023). Work to develop consensus standards among 
scientists and professionals is ongoing, and will need to be routinely 
assessed and updated as more sensors and models are developed, more 
field tests and trials are completed, and more regulations are enacted.

4.5 mCDR collaboration

Collaboration between mCDR monitoring campaigns is likely to 
be crucial to the success of each individual effort. This research could 
not have been completed without collaborating with scientists from 
various backgrounds and expertise. However, with the current lack of 
data sharing, it was challenging to collect sensor specifications and 
costing and compare results to similar mCDR studies. Previously, 
laboratory and sensor intercomparison projects (e.g., Bockmon and 
Dickson, 2015) have also identified analytical differences across 
different expert users, and this has been especially pronounced for pH 
accuracy and stability (Okazaki et al., 2017). Sharing data between 
projects, specific intercomparison efforts, and collecting redundant data 

FIGURE 8

Comparison of synthetic sampling approaches characterized by the random placement of sensors within a detectable plume area. In the top row, a 
number of random points are selected for model sampling in a given Monte Carlo iteration. These points remain fixed over the duration of the 
sampling process, and the overall estimate of bias and associated standard error are equivalent to the 100x alkalinity release using 100 sensors shown 
in Figure 6. In the lower panel, these sampling locations are permitted to randomly adjust at each time step. Allowing the locations of the sampling 
points to move does not substantially lower the average bias but does reduce the associated standard error.
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that overconstrains the carbon system may all be integral to developing 
MRV protocols for this newly emerging field. Similar data quality 
standards have been developed for ocean acidification (Jiang et al., 
2021; Newton et  al., 2015). Bidirectional information sharing and 
shared data storing platforms should be  established to support 
collaboration (National Academies of Sciences, Engineering, and 
Medicine, 2022; Oschlies et al., 2023). Additionally, the transparency of 
MRV will be critical to public perception and long-term adoption of 
these approaches. Accordingly, collaboration is likely to extend to 
public-private partnerships. Data management standards should 
certainly include protections for private sector IP, but must also allow 
for independent verification and validation, as well as scientific 
synthesis (Jiang et al., 2023; Palter et al., 2023). Observing networks that 
extend beyond the scientific community also build trust in scientific 
information and support evidence-based decision making (e.g., Cross 
et al., 2019; Tilbrook et al., 2019).

5 Conclusion

In addition to sensor technological advancements, understanding 
and documenting the successes and limitations of current sensor 
technologies in specific environmental scenarios will improve the 
ability to accurately monitor OAE deployments. Here, we conducted a 
case study in Sequim Bay (WA, United States) to assess the performance 
of sensors in a close. Our results show that it will be critical to constrain 
pH during OAE field deployments, given that errors in pH 
measurement can quickly propagate when used to calculate other 
parameters in the marine carbonate system, as will be essential in MRV 
calculations. While our pilot test showed that sensors could detect 
mCDR signatures from natural variability, they also showed how 
quickly signals can dissipate via dilution in real-world settings. This 
was confirmed by a simplified numerical mCDR simulation, which 
showed that sensors would struggle to capture the entirety of an OAE 
signal without accompanying large uncertainties. This finding also 
reinforces the benefits of model applications prior to mCDR 
deployments as a comparatively low-cost supplement to monitoring 
efforts that can inform decisions like sensor deployment location and 
the number and type of sensor packages needed. In the end, diverse 
and robust monitoring approaches will be critical to precisely assessing 
mCDR field deployments. Combining models, remote sensing, field 
observations, and autonomous systems will provide the lowest levels of 
uncertainty in determining changes in the marine carbonate system. 
Based on these findings, we recommend that future research consider 
coordinated and collaborative technical improvements to both 
measurements and model development that align with MRV standards.
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