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Production of nano-sized solid-dosage drugs is useful for pharmaceutical
industry owing to high solubility and efficacy of the drugs for patients, which
can also reduce the drugs side effects. For the solid-dosage oral formulations, the
nanomedicine can be prepared via either top-down or bottom-up approach to
enhance the drug solubility which in turns enhances the drug bioavailability. A
novel methodology for simulation and prediction of medicine solubility in
supercritical solvent was developed based on supervised learning algorithms
for classification of the data. The data for the simulations were collected on
solubility of a model drug in supercritical carbon dioxide. The supercritical-based
processing is usually used for preparation of nanomedicine with enhanced
bioavailability, and the developed simulation method can help design and
optimize the process for industrial applications. The data was obtained with
temperature and pressure as the input parameters, whereas the drug solubility is
considered as sole estimated output in the model. The validation outputs
indicated that great agreement was obtained between the measured data and
the simulated values with acceptable regression coefficient for the whole
simulations. The simulation results revealed that the supervised learning
algorithm is robust and rigorous for prediction of drug solubility data in
supercritical conditions and can be used for process optimization and
understanding the effects of process parameters. This study is innovative as it
methodically assesses diverse machine learning methodologies, encompassing
polynomial regression at different complexity tiers and the Gaussian Process
Regressor for predicting pharmaceutical solubility. This comparative framework
illustrates the bias-variance tradeoff and offers pragmatic guidance for choosing
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suitable models according to dataset attributes. The methodology presents a time-
efficient and cost-effective alternative to conventional thermodynamic modelling
for supercritical pharmaceutical processing.

machine learning, pharmaceuticals, prediction, nanotechnology, bioavailability
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1 Introduction

Development of processes for enhancing drug solubility has
been on the focus of research from pharmaceutical industry point of
view. The majority of produced drug substances possess poor
solubility in the body; thus, more dosage is taken to fulfil
therapeutic effects (Lesutan et al, 2025). Therefore, the drug
substances can be produced in manufacturing processes with
ability to enhance the drug solubility. The preparation method
for manufacturing of solid-dosage oral formulations is mainly
based on solid-state processing such as granulation, milling, etc.
Which are in batch mode of operations. Different techniques have
been recently employed and tested for improvement of solubility of
medicine in either batch or continuous mode such as cocrystal
formation, nanocrystalline drugs, and salt formation (Huang et al.,
2025; Sah et al., 2025; Serajuddin, 2007; Shaikh et al., 2019).

Among various processing techniques which have been
developed for enhancing the drug solubility, nanodrug
preparation has been more attractive due to superior properties
of nano drugs such as easy delivery, high permeability, and high
bioavailability. Indeed, the drugs can be prepared at nano scale by
either top-down or bottom-up techniques. In the top-down
approach, the synthesized drug at micron size is used to make it
at nano or sub-micron size by different techniques such as milling
(Carling and Briills, 2021; Singh et al., 2018.; Li et al., 2015; Shaikh
et al., 2021; Slamova et al., 2021). However, the process is based on
solid-state processing, and it is difficult to control the process to
achieve the desired products with enhanced properties. Therefore,
the preparation method based on wet chemistry is preferred for
production of drugs at nano size for enhanced pharmaceutical
solubility.

Recently, scientists have developed pharmaceutical nanodrug
processing based on supercritical technology in which the solvent is
a supercritical gas, usually CO, which is a good and safe solvent for
pharmaceutical processing. The advantage of this supercritical
processing is that no organic solvent is utilized which reveals that
the process is green technology for preparation of nanomedicine at
different scales (Obaidullah, 2023a; Obaidullah, 2023b; Sheikhi et al.,
2025; Sofia et al., 2025). The process is considered to operate based
on dissolution of the medicine in the solvent, and finally separation
of the solvent which results in precipitation of nanoparticles of drug
at the desired size. In order to control the size of drug particles,
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process understanding, and modeling is required to obtain the drugs
at the desired size range (Liu et al.,, 2022).

The process modeling can be conducted in order to optimize the
supercritical processing for preparation of nanomedicines. The
different
mechanistic, thermodynamic, molecular, and machine learning.

models can be developed at scales  including
The most common method for simulation of supercritical-based
processing of pharmaceuticals is based on thermodynamic approach
in which equation of state (EoS) or activity coefficient methods or
empirical correlations are developed and fitted to the measured data
of solubility. The main aim of these models is to predict the drug
solubility at various ranges of temperature and pressure, as the
solubility is the most important factor in supercritical drug
processing (He et al., 2025; Zhang et al., 2025).

Recently, Machine Learning (ML) based models have been
successfully utilized for simulating chemical and biochemical
processing applicable for various needs. These models can be
employed for simulation of different systems such as fluid flow,
solubility, and separation purposes (Alanaz et al., 2023; Yu et al,,
2024). In this approach of modeling, observed data are employed for
training the algorithm, and the trained model can be used for
simulation of the process and finding the relationship between
the model’s outputs and the underlying parameters. Therefore,
these models can be utilized for process prediction as well as
optimization. The main advantages of these modes are that they
have great fitting capability for complex systems, and these models
are not computationally expensive compared to mechanistic models
such as CFD models and quantum chemical calculations.

Machine learning methods have demonstrated significant
potential in predicting the solubility of pharmaceuticals under
supercritical conditions. Advanced AI modeling has been
effectively utilized to ascertain pharmaceutical solubility in
supercritical processing for the manufacture of nanosized drug
particles, exhibiting remarkable accuracy and efficiency
(Obaidullah, 2023a). The development and validation of machine
learning models for nanomedicine solubility in supercritical fluids
have demonstrated efficacy in advanced pharmaceutical
manufacturing (Liu et al., 2022). Extensive research demonstrates
that the integration of diverse thermodynamic and hybrid machine
learning  methodologies  yields accurate predictions of
pharmaceutical solubility in supercritical fluids (Yu et al., 2024).

Researchers have developed novel machine learning
methodologies to identify optimal values for critical parameters
that enhance medication solubility in green chemistry solvents
(Alanaz et al., 2023). Additionally, SVM-based machine learning
models have been explicitly developed to assess the solubility of
lornoxicam in supercritical solvents, illustrating the efficacy of
supervised learning techniques for this pharmaceutical compound
(Zhang and Mahdi, 2023). This research demonstrates that machine
learning is an effective method for understanding and predicting the

behavior of drugs under supercritical conditions. This is an
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FIGURE 1
Lornoxicam structure used in this work.

exemplary approach to optimize pharmaceutical production
operations.

The focus of this research is to develop a machine learning-based
algorithm for prediction and simulation of medicine solubility in
supercritical solvent at various temperature and pressure. The model
is built to make the solubility of the drug in supercritical CO, as a
function of temperature and pressure. The model is based on
support vector machine (SVM) for simulation of the solubility
data. The drug model is Lornoxicam, and its solubility was
predicted in the wide range of temperature and pressure using
the developed SVM technique. Lornoxicam is a nonsteroidal anti-
inflammatory (NSAID) derivative which is mainly taken for joint
disorders. Increasing its solubility would cause lower dosage to be
taken, and consequently less side effects (Pelalak et al., 2021).

2 Methods

The simulation in this work was carried out on a model drug,
namely Lornoxicam which was processed in supercritical operation.
Detailed explanation of the data acquisition and experiments are
reported elsewhere (Pelalak et al., 2021). We have used the data here
for simulation of the system and correlation of solubility data. The
inputs to the developed model are temperature and pressure whose
values are beyond the supercritical point of CO,. It is pointed out
that the chemical structure of the medicine studied in this research is
illustrated in Figure 1, and the drug chemical formula is
C13H4CIN;0,S,.

3 Simulation methodology

The simulations were performed to make a relation between the
process inputs (X) and the output (Y). The X parameters are indeed
temperature and pressure, while the Y parameter is the medicine
solubility in mole fraction unit (dimensionless). For fitting of the
drug solubility data, support vector machine technique was used
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which is based on the supervised learning algorithms for prediction
of process data. The main goal of the SVM method is to identify a
hyperplane that, to the greatest degree feasible, partitions
information elements into two groups, one group being of type
one and the other unit being of type two. For potential matters, the
method looks for a hyperplane that divides the set of linearly
separable data, but for many real-world applications, the
program seeks to maximize the soft margin to make the most
accurate distinctions.

Support vector machines are often used for classification and
regression, and they obtain very maximum performance on such
tasks specifically for complex systems. The combination of several
binary classifiers yields a multi-class SVM. For nonlinear issues,
kernels improve SVMs, making them more versatile and able to
tackle many types of scenarios. A decision surface just requires
support vectors from the training data to be built. The remainder of
the training data is therefore unimportant since once trained; the
resulting model is perfect for code creation.

0.00035
A
0.0003 —=8-P=120 bar ’/'
- k= P=360 b Pid
5 0.00025 ar &
b1 P
£ 0.0002 g
2 ,x
=]
g 000015 -’
Cd
£ 0.0001 &
3
= 0.00005 .\‘-\._.
wn
0
300 310 320 330 340
T (K)
FIGURE 2

Solubility of drug versus the temperature and pressure.
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We employed SVM utilizing a Radial Basis Function (RBF)
kernel for the dataset simulation. Kernels enhance the adaptability
and functionality of SVMs, enabling their application across a wider
range of contexts and situations. The Kernel Function is tasked with
transforming polynomial order (Zhang and Mahdi, 2023).

4 Results and discussions
4.1 Experimental data analysis

In the first section, we analyzed the measured data of lornoxicam
solubility collected from the source (Pelalak et al, 2021) to
understand the effects of various parameters on the output
parameter, Y. The results are indicated in Figure 2 for the
solubility versus pressure and temperature. The data points are
32 at different conditions for lornoxicam between 308 and
338 K, at two distinct pressures of 120 and 360 bars (Pelalak
et al, 2021). As observed in Figure 2, the solubility of
lornoxicam has increased considerably when the pressure rises
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from 120 bar to 360 bar due to the major effect of pressure on
medicine solubility. That can be said that the solubility trend
changes when the pressure rises, due to the effect of pressure on
the solubility (Liu et al., 2022). Indeed, at low pressure of 120 bar the
solubility of lornoxicam is reduced with enhancing the T values, and
the solubility is increased with temperature at high pressure of
360 bar (Pishnamazi et al., 2020). This behavior is due to the location
of the cross-over pressure in the dataset which would change trend
of solubility in the process (Pelalak et al., 2021).

4.2 Simulation results

We used a first-order polynomial regression model to set
performance standards in correlation of drug dataset. This linear
model shows how Y changes when pressure (P) and temperature (T)
change within the dataset. Figure 3 shows that this model does a
better performance of predicting data than expected. The “Y true vs.
Y pred” graph shows a strong linear relationship (R* = 0.8603)
between the model’s predictions and the experimental goal values.
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(A-D) Correlation of Y based on X. The polynomial order is 5.

The linear model can thus account for 86% of the variation in
output. The “Y vs. P” and “Y vs. T” subplots are very important
because they show that the red dots, which are the predictions, are
very close to the overall trend of the experimental data. This means
that the model has learned the basic, linear-like connections between
Y and temperature and pressure.

The inquiry built on this good starting point to see if a
more complex, non-linear model could find more subtle data
relationships and improve the fitting results. By raising the
polynomial degree to 5, the model can fit a more complex
surface to the input feature space. Things become more
complicated and useless as shown in Figure 4. Since R’
dropped precipitously to 0.6100, the model had difficulty with
the new test data. Overfitting, in which the machine learns false
positives from the training data instead of the real signal, is the
likely cause of this unexpected result. As the polynomial order
increases beyond 10, this pattern becomes
problematic (Figure 5). Now that the R*> value has dropped to

increasingly
averylow 0.1127, the model is no longer able to generate accurate

predictions of drug solubility. The “Y vs. P” and “Y vs. T” plots
for this model show that the predictions do not match up
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with the experimental data at all, and they look random
and scattered.

Figure 6, which shows
exemplifies the extreme case of overfitting. The model has

20th-order polynomial model,

completely failed to generalize in this case, as shown by the R?
value of only 0.1345. The “Y true vs. Y pred” plot shows that the
forecasts are all very close to each other in a narrow horizontal band.
This means that the model is giving almost the same output value no
matter what the input P and T values are. Figures 3, 6 show the
successful linear model and the completely failed model,
respectively. These figures provide strong visual evidence of the
bias-variance tradeoff. The results confirm what we thought after
our first hyperparameter optimization study (Figures 7-9), which
showed that a low polynomial degree of 3 was the best choice for
both peak performance (R* = 1.0) and minimum error (RMSE/
MAE). This shows that making the model too complicated is not an
option and that a simpler, carefully chosen polynomial model is
better for making reliable and accurate predictions about how the
system will behave.

A Gaussian Process Regressor (GPR) was utilized to assess a
non-parametric modeling approach. Polynomial models frequently
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(A-D) Correlation of Y based on X. The polynomial order is 10.

encounter challenges when dealing with intricate data, while
Gaussian Process Regressions (GPRs) demonstrate a remarkable
ability to navigate these complexities effectively. The model utilized
a composite kernel that combines Radial Basis Functions, Constant
Kernels, and White Kernels, successfully tackling issues associated
with noise, scaling, and signal covariance. A cross-validated grid
search refined the essential hyperparameters of this kernel, such as
the RBF length-scale and noise level, which contributed to the
model’s robustness and its ability to generalize effectively.

Figure 10 shows that the GPR model performs exceptionally well.
The polynomial models are sensitive, but the GPR model can explain
almost 96% of the differences in the experimental results, which
makes it more stable. The “Y true versus Y pred” subplot shows that
the prediction points are very close to the ideal parity line (Y = T).
This means that the prediction error is very low for all output values.

A more detailed examination of the model’s response to pressure
(P) and temperature (T) substantiates its assertion of superiority.
The “Y vs. P” and “Y vs. T” subplots show that the experimental data
(black circles) and the GPR predictions (red dots) are very close to
each other at every point. This means that the model has learned
how to connect input situations to solubility of drug and general
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trends in a way that is not straightforward. The 3D graphic shows
the expected and experimental markers close together in the P-T-Y
space. This proves that the model can accurately fill in the gaps
between data points. The Gaussian Process Regressor is a better and
more reliable way to predict what will happen in this system because
it does not fit high-order polynomial models too closely.

The developed models have the potential to enhance the processing
conditions of supercritical CO, in the realm of pharmaceutical
manufacturing. This advancement aims to reduce the number of
experimental trials required to identify the most effective operating
parameters. The methodology has the potential for further enhancement
by incorporating supplementary input variables, including co-solvent
concentration, flow rate, and various chemical descriptors. Nonetheless,
this expansion would increase the dimensionality of the feature space,
thereby requiring more extensive experimental datasets to maintain the
integrity of predictive accuracy. Our results indicate that increased
model complexity must be judiciously matched with the available
data to prevent overfitting. The comparative machine learning
architecture developed herein offers a systematic methodology
applicable to additional pharmaceutical substances and supercritical
processing systems beyond Lornoxicam.
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It is important to note that this study intentionally presents
models across a wide range of complexity levels to demonstrate the
bias-variance tradeoff in machine learning applications. While
higher polynomial orders show declining performance due to
overfitting, the optimized models
predictive capability.

demonstrate  excellent

The first-order polynomial demonstrates robust baseline
performance, signifying a strong linear relationship, whereas
hyperparameter optimization reveals that modest polynomial
complexity is optimal, resulting in nearly flawless prediction
accuracy. The Gaussian Process Regressor delivers the most
reliable and consistent forecasts, adeptly modeling the nonlinear
solubility behavior while avoiding overfitting. These findings confirm
that appropriate model selection, rather than just increasing
complexity, is crucial for achieving reliable pharmaceutical
solubility predictions under supercritical conditions.

5 Conclusion

This study successfully developed machine learning models
to predict the solubility of Lornoxicam in supercritical CO,,
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employing temperature and pressure as input variables. The

thorough assessment of various techniques, including
polynomial regression models of varying complexities and
the Gaussian Process Regressor, underscored the importance
of suitable model selection. The first-order polynomial model
demonstrated robust baseline performance, effectively
capturing the essential linear connections in the solubility
data. However, increasing polynomial complexity above
optimal thresholds led to substantial overfitting, resulting in
a notable decline in performance at higher polynomial degrees.
This exemplifies the fundamental bias-variance tradeoff in
The

Regressor demonstrated superior performance, effectively

machine learning applications. Gaussian  Process

modeling the complex nonlinear connection between process
parameters and drug solubility across the experimental

temperature and  pressure ranges. Hyperparameter
optimization indicated that modest polynomial complexity
yields optimal performance. The generated models

accurately forecasted the solubility behavior of Lornoxicam,
encompassing the crossover pressure phenomenon where
solubility trends inversely correlate with temperature at
varying pressures. The models enhance the efficiency of
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experimental processes, save time and money in supercritical
The
employed in

pharmaceutical ~ manufacturing.
NSAID

joint disorders, may enable reduced dosages and lessen side effects.

improved  protocol

for Lornoxicam, an managing

5.1 Future perspectives

The methodologies established in this study can be extended
in various areas. Initially, employing the machine learning
framework for supplemental pharmacological agents,
particularly other NSAIDs and poorly soluble medications,
would  demonstrate  its  generalizability.  Secondly,
incorporating additional input variables such as co-solvent
concentration, chemical descriptors, and structural features is
expected to enhance predictive accuracy; nevertheless, larger
datasets will be required to maintain model precision in higher-
dimensional scenarios. Third, the amalgamation of these models
with process optimization techniques should facilitate the
systematic design of operational parameters for industrial-
scale nanomedicine manufacturing. The integration of
machine learning predictions with focused trials via active

learning methodologies may alleviate experimental load while
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optimizing information acquisition. An expansion to anticipate

supplementary process outcomes, such as particle size

distribution and shape, would yield a

comprehensive

understanding  of  pharmaceutical ~manufacture  with

supercritical CO, technology.
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