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Editorial on the Research Topic
Retroconstruction of porous crystalline networks for a sustainable future

The 2025 Nobel Prize in Chemistry, awarded to Susumu Kitagawa, Richard Robson,
and Omar M. Yaghi, celebrates their pioneering work on metal-organic frameworks
(MOFs) (Hoskins and Robson, 1990; Kondo et al., 1997; Yaghi et al., 1995), a class of
porous crystalline networks (PCNs) built from metal nodes and organic linkers. This
breakthrough introduced a new paradigm in materials design, enabling the creation of
nanosized cavities with molecular precision. From this foundation, “reticular chemistry”
(Yaghi et al., 2019) has flourished, expanding PCNs to include covalent organic frameworks
(COFs) (Côté et al., 2005) and hydrogen-bonded organic frameworks (HOFs) (He et al.,
2011). By linking molecular building blocks through strong bonds like coordination,
covalent, or hydrogen interactions, reticular chemistry unlocks vast chemical diversity.
This high designability encodes functions such as gas storage, separation, and catalysis into
PCNs. Yet, despite these advances, industrial-scale “killer applications” remain scarce, with
only a few showing real-world promise. With the groundwork laid, what lies ahead
for PCNs?

Timed to coincide with the Nobel recognition, this Research Topic assembles five
articles that bridge fundamental PCN research with sustainability challenges amid the
climate crisis. The Research Topic spans structural modulation (Johnson et al.), materials
hybridization (Hossain et al.), and applications in carbon capture (Cammarere et al.),
energy storage (Ghuffar and Noh), and wastewater treatment (Mohammed Yaseen et al.).
Central to this is our proposed “retroconstruction” approach, which merges retrosynthesis
(designing molecules backward from desired outcomes) with retroengineering
(deconstructing problems to identify solutions). Retroconstruction involves three steps:
(1) identifying essential properties needed for real-world problems; (2) selecting molecular
motifs, topologies, and pore structures to achieve them; and (3) developing efficient
synthesis and processing methods. This framework shifts PCNs from serendipitous
discoveries to targeted tools for sustainability.

Carbon capture is pivotal for curbing anthropogenic emissions and meeting the Paris
Agreement’s goal of limiting global warming to 2 °C above preindustrial levels (Baker et al.,
2018; Masson-Delmotte et al., 2018). Traditional amine scrubbing is energy-intensive,
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prone to sorbent degradation, and challenging to retrofit (Rochelle
Gary, 2009). PCNs, with their tunable porosity for reversible gas
adsorption, offer a solvent-free alternative (Lin et al., 2021; Zhou
et al., 2024). However, water vapor in flue gases or air often competes
with CO2, reducing efficacy (Siegelman et al., 2019). Cammarere
et al. review water-enhanced CO2 capture in MOFs, highlighting
mechanisms like dipole-quadrupole interactions, water dissociation
creating new adsorption sites, nanopocket confinement, and
chemical sorption via carbamates, carbamic acids, or
bicarbonates. By retroconstructing MOFs by choosing specific
metal nodes, ligands, topologies, and pores, these designs
optimize performance under humid conditions, paving the way
for efficient point-source or direct air capture.

Equally vital for carbon neutrality are renewable energy
technologies, which demand advanced electrochemical devices
like batteries and electrolyzers. A key hurdle is understanding
lithium-ion-coupled electron transfer (LCET) reactions at
electrode-electrolyte interfaces, including their thermodynamics
and Li+-electron stoichiometry, which is vital in cathode design
in Li-ion batteries (Nikitina et al., 2017). Bulk metal oxides often fail
to show Nernstian behavior with Li+ concentrations, precluding the
derivation of LCET thermochemistry. Ghuffar and Noh address this
through retroconstruction: a Zr-based MOF confines tungsten oxide
(WOx) into nanoparticles within its pores, creating an ideal platform
for LCET studies. This nano-confinement reveals precise
stoichiometry and Gibbs free energy, offering insights for energy
storage and conversion that align with sustainable electrification.

Clean water access, another UN Sustainable Development Goal,
faces threats from chemical pollutants and pathogens.
Retroconstructing PCNs can yield multifunctional materials for
wastewater treatment (Li et al., 2021). Mohammed Yaseen et al.
introduce a vanadium-based MOF with 2,2′-bipyridine-4,4′-
dicarboxylic acid ligands, combining porosity for dye adsorption
with antimicrobial properties against agents like E. coli. This synergy
derived from bioactive ligands and porosity demonstrates how
targeted design addresses dual challenges in water purification.

Practical deployment of PCNs is often hampered by their
powdery form, limiting processability. Hossain et al. review
covalent integration of polymers with PCNs, such as MOFs,
COFs and HOFs, to create hybrids with enhanced stability,
flexibility, and scalability. These strategies overcome traditional
drawbacks, enabling retroconstruction for industrial applications
like membranes or coatings.

At the heart of PCN functionality are their topologies and
porosities, yet MOF structures can be unpredictable due to metal
multivalency and ligand conformations (Jiang et al., 2021). Johnson
et al. probe this in tetraphenylethene-based MOFs, using rotamer
and pillar ligands to control net dimensionality, pore sizes, and
surface areas. This modular approach exemplifies retroconstruction,
facilitating rational design for tailored applications without
reinventing building blocks.

These articles collectively illustrate retroconstruction’s power:
by deconstructing sustainability problems and reassembling PCNs
accordingly, we can accelerate real-world impact. Challenges persist

in scalability, cost, and environmental stability, which must be
addressed through interdisciplinary efforts, including AI-driven
design and lifecycle assessments. Nonetheless, the future of PCNs
centers on rational innovation to transform energy systems, reduce
emissions, and ensure resource equity, aligning with the UN’s
Sustainable Development Goals.

In this Nobel-inspired moment, retroconstruction invites us to
envision PCNs not as mere materials, but as architects of a
sustainable future that is porous with possibility.
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