



### **OPEN ACCESS**

EDITED AND REVIEWED BY Sara Calderoni, Stella Maris Foundation (IRCCS), Italy

\*CORRESPONDENCE Noemi Mazzoni

 $\ oxdots$  noemi.mazzoni@uniecampus.it

RECEIVED 01 September 2025 ACCEPTED 03 September 2025 PUBLISHED 16 September 2025

Oakley B. Canitano R. López-Zamora M and Mazzoni N (2025) Editorial: Advancing interventions and therapeutic outcomes for autistic youth: a multidisciplinary perspective. Front. Child Adolesc. Psychiatry 4:1697025. doi: 10.3389/frcha.2025.1697025

© 2025 Oakley, Canitano, López-Zamora and Mazzoni. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

# **Editorial: Advancing** interventions and therapeutic outcomes for autistic youth: a multidisciplinary perspective

Bethany Oakley<sup>1</sup>, Roberto Canitano<sup>2</sup>, Miguel López-Zamora<sup>3</sup> and Noemi Mazzoni<sup>4,5</sup>\*

<sup>1</sup>Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom, <sup>2</sup>Division of Child and Adolescent Neuropsychiatry, University of Siena, Siena, Italy, <sup>3</sup>Department of Developmental and Educational Psychology, University of Malaga, Málaga, Spain, <sup>4</sup>Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Italy, <sup>5</sup>Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy

### KEYWORDS

autism, children and young people, intervention, novel therapeutics, outcome

# Editorial on the Research Topic

Advancing interventions and therapeutic outcomes for autistic youth: a multidisciplinary perspective

# Current status of the field

Autistic people and their families experience barriers in access to health and social care services (1). Despite autistic traits typically becoming recognised within the first two years of life, average age of diagnosis is ~4-5-years, with many individuals diagnosed even later and into adulthood (1-4). Missed/misdiagnosis is also common, particularly in autistic girls/women (5-7). Accurate and timely diagnosis is pivotal to accessing appropriate interventions, supporting autistic youth to strengthen skills and achieve their full potential (8).

However, the evidence-base for effective, acceptable, and accessible interventions tailored to the specific needs of autistic youth remains limited (9) - both for interventions focused on features "core" to autism that can cause distress (e.g., negative sensory experiences), and those highly co-occurring with autism (e.g., physical/mental health problems). With the aim to advance understanding of factors influencing the effectiveness of different interventions for autistic youth, this Research Topic gathers studies using integrated and multidisciplinary approaches and innovative methodologies in the field.

# Advancing progress

Support delivered in early development may maximise longer-term outcomes (10-12). Currently, the most established early intervention models focus on behavioural change (13), though these are controversial due to their basis in norms for

Oakley et al. 10.3389/frcha.2025.1697025

"typical development" [see (14)] and individual outcomes are also highly variable. For instance, Du et al. showed that diverse behavioural interventions may have differential effects on specific developmental outcomes (e.g., social vs. motor) and suggest that clinicians should consider child-specific needs and contextual factors in selecting a therapeutic approach.

Indeed, to progress the field, we need to move towards a more comprehensive and sensitive consideration of individual differences and community needs and priorities in defining what the targets for intervention should be and how their success should be measured (15–17). Integrating perspectives of autistic young people and their parents/caregivers is thus crucial. The work of Carlsson et al. qualitatively investigates the social validity of early intervention. Parents appreciated the naturalistic and local setting of the intervention and their active participation, which provided them with new knowledge and a sense of empowerment. Results further indicated that parents also have diverse needs and value both broader autism education, and the opportunity to focus on more specific understanding of their own child and strategies to support them, as central components of intervention.

These qualitative insights resonate with the increasingly highlighted importance of actively involving parents as a "mediator" in intervention. Consistently, Carta et al. reported that augmenting traditional behavioural interventions with parental support can lead to further gains in parent-rated child outcomes, as well as reducing parental stress. Such findings emphasise the importance of family systems approaches (18), with emerging evidence that child-parent neurodevelopmental similarity can have protective effects on developmental outcomes of autistic children (19), also acknowledging that a high proportion of parents of autistic young people are neurodivergent and/or experience poor mental health themselves (20).

Further extending this holistic view, it is now apparent that autistic traits and commonly co-occurring features interact and evolve dynamically and differently within and between individuals across development (21). Consequently, no single intervention approach will be effective for all individuals, nor at all developmental stages. To address this challenge, "precision healthcare" approaches have become prominent in autism research. Here, Fradkin et al. administered 8 weeks of Transcranial photobiomodulation (tPBM) therapy and assessed its effects using behavioural and EEG measurements. Results showed a reduction of clinical rated autistic traits and changes in brain activity. Although still in its infancy, this work suggests that EEG metrics may serve as a candidate biomarker that could predict who is most likely to benefit from a mechanistically targeted therapy, based on their individual needs and biological profiles, supporting prior findings (22–24).

Alongside biomarker discovery, interest in biopsychosocial models and their clinical implications in the context of autism has recently been reignited (25). In their systematic review, Yang and Li examined the impact of physical activity interventions on restricted and repetitive behaviours, tentatively suggesting that observed effects may act via sensory/regulatory pathways. Interconnection between brain and body has long been established. However, "body" is often neglected in psychological research, particularly limiting progress in the context of neurodevelopmental conditions

that are highly co-occurring with physical health problems affecting daily functioning, quality of life, and mortality (26).

# Shaping the future

Taken together, the research themes captured here indicate that next steps in advancing interventions and therapeutic outcomes for autistic youth include identifying and removing barriers to health and social care access to improve earlier provision of support, and reframing intervention targets to align with the needs and priorities of autistic young people and their families. Participatory approaches and involvement of underrepresented voices (e.g., autistic people with co-occurring intellectual disability, those from lower socioeconomic backgrounds) in these efforts is essential (27). Interventions themselves should be adapted to the experiences of autistic people, as differential responsiveness/side effects in autistic vs. non-autistic individuals, and higher effectiveness of autismadapted vs. standard-of-practice approaches have been highlighted (28-30).Additionally, a holistic approach addressing neurodiversity-affirmative environmental accommodations (31, 32), family support needs, and overall physical and mental health is critical to improving long-term outcomes for autistic youth.

# **Author contributions**

BO: Writing – original draft, Conceptualization, Writing – review & editing. RC: Writing – review & editing, Conceptualization, Supervision, Writing – original draft. ML-Z: Conceptualization, Writing – review & editing, Writing – original draft. NM: Writing – review & editing, Writing – original draft, Conceptualization.

# Conflict of interest

BO reports grants unrelated to this work from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 777394 for the project AIMS-2-TRIALS. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA and AUTISM SPEAKS, Autistica, SFARI.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.

# Generative Al statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of

Oakley et al. 10.3389/frcha.2025.1697025

artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us. reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

# Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the

# Author disclaimer

Any views expressed are those of the author(s) and not necessarily those of the funders (IHI-JU2).

# References

- 1. Mendez MA, Oakley B, Canitano R, San José-Cáceres A, Tinelli M, Knapp M, et al. Autism care pathway in Europe. *Eur Psychiatry*. (2023) 66(1):e81. doi: 10. 1192/j.eurpsy.2023.2435
- 2. Milner V, Colvert E, Hull L, Cook J, Ali D, Mandy W, et al. Does camouflaging predict age at autism diagnosis? A comparison of autistic men and women. *Autism Res.* (2024) 17(3):626–36. doi: 10.1002/aur.3059
- 3. van 't Hof M, Tisseur C, van Berckelear-Onnes I, van Nieuwenhuyzen A, Daniels AM, Deen M, et al. Age at autism spectrum disorder diagnosis: a systematic review and meta-analysis from 2012 to 2019. *Autism.* (2020) 25(4):862–73. doi: 10.1177/1362361320971107
- 4. Zuckerman KE, Lindly OJ, Sinche BK. Parental concerns, provider response, and timeliness of autism Spectrum disorder diagnosis. *J Pediatr.* (2015) 166(6):1431–9.e1. doi: 10.1016/j.jpeds.2015.03.007
- 5. Green RM, Travers AM, Howe Y, McDougle CJ. Women and autism Spectrum disorder: diagnosis and implications for treatment of adolescents and adults. *Curr Psychiatry Rep.* (2019) 21(4):22. doi: 10.1007/s11920-019-1006-3
- 6. Ochoa-Lubinoff C, Makol BA, Dillon EF. Autism in women. Neurol Clin. (2023)  $41(2){:}381{-}97.\ doi: 10.1016/j.ncl.2022.10.006$
- 7. Young H, Oreve M-J, Speranza M. Clinical characteristics and problems diagnosing autism spectrum disorder in girls. *Arch Pédiatr.* (2018) 25(6):399–403. doi: 10.1016/j.arcped.2018.06.008
- 8. Mandy W, Midouhas E, Hosozawa M, Cable N, Sacker A, Flouri E. Mental health and social difficulties of late-diagnosed autistic children, across childhood and adolescence. *J Child Psychol Psychiatry*. (2022) 63(11):1405–14. doi: 10.1111/jcpp. 13587
- 9. Sandbank M, Bottema-Beutel K, Crowley LaPoint S, Feldman JI, Barrett DJ, Caldwell N, et al. Autism intervention meta-analysis of early childhood studies (project AIM): updated systematic review and secondary analysis. *Br Med J.* (2023) 383:e076733. doi: 10.1136/bmj-2023-076733
- 10. Dawson G, Rogers S, Munson J, Smith M, Winter J, Greenson J, et al. Randomized, controlled trial of an intervention for toddlers with autism: the early start Denver model. *Pediatrics*. (2010) 125(1):e17–23. doi: 10.1542/peds.2009-0958
- 11. Green J, Charman T, McConachie H, Aldred C, Slonims V, Howlin P, et al. Parent-mediated communication-focused treatment in children with autism (PACT): a randomised controlled trial. *Lancet.* (2010) 375(9732):2152–60. doi: 10.1016/S0140-6736(10)60587-9
- 12. Zwaigenbaum L, Bauman ML, Choueiri R, Kasari C, Carter A, Granpeesheh D, et al. Early intervention for children with autism spectrum disorder under 3 years of age: recommendations for practice and research. *Pediatrics*. (2015) 136(Supplement\_1):S60–81. doi: 10.1542/peds.2014-3667E
- 13. Schreibman L, Dawson G, Stahmer AC, Landa R, Rogers SJ, McGee GG, et al. Naturalistic developmental behavioral interventions: empirically validated treatments for autism spectrum disorder. *J Autism Dev Disord.* (2015) 45(8):2411–28. doi: 10. 1007/s10803-015-2407-8
- 14. Baiden KMP, Williams ZJ, Schuck RK, Dwyer P, Wang M. The social validity of behavioral interventions: seeking input from autistic adults. *J Autism Dev Disord*. (2025) 55(4):1172–86. doi: 10.1007/s10803-024-06297-3
- 15. Fletcher-Watson S, McConachie H. The search for an early intervention outcome measurement tool in autism. *Focus Autism Other Dev Disabil.* (2015) 32(1):71–80. doi: 10.1177/1088357615583468
- 16. McConachie H, Parr JR, Glod M, Hanratty J, Livingstone N, Oono IP, et al. Systematic review of tools to measure outcomes for young children with autism spectrum disorder. *Health Technol Assess.* (2015) 19(41):1–506. doi: 10.3310/hta19410

- 17. Roche L, Adams D, Clark M. Research priorities of the autism community: a systematic review of key stakeholder perspectives. *Autism.* (2020) 25(2):336–48. doi: 10.1177/1362361320967790
- 18. Spain D, Sin J, Paliokosta E, Furuta M, Prunty JE, Chalder T, et al. Family therapy for autism spectrum disorders. *Cochrane Database Syst Rev.* (2017) 5(5): CD011894. doi: 10.1002/14651858.CD011894.pub2
- 19. Wechsler DL, Jones EJH, Pasco G, Bazelmans T, Begum-Ali J, Johnson MH, et al. Parent-child similarity on autism and ADHD traits and children's social functioning and psychological well-being at 3 years. *J Child Psychol Psychiatry*. (2025). doi: 10.1111/jcpp.70014
- 20. Schnabel A, Youssef GJ, Hallford DJ, Hartley EJ, McGillivray JA, Stewart M, et al. Psychopathology in parents of children with autism spectrum disorder: a systematic review and meta-analysis of prevalence. *Autism.* (2019) 24(1):26–40. doi: 10.1177/1362361319844636
- 21. Bradshaw J, Schwichtenberg AJ, Iverson JM. Capturing the complexity of autism: applying a developmental cascades framework. *Child Dev Perspect.* (2022) 16(1):18–26. doi: 10.1111/cdep.12439
- 22. Mason L, Moessnang C, Chatham C, Ham L, Tillmann J, Dumas G, et al. Stratifying the autistic phenotype using electrophysiological indices of social perception. *Sci Transl Med.* (2022) 14(658):eabf8987. doi: 10.1126/scitranslmed.abf8987
- 23. McPartland JC, Bernier RA, Jeste SS, Dawson G, Nelson CA, Chawarska K, et al. The autism biomarkers consortium for clinical trials (ABC-CT): scientific context, study design, and progress toward biomarker qualification. *Front Integr Neurosci.* (2020) 14:16. doi: 10.3389/fnint.2020.00016
- 24. Oakley B, Loth E, Jones E, Chatham C, Murphy D. Advances in the identification and validation of autism biomarkers. *Nat Rev Drug Discov.* (2022) 21(10):697–8. doi: 10.1038/d41573-022-00141-y
- 25. Loth E. Does the current state of biomarker discovery in autism reflect the limits of reductionism in precision medicine? Suggestions for an integrative approach that considers dynamic mechanisms between brain, body, and the social environment. *Front Psychiatry.* (2023) 14:1085445. doi: 10.3389/fpsyt.2023.1085445
- 26. Ward JH, Weir E, Allison C, Baron-Cohen S. Increased rates of chronic physical health conditions across all organ systems in autistic adolescents and adults. *Mol Autism.* (2023) 14(1):35. doi: 10.1186/s13229-023-00565-2
- 27. Fletcher-Watson S, Adams J, Brook K, Charman T, Crane L, Cusack J, et al. Making the future together: shaping autism research through meaningful participation. *Autism.* (2018) 23(4):943–53. doi: 10.1177/1362361318786721
- 28. Whelan TP, Daly E, Puts NA, Malievskaia E, Murphy DGM, McAlonan GM. Editorial perspective: bridging the translational neuroscience gap in autism—development of the "shiftability" paradigm. *J Child Psychol Psychiatry.* (2024) 65(6):862–5. doi: 10.1111/jcpp.13940
- 29. Williams K, Brignell A, Randall M, Silove N, Hazell P. Selective serotonin reuptake inhibitors (SSRIs) for autism spectrum disorders (ASD). *Cochrane Database Syst Rev.* (2010)(8):CD004677. doi: 10.1002/14651858.CD004677.pub2
- 30. Wood JJ, Kendall PC, Wood KS, Kerns CM, Seltzer M, Small BJ, et al. Cognitive behavioral treatments for anxiety in children with autism Spectrum disorder: a randomized clinical trial. *JAMA Psychiatry*. (2020) 77(5):474–83. doi: 10.1001/jamapsychiatry.2019.4160
- 31. Lai M-C, Anagnostou E, Wiznitzer M, Allison C, Baron-Cohen S. Evidence-based support for autistic people across the lifespan: maximising potential, minimising barriers, and optimising the person-environment fit. *Lancet Neurol.* (2020) 19(5):434–51. doi: 10.1016/S1474-4422(20)30034-X
- 32. Turnock A, Langley K, Jones CRG. Understanding stigma in autism: a narrative review and theoretical model. *Autism Adulthood.* (2022) 4(1):76–91. doi: 10.1089/aut. 2021.0005