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With climate change, human exposure to heat has increased over recent
decades and is expected to substantially increase in the future. This study
introduces a novel metric — namely, the exponentially weighted degree-day
approach — to assess population-weighted heat exposure at the national
level, incorporating both static and dynamic population scenarios. Using ERA5
reanalysis and CMIP6 climate projections under the SSP2-4.5 and SSP5-8.5
scenarios, we analyze and categorize global heat exposure and its trends from
1960 until 2100. Our findings reveal a significant rise in heat exposure over past
decades, disentangling the contributions of climate and demographic changes.
Furthermore, a thorough analysis of biases across different datasets and model
dimensions provides a global perspective based on daily maximum and daily
mean temperatures. This analysis forms the basis for quantifying current and
future heat exposure, together with a qualitative heat zone classification scheme.
The results underscore the urgent need for targeted adaptation strategies and
improved climate metrics to better assess and mitigate future heat-related risks.

KEYWORDS

heat, climate change, society, exposure, risk

1 Introduction

Global temperatures have been rising for several decades and will continue to do so,
depending on the pathway of anthropogenic climate change. With rising temperatures,
heat waves are becoming more frequent in more regions around the world. They are a
social burden, and their link to climate change is of great relevance due to the increasing
temperature near the surface and increasing humidity, according to the so-called Clausius-
Clapeyron scaling (Marx et al.,, 2021). Extreme summer temperatures have repeatedly
caused significant excess mortality (Gasparrini et al., 2015), especially among vulnerable
populations, as seen in the years 2003 (Kosatsky, 2005), 2015 (Muthers et al., 2017), 2019
(Klimiuk et al., 2024), 2022 (Ballester et al., 2023), and also 2023 (Gallo et al., 2024) in
Central Europe. Beyond mortality, increased temperatures and humidity have a direct
impact on health and labor productivity (Szewczyk et al., 2021; Kjellstrom et al., 2018),
and wellbeing (Zhao et al., 2021). They also result in a change in climate zones, with
consequences, for example, for infectious diseases (Semenza and Menne, 2009) or an
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increase in heat stress and cooling costs (Hooyberghs et al., 2017;
Hundhausen et al., 2023; Saeed et al., 2021).

Beyond regional climate trends, urban areas are significantly
more affected by increased temperatures than rural areas (Holmer
and Eliasson, 1999). More than 50% of the world’s population lives
in urban areas (Zhou et al., 2018), although these regions only
cover 3% of Earth’s total land surface (Eugenio Pappalardo et al.,
2023). The concentrated development of living space within these
urban landscapes results in dense built structures with reduced
vegetation and increased surface sealing. This leads to a modified
thermal climate in which temperatures are elevated compared
to the rural countryside. This phenomenon is called the urban
heat island (UHI) effect and is especially pronounced during the
night (Voogt and Oke, 2003). Due to the relatively small spatial
extent and highly heterogeneous nature of cities, UHI effects are
insufficiently represented in global climate models. The coarse
grid resolution of ERA5 reanalysis, as well as the lack of urban
process parameters, contribute to the neglect of UHI effects in this
dataset (Nogueira et al., 20225 Adinolfi et al., 2023). Consequently,
small-scale temperature extremes are poorly captured by coarse
global models, potentially leading to an under representation of the
heat exposure experienced by urban residents. Nonetheless, both
downscaled climate models as well as ERA5 are the global standard
for climate analysis and are, despite their limitations, useful for any
kind of global analysis.

In our study, we focus on the concept of heat exposure
by assessing the annual amount of daily mean and maximum
temperatures affecting the population in a certain country.
However, the change in heat stress on human exposure is
determined not only by climate alone. Demographic changes,
including population growth, urbanization, and migration, also
shape how and where people are exposed to heat and heat
extremes (Jones et al., 2015; Rohat et al., 2019). Yet, most of the
existing literature focuses mainly on climatic variables without
explicitly accounting for changes in the population distribution
over time (Matthews et al., 2017; Schwingshackl et al., 2021a).
Thus, the relative impacts of changes in population distribution and
temperature trends has not yet been sufficiently disentangled yet.

To address this gap, we assess changes in heat exposure driven
by both climatic and demographic trends. Specifically, we focus on
annual changes in degree-days based on daily mean and maximum
temperatures per country. In doing so, we consider both a static and
dynamic spatial population distributions. This is carried out for the
historic period of 1960-2024 and for different climate pathways,
including the historical baseline of CMIP6 from 1960 to 2014 and
the climate scenarios of SSP2-4.5 and SSP5-8.5 for 2015-2100.

In summary, we provide three different perspectives. First, we
assess the impact of population dynamics on heat exposure since
1960. Second, we compare ERA5 and CMIP6 results for both the
historical reference period and the initial decade of the climate
projection from 2015 to 2024. Finally, we assess the development
of heat exposure for future decades up to 2100 and provide
a qualitative classification scheme for heat exposure to better
compare and communicate the results. This way, we want to resolve
how historical changes in climate and population have contributed
to heat exposure, how it might continue in the upcoming decades,
and how temperatures from climate models correlate to historical
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observations. All steps are conducted on a national basis to provide
valuable insights for policymakers to anticipate future challenges
related to social and infrastructural heat impacts.

2 Data
2.1 Climate data

Historical temperature data were obtained from the ERA5
reanalysis dataset of the European Centre for Medium-Range
Weather Forecasts (ECMWF; Hersbach et al., 2020). This dataset,
which is widely used for global and regional historical climate
assessments, provides a global coverage of hourly data on a
0.25° x 0.25° spatial resolution since 1940. Covering the period
from 1960 to 2024, the hourly surface air temperature at 2 m above
the ground was aggregated to retrieve daily maximum temperatures
(tasmax) and daily mean temperatures (tas).

Future projections of daily maximum temperatures were
derived from the Global Downscaled Projections for Climate
Impacts Research (GDP-CIR) CMIP6 dataset (Thrasher et al,
2022), which is publicly available. This dataset provides bias-
corrected and downscaled climate model data based on the
Scenario Model Intercomparison Project (ScenarioMIP; O’'Neill
et al, 2016) of CMIP6 (CMIP6; Eyring et al., 2016) for daily
minimum and maximum temperatures. The bias correction and
downscaling of this dataset were done using quantile data mapping
(Cannon et al., 2015) and quantile-preserving localized-analog
downscaling based on ERA5. This ensures that the full range of
climate variability from the original data is realistically represented
in the downscaled data. The raw output from global climate
models within CMIP6 would be too coarse in resolution; thus,
the downscaling component of this dataset, with a resolution of
about 25 km, makes it directly compatible with ERA5. However,
this dataset does not explicitly provide daily mean temperatures.
Thus, they are considered as the mean between the daily maximum
and minimum values.

It should be noted that such global climate models come with
various limitations, including insufficient capturing of extreme
values (e.g., strong wind or precipitation) as well as limitations in
identifying very regional climate patterns (e.g., severe convective
storms or topographic effects). Even bias corrected models usually
do not suffice to overcome these limits (Ehret et al, 2012;
Casanueva et al., 2020). For this study, we utilized 15 individual
climate models as well as the ensemble for 2 shared socio-economic
pathways (SSP) (SSPs; Riahi et al, 2017). SSP2-4.5 describes
a stabilizing pathway with intermediate emissions and climate
protection measures in place. In contrast, SSP5-8.5 describes the
high-emission scenario representing fossil-fueled development.
While SSP2-4.5 can be anticipated as a potential outcome of global
policies, the “Middle of the Road” which still ends well above the 2
°C Paris climate goal with a global warming of 2.1-3.5 °C, SSP5-8.5
can be considered the worst-case climate scenario under a failure
of global climate protection efforts and an extensive fossil fuel
industry with average global temperatures increasing by 3.3-5.7 °C
(Riahi et al., 2017).
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TABLE 1 List of used bias-corrected and downscaled CMIP6 models
(historical, SSP245 and SSP585 runs) from Thrasher et al. (2022).

Model Institution

CanESM5 Canadian Center for Climate Modeling

and Analysis, Canada

CMCC-CM2-SR5 Centro Euro-Mediterraneo sui Cambiamenti Climatici,

Italy

CMCC-ESM2 Centro Euro-Mediterraneo sui Cambiamenti Climatici,
Ttaly

EC-Earth3 EC-Earth Consortium, Sweden

EC-Earth3-Veg EC-Earth Consortium, Sweden

FGOALS-g3 Institute of Atmospheric Physics,
Chinese Academy of Sciences, China
GFDL-ESM4 National Oceanic and Atmospheric Administration,

Geophysical Fluid Dynamics Laboratory, USA

HadGEM3-GC31-LL

INM-CM4-8 Institute for Numerical Mathematics,
Russian Academy of Science, Russia

INM-CM5-0 Institute for Numerical Mathematics,
Russian Academy of Science, Russia

MIROC6 Japan Agency for Marine-Earth Science

and Technology, Japan

MIROC6-ES2L Japan Agency for Marine-Earth Science

and Technology, Japan

MPI-ESM1-2-HR Max Planck Institute for Meteorology, Germany

NorESM2-MM NorESM Climate modeling Consortium, Norway

UKESM1-0-LL Met Office Hadley Centre, UK

In total, 15 individual models and their ensemble mean have
been taken into account (see Table 1). Similar to ERAS5, this
data is also provided at a spatial resolution of 0.25° x 0.25°. For
comparison, the historic baseline from 1960-2014 is considered, as
well as the respective climate projections from 2015-2100, covering
a whole century of climate change.

2.2 Population data

As a starting point for the spatial aggregation of heat exposure,
the 2023 version of the Global Human Settlement Layer (GHSL)
population model was used. This model is supported by the
European Commission, Joint Research Centre, and Directorate-
General for Regional and Urban Policy (Schiavina et al., 2023;
Freire et al, 2016). The GHSL is the source of new global spatial
information, evidence-based analysis, and knowledge about human
presence on the planet. It provides spatial rasters with different
resolutions on the population distribution in 5 year increments
between 1975 and 2030. Here, we used data on a 1 km raster
as starting point. To assess years prior to 1975, we applied the
1975 population distribution as a static approximation to account
for the lack of reliable spatial data for earlier years. For all other
years, population distributions were linearly interpolated between
GHSLs reference years to acquire annual population distribution
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maps from 1960 to 2024. For future projections, we use a static
population scenario, considering 2020 as the reference year.

3 Methodology

3.1 Preprocessing

To get the data ready for computing heat exposure, some
preprocessing was necessary. First, the geographic scope was
constrained to territorial states. With the initial climate rasters
on an approximately 25 km sized grid cells, very small countries
and especially small island states are not appropriately represented.
Thus, those small nations have been excluded from the assessment.
This results in approximately 190 countries worldwide being
available for the computation of heat exposure statistics.

Next, it was necessary to bring both population and climate
rasters to the same spatial resolution. This was done by linear 2D
spline interpolation onto a global 10 km grid for both population
and climate, increasing the resolution of climate rasters and
decreasing it for the population rasters. The increase of spatial
resolution in the climate data does not improve the spatial details of
the raw climate data, but allows for a more efficient data processing
down the line. Since only the relative population distribution is
relevant in this approach, as outlined below, ensuring that the
absolute population distribution remained intact across every year
when resampling its spatial resolution was not necessary. Finding a
middle ground on spatial resolution was the most feasible approach
with respect to computational efficiency while staying as close to the
original data resolution as possible. Individual grid cells were then
exclusively assigned to their closest country.

3.2 Heat exposure

To assess the impact of increasing heat on people, a spatial
correlation of population statistics and temperature data was
conducted. This approach integrates climate and population data
on a daily basis, which allows for both a static and dynamic
perspective on population distribution. It builds upon the concept
of degree-days, which has been widely used in the field of
agriculture and energy consumption to measure heat accumulation
over a certain time period (Mourshed, 2012; Bai et al., 2025).
However, in this application, temperatures are not summed
linearly, but exponentially to better capture the nonlinear human
vulnerability to extreme heat (e.g., Huang et al., 2022; Lo et al., 2023;
Sherwood and Huber, 2010; Mora et al., 2017).

This methodology follows three key steps. First, we compute
daily population-weighted temperature histograms for each
country and year. Second, these histograms are normalized
and weighted exponentially by temperature. Finally, annual
aggregation and logarithmic transformation provide a country-
level annual heat exposure index, which we call the representative
temperature Tyep. These steps are explained in further detail in the
next paragraphs.

For each country ¢, year y, and day d, we computed a histogram
describing how many people have been exposed to a specific daily
temperature. This was done for every grid cell i within a country.
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P(i,y) then describes the population in year y and cell i with
its respective daily average or maximum temperature T(i,d, y).
Then, the histogram value for a specific temperature bin T can be
calculated as:

H(c,d,y,T) = T) x P(i,y) 1)

Y 8(Tlid,y) —

iec

where § denotes the binning function to group the population into
discrete temperature bins depending on T. This was done across all
climate models, their respective time frames, and countries.

These histograms were then normalized by dividing them
by the total population within a country and weighted by the
temperature weighting term W(T). This term was defined for
temperatures above 10 °C and 0 otherwise. This exponential
form was chosen to strongly emphasize the impact of higher
temperatures, consistent with known nonlinear physiological
responses, while the 10 °C threshold focused the analysis on
warmer conditions relevant to heat stress. Alternative formulations
exist, but this form provides the necessary sensitivity for our
comparative analysis. This led to the normalized daily heat
exposure H(c, d,y).

. H(c,d,y, T)
H(c,d,y, T) = W(T) X ———— (2)
Ziec P(l’y)
exp(T —10), if T>10°C
w(n) =P , 3)
0, if T <10°C

Here, population is used to spatially weight the climate variable.
Thus, the absolute population is of lesser importance than its
relative spatial distribution. This reduces uncertainties arising due
to resampling of the input data to a desired resolution and from
their absolute values.

Finally, the normalized heat exposure is summed and log-
normally transformed to retrieve the annual heat exposure, which
we can also call the representative temperature Ty (c, y) for country
c and year y. The annual sum of daily weighted exposures:

D
rep(c y Z Z C, d, y, (4)
d=1 T

This approach reduces the total heat exposure of a country
to a single value. T, can be computed based on different daily
temperature statistics. In the following, we will use Tﬁg;’”“" for
statistics based on daily maximum temperatures and Tﬁg; for
statistics using daily mean temperatures. Values of T/ typically

re,
range from 20 °C to 40 °C and from 10 °C to 30p°C for Tﬁ?;
While providing a single value per country-year, T is treated as
a dimensionless index primarily intended for comparing relative
exposure changes across regions and scenarios, rather than as an

absolute physical temperature.
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3.3 Population scenarios

To disaggregate the influence of population and climate
on heat exposure, we considered 2 different population
First,
assuming a

scenarios. we computed the annual heat exposure

static population distribution. For this, we
applied the 2020 population distribution model to all years,
assuming a changing climate as if it would affect the 2020
population. Second, we applied the changing population
(2023) for the

years 1975 to 2025 in 5-year increments. As outlined above, for

distribution as modeled by Schiavina et al.

years within the increments, the population distribution was
linearly interpolated.

Both static and dynamic population scenarios were then
applied to recompute heat exposure based on the ERA5 historical
reanalysis data from 1960 to 2024. Heat exposure computed based
on CMIP6 models considered only a static population distribution,
since the spatial population distribution models already end in
2030, making them irrelevant for use for the upcoming decades.
Thus, CMIP6 future projections were computed with a constant
2020 population model to remain consistent with the static
population scenario.

To identify potential biases within and between different model
components, we introduced several assessment metrics.

To quantify the relevance of changes in the population
distribution, we compared heat exposure for two different periods
and under two different population scenarios. The first scenario
assumes a dynamic population development as given by the data
from GHSL, while the second assumes a constant population
distribution based on the year 2020.

This allows us to compute the change in heat exposure based on
population changes AT mp P between two points in time, which can
be computed as:

ATy = (T4 (e ) —

1ol T (e, 11)) — (Tiyp(c,12)

—Tplet) >t (5)

Here, Tflep(c, ty) describes the representative temperature at
time f, considering a dynamic population scenario and T7,,(c, tx)
the same for a static population model. Here, t, is a later point in
time than f;. To get robust results, it is recommended that f; and
t, are not single-year statistics, but the average across a timespan of
e.g., +/-15 around t; and ¢, respectively. When referencing certain
years in time in the following sections, the respective 30-year
average is meant.

Heat exposure can be influenced by epistemic and aleatoric
uncertainties. To address those when quantifying biases for future
decades, we introduce an indicator system based on 3 different
model domains. The first indicator captures whether heat exposure
has been previously influenced by population dynamics; the second
captures the long-term historical bias when comparing ERA5 and
CMIP6 historical reference period; the last one compares the first
decade of climate projections of 2015-2024. Due to the high
uncertainties in modeling, we reduce the potential values of each
indicator to -1, 0, and +1 to acquire a robust indicator metric.

The index I, identifies whether population dynamics have
significantly influenced heat exposure from 1975 to 2020. If
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population dynamics contributed more than the threshold t,, I,
becomes +1, if they reduced it by at least ¢, then Ip = —1:

+1, i ATRY /ATy > +1,%

TEP
Iy =1-1, ifATLY /ATy < —t,% (6)

0, else

Here, ATy describing the heat exposure change assuming
the static population of 2020 and AT‘fg represents the change
resulting only from dynamics in temperature and population from
the years 1975 to 2020. We apply the same logic for Ij, and I,. I
is the indicator based on the error between CMIP6 and ERA5 for
the historical reference period of 1960 to 2014. Similarly, I, is the
indicator based on the error between CMIP6 and ERAS5 for the
latest decade of 2015 to 2024 as described above. In both cases, if
the error is larger than t;|t,, I, or Ij, are +1; if the error is smaller
than t;,|t,, then I, or I, are -1.

-1, if Afrep(r) < —t

Iy = Y41, if ATwp(r) >+, with 7 =[1960,2015] (7)
0, else
-1, ifATrep(r) < —t

Iy = y+1, if ATp(r) > 4+t with 7 =1[2015,2024] (8)
0, else

Here, AT@(I) describes the average difference between Ty
from CMIP6 and ERA5 for a period t; for the historical indicator
I, this period is 1960 to 2014. I, is defined the same way,
but with ¢ = [2015,2024]. For this period, CMIP6 data have
been averaged across SSP2-4.5 and SSP5-8.5 to avoid uncertainties
from the respective input models. This is a valid approach since
relevant differences in climate forcing due to the different emission
scenarios do not occur before 2030.

We apply this to results from both tas and tasmax leading
to 6 separate indicators. Thus, the total indicator of over- or
underestimation, I, ranges from -6 to +6.

tas tasmax
I= ) L+ ) I 9
i€[p,h,r] i€[p,h,r]

This indicative approach provides a qualitative way to
showcase potential model biases and avoids the introduction of
potentially highly uncertain quantitative adjustments. It combined
the assessment of models errors both on the climatological scale at
2 time frames as well as errors potentially introduced by changes
in the population pattern. Thus, we can directly use CMIP6
model results and qualitatively highlight whether they under- or
overestimate heat exposure based on the given indication.

4 Results

The results can be broken down into three major parts. The
first part considers how heat exposure is influenced by population
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dynamics. Second, we compare the historical period of CMIP6
with observations from ERA5 to identify biases of over- and
underestimation of heat exposure. Finally, we assess heat exposure
biases for future decades under CMIP6 SSP2-4.5 and SSP5-8.5 by
applying our previous findings.

4.1 Population dynamics

To assess the contribution of population dynamics to changes
in heat exposure, we compare the change in heat exposure between
the 1980s (1980-1989) and the 2020s (2015-2024) under two
different population scenarios. Here, we consider the difference in
heat exposure changes between the static and dynamic population
distributions, denoted as Ang. If the heat exposure change is
larger for the dynamic population scenario, then the changes in the
spatial population distribution account for increased heat exposure.
On the other hand, if the static population scenario leads to a
larger change in heat exposure, then the changes in population
distribution have counteracted the climate change signal.

In general, population distribution plays a critical role in heat
exposure, especially for large countries with a diverse bioclimatic
landscape covering different climate zones and thus different
levels of heat exposure. However, spatial demographic changes
are negligible for small countries and island states like Singapore
or Seychelles. For developed countries with minimal relative
changes in population distribution, the demographic impact on
heat exposure is also minimal compared to the climate signal,
e.g., for Germany. This can be seen in Figure 1, which shows
the absolute change in Tj,, due solely to population distribution
changes for both tas and tasmax from the 1980s to the 2020s. In
addition, Figure 2 provides examples for four different countries
with different levels of demographic contribution from 1960 to
2024. There, the solid blue line indicates the static population
scenario, while the dashed blue line shows the dynamic population
scenario. In addition, the red lines indicate results from climate
models, which will be addressed later on.

In countries with substantial population growth and
urbanization dynamics, the locations where their populations
settled strongly contributed to their overall heat exposure. For
example, in the United States, as GHSL data show, relative
population growth was strongest in Southern and Western states,
which exhibit higher temperatures. This led to a contribution of
about 26% to heat exposure due solely to changes in population
patterns for both tasmax and tas statistics.

Urbanization can have a major impact on heat exposure,
depending on where the urban centers of a country are located. In
Norway, the concentration of a large proportion of the population
in the Oslo region, which is warmer than most of the rest of
the country, contributes about 60% of the positive change in heat
exposure for tas. On the other hand, in countries like the United
Arab Emirates or Oman, where their capitals are located in more
temperate places than the rest of the country, the accumulation of
population in these capitals reduces heat exposure in comparison to
the static population scenario. This indicates that if these countries
had had the population distribution of 2020 in earlier decades, their
heat exposure would have been lower.
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FIGURE 1

population distribution in addition to climate in the same time period.

ATPY for tas (a) and tasmax (b) based on changes in population distribution between 1985 (1980-1989) and 2020 (2015-2024). Negative numbers
indicate reduced heat exposure due to changes in population distribution, positive numbers indicate elevated heat exposure because of changes in
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In summary, changes in spatial population distribution did
contribute in many countries to a change in heat exposure.
Across all countries, independent of whether changes in population
distribution elevated or counter-acted temperature rise, population
dynamics contributed about 17.5% to the observed climate change
between 1960 and 2024. On average, it reduced the temperature
increase, e.g., for tasmax by about 5% as migration to cooler areas
within a country were more common. However, this does not
necessarily indicate general reduction of heat exposure as e.g.,
effects of urban heat is not considered in this study. For the
majority of countries, this contribution is minimal (e.g., Germany,
+0.24%), while it can be substantial for others (e.g., Kenya +42% or
Morocco -32%). Especially for countries with smaller populations,
the accumulation of people due to urbanization can be a major
driver for increasing or reducing heat exposure, on top of climate
change impacts. In some cases, these contributions can be even
larger than those from climate change or can completely counteract
the signal. In addition, urbanization also leads to urban heat islands,
which elevate heat exposure based on tas at a smaller regional
resolution than that captured in this assessment.

Frontiersin Climate

4.2 Historical review of ERA5 and CMIP6

To accurately assess heat exposure for the upcoming decades
under different climate pathways, it is necessary to assess the
differences between observations and the underlying historical
baseline of the applied CMIP6 models. The goal is to identify
potential regional and temporal biases between the ERA5 reanalysis
data, considered ground truth, and the CMIP6 ensemble. This is
done by applying the static population model of 2020.

It should be noted that CMIP6 models generally exhibit
systematic biases when compared to reanalysis datasets. Previous
studies have shown that they often overestimate land surface
temperatures, particularly in tropical and arid regions, while
underestimating warming in high-latitude areas (Fan et al,
2020; Duan et al, 2025). Such discrepancies may lead to an
overestimation or underestimation of heat exposure, depending on
regional climate characteristics.

In our assessment, we compared T, for both tasmax and
tas computed for the historical period (1960-2014) of CMIP6
and ERA5. The CMIP6 ensemble mean results show a mix of
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FIGURE 2

Curves for nggmax for the United States (top left), Oman (top right), Germany (bottom left), and Kenya (bottom right). The blue lines show the heat
exposure based on ERA5 reanalysis data using either a static population scenario (solid line) or the dynamic population scenario (dashed). Red lines
indicate CMIP6 historical baseline results considering a static population scenario. The strong red lines represent the ensemble mean of the
individual simulations (thin red lines). Lines have been Gaussian smoothed (o = 3 years) for better readability.
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FIGURE 3

Absolute change of Ty, for tas (a) and tasmax (b) comparing the historic reference period (1960 to 2014) of ERA5 and the CMIP6 ensemble mean (a,
c) and the difference between observed T, from the latest observational decade (2015-2024) compared to the first modeled decade of CMIP6 (b,
d). Positive values indicate that the observed temperatures are higher than the model.

positive and negative biases compared to ERA5, which vary by
region. In Eastern Europe (e.g., Ukraine, Romania, Slovakia, and
Belarus), there is a large positive bias, suggesting an overestimation
by CMIP6 in terms of heat exposure. Conversely, parts of
Southeast Asia (Philippines, Sri Lanka, Indonesia, and Vietnam),
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parts of Scandinavia, and Central America show a negative bias,
indicating an underestimation of temperatures. In addition, the
largest errors were found for arid regions like Qatar, Kuwait, and
Chile, where CMIP6 substantially underestimates the ERA5 values.
These biases are found for both tas and tasmax. For T, based
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on daily maximum temperature, the biases were generally more
pronounced, indicating an underestimation of extreme values.

Furthermore, we compared the last decade of observational
data (2015-2024) with the corresponding first decade of the CMIP6
models under different potential pathways. Since these pathways
are very close together in their initial years, we compared the
difference between observations and the mean of SSP2-4.5 and
SSP5-8.5 for that decade.

In general, most biases from the historical reference period
remain consistent throughout these climate projections. In some
places they are amplified, as in Armenia or Chile. In other places,
a shift from underestimation to overestimation takes place, as in
various European countries (e.g., Germany, Switzerland, France,
and the United Kingdom). Especially, arid regions continue to
show a consistent underestimation, while, e.g., Eastern Europe
remains overestimated.

Warming of the last decade has been insufficiently captured
in many places, as shown by the described error shift and
the amplification of pre-existing underestimation. The global
distribution of these biases can be seen in Figure 3, which highlights
both historical and recent biases. Figure 2 also shows the variability
of individual climate models, together with their ensemble mean,
in comparison to ERA5 for selected countries. In summary, for
the historical period, warming has been over- and underestimated
in a roughly equal number of countries (about 35-40 each). For
the remaining countries, a bias of less than 0.5 °C is considered
negligible. For the most recent decade (2015-2024), warming has
been underestimated more frequently. A relevant overestimation
was identified for tasmax in only 20 countries, while almost 70
countries can be considered underestimated. For tas, this bias is
less pronounced.

Since Ty relies on an exponential weighting of temperatures,
individual extreme values become more important compared to
a long-term average. Individual extremes are often filtered out by
averaging across different models, as is done here by computing the
ensemble mean. This results in maximum temperature extremes
being more likely to be missed than average temperatures. In
addition, if a model bias occurs in densely populated regions,
it becomes more pronounced due to the population weighting
technique applied to retrieve Thep.

4.3 Future climate

The final part of this analysis focuses on the upcoming decades
to estimate how heat exposure might change and how such trends
might be biased based on the lessons learned from the review of
historical decades. Thus, we have assessed SSP2-4.5 and SSP5-8.5
until 2100 assuming a static population scenario. It is important to
note that the influence of population dynamics is neglected due to a
lack of sufficient future projections of population distribution. The
influence of a changing population distribution would come on top.

Under this premise, we incorporate these biases into the bias
indicator I, which considers biases resolved from both tas and
tasmax. [ is the sum on I, I, and I, based on tas and tasmax,
respectively. Their threshold parameters have been set to t, =
10% and t;, = t, = 0.5, which are approximately the upper
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and lower sigma bounds based on the national statistics across all
countries. Ranging from -6 to +6,a high value indicates a potential
underestimation of heat exposure by the CMIP6 models, while
low values indicate a potential overestimation. Figure 4 shows the
global distribution of I, revealing some clear patterns. In case of
I, it is assumed that the population dynamics of the past decades
are indicative for the population dynamics of future decades (e.g.,
continuous urbanization).

Most notably, parts of the Middle East, Central Asia, the
Americas, and Northern Europe experience the strongest bias
toward underestimation, including the United States (+4), Chile
(+5), Yemen (+3), Sweden (+4), and Kyrgyzstan (+6). Generally,
most of Western Europe sees a potential underestimation, while
most of Eastern Europe, except for Poland and the Baltics, might
be overestimated. Across Africa, the distribution is heterogeneous.
Most countries along the Nile River may be overestimated, except
for Ethiopia (+1). A similar pattern can be seen for the Central
African countries, except for Burundi (+4) where heat exposure
might be underestimated, especially in South Sudan (-4). In South
America, countries East of the Andes show a tendency to be
overestimated, while those West of the Andes are either neutral or
potentially underestimated, especially Chile.

Such biases indicate challenges in properly representing
regional climate dynamics in global models, particularly when
also accounting for a granular human exposure in these places.
Using a population-weighted approach in this study also ensures
that desolate places without any exposure do not interfere with
geospatial statistics. Thus, the observed biases are highly relevant
for risk-driven assessments.

However, the most important question is what the future
climate might look like. For this purpose, we compiled the change
in Trp for both tas and tasmax (denoted as AT,) for the
period since 1980, as well as for future projections in the 2050s
and 2090s for both SSP2-4.5 and SSP5-8.5 (Figures 5, 6). These
projections indicate the most notable changes in heat exposure will
be in Europe, especially in Eastern Europe, which could represent
an overestimation according to the biases described above. On
average, the trends for tasmax and tas are very similar in most
countries. However, countries with high altitude, like Bolivia, or
arid places with already high daily maximum temperatures, like
Iraq, experience much more pronounced changes in their daily
average temperatures than in their maximums. In addition, mid-
latitude countries experience higher absolute and relative changes
in their heat exposure than those in the tropics, where average daily
temperatures are already high. Nonetheless, heat exposure from
average and maximum daily temperatures increases in all countries
and under both scenarios.

The changes in heat exposure inevitably go hand-in-hand with
changes in climate zones (Cui et al., 2021). However, climate zones
depend on more variables than just temperature and provide a good
qualitative way to describe the climate or a part of it. Thus, we
introduce so-called “heat zones” based on the average heat exposure
from tas and tasmax, T,ep, which is defined as

— (Ties g Tiosme
Trep =5

3 (10)

In total, we define eight different heat zones based on five-
degree increments of Thep, which range from 5 to 45, covering
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FIGURE 4

Model bias indicator / based on the combined observed biases from population distribution changes, and relative errors between ERA5 and CMIP6
from both historical and recent observation periods taking into account biases from both tas and tasmax. A high value indicates a potential
underestimation of CMIP6 heat exposure, while a low values indicates a potential overestimation.
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FIGURE 5

2090s (e, f).

World view on Tep based on tas in the 1980s (a) and its changes in AT, by 2020 (2015-2024) (b), and by 2050 for SSP2-4.5 (c) and SSP5-8.5 (d) and

cold, temperate, and warm climates with intermediate steps. The
highest class, “unbearably warm,” had not manifested by 2020
but might occur by the 2050s under SSP5-8.5 or by the 2090s
under SSP2-4.5 in the Middle East. Table 2 summarizes these
different classes. These zones are based on qualitative descriptions,
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provided by the authors, of contemporary conditions in the
respective countries (e.g., France) or in the places within those
countries where the majority of people live (e.g., Canada). These
zones can be considered a temperature- and population-weighted
simplification of the Képpen climate classification. Cui et al. (2021)
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FIGURE 6

and 2090s (e, f).

World view on Tep based on tasmax in the 1980s (a) and its changes in AT, by 2020 (2015-2024) (b), and by 2050 for SSP2-4.5 (c) and SSP5-8.5 (d)

TABLE 2 Definition of heat zones based on T',ep, which is the average of
Trep resolved from tas and tasmax.

Title Trep  Examples in 1980s

Very cold 5-10 Iceland, Faroe Islands

Cold 10-15 | United Kingdom, Ireland, Liechtenstein, Andorra
Cold temperate 15-20 | Norway, Chile, Austria, New Zealand

Warm temperate 20-25 Canada, France, South Africa

‘Warm 25-30 United States, Turkey, China, Australia

Very warm 30-35 Algeria, India, Iran

Extremely warm 35-40 Iraq

Unbearably warm | 40-45

The class “unbearably warm” is not found in the 1980s.

and Belda et al. (2014) have taken similar approaches. It should
be remembered that these zones are based on population-weighted
temperatures. In the case of the United States, California, Texas,
and Florida, with their high populations, dominate the overall
classification, in contrast to, e.g., Montana or Alaska, which have
very few people.

The class “unbearably warm” was introduced to account for
heat exposures not yet experienced today. Considering that heat is
already substantially challenging for some societies today, a further
increase in average and maximum temperatures can lead to a
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potentially unbearable situation where a region is no longer suitable
to sustain human life.

Already by 2020, many countries had changed their heat zone
since 1980. For example, Spain moved from a “warm temperate” to
a “warm” country, while most of Central Europe increased from
“cold temperate” to “warm temperate.” The movement of heat
zones is illustrated both in Figure 7 as global maps and in Figure 8,
which provides the distribution of all countries across heat zones.
The latter highlights that countries classified as “very cold” or “cold”
today may disappear as early as the 2050s or at the latest by the
2090s. “Warm temperate" countries are the most common class of
heat exposure worldwide today. However, by the 2050s, “warm”
countries will become the most common, and by the 2090s under
SSP5-8.5, there will be more countries classified as “very warm”
or above worldwide than in any other category. Between 1980 and
2020, about a third of all countries experienced an increase in their
heat zone by one level. By 2050, under SSP5-8.5 (which is almost
equivalent to 2090 under SSP2-4.5), only a third of the countries
have not yet switched their heat zones, while a few countries have
even moved a second level higher.

5 Discussion

In our study, we have shown how population dynamics have
influenced heat exposure in different countries, to what extent
ERA5 and CMIP6 data fit together, and where potential errors
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FIGURE 7
World view on different heat zones in 1980 (a), 2020 (b) and by 2050 for SSP2-4.5 (c) and SSP5-8.5 (d) and 2090 respectively (e, f).

50

45 —

40 —

[
o
]

w
o

N
o

Share of Countries [%]
N
[4)]
J

[N
o

=
o

:.n _-.H l-_ﬂ 1./ I_.H L ks

1980s 2015-2024 2050s (ssp2-4.5) 2090s (ssp2-4.5) 2050s (ssp5-8.5) 2090 (ssp5-8.5)

mVeryCold mCold [ColdTemperate [WarmTemperate [OWarm [©@VeryWarm mExtremelyWarm  ® Unbearably Warm

FIGURE 8
Histograms on the qualitative heat zones for different decades and climate projections showing the shift from a majority of cold and temperate

countries to mostly warm.

and biases should be considered. Furthermore, we assessed what  this study, the increase in countries experiencing “very warm”
future heat exposure may look like and how it compares to todays  and “extremely warm” heat conditions, as well as the potential
situation using a qualitative classification system. emergence of an “unbearably warm” zone, highlight the growing

Overall, this assessment highlights the increasing heat exposure  risk of extreme heat. The consequences can be severe with respect
worldwide. Following the nomenclature of heat zones used in  to heat-related mortality, impacts on agricultural productivity, and
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the potential for increased migration pressure. Several countries
in regions already experiencing exceptionally high temperatures,
such as the Middle East, Southeast Asia, or major parts of Africa,
may move into extreme heat conditions as early as the 2050s.
In addition, mid-latitude countries in regions such as Europe
experience the largest increase in heat exposure.

Despite these overall trends, there are various biases and
potential error sources that need to be addressed. First, the assessed
climate projections rely on the latest CMIP6 climate models,
which still contain various uncertainties and regional biases, as
highlighted in the comparison with ERA5 for recent decades. Places
that are highlighted by these models to experience some of the most
pronounced changes in heat exposure, such as Eastern Europe,
are also indicated to be constantly overestimated by the CMIP6
historical baseline, which counteracts the projected extremes.

In addition, this assessment was carried out on a country-
by-country basis, where sub-national variations have only
been considered by introducing a population-based weighting
technique. However, for very large countries like the United States,
Brazil, or India, this might still be insufficient. Future iterations of
this research should take into account smaller administrative units.

Furthermore, as shown for recent decades, changes in
population can significantly impact heat exposure, especially in
countries with substantial dynamics in demography and spatial
migration. Even though we have limited the analysis to a static
population model after 2020, future migration patterns are very
uncertain and will potentially be influenced by a changing climate
itself (Balsari et al., 2020). Thus, as in the past, heat exposure also
depends on where people decide to live in the future. This can
also be connected to changes in land use, which also influence
regional temperature patterns (Adeyeri et al., 2023). Additional
improvements could be made considering also projections of
population patterns into the future. However, this would also
introduce further modeling uncertainties and assumptions which
need to be addressed within the analysis.

Likewise, the effect of the urban heat island, which would
have a substantial impact on daily average temperatures in
urbanized regions, depends on the spatial distribution of
settlements. This is especially important since urbanization is a
key driver behind the demographic contribution to changes in
heat exposure. In the future, higher-resolution climate models
should be used to better capture heat distribution in general
and, specifically, to better account for effects such as the urban
heat island, in order to better quantify the actual burden of heat
in cities.

Finally, this assessment is solely based on temperature to
quantify heat exposure. However, in terms of heat risk to, for
example, health, humidity is a crucial factor (Ebi et al., 2021).
Hot temperatures in dry climates are less dangerous than those in
more humid climates. Here, future research should also take into
account heat based on indicators such as the heat index or humidex
(Diaconescu et al., 2023).

6 Conclusion

The
shift

results of our study outline the

that has

significant

in global temperatures already occurred
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and the expected intensification of these trends over
the coming decades. However, it was also shown that
climate change is not the only major driver of national
heat exposure. Population dynamics with respect to

changes in the relative population distribution within a
country—for example, due to urbanization or conflicts—
heat
account when

can substantially increase or reduce
This
planning climate adaptation
Habitability ~ with

an increasingly
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measures at a national
heat will
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important factor in and
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by providing a qualitative classification

exposure, it is easier to compare the level
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review the heat
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where
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adaptation
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as its future
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should  be
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Nonetheless, our  results interpreted
and uncertainties

(this  study
distribution  of
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from climate models,

limited future
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2020), and geospatial aggregation (linear interpolation of

dynamics
static

climate models). Countries with existing heat exposure
will see exacerbated risks, while those previously
considered temperate are entering new and unfamiliar

climate regimes.

This
high-resolution climate and demographic data for more
precise The
urban heat feedback mechanisms,

study underlines the importance of integrating

risk  assessments. underrepresentation  of

stress, regional and

socioeconomic vulnerabilities within future socioeconomic
pathways suggests that actual

higher than estimated. These findings recommend a more

exposure may be even
holistic approach to assessing the impacts and dynamics
of heat exposure, one that integrates scientific perspectives
and health

and urban planners. In

from climate science, risk science, science,

as well as from policymakers
addition, it might be help to also include other climate
pathways, e.g., SSP1-2.6, which is more in-line with the
to highlight what the best

could be, despite becoming

Paris Agreement, potential
future among all pathways
more unlikely.

The results of the current worst-case climate pathway,
SSP5-8.5, highlight the crucial
heat

places in the world—a situation that would be potentially

need to avoid a future

where exposure becomes extreme for too many
unbearable for many societies. Achieving a pathway similar
to SSP2-4.5 would still be a challenge for many countries,
requiring costly adaptation measures. However, the authors
hope that the findings of this study support decision-
makers in advancing climate mitigation and adaptation

and motivate scientists to close the identified data and
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research gaps to better understand the impact dynamics of
climate change.
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