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Introduction: Breast cancer, one of the most prevalent malignancies in women
begins in the milk ducts or lobules and is divided into invasive and non-invasive
variants. The kind stage and molecular features of the cancer determine the
treatment strategy which may include surgery, chemotherapy, and targeted
drugs. Early identification through screening is critical to increasing patient
survival rates.
Methods: In this study, we look at the efficacy of numerous breast cancer drugs,
including Toremifene, Tucatinib, Ribociclib, Olaparib, Abemaciclib, Anastrozole,
Letrozole, Thiotepa, Tamoxifen, and Megestrol Acetate. We investigate their
chemical and physical properties, including molar volume (MV), polarizability
(P), molar refractivity (MR), polar surface area (PSA), and surface tension (ST). We
employ Quantitative Structure Property Relationship (QSPR) analytical
approaches, including curvilinear regression and multiple linear regression
(MLR), to model and predict the physicochemical properties of these
medications by analyzing the impact of molecular descriptors on these
properties.
Results: A comparison of the two regression techniques is done to see how
accurate their predictions are and to find the best way to model the data.
Furthermore, resolving topological indices examines the relationship between
molecular structure and therapeutic effectiveness.
Discussion: The outcomes of these studies help to further our understanding of
breast cancer treatments and the development of more focused and customized
therapeutics.
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1 Introduction

Chemical graph theory is an interdisciplinary study that uses principles from chemistry
and graph theory to investigate the structural features of chemical molecules. Researchers
can investigate molecular stability, reactivity, and spectrum features by portraying
molecules as graphs with atoms as vertices and bonds as edges. This technique not only
helps to comprehend complicated chemical processes, but it also makes it easier to develop
novel materials and medications by shedding light on the links between molecular structure
and function (Liu, 2022).
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The investigation of resolving sets and metric dimensions in
chemical graph theory provides important insights into the
discovery and characterisation of molecular structures. A resolving
set is a subset of vertices in a graph that can be uniquely recognized by
its distances to the other vertices in the set. This idea is critical in
understanding how distinct atoms within a molecule may be
identified based on connectedness, which is required for predicting
chemical behavior and reactivity. The metric dimension, which is
defined as the smallest size of a resolving set for a given graph,
measures the effectiveness of this identification method.

The concept of metric dimension in graph theory, proposed by
(Slater, 1975), is closely related to the concept of a resolving set,
which is a collection of vertices that uniquely identify all other
vertices based on their distance (Harary and Melter, 1976). defined
the metric dimension as the size of the smallest resolving set in a
graph. This notion has implications in network theory and
molecular graph analysis, where resolving sets aid in identifying
chemical structures. Metric dimension and resolving sets remain
significant techniques in graph theory, with applications in
cheminformatics and structural biology. These significant
materials continue to be important in the study of graph based
models across a variety of scientific disciplines.

Degree based topological indices, which depend on vertex degrees
in molecular networks, are widely used to predict chemical
characteristics and biological activities (Randic, 1975). proposed
the Randić index, which is defined as R � ∑uv∈E(dudv)−1/2
(Gutman and Trinajstić, 1972). Zagreb indices are the basis for
QSPR and QSAR research. The first Zagreb index is
M1 � ∑u∈Vd

2
u, and the second is M2 � ∑uv∈Edudv. The hyper-

Zagreb and modified Zagreb indices have been extended to
increase their forecast accuracy in complex systems. The study
utilizes multigraphs and topological indices (TIs) in QSPR/QSAR
analysis of antiviral medications such as Lopinavir and Remdesivir, as
well as multiple linear regression (MLR), to connect physicochemical
qualities with biological activity, therefore improving knowledge of
treatment efficacy against COVID-19 (P et al., 2024). In 2021,
developed a new vertex degree known as the domination degree of
v, which is based on dominance sets with certain properties. In
Bommahalli Jayaraman and Siddiqui (2024), the authors explored
the basic features of the dominance degree function and got accurate
values. Zagreb dominance indices for several graph families. This
study utilized QSPR models with topological indices to predict the
physicochemical characteristics of AD medicines, resulting in more
efficient drug design Sardar and Hakami (2024). This study employed
degree-based topological indices and two novel Zagreb-type
descriptors to assess the physicochemical parameters of kidney
cancer medicines Mahboob et al. (2024). Regression analysis
revealed excellent correlations with experimental data, indicating
their predictive reliability.

Predicting the physicochemical characteristics of medicines
using different regression models has been the subject of several
papers. Linear regression models and degree-related topological
indices are used to evaluate kidney cancer drugs. Havare recently
used three regression models and degree-related metrics to assess
cancer drugs (Havare, 2021). The characteristics of cancer drugs are
closely connected, according to quadratic regression. Cancer
characteristics, like molar volume, polarizability, and molar
refractivity, are more strongly correlated than previously thought.

Kirmani et al. identified 10 features of antiviral drugs by using
11 degree-related TIs (Kirmani et al., 2021). In 2021, Liu et al.
studied the chemical structures of coronavirus treatments using
15 distinct indices (Liu and Singaraj, 2021). Rauf et al. examined the
COVID-19 drug structure’s molar refractivity, polar surface area,
and molar volume with basic and multiple linear regression (Rauf
et al., 2023a; Rao et al., 2024). Similarly, regression models and
topological indices are used to study the structures of many drugs
(Kumar and Das, 2024). This work investigates the use of topological
indices, namely, hydrogen representation, to predict the
physicochemical features of TCA medications (Kour and Ravi
Sankar, 2025). This study uses distance-based topological indices
and QSPR analysis to analyze the physicochemical characteristics of
tricyclic antidepressant medications, stressing their importance in
structure-property prediction (Kour and Sankar, 2025). Machine
learning with distance-based topological indices from hydrogen-
depleted networks allows for reliable QSPR prediction of anticancer
drug characteristics, which aids efficient drug development (Kour
et al., 2024). In QSPR modeling, graph-theoretical descriptors have
proven useful, as demonstrated by earlier research, such as our work
on NSAIDs employing Degcity indices (Pandeeswari et al., 2025;
Kara et al., 2025a) used topological polynomials and indices to
analyze lung cancer medicines and found high connections with
physicochemical attributes and prediction accuracy. These findings
support the use of topological indices as credible descriptors in
chemical graph theory. Similarly, Arockiaraj et al. (2025) used
degree and neighborhood degree sum topological indices to
analyze cancer drug structures, proving their great prediction
abilities using QSPR models. These findings further support the
use of topological indices as trustworthy descriptors in molecular
property estimation (Hakeem et al., 2025). Topological modeling
and QSPR analysis were utilized to forecast the physicochemical
features of bioactive polyphenols. These results show that degree-
based indices may successfully link molecular structure to physical
characteristics, which aids medication design. Furthermore, Kara
et al. (2025b) neighborhood eccentricity-based indices have been
used to COVID-19 drugs, yielding good correlations with
physicochemical parameters and confirming the use of
topological descriptors in drug design. In our earlier study
(Pandeeswari and Ravi Sankar, 2025), we used chemical graph
theory to investigate the vertex and edge metric dimensions of
several breast cancer drug structures in detail. This fundamental
study establishes a formal framework for using metric dimension
notions to define molecular structures and improve predictive
modeling. This study also expands on previous research
Sooryanarayana et al. (2022), such as the resolving topological
indices created for standard networks and their use in silicate
structures, by applying the approach to breast cancer drugs.
Existing indices, such as the Zagreb indices and metric
dimension ideas, serve as standards. The novelty is in using these
indices for medicinal compounds and combining themwith modern
computational tools such as LR and MLR to improve predictive
modeling. Collectively, these investigations demonstrate topological
indices efficacy as trustworthy and cost-effective descriptors in
chemical graph theory. In this work, we explore the use of
resolving topological indices to examine the physicochemical
properties of drugs used to treat breast cancer. These articles
represent a link between mathematics and pharmaceuticals.
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The purpose of this study is to investigate the possibility for
resolving topological indices in the computational analysis of breast
cancer medications. Resolving indices, developed from graph
theory, offer new insights into molecule structures by capturing
their topological characteristics. This study employs these indices
along with QSAR/QSPR approaches to simulate important
physicochemical properties of breast cancer drugs, which can
serve as a basis for future studies aimed at predicting
pharmacological efficacy. This work stresses the importance of
mathematical modeling and computational approaches in aiding
drug development and generating insights that may eventually lead
to specific cancer treatment options.

To the best of our knowledge, this is the first systematic research that
uses resolving topological indices in QSPR modeling of breast cancer
drugs. By including these indicators into regression models, the current
study not only demonstrates their predictive power, but also gives new
perspectives on the structural determinants of breast cancer drug efficacy.

2 Preliminaries

This section introduces the fundamental ideas and
terminologies used in the study of chemical graphs. This covers
definitions for resolving sets, metric dimensions, and resolving
degree-based topological indices, all of which are required to
comprehend molecular graph structure analysis. Lemma 1 offers
a theoretical basis for computing resolving degree-based topological
indices. These indices are useful tools in molecular characterization,
since they assist in predicting molecular behavior and bio activity.

2.1 Resolving set and metric dimensions in
chemical graph

Let G represent a molecular graph, which is a simple, connected,
and undirected graph where the vertex set V(G) corresponds to
atoms and the edge set E(G) corresponds to chemical bonds. A
resolving set S � {v1, v2, v3, . . . , vk} ⊆ V(G) satisfies the following:

1. S is an ordered subset of the atoms (vertices) in V(G).
2. For each atom x ∈ V(G), its representation vector with respect

to S, defined as:

r(x | S) � d(x, v1), d(x, v2), . . . , d(x, vk)( ),

is unique. Here, d(x, vk) denotes the shortest path distance
between x and vk, which corresponds to the minimum number of
bonds traversed between the two atoms in the molecular graph G.

A resolving set with the minimum cardinality is called a metric
basis, and the size of this metric basis is referred to as the metric
dimension of the molecular graph G, denoted as dim(G).

2.2 Degree related resolving topological
indices of molecular graphs

• Sooryanarayana et al. (2022) The first resolving Zagreb indices
of (G) represented by FRZI1(G) is defined as,

FRZI1(G) � ∑
a∈V

dβ(a)2 (1)

FRZI2(G) � ∑
ab∈E

[dβ(a) + dβ(b)] (2)

• Sooryanarayana et al. (2022) The second resolving Zagreb
index of (G) represented by SRZI(G) is defined as,

SRZI(G) � ∑
ab∈E

[dβ(a) · dβ(b)] (3)

• Sooryanarayana et al. (2022) Resolving hyper Zagreb index of
(G) represented by RHM(G) is defined as,

RHM(G) � ∑
ab∈E

[dβ(a) + dβ(b)]2 (4)

• Sooryanarayana et al. (2022) Resolving forgotten index of (G)
represented by RF(G) is defined as,

RF(G) � ∑
ab∈E

[dβ(a)2 + dβ(b)2] (5)

Lemma 1: Sooryanarayana et al. (2022) For every vertex v of a
connected graph G, β(G)≤dβ(v)≤ β(G) + 1, and dβ(v) � β(G) iff
there is a metric basis containing v.

2.3 Remark

In view of Lemma 1, the above Equations 1–5 can be written as.

FRZI1(G) � η(β(G))2 + (|V(G)| − η)(β(G) + 1)2 (6)
FRZI2(G) � 2|E(G)|β(G) + (ξ1 + 2ξ2) (7)

SRZI(G) � |E(G)|(β(G))2 + (ξ1 + 2ξ2)β(G) + ξ2 (8)
RHM(G) � 4β(G)2|E(G)| + 4β(G)(ξ1 + 2ξ2) + (ξ1 + 4ξ2) (9)
RF(G) � 2β(G)2|E(G)| + 2β(G)(ξ1 + 2ξ2) + (ξ1 + 2ξ2) (10)
Where

η � {u: dβ(u) � β(G)}∣∣∣∣
∣∣∣∣

ξ1 � {e � uv ∈ E(G): dβ(u) � β(G), dβ(v) � β(G) + 1}∣∣∣∣
∣∣∣∣

ξ2 � {e � uv ∈ E(G): dβ(u) � dβ(v) � β(G) + 1}∣∣∣∣
∣∣∣∣

Theorem 1: Let G be the non-trivial connected molecular graph of
the drug Toremifene. The resolving degree-based topological indices
of G are:

FRZI1(G) � 599, FRZI2(G) � 284,
SRZI(G) � 651, RHM(G) � 2618, RF(G) � 1316.

Proof. LetG(V, E) be the molecular graph of Toremifene, where
G contains 29 vertices (atoms) and 31 edges (bonds).

Now we define, The resolving degree of a vertex u, denoted by
dβ(u), is defined as the minimum cardinality of a resolving set of G
that contains the vertex u.

Let S be the metric basis of G. By Lemma 1, the following hold:
dβ(u) � β(G) for all u ∈ S and dβ(u)≤ β(G) + 1 for all u ∈ Sc, where
Sc � V(G)\S.
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For the graph G, we have:

β(G) � |S| � 4, dβ(u) � β(G) � 4 for all vertices u ∈ S.

We calculate the following quantities:

η � {u: dβ(u) � 4}∣∣∣∣
∣∣∣∣ � 14

ξ1 � {e � uv ∈ E(G): dβ(u) � β(G), dβ(v) � β(G) + 1}∣∣∣∣
∣∣∣∣ � 14

ξ2 � {e � uv ∈ E(G): dβ(u) � dβ(v) � β(G) + 1}∣∣∣∣
∣∣∣∣ � 11

Substituting the above values into the Equations 6-10 for
resolving degree based topological indices, we get:

FRZI1(G) � 4(4)2 + (29 − 14)(5)2 � 599
FRZI2(G) � (2)(31)(4) + (14 + 22) � 284
SRZI(G) � (31)(4)2 + (14 + 22)(4) + 11 � 651
RHM(G) � (4)(4)2(31) + (4)(4)(14 + 22) + (14 + 44) � 2618

RF(G) � 2(4)2(31) + (2)(4)(14 + 22) + (14 + 22) � 1316.

Thus, the resolving degree-based topological indices of G are as
stated in the theorem.

Similarly, for other well-known breast cancer drugs, the
corresponding graph invariants are calculated and presented in
Tables 1, 2.

3 Materials and methods

Resolving degree-based topological indices (RTIs) and statistical
analysis are the two types of computations used in this study.
ChemSpider provides the experimental findings, while JMP
software and Excel are used for the statistical analysis. We can
gain a deeper comprehension of chemical structures and behavior by
employing these techniques and tools. This work uses resolving
degree-based topological indices to analyze the chemical structures
of drugs used to treat breast cancer. These indices of QSPR analysis
are discussed and the results show a striking relationship with the
physical characteristics of the chemical compounds used to treat
breast cancer. This study focuses on ten drugs: Toremifene,
Tucatinib, Ribociclib, Olaparib, Abemaciclib, Anastrozole,
Letrozole, Thiotepa, Tamoxifen, and Megestrol Acetate. Figure 1
illustrates the chemical structures of these compounds. The
particular physicochemical properties of breast cancer drugs are
included in Table 3, which also provides helpful details regarding the
molecular structure and therapeutic use of these drugs.

3.1 Curvilinear regression analysis of drugs
for breast cancer

The relationship between a dependent variable (represented by
P) and one or more independent variables (represented by RTI) is
described by a linear regression model. The independent variables
are also called explanatory or predictive variables, and the dependent
variable is also called the response variable. In statistical analysis, this
model is frequently used to comprehend how one or more
independent variables affect the dependent variable. Although
this manuscript focuses on linear, quadratic, and cubic regression
analysis and its associated parameters, there are other kinds of
regression models as well. A variation of linear regression is the
quadratic regression and cubic regression model. These model
equations are described as follows:

P � a1(RTI) + b

P � a2(RTI)2 + a1(RTI) + b

TABLE 1 Graph invariants for different breast cancer drugs.

Drugs |V(G)| |E(G)| β(G) η ξ1 ξ2

Tucatinib 36 41 3 11 10 26

Ribociclib 32 36 4 14 12 17

Olaparib 32 36 3 8 10 23

Abemaciclib 37 41 3 10 10 27

Anastrozole 22 23 5 12 8 10

Letrozole 22 24 3 12 10 7

Thiotepa 11 13 3 6 6 4

Tamoxifen 28 30 4 14 14 10

Megestrol Acetate 28 31 4 12 9 17

TABLE 2 Obtained values of the resolving degree-based topological indices of breast cancer drugs.

Drugs FRZI1(G) FRZI2(G) SRZI(G) RHM(G) RF(G)
Toremifene 599 284 651 2,618 1,316

Tucatinib 499 308 581 2,334 1,172

Ribociclib 674 334 777 3,120 1,566

Olaparib 456 272 515 2070 1,040

Abemaciclib 522 310 588 2,362 1,186

Anastrozole 660 258 725 2,908 1,458

Letrozole 268 168 295 1,190 600

Thiotepa 134 92 163 658 332

Tamoxifen 574 274 626 2,518 1,266

Megestrol Acetate 592 291 685 2,749 1,379
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P � a3(RTI)3 + a2(RTI)2 + a1(RTI) + b

Where RTI is the topological index, b is a constant, a1, a2, a3 is
the regression coefficient, and P is any of the drugs physicochemical

properties. JMP software is used to calculate the constants and
coefficients for the molecular structure of drugs, the five physical
characteristics of the 10 drugs used to treat breast cancer—molar
volume (MV), polarizability (P), molar refractivity (MR), polar

FIGURE 1
Breast cancer drugs: Toremifene, Tucatinib, Ribociclib, Olaparib, Abemaciclib, Anastrozole, Letrozole, Thiotepa, Tamoxifen, Megestrol Acetate. (a)
Toremefine. (b) Tucatinib. (c) Ribociclib. (d) Olaparib. (e) Abemaciclib. (f) Anastrozole. (g) Letrozole. (h) Thiotepa. (i) Tamoxifen. (j) Megestrol acetate.
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surface area (PSA), and surface tension (ST) - are modeled using the
RTI mentioned above.

Tables 4-6 present the correlation coefficients (R) obtained
from linear, quadratic, and cubic regression models,
respectively, highlighting the relationship between resolving
topological indices and the physicochemical properties of
breast cancer drugs. There are several parameters utilized to
retrieve the findings. Tables 7–9 show the linear, quadratic, and
cubic regression equations for the greatest fitting and
predictability of resolving topological indices, including
correlation coefficient value (R), F-statistics, and SE. The
correlation coefficient (R) is a statistical metric that describes
the strength and direction of a relationship between resolving
topological indices and the physicochemical properties. It is
expressed as a positive or negative integer between −1 and 1. The
number’s value denotes the strength of the association; r =
0 means there is no relationship. All correlation coefficients
are more than .7, indicating a significant positive association
between the two quantities. The correlation values are negative,
indicating an inverse relationship. The p-values measure the
strength of the correlation. If the values of p are less than 0.05,
the findings of the experiments are significant. Tables show that
all resolving topological indices and breast cancer drug features
have p-values < 0.001. The p-values indicate the importance of
an experiment. The smaller the value of p, the more important
the calculations. All computations are significant. The F-value is
the ratio of two variances, or mean squares. Regression analysis
tests the null hypothesis, which states that all regression
coefficients are equal to zero, to establish model significance.
The F-value measures the model’s fit and establishes its
statistical significance.

3.1.1 Results
In the linear regression model, FRZI2(G) has the strongest

correlations with MV (R = 0.896), P (R = 0.903), MR (R = 0.903),
and PSA (R = 0.178), indicating greater predictive potential among
the indices. FRZI1(G) had the strongest connection with ST (R =

0.736). Indices for SRZI(G) and RHM(G) have slight to almost
equal correlations across most properties. These results support
the linear model ability to capture linear correlations between
resolving topological indices and diverse physicochemical
parameters.

In the quadratic regression model, FRZI1(G) and SRZI(G) had
the strongest correlation with MV (R = 0.934), showing a robust
quadratic association. FRZI2(G) predicts P (R = 0.903), MR (R =
0.903), PSA (R = 0.291), and ST (R = 0.870), demonstrating its
persistent dominance in this model. Meanwhile, RHM(G) and
RF(G) produce similar results for all attributes, with only minor
differences. The study found that quadratic models outperformed
linear models, particularly for indices like FRZI2(G).

For the cubic regression model, FRZI1(G) has the highest
correlation with MV (R = 0.947), indicating exceptional
predictive strength. It also performs at predicting ST (R = 0.80).
FRZI2(G) has the strongest associations with P (R = 0.906), MR
(R = 0.905), and PSA (R = 0.511), indicating its stability across
several regression techniques. The indices SRZI(G) and RHM(G)
correlate closely, especially in MV, P, and MR. The higher
correlation values across all indices indicate that cubic regression
models perform better in simulating the link between resolving
topological indices and physicochemical properties.

When linear, quadratic, and cubic regression models are
compared, the cubic regression model outperforms them all in
terms of predicting physicochemical qualities based on resolving
topological indices. As shown in Figure 2, the cubic model regularly
produces the greatest correlation coefficients (R), especially for
indices such as FRZI1(G) and FRZI2(G). FRZI1(G) has a high
association with MV (R = 0.947), whereas FRZI2(G) has significant
predictive capacity for P, MR, and PSA (R values up to 0.907 and
0.511, respectively). Although the quadratic model outperforms the
linear model by capturing certain nonlinear interactions, it is still
significantly less accurate than the cubic model. These results show
that adding higher-order terms greatly improves the effectiveness of
the model. This makes the cubic regression model the best choice for
QSPR analysis of breast cancer drugs.

TABLE 3 Physicochemical properties of the breast cancer drugs.

Drugs Molar volume
(MV) (cm3)

Polarizability
(P) (cm3)

Molar refractivity
(MR) (cm3)

Polar surface area
(PSA) (A°2)

Surface tension (ST)
(dyne/cm)

Toremifene 367.6 49.1 123.7 12 42.1

Tucatinib 339 53.6 135.2 111 57.3

Ribociclib 311.4 48.9 123.4 91 58.2

Olaparib 301.8 46.3 116.9 82 57.8

Abemaciclib 382.3 55.7 140.4 75 45.8

Anastrozole 270.3 35.7 90 78 42.2

Letrozole 234.5 34.5 87.1 78 53.5

Thiotepa 125.8 19.5 49.1 51 77.8

Tamoxifen 356.2 47.1 118.9 12 40.4

Megestrol
Acetate

317.4 40.4 102 60 45.3
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3.2 Multiple linear regression model

Multiple linear regression is a statistical approach for examining
the connection between a dependent variable and several
independent variables, modeling how predictors impact the
outcome, and quantifying their effects.

Using the Variance Inflation Factor (VIF), multicollinearity
among the chosen topological descriptors was assessed in all
MLR models. Multicollinearity occurs when two or more
independent variables in a regression model are strongly
correlated, affecting the predicted coefficients. The Variance
Inflation Factor (VIF) detects multicollinearity and is computed as:

TABLE 4 The correlation coefficient (R) was obtained utilizing linear regression models.

Resolving topological indices MV P MR PSA ST

FRZI1(G) 0.763 0.664 0.665 0.030 0.736

FRZI2(G) 0.896 0.903 0.903 0.178 0.604

SRZI(G) 0.753 0.670 0.670 0.026 0.692

RHM(G) 0.754 0.671 0.671 0.024 0.693

RF(G) 0.755 0.672 0.672 0.023 0.694

Values highlighted in bold represent the highest correlation for each physicochemical properties and the corresponding topological indices.

TABLE 5 The correlation coefficient (R) was obtained utilizing quadratic regression models.

Resolving topological indices MV P MR PSA ST

FRZI1(G) 0.934 0.885 0.886 0.152 0.799

FRZI2(G) 0.918 0.903 0.903 0.291 0.870

SRZI(G) 0.934 0.872 0.873 0.029 0.796

RHM(G) 0.933 0.872 0.872 0.030 0.796

RF(G) 0.933 0.871 0.871 0.031 0.797

Values highlighted in bold represent the highest correlation for each physicochemical properties and the corresponding topological indices.

TABLE 6 The correlation coefficient (R) was obtained utilizing cubic regression models.

Resolving topological indices MV P MR PSA ST

FRZI1(G) 0.947 0.887 0.888 0.472 0.80

FRZI2(G) 0.922 0.906 0.905 0.511 0.871

SRZI(G) 0.936 0.874 0.875 0.467 0.796

RHM(G) 0.936 0.873 0.874 0.466 0.796

RF(G) 0.935 0.873 0.873 0.465 0.797

Values highlighted in bold represent the highest correlation for each physicochemical properties and the corresponding topological indices.

TABLE 7 Linear regression equations offer the most precise estimates of physicochemical properties.

Linear regression equation R F SE P

MV � 61.071 + 0.925[FRZI2(G)] 0.896 32.680 35.743 0.0004

P � 8.659 + 0.1329[FRZI2(G) 0.903 35.2097 4.948 0.0003

MR � 21.799 + 0.335[FRZI2(G)] 0.903 35.353 12.462 0.0003

PSA � 44.857 + 0.078[FRZI2(G)] 0.178 0.261 33.658 0.078

ST � 76.27 − 0.049[FRZI1(G)] 0.736 9.454 8.222 0.015
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VIFi � 1
1 − R2

i

where VIFi is the VIF for the i-th independent variableXi, and R2
i is

the coefficient of determination obtained when Xi is regressed
against all other independent variable. Multicollinearity values
(<10) are considered acceptable. In the present study, all
descriptors obtained VIF values ranging from 4.8 to 5.6,
suggesting no significant multicollinearity. The main MLR
equation is

Y � α0 + α1X1 + α2X2 +/ + αpXp (11)

where Y is the dependent variable, X1, X2, . . . , Xp are the
independent variables, and α1, α2, . . . , αp are the regression
coefficients. The intercept, or regression constant, is denoted
as α0. Each coefficient shows the change in Y for a one-unit
increase in the related predictor, while leaving other variables
constant. This demonstrates that each topological descriptor
makes an independent contribution to the prediction of the
observed physicochemical properties. Using Equation 11, the
multiple linear regression models corresponding to the
resolving topological indices analyzed in this study are derived
as follows.

MV � 57.8378 − 0.0732[FRZI1(G)] + 1.0778[FRZI2(G)],
R = 0.90, R2 = 0.81, SE = 37.644, F = 14.838, Significant = 0.003.

P � 6.2646 + 0.2428[FRZI2(G)] − 0.0116[RHM(G)],
R = 0.968, R2 = 0.94, SE = 3.1067, F = 51.3009, Significant = 0.0001.

MR � 17.135 − 0.1057[FRZI1(G)] + 0.556[FRZI2(G)]

R = 0.953, R2 = 0.91, SE = 9.3815, F = 34.7487, Significant = 0.0002.

PSA � 38.1582 + 0.3772[FRZI2(G)] − 0.1264[SRZI(G)]
R = 0.365, R2 = 0.134, SE = 34.032, F = 0.54, Significant = 0.605.

ST � 73.5937 − 0.063[FRZI1(G)] + 0.0379[FRZI2(G)],
R = 0.744, R2 = 0.55, SE = 8.6705, F = 4.3480, Significant = 0.05.

3.2.1 Results of multiple linear regression
(MLR) analysis

The multiple linear regression (MLR) model was created to
study the connection between the dependent variable and the chosen
resolving topological indices.

• The MLR model for molar volume showed a strong fit
(R2 � 0.809, R � 0.90), explaining approximately 80% of
the variance. The overall model was statistically significant
(F � 14.84, p< 0.05). The descriptor FRZI2(G) had a
substantial favorable effect (p � 0.0235), whereas
FRZI1(G) contributed negatively but insignificantly
(p � 0.6589). Variance Inflation Factor (VIF) scores (<10)
indicated the absence of multicollinearity. Thus, FRZI2(G)
is crucial for predicting the molar volume of the molecules
under study.

• Polarizability demonstrated a high correlation (R2 � 0.936,
R � 0.968) and substantial model significance (F � 51.30,
p< 0.05). The descriptor FRZI2(G) had a substantial
favorable effect (p � 0.0002), whereas RHM(G) had a
significant negative impact (p � 0.0082). VIF values (~ 5.6)
indicated no multicollinearity. The low RMSE (3.10)

TABLE 8 Quadratic regression equations offer the most precise estimates of physicochemical properties.

Quadratic regression equation R F SE P

MV � −70.494 + 1.602[FRZI1(G)] − 0.002[FRZI1(G)]2 0.934 23.894 30.799 0.0007

P � 6.389 + 0.1585[FRZI2(G)] − 6.1E − 05[FRZI2(G)]2 0.903 15.477 5.2794 0.0027

MR � 15.875 + 0.402[FRZI2(G)] − 0.0002[FRZI2(G)]2 0.903 15.545 13.295 0.0027

PSA � 103.12 − 0.58[FRZI2(G)] + 0.0016[FRZI2(G)] 0.291 0.323 34.985 0.734

ST � 132.63 − 0.73[FRZI2(G)] + 0.002[FRZI2(G)]2 0.870 10.871 6.407 0.007

TABLE 9 Cubic regression equations offer the most precise estimates of physicochemical properties.

Cubic regression equation R F SE P

MV � 76.902 + 0.128[FRZI1(G)] + 0.002[FRZI1(G)]2
−3.1E − 06[FRZI1(G)]3

0.947 17.268 29.985 0.002

P � −9.807 + 0.445[FRZI2(G)] − 0.002[FRZI2(G)]2
+2.28E − 06[FRZI2(G)]3

0.906 7.636 6.038 0.026

MR � −15.819 + 0.948[FRZI2(G)] − 0.003[FRZI2(G)]2
+4.13E − 06[FRZI2(G)]3

0.905 9.037 14.260 0.012

PSA � −206.95 + 4.758[FRZI2(G)] − 0.025[FRZI2(G)]2
+4.04E − 05[FRZI2(G)]3

0.511 0.706 33.952 0.582

ST � 119.89 − 0.511[FRZI2(G)] + 0.0004[FRZI2(G)]2
+1.66E − 06[FRZI2(G)]3

0.871 6.292 6.887 0.028
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compared to the mean response (43.08) demonstrated strong
predictive accuracy. Thus, FRZI2(G) and RHM(G) together
form an effective model for predicting polarizability.

• The MLR model for molar refractivity (MR) demonstrated a
significant correlation (R2 � 0.908, R � 0.882) and highmodel
significance (F � 34.75, p< 0.05). The descriptor FRZI2(G)
had a substantial positive effect (p � 0.0006), while FRZI1(G)
exhibited a significant negative influence (p � 0.0321). VIF
values (~ 4.8) indicated no multicollinearity. The RMSE (9.38)
relative to the mean response (108.67) demonstrated high
predictive ability. Both FRZI1(G) and FRZI2(G) explain
variations in molar refractivity, although FRZI2(G) is the
primary contributor. Overall, the model shows that molecular
connectivity indices are strongly correlated with molar
refractivity, highlighting their applicability in QSPR studies.

• In contrast, the polar surface area (PSA) showed a poor
correlation (R2 � 0.134, R � 0.365) and was not statistically
significant (F � 0.54, p> 0.05). Both FRZI2(G) (p � 0.3344)
and SRZI(G) (p � 0.3939) did not significantly contribute to
PSA prediction, indicating weak descriptor relevance. The
comparatively large RMSE (34.03) relative to the mean
response (65) indicates low predictive accuracy. Although
VIF values (~ 5.6) suggested negligible multicollinearity, the
model’s overall performance was unsatisfactory. This suggests
that PSAmay be influenced by other molecular characteristics,
such as hydrogen bonding capacity, polar functional groups,
or surface topology, which are not fully captured by the
descriptors used.

• The surface tension (ST) demonstrated a moderate correlation
(R2 � 0.554, R � 0.744) with limited overall significance
(F � 4.35, p> 0.05). The descriptors FRZI2(G)
(p � 0.6727) and FRZI1(G) (p � 0.1288) had modest
effects, indicating limited predictive influence on surface
tension. The RMSE (8.67) relative to the mean response
(52.04) suggests reasonable prediction accuracy, while VIF
values (~ 4.8) reveal no multicollinearity. Overall, the model
explains only a portion of the variance in surface tension,
suggesting that additional structural or intermolecular
descriptors may be needed for improved prediction.

These findings emphasize the distinct contributions of each
descriptor to the model. Figure 3 shows predicted values for
resolving topological indices and molecular descriptors such as
MV, P, MR, PSA, and ST obtained from the MLR study,
demonstrating the relationship between these variables and the
model’s prediction accuracy.

4 Discussion

We used linear, quadratic, and cubic regression models to see
how well resolving topological indices could predict future events
in this study. The results showed that FRZI2(G) had the highest
correlation coefficients for a number of physicochemical

FIGURE 2
Graphical illustration of the correlation strength between
resolving topological indices and physicochemical properties using
linear, quadratic, cubic regression analysis.
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properties, especially molar refractivity (MR) and polarizability
(P). The fact that these results are consistent across model types
suggests that FRZI2(G) does a good job of demonstrating
significant molecular features. Other indices, such as SRZI(G),
RHM(G), and RF(G), were able to make predictions with
moderate accuracy. The results support the use of resolving
indices in QSPR modeling for drugs that treat breast cancer.
However, the study has some problems because it only used a
small dataset and regression analysis. Future research could look into
machine learning models and try these descriptors on bigger drug
databases that also include biological endpoints. The MLR analysis

indicated that the selected topological descriptors had various
resolving degrees of effect on the physicochemical properties under
study. Descriptors like FRZI2 were highly predictive for qualities
including molar volume, polarizability, and molar refractivity,
whereas FRZI1 and SRZI exhibited minimal influence.
Multicollinearity was minimal, showing that each descriptor makes
an independent contribution to the models. The present descriptors
offered limited prediction accuracy for features such as polar surface area
and surface tension, indicating the need for new molecular parameters.
Overall, our findings demonstrate the utility of resolving topological
indices for representing some physicochemical properties while

FIGURE 3
Plots of predicted values of resolving topological indices and MV, P, MR, PSA and ST from MLR analysis.
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underlining the necessity for more extensive descriptors for others. The
strong correlation of FRZI2 with P and MR can be explained by the
index’s sensitivity to differences in molecular connectivity and bond
distribution, which affect electron delocalization and, as a result,
molecule polarizability and refractivity. In contrast, PSA poor
predictive ability might be attributed to the fact that PSA’s
predominantly determined by the quantity and orientation of polar
functional groups, whereas the topological indices utilized in this work
represent global structural aspects rather than local polarity effects.

To evaluate the predictive power of each model in simulating
the link between resolving topological indices and physicochemical
properties, the performance of linear, quadratic, cubic, and
multiple linear regression (MLR) models was examined
(Table 10). All things considered, the comparison demonstrates
that MLR is the best modeling strategy for this dataset, whereas
PSA plays an insignificant role in drug activity estimates. In the
case of PSA, the regression model demonstrated less statistical
significance (p > 0.05), indicating a limitation of the current study.
This might be attributable to the small dataset size, which limits the
statistical power of the analysis. However, other models, such as
MV and MR, demonstrated substantial significance and predictive
ability, indicating that resolving indices are generally good
descriptors. This conclusion shows that, while the technique is
promising, more validation with bigger and more varied datasets
will be necessary to strengthen weaker models and improve
generalizability.

Several research studies have investigated the use of topological
indices to predict the physicochemical features of breast cancer
drugs. For example, standard degree-based topological indices
were used for breast cancer drugs and found strong correlations
with certain physicochemical properties [Bokhary et al., 2022;
Shanmukha et al., 2022; Meharban et al., 2024). Entire
neighborhood topological indices were then developed, using
cubic and multiple regression approaches, and these exhibited
better relationships with drug attributes (Altassan et al., 2025).
CoM-polynomial-based indices were also examined, computing
variable topological coindices, and several indices showed
significant predictive capacity using curvilinear regression
analysis (Öztürk Sözen and Eryaşar, 2024). More recently,
entropy-based indices were developed using both linear and
cubic regression techniques, and specific entropy indices were
found to substantially predict attributes such as boiling point,
molar volume, and melting point (Rauf et al., 2023b). While these
studies demonstrate the adaptability of topological indices in
QSPR modeling of breast cancer drugs, the majority use
standard degree-based indices, neighborhood indices, or

entropy-based indices. In contrast, the current study highlights
the use of resolving topological indices, which offer a new
perspective by merging structural uniqueness and molecular
symmetry into the characterization of chemical graphs. This
technique adds a new dimension to QSPR research, potentially
improving predicted accuracy and offering more insight into drug
features. Compared to previous research, our work broadens the
field of topological index applications by looking at the efficacy of
resolving indices for breast cancer drugs. The findings suggest that
resolving indices may be useful descriptors in chemical graph
theory, supplementing and expanding the predictive power of
previously examined indices.

5 Conclusion

In this study, we used both linear and multiple linear regression
(MLR) models to examine the relationship between resolving
topological indices and important physicochemical properties of
drugs used to treat breast cancer. According to the results of linear
regression, indices like FRZI2(G) consistently generated high
correlation coefficients, especially with molar refractivity (MR)
and polarizability (P), indicating the predictive power of each
one alone. Out of all the indices FRZI2(G) had the highest
correlation of R = 0.906 in the cubic regression model, showing
its adaptability to changes in model complexity. By combining
several indices as predictors, the multiple linear regression (MLR)
model, on the other hand, provided a more thorough evaluation.
The models exceptional performance in predicting MV (R = 0.900),
P (R = 0.968) and MR (R = 0.953) suggests that the combination of
indices greatly improves prediction accuracy. The models
performance declined for PSA, though (R = 0.366), indicating
that the chosen indices had little predictive value for this specific
properties. For some properties, MLR can capture moderate to
strong relationships as evidenced by the comparatively high R for
ST (0.744). All things considered, the results show that resolving
topological indices have a great deal of promise for simulating the
physicochemical properties of breast cancer drugs, particularly when
combined via MLR. The models created in this study have the
potential to improve the effectiveness of molecular design and drug
screening procedures. To improve prediction accuracy, future
studies can broaden this methodology to incorporate more
molecular descriptors and advanced machine learning algorithms,
including Back Propagation Neural Networks (BPNN), GA-BPNN,
and Support Vector Regression (SVR), which are adept at modeling
difficult and nonlinear relationships between topological indices and

TABLE 10 Comparative results of linear, quadratic, cubic, and MLR models for molecular properties.

Properties LR (R, p < 0.05) QR (R, p < 0.05) CR (R, p < 0.05) MLR (R, p < 0.05)

MV 0.896, <0.0004 0.934, <0.0007 0.947, <0.002 0.900, <0.05

P 0.903, <0.0003 0.903, <0.0027 0.906, <0.026 0.968, <0.05

MR 0.903, <0.0003 0.903, <0.0027 0.905, <0.012 0.953, <0.05

PSA 0.178, >0.078 0.291, >0.734 0.511, >0.582 0.366, >0.05

ST 0.736, <0.015 0.870, <0.007 0.871, <0.028 0.744, >0.05

Frontiers in Chemistry frontiersin.org11

Pandeeswari and Ravi Sankar 10.3389/fchem.2025.1710442

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1710442


physicochemical properties (Zonghuang, 2023; Karampuri and
Perugu, 2024; Chang et al., 2013).

5.1 Implications

Drug activity prediction for breast cancer may be enhanced by
QSPR modeling and resolving topological indices, enabling safer
and more efficient treatment approaches. Understanding molecular
descriptors can help pharmacists and chemists optimize medication
discovery and design, which will ultimately result in more
individualized and accurate cancer treatments.

5.2 Limitation

The primary limitation of this study is the limited dataset of ten
breast cancer drugs, which constrains the generalizability of the
regression findings. The limited sample size may not accurately
represent the extensive chemical and therapeutic diversity of breast
cancer treatments. Nonetheless, the selected drugs were
incorporated due to the availability of reliable experimental data
and their significance as clinically important therapies. Although the
models offer valuable insights into the correlation between resolving
topological indices and drug activity, it is crucial to expand the
dataset in future studies to enhance robustness, validate findings,
and improve predictive accuracy.
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