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Introduction: Accurate monitoring of oxide compositions is critical for ensuring
cement quality and performance in industrial production. Conventional analytical
techniques for this purpose are often time-consuming, costly, and lack real-time
capability. While Near-infrared (NIR) spectroscopy offers a rapid and non-
destructive alternative, traditional chemometric models struggle to capture
the highly nonlinear, high-dimensional spectral characteristics and exhibit
limited interpretability.
Methods: To address these challenges, this paper proposes an interpretable
TabNet-based multi-output regression method for predicting multiple oxide
concentrations from NIR spectra. The proposed method integrates sparse
feature selection with adaptive information aggregation, enabling it to
dynamically prioritize the most informative spectral regions during processing.
This architecture facilitates both automatic wavelength selection and accurate
oxide content prediction.
Results: Extensive experiments on two cement datasets demonstrate that the
proposed TabNet model consistently outperformed established baseline models
in predictive accuracy. A key advantage of the TabNet framework is its enhanced
interpretability, achieved by generating sequential attention masks that highlight
chemically meaningful wavebands associated with each oxide component.
Discussion: This framework provides a scalable and insightful solution for
spectral-based analysis, not only for cement quality monitoring but also for
other materials science applications. The code is available at https:// github.
com/Andrew-Leopard/CementOxidePredictor.
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1 Introduction

Cement is a cornerstone of the global construction industry, and its manufacturing
quality largely depends on the precise control of raw meal composition (Sambataro et al.,
2024; Yang et al., 2022). The concentrations of key oxides (SiO2, Al2O3, Fe2O3, CaCO3) play
a decisive role in governing clinkering reactions, mineral formation, and overall product
stability (Castillo et al., 2025). Rapid and accurate prediction of these oxides is essential for
improving dosing accuracy, energy efficiency, and cement quality stability (Hu et al., 2025).
Traditional oxide quantification techniques, such as X-ray fluorescence and wet chemical
analysis, provide high accuracy but are time-consuming, labor-intensive, and costly, making
them unsuitable for real-time quality control in large-scale cement production (Polavaram
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and Garg, 2021). Near-infrared (NIR) spectroscopy has emerged as a
promising analytical tool for cement raw meal analysis because it is
reagent-free, non-invasive, and capable of providing rapid
measurements (Casson et al., 2020; Haruna et al., 2023).
However, modeling the complex spectral-chemical relationship
remains a challenge due to the high dimensionality and
redundancy of NIR data, coupled with nonlinear interactions
among variables.

Recent advances in machine learning (ML) have greatly
improved the analysis of high-dimensional spectral data, enabling
robust predictions of material properties (Huang et al., 2021; Wu
et al., 2024). Such as partial least squares regression (PLSR) and
Random Forest, have been widely used for NIR spectral modeling
(Alessandra and Tormod, 2019;Mishra et al., 2021). A key limitation
of these methods is their dependence on manual preprocessing and
dimensionality reduction, which restricts their capacity to model the
intricate nonlinearities in cement spectral data (Zhang Y et al.,
2024). Hybrid approaches have attempted to improve predictive
accuracy through feature-level spectral fusion and wavelength
selection (Acquarelli et al., 2017; Ma et al., 2025). For example,
Haruna et al. used NIR with multivariate calibration for rapid
phenolic analysis in peanuts, and later integrated LIBS and NIRS
to improve oxide quantification in cement (Haruna, et al., 2023).
Despite these efforts, the existing methods remain reliant on
handcrafted feature engineering and lack interpretability (Lee and
Kim, 2016). Deep learning enables automatic feature extraction and
relationship modeling, offering a promising solution for
hyperspectral data analysis (Qu et al., 2021). However, most deep
learning models require large amounts of training data, which are
difficult to obtain in industrial cement production. At present, there
is a lack of deep learning-based predictive frameworks specifically
designed for oxide analysis in cement raw meal.

To tackle the above challenges, this paper propose a novel multi-
output regression model inspired by the TabNet for accurate oxide
content estimation (Arik and Pfister, 2021). TabNet is a deep
learning architecture specifically designed for structured tabular
data, combining the interpretability of decision trees with the
representation power of neural networks. Compared with
conventional deep learning approaches such as convolutional
neural networks (CNNs) or recurrent neural networks (RNNs),
which are typically designed for image or sequential data, TabNet
offers several unique advantages that make it particularly suitable for
NIR spectral analysis. Specifically, the method combines feature and
attentive transformers with sparsemax activation and multiple
decision steps, for effective modeling of nonlinear patterns in
complex spectral data. The TabNet integrates feature learning,
selection, and interpretation in a unified framework, making it
particularly suitable for high-dimensional spectral data. This
paper conduct a series of experiments to evaluate method
performance, analyze feature attribution patterns, and explore
inter-regional spectral dependencies. Extensive experiments on
two real-world datasets from Qufu and Linyi demonstrate that
TabNet significantly outperforms traditional models in both
RMSE and R2 across all oxides. The method achieves an average
R2 of 0.922 and RMSE of 0.097 on the Qufu dataset, and
interpretable attention maps that align with known molecular
vibration bands. In the future, this method can be broadly
applied to other inorganic materials, geological analyses, and

real-time industrial process monitoring. The main contributions
of this work are as follows:

1. This paper develop a novel TabNet-based regression method
that leverages shared representations to capture correlations
among multiple oxides. This architecture achieves superior
predictive accuracy while demonstrating remarkable
generalization capability across different production regions,
establishing a new paradigm for multi-output spectral analysis.

2. This paper develop an end-to-end analytical system that
automatically processes raw high-dimensional NIR spectra
without manual intervention. The framework seamlessly
integrates wavelength selection and concentration prediction
within a unified architecture, effectively eliminating the
dependency on conventional feature engineering.

3. This paper establish an interpretable spectral-oxide correlation
paradigm through a sparse attention mechanism to identify key
spectral bands associated with oxide-specific molecular
vibrations, providing intuitive interpretability of the spectral
feature information.

2 Materials and methods

2.1 Overview

Cement quality is critically determined by the concentration of
major oxides in raw meal, including SiO2, Al2O3, Fe2O3, and
CaCO3. To predict cement oxide contents from spectral data,
this paper propose a TabNet-based regression method that
integrates feature learning, selection, and interpretation within a
unified framework. The overall architecture is shown in Figure 1,
which mainly includes three parts: input data, feature selection and
aggregation information. The model first transforms the input
spectral data using a feature transformer and batch normalization.
At each decision step, an attentive transformer generates sparse
feature masks to dynamically select the most relevant wavelengths.
These masked features are processed to produce partial
predictions, which are aggregated across steps to form the
final output.

Importantly, the accumulated attention masks enable direct
interpretation of feature importance, linking spectral bands to
specific oxides. This approach ensures both high accuracy and
strong interpretability for multivariate spectral prediction tasks.
The body of TabNet comprises a shared feature transformer, a
decision step block with a unique attention mask, and a sparsemax
function to generate interpretable feature selection masks. Its end-
to-end differentiable architecture integrates both feature learning
and prediction, eliminating the need for manual feature
engineering. The following sections will provide a detailed
introduction to each component of the proposed method and
its corresponding function.

2.2 Method details

Given the high-dimensional NIR spectral data X ∈ Rn×d,
where d represents the number of spectral wavelengths and n

Frontiers in Chemistry frontiersin.org02

Li 10.3389/fchem.2025.1691413

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1691413


the number of samples. The input to the feature selection
module consists of normalized spectral data, processed through
standard preprocessing steps such as scaling and standardization.
The goal is to predict the concentration values of four oxide
components Y ∈ Rn×4 simultaneously. In contrast to single-
object models, our approach adopts a multi-output regression
framework to leverage interdependencies among the
predicted oxides.

The feature selection module primarily comprises two
components: the Feature Transformer and the Attentive
Transformer. The model processes the input features through a
sequence of decision steps t ∈ 1, ...,T{ }, starting with a shared
Feature Transformer that applies nonlinear transformations to
produce an embedding, denoted as H0 � fs(X). This shared
transformation is reused across all decision steps to reduce
parameter redundancy and ensure consistent feature
representation. At each t, TabNet maintains a complementary
feature Ht and latent feature Zt, which is updated as follows
Equation 1:

Ht � BatchNorm Zt +Ht-1( )
� BatchNorm fs Xt( ) +Ht−1( ) (1)

This mechanism forces the model to select only a few
relevant spectral bands at each decision step. Then, the

masked input is processed by a shared feature transformer
to produce an intermediate decision vector ht ∈ Ht (Equation 2):

ht � Feature Transformer Xt( )
� ReLU Wt · Xt + bt( ) (2)

where, Wt and bt are represent the weight and bias of function,
respectively.

The detailed structure of the Feature Transformer module is
illustrated in the yellow block on the right side of Figure 1. It consists
of two components: a shared block across all decision steps and a
decision step–dependent block. The shared block includes a
sequence of batch normalization layers, linear projections, and
gated linear units (GLUs), which collectively enable the model to
capture complex nonlinear dependencies and shared feature
representations throughout the decision step. The decision-
dependent block, unique to each decision step, is designed to
inject step-specific information into the learning process. It
follows a similar architecture but operates independently across
steps, allowing the network to dynamically refine representations
based on the evolving attention masks and selected features
at each step.

Then, the Attentive Transformer module receives the hidden
representation ht from the previous step Ht−1 and generates a sparse
feature selection maskMt ∈ [0, 1]d, which guides feature selection at

FIGURE 1
Overall architecture of the TabNet-based regression method for multi-oxide prediction.
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the current step. This module comprises a fully connected (FC)
layer, normalization, and a nonlinear activation function GLUs. The
output of these layers is then element-wise multiplied with the prior
scale vector, which tracks the selection probability of each feature
over steps to prevent redundant reuse. This operation yields a
weighted activation vector that is passed through a sparsemax
activation function, which projects the values onto a sparse
probability simplex (Equation 3):

Mt � sparsemax fa Ht−1( )( ) (3)
where fa(.) is the attention transformation network. TabNet
departs from traditional dense models by introducing adaptive
sparsity into feature selection. To ensure interpretability and
computational efficiency, TabNet applies a sparsemax activation
to compute the attention mask. Unlike softmax, which produces
smooth but dense probability distributions, sparsemax maps input
activations to a sparse probability simplex. The sparsemax function
ensures that only a subset of features is selected at each step: an
attention mask is applied to select informative wavelengths. This
mask is generated from a learnable attention module using a
sparsemax activation (Equation 4):

sparsemax z( )i � max 0, zi − τ( ),
where τ solves ∑

i

max 0, zi − τ( ) � 1 (4)

The masked feature vector is computed via element-wise
multiplication with the shared embedding (Equation 5):

Xt � Mt ⊙ H0 (5)

Interpretability is embedded directly into TabNet’s
architecture through the accumulation of attention masks over
time. It generates a sequence of masks M1,M2, . . . ,MT{ }. These are
combined to form a global feature importance measure, the
Equation 6 is:

Feature Importance � ∑T
t�1

Mt (6)

This summation represents how frequently each feature
(i.e., wavelength) was selected across all steps. This provides a
global feature attribution profile, enabling identification of key
wavelengths relevant to prediction, both globally and per oxide.

Next, the multi-step aggregation information key is iteratively
refined feature usage over decision steps. The masked input is then
processed by a step-specific Feature Transformer to generate a latent
representation. This representation is used to produce a partial
prediction Pt for the target variables. The module consists of a
stack of fully connected layers (FC) with batch normalization (BN),
ReLU activation, and ghost batch normalization for regularization.
Simultaneously, a complementary stream preserves unselected
information, allowing the model to revisit previously ignored
features in future steps. Pt � fp(Zt) that contribute to the
model’s partial prediction. fp(.) function usually uses multiple
FC layers to implement oxide prediction.

TabNet models prediction as a multi-step decision process,
analogous to boosting or residual learning. Instead of producing
the output in a single forward pass, the model incrementally refines
its prediction across steps. Final prediction is obtained by weighted

aggregation ŷ is obtained by summing the contributions from all
decision steps (Equation 7):

ŷ � γt∑T
t�1

Pt (7)

where γt is the step-wise importance weights. The mask is learned
through an attention mechanism over the input feature embeddings.

The core training objective of the TabNet model is to minimize
the discrepancy between predicted and true oxide contents. Given
the multivariate regression setting, the primary loss function
employed is the Mean Squared Error (MSE). To further promote
sparsity in feature selection, TabNet incorporates a regularization
term based on the Kullback-Leibler (KL) divergence between the
learned attention masks and a uniform prior distribution. The loss
function combines the MSE for regression and a sparsity-inducing
regularization term L sparsity. The total loss is defined as
Equation 8:

L total � MSE y, ŷ( ) + λ+L sparsity,

where L sparsity � Σ
t
Mt
∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣1 (8)

This multi-object loss facilitates shared representation
learning while treating each oxide prediction as a separate
regression sub-task. This sequential approach allows subsequent
steps to focus on correcting the residuals from earlier ones,
enabling the model to progressively enhance its estimates. This
is particularly advantageous in spectral data, where meaningful
signals may be distributed nonlinearly and across non-contiguous
wavelengths.

3 Results and discussion

To validate the effectiveness of the proposed TabNet method,
this paper conducted extensive experiments on two datasets
collected from different production regions: Qufu and Linyi. The
workflow encompassed datasets, experiments setup, results analysis
and discussion.

3.1 Dataset

The dataset used in this study was sourced from Liu et al. (2024),
which covers cement production sites in Qufu and Linyi, China. The
dataset contains NIR spectra and oxide compositions measured
using standard analytical methods. To ensure consistent spectral
acquisition, measurements were conducted at 24 °C–26 °C, 45%–
55% humidity, averaging 64 scans at 4 cm-1 resolution to improve
signal-to-noise ratio. The spectral data covered a wavenumber range
of 3998.14–9998.25 cm-1, providing approximately 3,000 wavebands
per sample (~1.93 cm-1 spacing), effectively capturing key molecular
vibrations associated with Si-O, Al-O, and Fe-O bonds present in
cement clinker. The details of both datasets are shown in Table 1.
The dataset was randomly divided into training (80%) and testing
(20%) subsets to facilitate model evaluation. Our work applies it in a
new context by utilizing the TabNet framework for multi-oxide
prediction, which is not addressed in Liu et al. (2024). The primary
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contribution of our study lies in the innovative application of
TabNet to this dataset, leading to improved predictive
performance and insights into cross-regional variability. The
dataset setup also enables a comparative analysis of regional
variability in oxide prediction, highlighting differences in raw
material composition or manufacturing conditions between Qufu
and Linyi. The training data was used to train the model, while the
testing data was reserved as a hold-out set for final model evaluation
to ensure that no data leakage occurred between the two. The test set
represents unseen data that was not involved in model fitting,
making it a true hold-out test set for assessing the model’s
generalization ability.

To reduce noise in the NIR spectral data, this paper applied
consistent preprocessing steps across all samples. Specifically,
z-score normalization was used to standardize the features,
facilitating gradient-based optimization in the TabNet framework.
Unlike conventional approaches, the paper deliberately avoided
principal component analysis (PCA) or other dimensionality
reduction techniques to emphasize TabNet’s intrinsic capability
for efficient feature selection and handling of high-
dimensional inputs.

3.2 Experiment setup and evaluation

The proposed TabNet method was configured with the
following hyperparameters. The model was constructed with
5 decision steps and an attention dimensionality of 16,
providing adequate capacity for learning relationships in high-
dimensional spectral data. For the training protocol, it used a
batch size of 256, the Adam optimizer with an initial learning rate
of 0.02, and a scheduler for adaptive learning rate adjustment. To
ensure stable convergence, the paper implemented a
ReduceLROnPlateau scheduler that dynamically adjusted the
learning rate by a factor of 0.5 when the validation loss
plateaued for 15 consecutive epochs. All experiments were
conducted under a fixed random seed (42) to ensure
reproducibility. Meanwhile, sparsity regularization was
introduced with a coefficient γ = 1.3, enhancing interpretability
by promoting sparse attention masks and activation functions.
The implementation was built upon PyTorch with the PyTabNet
library, with training performed on NVIDIA RTX 3090 GPUs. To
evaluate generalization performance and mitigate sampling bias, a
multi-fold cross-validation strategy was employed. To rigorously
evaluate generalization performance and mitigate potential
sampling bias, the paper employed a comprehensive k-fold
cross-validation strategy (k = 5) on the training data, while
maintaining a strict hold-out test set (20% of total samples) for

final performance assessment. This dual-validation approach
ensures reliable estimation of the model’s predictive capability
on unseen data while providing robust hyperparameter tuning.

To evaluate the performance of method on cement oxide
content prediction, the paper adopt three widely recognized
regression metrics: Root Mean Square Error (RMSE) (Equation
9), Mean Absolute Error (MAE) (Equation 10), and the
Coefficient of Determination (R2) (Equation 11). RMSE measures
the average magnitude of prediction errors and penalizes larger
deviations more heavily due to the squaring operation:

RMSE � 1
n

����������∑n
i�1

yi − ŷi( )2√
(9)

where yi and ŷi denote the ground truth and predicted values,
respectively, and n is the total number of samples. Because the
errors are squared before they are averaged, RMSE gives
relatively high weight to large errors. Lower RMSE indicates
better model performance. Therefore, it is particularly sensitive
to outliers and is useful in scenarios like cement raw
material control.

Compared to RMSE, MAE provides a robust, scale-aware
measure of the average absolute error:

MAE � 1
n
∑n
i�1

yi − ŷi
∣∣∣∣ ∣∣∣∣ (10)

It is more robust to outliers and offers a straightforward
interpretation in the same units as the objects variable (e.g.,
oxide weight percent).

TABLE 1 Basic information of the datasets samples.

Region Dataset Number of samples Number of features Spectral band range

Qufu training 76 3112 3998.14 cm-1 ~ 9998.25 cm-1

testing 20 3112 3998.14 cm-1 ~ 9998.25 cm-1

Linyi training 64 3112 3998.14 cm-1 ~ 9998.25 cm-1

testing 17 3112 3998.14 cm-1 ~ 9998.25 cm-1

TABLE 2 Testing performance for Qufu and Linyi datasets.

Region Oxide RMSE MAE R2 MSE cross-val

Qufu CaCO3 0.142 0.111 0.965 0.097

SiO2 0.149 0.116 0.971 0.172

Al2O3 0.085 0.062 0.951 0.036

Fe2O3 0.015 0.012 0.802 0.015

Avg Oxide 0.097 0.075 0.922 0.080

Linyi CaCO3 0.153 0.118 0.962 0.100

SiO2 0.154 0.121 0.970 0.180

Al2O3 0.088 0.064 0.949 0.040

Fe2O3 0.019 0.014 0.793 0.016

Avg Oxide 0.104 0.079 0.919 0.084

The bolded parts in the experimental results indicate the best performance.s
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R2 quantifies the proportion of variance in the actual values that
is captured by the model predictions. Its value range is
between −1 and 1. A value of one implies perfect prediction,
while 0 indicates the model performs no better than predicting
the mean:

R2 � 1 − ∑n
i�1 yi − ŷi( )2∑n
i�1 yi − ŷi( )2 (11)

3.3 Results analysis

3.3.1 Oxides prediction analysis
The predictive performance for each oxide component is

summarized in Table 2. On the Qufu dataset, the TabNet
model demonstrated excellent predictive capability, achieving

an average RMSE of 0.097, MAE of 0.075, and an average R2 of
0.922 across all oxides. Specifically, CaCO3 (RMSE = 0.142, MAE =
0.111 and R2 = 0.965) and SiO2 (RMSE = 0.149, MAE = 0.111, R2 =
0.971) exhibited consistently high prediction fidelity. Al2O3

achieved the lowest RMSE of 0.085 and a strong R2 of 0.951,
suggesting that its spectral characteristics were effectively
captured. Although Fe2O3 had the lowest RMSE of 0.015, it
recorded the lowest R2 of 0.802 due to its narrow concentration
range. Multi-fold cross-validation further confirmed the
robustness of the predictions, with an average MSE cross-
validation of 0.080. Among all oxides, Fe2O3 showed
particularly low RMSE values (0.015) due to its limited
variability, whereas SiO2 and CaCO3 exhibited slightly higher
RMSE values, reflecting broader compositional ranges. These
findings confirm that TabNet effectively captures the complex
spectral-chemical relationships in Qufu raw materials, delivering
highly accurate and reliable predictions.

FIGURE 2
Scatter plots of TabNet predicted versus actual oxide concentrations on the test set from Qufu dataset. (A) CaCO3. (B) SiO2. (C) Al2O3. (D) Fe2O3.
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To further evaluate generalization ability, experiments were also
conducted on the Linyi dataset. TabNet maintained similarly strong
performance, with an average RMSE of 0.104, MAE of 0.079, and R2

of 0.919. Both CaCO3 (RMSE = 0.153, MAE = 0.118, R2 = 0.962) and
SiO2 (RMSE = 0.154, MAE = 0.121, R2 = 0.970) showed comparable
accuracy to Qufu, demonstrating the stability of TabNet across
different regions. Al2O3, and Fe2O3 exhibited slightly higher RMSE
values (0.088 and 0.019, respectively) compared to Qufu. This
discrepancy is partly due to outliers, which increase prediction
variance and lower R2. In particular, Fe2O3 had a lower R2 of
0.793 despite small absolute errors, likely due to regional
composition differences or spectral noise. The overall predictive
performance in Linyi remained strong and closely aligned with the
results from Qufu.

To provide an intuitive assessment of regression performance, the
paper further visualized the relationship between predicted and actual
oxide contents using scatter plots. A detailed visualization of the
model’s predictive accuracy is presented in Figure 2, which displays
the scatter plots of predicted versus reference concentrations for the
four major oxides using the Qufu dataset. Each data point in the figure
represents an individual prediction obtained through our cross-
validation procedure, providing a comprehensive assessment of
model performance across the entire dataset. Different colors
denote different oxides. TabNet demonstrates strong predictive
performance, with most points closely aligning along the ideal line
and a clear linear correlation between predicted and actual values. For
CaCO3, predictions align closely with the ground truth, with most
errors confined within ±0.15%. This high accuracy is attributed to
TabNet’s ability to capture carbonate absorption features in the
4,300–4,500 cm-1. Predictions for SiO2 also demonstrate strong
linearity, with an R2 of approximately 0.97. A slight overestimation
is observed at lower concentrations, while higher concentrations
(~15%) are nearly perfectly predicted. For Al2O3, TabNet achieves
the lowest prediction error (RMSE = 0.085), with scatter points almost
perfectly overlapping the ideal line and showing no systematic
deviation. This result highlights the model’s capability to leverage
strong Al-O absorption responses in the 4,800–5,500 cm-1 region,
delivering highly accurate and stable predictions. In the case of Fe2O3,
while the absolute prediction error remains minimal (RMSE = 0.015),

the R2 value (0.802) is lower than for the other oxides. This
discrepancy is primarily due to Fe2O3’s narrow concentration
range, which limits variance explanation despite accurate
predictions. Although slight discrepancies were observed—such as
higher RMSE for Al2O3 and Fe2O3 in Linyi—these variations were
attributed to outliers and differences in regional compositions, which
could be addressed by model fine-tuning.

3.3.2 Cross-regional generalization analysis
To rigorously evaluate the cross-regional generalizability of the

proposed TabNet model, a stringent inter-regional generalization
experiment was conducted. This test goes beyond simple hold-out
validation and assesses the model’s ability to perform well on data
from a completely different production region. We trained the
TabNet model on the entire dataset from one region (including
both training and testing splits) and then evaluated it directly on the
entire, unseen dataset from the other region. This process was
performed in both directions: “Train on Qufu, Test on Linyi”
and “Train on Linyi, Test on Qufu”. The results of this
challenging experiment are summarized in Table 3. As expected,
the performance metrics under this cross-regional setting are lower
than those obtained from intra-regional testing.

When trained on Qufu data and tested on Linyi data, TabNet
achieved an average R2 of 0.829 and RMSE of 0.173 across all oxides.
The reverse scenario (Train on Linyi, Test on Qufu) yielded highly
consistent results (Average R2 = 0.832, RMSE = 0.174), confirming
the stability of our method. Notably, the predictions for CaCO3 and
SiO2 remained strong in both directions, with R2 values consistently
above 0.88. This can be attributed to the well-defined and strong
absorption features of carbonate and silicate groups in the NIR
spectrum, which the model can reliably identify even amidst
regional variations.

The performance for Al2O3, and Fe2O3 saw a more noticeable
drop (R2 between 0.70 and 0.82). This is a foreseeable outcome, as
the spectral signatures of these oxides, particularly Fe2O3, can be
more subtle and more susceptible to being influenced by region-
specific impurities, particle size distribution, and the complex matrix
effects within the raw meal. The model’s ability to maintain
reasonable accuracy on entirely unseen data from a different

TABLE 3 Performance comparison of regression models.

Training region Testing region Oxide RMSE MAE R2

Qufu Linyi CaCO3 0.241 0.189 0.901

SiO2 0.263 0.205 0.892

Al2O3 0.152 0.118 0.823

Fe2O3 0.035 0.027 0.701

Avg Oxide 0.173 0.135 0.829

Linyi Qufu CaCO3 0.255 0.201 0.887

SiO2 0.248 0.192 0.905

Al2O3 0.161 0.125 0.810

Fe2O3 0.031 0.024 0.725

Avg Oxide 0.174 0.136 0.832

Bold values indicate the average performance.
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production site underscores its potential for deployment in real-
world industrial settings where raw material sources and
conditions can vary.

3.3.3 Performance comparison of existing models
To comprehensively assess performance, six regression

approaches were compared, including Partial Least Squares
Regression (PLSR), Random Forest (Statistics and Breiman,

2001), Linear Regression (Maulud and Abdulazeez, 2020),
Wavelength selection CARS (Zhang Y et al., 2024), SPORT
(Zhang et al., 2023) and the proposed TabNet method. To ensure
a comprehensive evaluation, we expanded our benchmark suite by
incorporating two additional nonlinear models: Support Vector
Machine (SVM) (Meza Ramire et al., 2020) and a Feedforward
Artificial Neural Network (ANN) (Zhang Y et al., 2024). The ANN
comprised two hidden layers with 64 and 32 neurons, respectively,

TABLE 4 Performance comparison of regression models.

Oxide Method RMSE R2 MSE cross-val

CaCO3 PLSR 0.230 0.910 0.150

Random Forest 0.204 0.941 0.125

Linear Regression 0.225 0.923 0.140

Selection CARS 0.182 0.9489 0.120

SPORT 0.217 0.925 0.137

SVM 0.188 0.943 0.129

ANN 0.175 0.951 0.115

TabNet 0.142 0.965 0.097

SiO2 PLSR 0.220 0.920 0.240

Random Forest 0.190 0.940 0.207

Linear Regression 0.210 0.925 0.220

Selection CARS 0.180 0.932 0.190

SPORT 0.208 0.933 0.224

SVM 0.195 0.935 0.201

ANN 0.169 0.949 0.178

TabNet 0.149 0.971 0.172

Al2O3 PLSR 0.135 0.900 0.070

Random Forest 0.110 0.925 0.055

Linear Regression 0.130 0.910 0.065

Selection CARS 0.100 0.931 0.045

SPORT 0.128 0.912 0.061

SVM 0.115 0.922 0.058

ANN 0.098 0.938 0.049

TabNet 0.085 0.951 0.036

Fe2O3 PLSR 0.045 0.720 0.025

Random Forest 0.030 0.750 0.020

Linear Regression 0.042 0.735 0.023

Wavelength selection CARS 0.023 0.765 0.019

SPORT 0.040 0.743 0.021

SVM 0.028 0.758 0.022

ANN 0.021 0.781 0.018

TabNet 0.015 0.802 0.015

Bold values indicate the best performance.
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and used ReLU activation, trained with the Adam optimizer. The
SVM model was configured with a carefully tuned regularization
parameter and kernel coefficient. The results are summarized
in Table 4.

Traditional linear models such as PLSR and Linear Regression
demonstrated the highest prediction errors across all oxides. To
ensure a fair comparison, we specify the type of data used for each
regression model. They were applied to the full-spectrum data
containing all 3,112 spectral features. On the other hand,
Selection CARS and SPORT models utilized pre-selected
wavelength subsets, where a smaller set of informative
wavelengths was chosen using feature selection techniques prior
to training. The TabNet model was also trained on full-spectrum
data. For instance, CaCO3 exhibited RMSE values of 0.230 and
0.225 for PLSR and LR, respectively. While PLSR reduces
collinearity by projecting features into latent variables, its linear
nature limits its ability to capture subtle nonlinear patterns, resulting
in suboptimal R2 scores. Random Forest improved predictive
accuracy compared to PLSR and LR, as it can handle nonlinear
interactions among spectral features. For example, the RMSE for
Al2O3, decreased to 0.110 compared to 0.135 for PLSR. Nevertheless,
Random Forest struggled to achieve high variance explanation for
Fe2O3 (R

2 = 0.750).
The newly introduced SVM and ANN models demonstrated

competitive performance, solidly outperforming the linear models
and aligning more closely with Random Forest. Notably, the ANN
emerged as a particularly strong baseline, achieving the second-best
performance for several oxides (e.g., CaCO3 and Al2O3). The
prediction of CaCO3 achieved notably performance with an
RMSE of 0.175, R2 of 0.951, and cross-validated MSE of 0.115,

underscoring the capability of nonlinear function in capturing the
complex spectral-carbonate relationships. This comprehensive
comparison reinforces that TabNet’s success is not merely due to
its non-linear nature, but to its sophisticated feature selection and
sequential attention mechanism, which allows it to more effectively
model the complex spectral-oxide relationships in an end-to-
end manner.

Feature selection approaches such as CARS and SPORT reduced
feature redundancy by identifying informative wavelengths. This
strategy substantially improved prediction performance compared
to simple linear methods. For instance, SPORT achieved an RMSE of
0.128 for Al2O3, versus 0.130 for Linear Regression. However, both
methods rely on manual wavelength engineering, making them
sensitive to noise and less effective in capturing nonlinear
relationships. In contrast, the proposed TabNet model
consistently delivered the best predictive performance across all
oxides. TabNet achieved the lowest cross-validation errors among all
evaluated oxides, with an average MSE of approximately 0.08,
significantly outperforming feature selection methods CARS and
SPORT, which yieldedMSE values ranging from 0.12 to 0.22. Unlike
traditional methods, TabNet eliminates the need for manual feature
selection or complex preprocessing by integrating end-to-end
learning, sparse attention, and nonlinear decision steps.

In addition, we present an intuitive comparison of model
performance. As shown in Figure 3, the radar chart illustrates the
average RMSE of each regression model across all oxides, where a
smaller enclosed area represents lower prediction error and better
overall performance. Notably, TabNet forms the smallest and most
compact polygon, reflecting both the lowest average RMSE and the
most balanced prediction across oxide types. These visual results

FIGURE 3
Average RMSE radar chart for models.
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align closely with the tabular analysis, further confirming TabNet’s
ability to automatically select informative spectral bands and capture
nonlinear dependencies via its sparse attention mechanism. It is a
robust and scalable solution for multi-oxide prediction in cement
quality monitoring.

3.3.4 Discussion
To complement the quantitative results, a qualitative analysis

was conducted to explore the interpretability of TabNet in
predicting oxide compositions. TabNet’s sparse attention
mechanism dynamically adjusts feature selection across decision
steps, allowing the model to focus on the most relevant spectral
regions for each oxide. The feature importance identified by TabNet
provides a direct, data-driven window into the underlying chemistry
of the cement raw meal. As shown in Table 5, the top-10 most
relevant wavebands selected for CaCO3, SiO2, Al2O3, and Fe2O3 are
primarily distributed within the 4,200–9500 cm-1 range. This aligns
well with known short-wave infrared (SWIR) absorption bands
commonly observed in cementitious materials, confirming the
chemical plausibility of the selected features. The high relevance
of specific wavelengths, as listed in Table 5, is not coincidental but
aligns with fundamental molecular vibrations. A paramount
example is the dominant role of the ~4,300 cm-1 band for
predicting CaCO3 content. This band is mechanistically assigned
to the strong combination band of the carbonate ion (CO3

2-), which
serves as the primary spectral fingerprint for calcite. The model’s
autonomous and emphatic selection of this band provides a

compelling validation of its chemical relevance and confirms that
it is learning meaningful patterns.

Specifically, CaCO3 shows unique peaks at 4,300 and 5,400 cm
-

1linked to carbonate stretching vibrations; SiO2 has distinctive
high-wavelength peaks at 6,900, 8,200, and 9500 cm-1 associated
with silicate network vibrations; Al2O3 features absorption at
7,100 and 8,900 cm-1 due to hydroxyl-alumina bonds; while
Fe2O3 displays low-to mid-range peaks at 4,200 and 6,500 cm-1

corresponding to crystal field transitions of iron oxides.
Importantly, TabNet successfully implemented an automatic
feature selection mechanism, capturing chemically relevant
spectral regions without manual engineering. Feature analysis
further revealed that both regions shared nearly identical top
spectral bands, with only the 10th most important band
differing (6,900.63 cm-1 in Qufu vs. 6,750.63 cm-1 in Linyi).
This subtle spectral shift may partially explain the small
performance gap observed for Fe2O3. These results suggested
that region-aware model fine-tuning could further improve
cross-regional generalization and robustness.

The feature importance heatmap is shown in Figure 4,
illustrating substantial overlap among the top-10 wavebands
across the four oxides. Notably, wavebands at 5,200, 6,000,
7,200, 7,600, and 8,700 cm-1 correspond to fundamental
molecular overtones and combination vibrations common to
carbonate, hydroxyl, and silicate groups. Despite these shared
features, the model effectively differentiates between oxides by
leveraging distinctive wavebands: CaCO3 at 4,300 cm-1, Al2O3 at
7,100 cm-1, and Fe2O3 at 4,200 cm-1. The heatmap also highlights
stronger importance of high-wavelength regions (9500 cm-1) for
Fe2O3 and SiO2, and unique absorption features for Al2O3 in the
7,100–8,900 cm-1 range, whereas CaCO3 relies primarily on low-
to-mid wavelength regions (4,300–5,400 cm-1) for accurate
prediction. Peaks near 7,200 and 5,200 cm-1 are predominantly
attributed to water and alumina-related vibrations, the strong
absorption at 4,300 cm-1 originates from carbonate symmetric
stretching, and weaker absorption near 4,500 cm-1 likely results
from overlapping contributions of Al2O3, Fe2O3 and SiO2. This

FIGURE 4
Heatmap of Top 10 Wavebands importance score for four Oxides.

TABLE 5 The top-10 most relevant wavebands selected for oxides.

Oxide Top 10 wavelength (cm-1)

CaCO3 4,300, 4,800, 5,200, 5,400, 5,700, 6,000, 6,500, 7,200, 7,600, 8,700

SiO2 4,500, 4,800, 5,200, 6,000, 6,900, 7,200, 7,600, 8,200, 8,700, 9500

Al2O3 4,500, 5,200, 5,700, 6,000, 6,800, 7,100, 7,200, 7,600, 8,200, 8,900

Fe2O3 4,200, 4,500, 4,800, 5,200, 6,000, 6,500, 7,200, 7,600, 8,700, 9500
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connection transcends mere spectral assignment and has direct
implications for predicting material properties. In cement
manufacturing, the precise content of CaCO3 is critical as it
governs the burnability of the raw meal and the
thermodynamics of clinker phase formation. Therefore, the
model’s accurate identification of the ~4,300 cm-1 band is not
just a statistical outcome. It is the foundational step in a chain of
reasoning that links a spectral feature to a core material
performance property.

The study note that the relatively small sample size, particularly
for the Linyi dataset, may limit the statistical robustness and
generalization of our model. While the current results
demonstrate strong predictive performance, larger datasets would
allow for more comprehensive evaluation, especially in capturing
less common spectral variations and regional differences. In future
work, we plan to collect larger-scale datasets from multiple
production regions, which will not only improve cross-regional
generalization but also further validate the applicability and
scalability of the proposed TabNet framework for industrial
cement quality monitoring.

4 Conclusion

The paper proposed a TabNet-based multi-output regression
framework for accurate and interpretable prediction of key
oxide contents in cement raw meals using NIR spectroscopy.
Unlike traditional chemometric models, TabNet leverages
sparse attention and sequential feature selection to
automatically identify chemically meaningful spectral bands,
enabling robust modeling of the complex nonlinear
relationships inherent in high-dimensional spectral data.
Extensive experiments on two real-world datasets from Qufu
and Linyi demonstrated that the proposed method consistently
outperforms baseline models such as PLSR and Random Forest in
terms of both RMSE and R2. In addition to its superior predictive
accuracy, the model offers interpretability through visualizable
attention masks, which align with known oxide-specific SWIR
absorption bands. Overall, this work presents a scalable, end-to-
end solution for real-time cement quality monitoring. The
proposed framework extends naturally to other spectral-based
tasks, including inorganic material analysis, geochemical
sensing, and process monitoring.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

GL: Writing – original draft, Writing – review and editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Acquarelli, J., van Laarhoven, T., Gerretzen, J., Tran, T. N., Buydens, L. M., and
Marchiori, E. (2017). Convolutional neural networks for vibrational spectroscopic data
analysis. Anal. Chim. Acta 954, 22–31. doi:10.1016/j.aca.2016.12.010

Alessandra, B., and Tormod, N. (2019). The sequential and orthogonalized pls
regression for multi-block regression: theory, examples, and extensions. Data Handl.
Sci. Technol. 31, 157–177. doi:10.1016/B978-0-444-63984-4.00006-5

Arik, S. Ö., and Pfister, T. (2021). TabNet: attentive interpretable tabular learning.
Proc. AAAI Conf. Artif. Intell. 35 (8), 6679–6687. doi:10.1609/aaai.v35i8.16826

Casson, A., Beghi, R., Giovenzana, V., Fiorindo, I., Tugnolo, A., and Guidetti, R. (2020).
Environmental advantages of visible and near infrared spectroscopy for the prediction of
intact olive ripeness. Biosyst. Eng. 189, 1–10. doi:10.1016/j.biosystemseng.2019.11.003

Castillo, J. A., Wilhelmsson, B., Broström, M., and Eriksson, M. (2025). Phase
evolution of cement raw meal in a high-CO2 atmosphere. Cem. Concr. Res. 193,
107874. doi:10.1016/j.cemconres.2025.107874

Haruna, S. A., Li, H., Wei, W., Geng, W., Luo, X., Zareef, M., et al. (2023).
Simultaneous quantification of total flavonoids and phenolic content in raw peanut
seeds via NIR spectroscopy coupled with integrated algorithms. Biomol. Spectrosc. 285,
121854. doi:10.1016/j.saa.2022.121854

Hu, Z. Y., Wan, Y., Duan, Y. J., Shi, Y. H., Gu, C. P., Ma, R., et al. (2025). A review of
the impact of graphene oxide on cement composites. Nanomaterials 15 (3), 216. doi:10.
3390/nano15030216

Huang, J. S., Liew, J. X., and Liew, K. M. (2021). Data-driven machine learning
approach for exploring and assessing mechanical properties of carbon nanotube-
reinforced cement composites. Compos. Struct. 267, 113917. doi:10.1016/j.
compstruct.2021.113917

Lee, H., and Kim, S. (2016). Black-box classifier interpretation using decision tree and
fuzzy logic-based classifier implementation. Int. J. Fuzzy Log. Intelligent Syst. 16 (1),
27–35. doi:10.5391/IJFIS.2016.16.1.27

Frontiers in Chemistry frontiersin.org11

Li 10.3389/fchem.2025.1691413

https://doi.org/10.1016/j.aca.2016.12.010
https://doi.org/10.1016/B978-0-444-63984-4.00006-5
https://doi.org/10.1609/aaai.v35i8.16826
https://doi.org/10.1016/j.biosystemseng.2019.11.003
https://doi.org/10.1016/j.cemconres.2025.107874
https://doi.org/10.1016/j.saa.2022.121854
https://doi.org/10.3390/nano15030216
https://doi.org/10.3390/nano15030216
https://doi.org/10.1016/j.compstruct.2021.113917
https://doi.org/10.1016/j.compstruct.2021.113917
https://doi.org/10.5391/IJFIS.2016.16.1.27
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1691413


Liu, X., An, H., Cai, W., and Shao, X. (2024). Deep learning in spectral analysis:
Modeling and imaging. TrAC Trends in Analytical Chemistry 172, 117612. doi:10.1016/
j.trac.2024.117612

Ma, X., Cai, Y., Wang, X., Zhang, R., Chen, Y., and Huang, B. (2025). Quantitative
measurement of cement raw meal composition via spectra fusion of laser-induced
breakdown spectroscopy and near-infrared spectroscopy. Measurement, 253, 117865.
doi:10.1016/j.measurement.2025.117865

Maulud, D., and Abdulazeez, A. M. (2020). A review on linear regression
comprehensive in machine learning. J. Appl. Sci. Technol. Trends 1 (2), 140–147.
doi:10.38094/jastt1457

Meza Ramirez, C. A., Greenop, M., Ashton, L., and Rehman, I. (2020). Applications of
machine learning in spectroscopy. Applied Spectroscopy Reviews 56 (8-10), 733–763.
doi:10.1080/05704928.2020.1859525

Mishra, P., Herrmann, I., and Angileri, M. (2021). Improved prediction of potassium and
nitrogen in dried bell pepper leaves with visible and near-infrared spectroscopy utilising
wavelength selection techniques. Talanta 225, 121971. doi:10.1016/j.talanta.2020.121971

Polavaram, K. C., and Garg, N. (2021). Enabling phase quantification of anhydrous
cements via Raman imaging. Cem. Concr. Res. 150, 106592. doi:10.1016/j.cemconres.
2021.106592

Qu, H. W., Wu, W., Chen, C., Yan, Z. W., Guo, W. J., Meng, C. Z., et al. (2021).
Application of serum mid-infrared spectroscopy combined with an ensemble learning

method in rapid diagnosis of gliomas. Anal. Methods Adv. Methods Appl. 13 (39),
4642–4651. doi:10.1039/d1ay00802a

Sambataro, L., Bre, F., Ukrainczyk, N., and Koenders, E. A. (2024). Environmental
benchmarks for the European cement industry. Sustain. Prod. Consum., 45: 429–449.
doi:10.1016/j.spc.2024.01.020

Statistics, L. B., and Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32.
doi:10.1023/a.1010933404324

Wu, Z., Pan, H., Huang, P., Tang, J., and She, W. (2024). Biomimetic mechanical
robust cement-resin composites with machine learning-assisted gradient hierarchical
structures. Adv. Mater. 36 (35), 2405183. doi:10.1002/adma.202405183

Yang, G., Zhao, J., and Wang, Y. (2022). Durability properties of sustainable
alkaliactivated cementitious materials as marine engineering material: a review.
Mater. Today Sustain. 17, 100099. doi:10.1016/j.mtsust.2021.100099

Zhang, Y. Z., Wang, Y., Zhao, Z., Zhang, L., and Xiao, H. (2023). Improved prediction
of oxide content in cement raw meal by near-infrared spectroscopy using sequential
preprocessing through orthogonalization (SPORT). Anal. Lett. 57, 1678–1688. doi:10.
1080/00032719.2023.2266070

Zhang, Y., Yang, Z., Wang, Y., Ge, X., Zhang, J., and Xiao, H. (2024). Enhanced
prediction of cement raw meal oxides by near-infrared spectroscopy using machine
learning combined with chemometric techniques. Front. Chem. 12, 1398984. doi:10.
3389/fchem.2024.1398984

Frontiers in Chemistry frontiersin.org12

Li 10.3389/fchem.2025.1691413

https://doi.org/10.1016/j.trac.2024.117612
https://doi.org/10.1016/j.trac.2024.117612
https://doi.org/10.1016/j.measurement.2025.117865
https://doi.org/10.38094/jastt1457
https://doi.org/10.1080/05704928.2020.1859525
https://doi.org/10.1016/j.talanta.2020.121971
https://doi.org/10.1016/j.cemconres.2021.106592
https://doi.org/10.1016/j.cemconres.2021.106592
https://doi.org/10.1039/d1ay00802a
https://doi.org/10.1016/j.spc.2024.01.020
https://doi.org/10.1023/a.1010933404324
https://doi.org/10.1002/adma.202405183
https://doi.org/10.1016/j.mtsust.2021.100099
https://doi.org/10.1080/00032719.2023.2266070
https://doi.org/10.1080/00032719.2023.2266070
https://doi.org/10.3389/fchem.2024.1398984
https://doi.org/10.3389/fchem.2024.1398984
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1691413

	TabNet-driven interpretable prediction of multi-oxide composition in cement using NIR spectroscopy
	1 Introduction
	2 Materials and methods
	2.1 Overview
	2.2 Method details

	3 Results and discussion
	3.1 Dataset
	3.2 Experiment setup and evaluation
	3.3 Results analysis
	3.3.1 Oxides prediction analysis
	3.3.2 Cross-regional generalization analysis
	3.3.3 Performance comparison of existing models
	3.3.4 Discussion


	4 Conclusion
	Data availability statement
	Author contributions
	Author contributionsGL: Writing – original draft, Writing – review and editing.
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


