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The increased global food demand has resulted into extensive agricultural
activities to offset the demand. The agri-activities generates large volumes of
agri-food wastes (AFW) which creates disposal challenges and environmental
pollution concerns. However, agri-wastes possess essential bioactive
compounds with industrial applications. The primary focus of the study is to
discuss techniques used in extraction, isolation, purification and characterisation
of bioactive compounds found in AFW and their potential industrial applications.
Traditional and emerging extraction processes; solid-liquid phase, liquid-liquid
phase, distillation, crystallisation, thin layer chromatography and gel filtration
chromatography are used for purification and isolation of bioactive compounds.
FT-IR, NMR, UV-Vis and GC-MS analytical techniques are usually used in
characterisation of bioactive compounds. AFW are reported to contain high
levels of bioactive compounds with excellent antioxidants properties and
biological activities that are ideal for cosmetics, pharmaceuticals and
nutraceutical industries. However, the scalability of the use of bioactive
compounds from AFW in various industries face challenges such as the use of
large volumes of solvents and reagents in the extraction process that are a threat
to human health and cause environmental pollution. The occurrence of
phytochemical compounds with different properties and characteristics
presents difficulty during extraction and purification processes. It is suggested
that the use of pretreatment methods, innovative biological techniques and
building closed-up systems that aim to repurpose the AFW into new products
can promote their scalability and reduce environmental effects.

Agri-food waste, extraction, purification, characterization, bioactive compounds

1 Introduction

The increase in generation of agri-food waste (AFW) has widely been associated with
global rapid population growth. Recent studies indicate that the global population is
expected to reach 9.7 billion by the year 2050 and the demand for food is estimated to
increase by 50 percent (Pakseresht et al.,, 2022). As such, different parts of the world
practices extensive agricultural activities to close the existing food demand gap against the
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Extraction and characterization of bioactive compounds from AFW.

rapid population growth. Consequently, extensive agricultural
practices have resulted into huge generation of agri-wastes
estimated in the range of between 1.3 and 1.6 billion tons every
year (Benyahya et al.,, 2022). Agri-food waste comprises of residues
and by-products produced during the agricultural production and
food processing activities, respectively (Voss et al., 2024). AFW are
produced in large quantities of by-products that are generally
disposed of without utilisation (Tapia-Quirds et al., 2022). Several
studies have reported that if the wastes are not properly managed
they create serious disposal challenges by causing environmental
degradation such as air, soil and water pollution and greenhouse gas
emissions (Lackner and Besharati, 2025; Oluseun and Adebukola
Adebiyi, 2021; Phiri et al., 2024). It is indicated that, 19-29 percent of
global greenhouse gases emission are associated with AFW
improper disposal (Chauhan et al., 2018).

However, agri-wastes are also recognized as rich sources of
bioactive compounds that have diverse applications in sectors such
as pharmaceutical, cosmetic and food industries. Studies have
shown that phytochemicals obtained from AFW possess high
levels of bioactive compounds such as phenolic compounds,
antioxidants and nutraceuticals among others (Castrica et al,
2019; Hrelia et al.,, 2023; Latella et al., 2024; Manousaki et al.,
2016; Zhang and Zhang, 2024). The phytochemicals are
associated with human health benefits such as antibacterial and
anti-inflammatory properties that are responsible for alleviating the
occurrence of chronic diseases such as cardiovascular diseases,
cancer and diabetes (Rodriguez Garcia and Raghavan, 2022;
Sorrenti et al., 2023; Yadav et al, 2024). Additionally, the
extraction of beneficial compounds from AFW helps to resolve
environmental issues associated with disposal challenges whilst
providing essential resources for manufacturing industries. As
such, researchers’ interest and preference has risen towards
searching bioactive compounds sourced from AFW. These
compounds are obtained from AFW through sequential process
as summarized in (Figures 1, 2). The processes include; extraction,
purification, separation and isolation and characterization.
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This review study therefore, aims to provide comprehensive
extraction techniques, isolation and purification strategies and
characterisation techniques for bioactive compounds obtained
from AFW. Several techniques and protocols have been
developed and explored to increase the vyield of bioactive
compounds obtained from AFW for various applications. The
paper has discussed in greater depth the potential of bioactive
compounds towards various industrial applications.

2 Methodology

The present study employed a literature-based examination that
involved searching and downloading numerous published peer-
reviewed papers related to the topic of study. The papers were
accessed from various databases based on relevance to the study
topic and publication date. The papers published recently were
favoured and preferred. The papers were searched and downloaded
from various databases (Web of Science, PubMed, Google Scholar,
PLOS and ScienceDirect). The searching technique involved the use

» o«

of keywords “Extraction techniques,” “Isolation and purification,”

» «

“Bioactive compounds,” “Agri-food waste” and “Characterisation,”

among others.

3 Results and discussions
3.1 Extraction

Extraction process is fundamental towards obtaining bioactive
compounds from various sources and classified into traditional and
emerging. Traditional extraction techniques require the use of
organic solvents, heat and continuous agitation. The maceration,
soxhlet and hydro-distillation are recognized examples of traditional
extraction protocols. On the other hand, emerging extraction
techniques are recent analytical tools that aim to promote

frontiersin.org


https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1669737

Njewa et al.

10.3389/fchem.2025.1669737

Agri-food waste

Agri-food
powder

Industrial use Bioactive compounds

Pharmaceuticals
Cosmetics

Food additives
Nutraceuticals

FIGURE 2

~==| Characterisation

Rotary evaporatory
drying the extract

Extraction
process

GC-MS  UV-Vis

FT-IR NMR

Pictorial representation of how bioactive compounds are obtained from AFW.

extraction efficiency and reduce the environmental effects associated
with the use of extraction solvents and reagents (Hansen and
Pedersen-Bjergaard, 2019). Microwave assisted extraction (MAE),
ultrasound assisted extraction (UAE), enzyme assisted extraction
(EAE), supercritical liquid extraction (SFE) and solid state
fermentation (SSF) are common examples of advanced emerging
extraction protocols (Alara et al., 2021; Mushtaq et al., 2014; Nn,
2015). Phytochemical compounds can be acquired from various
AFW sources by employing extraction techniques. Studies have
revealed that the most favorable and effective protocols of extracting
and isolating bioactive compounds from AFW are supercritical fluid
extraction, enzymatic assisted extraction, microwave assisted
extraction, ultrasound assisted extraction and solvent extraction
with green solvents. Recent studies have shown that the
aforementioned methods have drastically promoted the recovery
of bioactive compounds from AFW sources (Hu et al., 2023; Long
etal, 2015; Parry and Hawkesford, 2010). These methods have led to
the increase in the efficiency and yield to bioactive compounds
(Fuertes et al., 2024). These methods are discussed in greater detail
regarding their operating principles. However, the setbacks and
advantages associated with each extraction protocol are summarized
in (Table 1).

3.1.1 Solvent extraction

Solvent extraction is one of the traditional methods of extraction
and relies on organic solvents which break down the plant matrix in
order to extract bioactive compounds among other compounds.
Solvents such as ethanol, acetone and methanol are commonly
employed during the bioactive extraction process. Studies have
shown that the quality of the bioactive compounds obtained and
the efficiency of the extraction process depend on the solvent used in
the extraction process. The study done by Soares et al. (2023) found
that antioxidant levels and the chemical profile of extracts are
influenced by the solvent used in the extraction process. The
study recommended that suitable selection of solvent is necessary
to maximize the extraction of bioactive chemical substances during
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the extraction process. Moreover, other factors such as temperature,
extraction period, as well as, solid-to-liquid ratio are also recognized
to have an effect on the solvent extraction efficacy that requires
optimization in order to attain the highest extraction efficiency
(Ben-Othman et al., 2020). Nevertheless, its wide use, the solvent
extraction protocol is associated with some limitations, such as
damage to heat-delicate compounds and environmental issues
caused by the use of organic solvents. Recent studies have
highlighted the benefits of using green extraction technologies
that require lesser, non-toxic and environmentally friendly
solvents (Panzella et al.,, 2020). Studies have demonstrated that
green solvents are a promising alternative for obtaining bioactive
compounds from plant-related materials without damaging the
environment (Molina-Montero et al., 2023). Solvents such as
ethanol and water are commonly used to obtain preferred
bioactive compounds from AFW. Studies carried out on grape
pomace peels through the use of ethanol and water mixture
successfully extracted anthocyanins, trans-resveratrol and
quercetin phenolic compounds (Brazinha et al., 2014). Another
study reported obtaining higher yield of bioactive compounds
from onion solid wastes using ethanol and water mixture (60:
40 v/v) as an extracting solvent (Khiari et al, 2008). These
extraction protocols target isolating highest yields of bioactive
compounds while reducing environmental pollution associated
with the use of extraction solvents (Cimara et al., 2022; Khataei

et al., 2022).

3.1.2 Enzymatic extraction

Enzymatic emerging extraction method uses enzyme during the
extraction process. The enzymes act on cell walls resulting in the
release of bioactive compounds. Studies have reported that the use of
enzymes such as cellulases, proteases and pectinases in the
extraction processes accelerated the extraction process leading to
excellent yield of bioactive compounds such as phenolic acids and
flavonoids (Hung et al., 2020). The enzymatic extraction method is
capable of functioning at mild conditions resulting in preservation
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TABLE 1 Summarizes the bioactive compounds extraction protocols with their associated benefits and setbacks.

Methods Advantages
Supercritical fluid Extraction
Environmentally friendly

Suitable for thermal sensitive compounds

Enzyme assisted Extraction High yield and extraction efficiencies
Favours specific compounds extraction

Environmentally friendly

High efficiency and selectivity for target compounds

Disadvantages

High operational costs
Requires technical expertise

Enzymes are affected by pH and temperature

1. es are expensive
Enz

10.3389/fchem.2025.1669737

References

Kai Bin et al. (2020)
Li et al. (2022)

Akyil et al. (2018)
Yogeshri et al. (2023)
Arya et al. (2019)

Microwave assisted Extraction Shorter extraction time
High vyield and quality of extracts
Requires less solvent

Degradation of sensitive compounds
Equipment cost and complexity

Medina-Torres et al. (2017)
Jovanovi¢ et al. (2017)
Jovanovic et al. (2017)

Ultrasound assisted Extraction Less extraction duration

High yield and quality extracts
Low use of solvent

Less operation costs

Ideal for heat sensitive compounds

Requires optimization
High equipment cost

Cvetanovi¢ (2019)
Medina-Torres et al. (2017)
Saini et al. (2021)

Less extraction duration
Less energy consumption
Less solvent use
Automated

Pressurized liquid Extraction

Solid-Phase Microextraction Simplicity and sensitivity
High extraction yields

Compatibility

Optimization required
Expensive

Matrix effects
Possible degradation

Limited sample capacity
Fiber degradation
Matrix effects

Yan et al. (2017)
Chatzimitakos et al. (2023)
Ranjha et al. (2021)

Bagheri et al. (2014)
Mustafa and Turner (2011)
Aulakh et al. (2005)

Pulse electric field Extraction High efficiency
High extraction yields
Less energy consumption

Less extraction duration

Solvent Extraction Cheap
Less expertise
Favours all solvents

Degradation of compounds
Expensive

Ranjha et al. (2021)
Gavahian et al. (2018)

Requires optimization Soriano et al. (2024)

Consumes more solvents Saini et al. (2021)
Low yields Li et al. (2022)
Prolonged extraction period Arya et al. (2019)

of the heat-sensitive bioactive compounds (Ben-Othman et al.,
2020). Studies have confirmed that this protocol has the capacity
to increase the extraction of the antioxidant components
(Ghandahari Yazdi et al, 2019). This is supported by the study
aimed at obtaining the phenolic compounds from citrus peel
through the use of pectinase enzyme. The results showed that the
yield was higher compared with the traditional extraction protocols
(Hung et al., 2020). However, this protocol is associated with
shortfalls such as high cost of the enzymes and setting enzymes
optimum performance conditions thereby restricting its industrial
applications (Pereira et al., 2023).

3.1.3 Ultrasound-assisted extraction
Ultrasound-assisted extraction (UAE) depends on ultrasound of
waves to generate foams in the solvent that instantly induces shock
waves leading to destruction of plant cells and change mass transfer
(de Aguiar et al, 2024). This approach has proved to be more
effective and reliable especially, on extraction period and giving
excellent yield (Zia et al, 2023). Various studies have registered
success at extracting different bioactive compounds such as
polyphenols, flavonoids and carotenoids from various AFW by
adopting the UAE technique. A study reported that bioactive
compounds extracted from Moringa oleifera leaves using UAE
demonstrated excellent antioxidant properties compared with
bioactive compounds extracted using traditional extraction
protocols (Dadi et al., 2019). A separate study indicated that the
use of ultrasound during extraction process enhance the release of

Frontiers in Chemistry

extractable chemical substances, thereby increasing the extraction
effectiveness (Jiménez-moreno et al., 2019).

The percentage yield in the UAE protocol depend on working
parameters such as extraction time, temperature and amplitude.
These working parameters are recognized to be significant in
determining the effectiveness of the extraction process (Bola
et al., 2022; Weremfo et al., 2023). Researchers have indicated
that changing the operating parameters leads to significant
increase in yield. It has been reported that the extraction of the
phenolic compounds increases with an adjustment in ultrasound.
However, excessive exposure causes degradation of delicate
compounds (Sirichan et al., 2022). Still more, there is a need to
select appropriate solvents because solvents determine the solubility
of the desired compounds as well as influences the overall extraction
process (de Aguiar et al., 2024).

3.1.4 Supercritical liquid extraction

Supercritical liquid extraction (SFE) uses supercritical fluids
such as carbon dioxide at a high temperature and pressure
(Cadiz-Gurrea et al., 2019). Carbon dioxide has unique
properties, which include low viscosity, high diffusion rate and
possesses  solvent-related characteristics. This protocol has
demonstrated the ability to achieve high extraction efficiencies
with little degradation of delicate bioactive compounds compared
with the traditional solvent extraction methods. Phytochemicals,
such as phenolic compounds and flavonoids have been effectively
obtained from complex agri-related materials (Anticona et al., 2020;
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Cerén-Martinez et al., 2023). Several research studies have reported
that SFE method has been used to obtain multiple bioactive
compounds from different plant residues. Furthermore, studies
indicate that optimization of extraction parameters assists in
increasing the extraction yield and the activity of targeted
bioactive compounds. This technique is much more ecologically
friendly since it does not involve the use of toxic extraction solvents
(Hrelia et al., 2023).

3.1.5 Solid-state fermentation

The solid-state fermentation (SSF) extraction approach involves
degradation of lignocellulose biomass with less content of moisture.
These operating conditions favors the growth of bacteria and fungi
that are capable of producing enzymes (Ding et al., 2019). The
enzymes produced have the ability of turning composite compounds
into beneficial bioactive compounds such as phenolic acids and
antioxidant peptides (Nugraha et al, 2024). This extraction
technique can be adapted to different categories of AFW, which
in turn, can increase sustainable waste management through
valorization (Ezeorba et al, 2024; Yadav et al, 2024). Other
research studies have indicated that employing the SSF extraction
protocol on AFW can enhance the extraction of vital chemical
substances, for instance, chlorogenic acids and antioxidants,
suggesting that this protocol increases both the yield and
concentration of the bioactive compounds (Frosi et al, 2021;
Nugraha et al., 2024). SSF studies done on green peas peel has
exposed excellent antioxidants connected with the increased
concentrations due to the occurrence of bioactive metabolites,
revealing the effectiveness of SSF protocol in obtaining essential
compounds (Goodarzi Boroojeni et al., 2017). This protocol is
associated with lower operation costs, the capacity to process
complex AFW and high product efficiency (Oluremi and
Okhonlaye, 2020).

3.1.6 Pressurized liquid extraction (PLE)

PLE is an emerging extraction technique which uses high
temperature and pressure to enhance solubility and extraction
effectiveness of desired bioactive compounds from different
sources of AFW (Barp et al, 2023). This extraction method is
also known as accelerated solvent extraction. This protocol has
several advantages, such as high extraction yields, shorter extraction
duration and prevention of compounds from reactive oxygen
species and light exposure (Raut et al, 2015). Studies indicate
that this protocol has shown to be effective in the extraction of
bioactive compounds such as fatty acids, curcuminoids, lipids, and
anthocyanins. Other studies have explored the use of this protocol in
the extraction of food contaminants, such as processing and
environmental contaminants, veterinary pharmaceutical residues,
mycotoxins and pesticides (Barp et al.,, 2023; Osorio-Tobdén and
Meireles, 2013; Raut et al., 2015).

3.1.7 Solid-phase microextraction (SPME)

The SPME technique is a rapid protocol that depends on solvent
to extract the desired bioactive compounds from AFW. This
protocol depends on coated fiber to acquire the analyte from
either solid or liquid medium (Jalili et al., 2020). The method has
demonstrated to be more efficient and facilitate the extraction of
both volatile and semi-volatile compounds. It has shown to possess
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several benefits, such as cheap, simple and compatible with several
analytical instruments compared with traditional extraction
2014; Mottaleb et al., 2014).
Additionally, this method has demonstrated to be convenient and

protocols (Bagheri et al,
reliable for obtaining and quantifying bioactive compounds even at
low concentrations. It has been used in several fields such as,
environmental science, forensics, applied chemistry and
pharmaceuticals. The fusion of this technic with spectroscopic
technique has further
analytical capacities, rendering it suitable for various settings

(Mottaleb et al., 2014).

and chromatographic increased its

3.1.8 Purse electric field (PEF) extraction

This is another modern extraction protocol which depends on
electrical voltage to break down the cell membrane, thereby
releasing the intracellular compounds. PEF extraction protocol is
commonly used in the extraction of polyphenols and juice from
several sources of AFW (Pappas et al., 2022). Studies indicate that
adjusting pulse time and electric field intensity produces high
recovery rates of bioactive compounds (Ngadi and Bazhal, 2006).
This protocol has demonstrated its effectiveness by increasing the
yields of bioactive compounds from various AFW while reducing
extraction time (Pappas et al., 2022). Literature reports that the PEF
extraction method achieved higher yields compared with traditional
methodologies, with 58% and 92% for total polyphenols and specific
compounds, respectively (Lin et al., 2005; Yusoff et al., 2017). This
extraction technique involves the use of chemical kinetics in order to
obtain the preferred chemical compounds. However, it is important
to regulate high temperature during the treatment process since
enormous heat can compromise extraction efficiency and induce
degradation of bioactive compounds (Lin et al., 2005).

The methods discussed thus far are reported to be used more
often for the extraction of bioactive compounds from AFW because
they have demonstrated efficiency and reliability. However, every
method has advantages and disadvantages, as indicated in Table 1,
hence studies suggest blending extraction techniques in order to
enhance the extraction process. For example, researchers have
that
extraction approaches, resulted in excellent extraction vyields

shown combining enzymatic and ultrasound-assisted
while decreasing the setbacks associated with each extraction
protocol (Buvaneshwaran et al., 2023; Cheikh et al, 2023;
Panzella et al., 2020).

The selection criteria of green extraction solvents for attaining
bioactive compounds from various AFW comprise several
approaches, such as environmental effects, toxicity, cost-
effectiveness, biodegradability and extraction efficiency (Patrice
Didion et al, 2023; Wu et al, 2022). Efforts by researchers to
improve the performance of green solvents have resulted in
various developments and innovations by incorporating several
operating parameters. Several classes of green solvents have risen
recently as viable options, namely bio-based solvents, ionic liquids,
supercritical carbon dioxide and deep eutectic solvents (DESs)
(Hashemi et al., 2022; Patrice Didion et al., 2023). DESs are quite
preferred and favoured due to their easiness in preparation,
affordability and greater tenability as opposed to ionic solids
(Zainal-Abidin et al., 2019). Researchers have further developed
computerised tools such as Hansen solubility parameters and

COSMO-SAC modelling devices to enhance extraction processes
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(Wu et al., 2022). The green solvents are much favoured and used
with emerging extraction strategies such as pressurised solvent
extraction, microwave-assisted extraction and ultrasound-assisted
extraction to increase success while preserving the environmental
sustainability (Hashemi et al., 2022; Patrice Didion et al., 2023).

The published reports indicate that green solvents demonstrate
best extraction efficiencies as opposed to traditional based organic
solvents for attaining bioactive compounds from AFW (Patrice
Didion et al., 2023). DES has shown to be remarkable with
highest recovery yields ranging 93-99 percent of bioactive
compounds than water and traditional organic reagents (Ma
et al., 2025). Green solvents offer several benefits including mild
and non-destructive properties to delicate compounds during
extraction and do not pose threats to ecosystem when discharged
in environment (Nakhle et al, 2021). The development and
emerging of these technologies techniques provides solutions
towards resolving health and environmental concerns related
with large quantities of organic solvents. These emerging
techniques are promising and reliable compared to traditional
techniques (Hashemi et al., 2022).

Traditional and emerging protocols require further exploration
in order to resolve some setbacks. Traditional protocols depend on
toxic chemical reagents and high energy usage, resulting in pollution
and emission of greenhouse gases (Barba et al., 2015; Xi et al., 2021).
Low selectivity resulting in difficulty in extracting specific
compounds from complex plant matrices and waste disposal
challenges, especially toxic byproducts. Traditional strategies are
also associated with low recovery rates, especially in acid and heat
treatment (Blicharski and Oniszczuk, 2017; Frosi et al., 2021). On
the other hand, emerging traditional protocols face issues associated
with being quite expensive and market competition, requiring
industrial validation and resolving health and safety concerns
since the environmental and health effects of novel reagents are
unknown (Shahid et al., 2016; Verep et al., 2023).

It is significant that researchers should further explore the
possibility of recycling solvents to reduce waste discharge during
the extraction process. The blending of traditional and emerging
extraction strategies, for instance, acid treatment seconded by
bioleaching to boost extraction efficiency and selectivity. Further,
there is also a need to employ machine learning in designing
experimental extraction parameters to achieve the high recovery yields.

3.2 Isolation and purification of
bioactive compounds

The purification process of the bioactive compounds obtained
from plant sources is carried out for their therapeutic potential and
promotes their efficacy for various applications. Studies have
reported that bioactive compounds are commonly purified by
solid-liquid phase extraction, liquid-liquid phase extraction and
gel purification chromatography. These methods are recognized
due to their significant roles in the purification and characterization
of the bioactive compounds. In addition, crystallisation and
distillation are also recognized as reliable separation and isolation
techniques for chemical substances based on their physical
properties (Ventura et al., 2017). The selection of the purification
method depends on the required purity, yield and activity retention
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of the targeted bioactive compounds (Kumar et al., 2023; More
et al., 2022).

3.2.1 Solid-liquid phase

This technique employs the polar and non-polar solvents to
break complex matrix and facilitate the release of bioactive
compounds. Research studies have indicated that solvents such as
methanol, ethanol and acetone has shown promising results by
increasing the extraction yields of phenolic compounds and
flavonoids bioactive compounds (Mathew et al., 2023). The
process of purification can be optimized through consideration of
operating parameters such as, temperature, solvent type and
extraction period (Sridhar et al., 2022; Torres et al., 2016). Other
studies have recommended that solubility of desired bioactive
compounds from the plant matrix sources depends on the
solvent which demonstrates the efficiency they can be extracted.
Further, other researchers have suggested that performing pre-
extraction evaluation studies aiming at attaining high extraction
yields and successful purification techniques (Daryani et al., 2022).

3.2.2 Liquid-liquid phase

This purification is less traditional compared with the solid-
liquid phase purification approach. Liquid-liquid phase has been
demonstrated to be useful in the fractionation of solid plant
materials that often involve adsorption methods on solid
stationary phases (Staicu et al., 2023). This method is reported to
have been used for the removal of undesired plant pigments and
chlorophyll, thereby purifying the preferred bioactive compounds
(Staicu et al, 2023). The mineral elements adsorbents or
chromatographic materials used permit the retaining of selected
materials and elution of the desired plant compounds, thereby
separating the high-grade compounds that can show excellent
bioactivity. Further, studies indicate that solid-solid phase yields
highly concentrated fractions of bioactive compounds (Alaekwe
et al., 2023).

3.2.3 Crystallization

Crystallization protocol of bioactive compound purification is
considered a significant protocol for obtaining high-purity products.
It operates on the idea of different solubility’s of compounds in the
mixture, providing an opportunity for crystallization of the
preferred product. However, studies have indicated that the
presence of chemical contaminants in the sample can greatly
affect the yield and the purity of the crystalline product (Balint,
2001; Luo and Shen, 1987). Researchers have resolved this challenge
through the development of hybrid techniques by integrating
chromatography and crystallization techniques. This protocol
operates based on the capacities of both techniques, resulting in
more effective separation and purification of desired bioactive
chemical substances from complex mixtures (Balint, 2001). For
instance, the isolation of artemisinin from Artemisia annua was
possible through the incorporation of HSCCC with crystallization,
resulting in the yield of bioactive compounds with high purity and
synergistic properties (Qu et al., 2010).

3.2.4 Distillation

Furthermore, distillation is another technique that is also used in
the purification of bioactive compounds. However, regardless that
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this protocol is less generally associated with purification of bioactive
compounds, it can, though, be used, more especially for obtaining
volatile compounds. It operates based on differences in boiling
points of desired bioactive compounds in the mixtures. Studies
have reported that essential oils and volatile organic bioactive
compounds were obtained successfully from AFW while
maintaining the desired benefits (Gontarek-Castro and Lieder,
2021; Mahrous and Farag, 2022). Further, this method favours
bioactive compounds that are thermally stable and can be
evaporated without disintegration. Therefore, this implies that
distillation protocol is commonly used in combination with other
purification techniques to obtain bioactive compounds with high

purity and yield (Madureira et al., 2021).

3.2.5 Chromatography

Chromatography is one of the most used methods for purifying
bioactive substances. Chromatography can be categorized based on
procedures, such as high-performance liquid chromatography
(HPLC), countercurrent chromatography (CCC) and affinity
chromatography, developed based on specific types of molecules
and matrices. For example, high-speed countercurrent
chromatography (HSCCC) is popular because it can separate
bioactive compounds without them sticking permanently to the
materials used in regular solid-phase chromatography (Han et al.,
2012). This method is specifically significant for isolating bioactive
substances from complicated mixtures, such as plant extracts and
the components may affect the separation process (Tian et al., 2024).
The HSCCC permits high recovery rates and is suitable for large-
scale operations, recommended for researchers that specialize in
natural plants (He et al., 2018).

The type of chromatography technology used is frequently
determined by the nature of bioactive compounds targeted.
Recent research studies indicate that phenolic compounds have
gained attention due to their antioxidant properties. These
compounds are reported to be isolated and purified through the
use of various chromatographic procedures, for instance,
supercritical fluid chromatography and medium-pressure liquid
chromatography (Susanti et al, 2024). These methods have
demonstrated to enhance purity and biological activities by
promoting the phytochemical profile during the extraction
process (Cano-Gomez et al, 2024). Additionally, studies have
shown that integrating several bioactivity-guided purification
protocols can also promote enhancing the isolation process,
thereby permitting researchers to focus on molecules with

specific health benefits (Mathew et al., 2023).

3.2.5.1 Gel filtration chromatography

This technique is also termed as size exclusion technique has
working principle based on differences in molecular size (Fagain
etal., 2016). The technique uses a packed column containing porous
beads that inhibit large molecules exclusion from the pores, and they
are obtained first, whereas smaller molecules penetrate the pores and
are eluted later (Masoodi et al., 2021). Studies report that this
protocol has shown increased effectiveness and reliability,
especially towards in handling complex matrices containing
proteins and peptides (Fashakin et al., 2023). This method has
demonstrated its capacity in purifying hydrolysate protein
molecules while sustaining its functional properties, revealing its
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uniqueness (Kasiwut et al., 2015). Additionally, the other similar
studies have revealed that smaller molecular weight compounds,
such as antioxidants, are obtained from protein hydrolysate while
maintaining bioactivity characteristics (Sasidharan et al., 2011).
Other studies have reported that incorporation of this protocol
with ion-exchange chromatography has revealed to be significance
in attaining well-purified fractions from complicated plant matrices
(Zou et al., 2014).

3.2.5.2 Thin layer chromatography

Research studies report that various bioactive compounds
obtained from several plant sources are indicated to be isolated
and purified with thin-layer and column chromatography (Hameed
2023). chromatography and thin-layer
chromatography (TLC) remain the most reliable and convenient

et al, Column
owing to their easiness, affordability and existence of various

stationary phases. The most commonly wused agents in
phytochemical separation in the stationary phase are alumina,
silica, cellulose and polyamide (Preethi et al, 2017). Studies
reported that the

phytochemicals has made separation a challenging task. TLC has

occurrence of complex matrices in
been used for decades to determine compound fractions using
column chromatography. Studies have reported that bioactive
compounds have been separated successfully with the help of
silica-gel column chromatography and TLC together with other
analytical tools (Sherma, 2013; Sherma, 2014).

The isolation and purification processes of bioactive compounds
have resulted into significant discoveries and associated setbacks. It
is recommended that future research should focus on improving
shortfalls associated with these isolation and purification techniques.
The solvents used in liquid-liquid and solid-liquid phases for
purification processes are toxic, expensive and threats to the
environment and ecosystems (Wang et al., 2023). Future studies
should focus on developing solvents with advanced properties that
can be used for purification without causing much damage to the
environment (Pai et al., 2022). There is a need to focus on improving
distillation and crystallisation techniques and developing solvent-
free methods for isolation and purification driven by machines. The
chromatography technique is generally affected by several issues; for
instance, reliance on toxic solvents, expense, batch inconsistencies
and prolonged processing durations affect efficiency (Custodio-
Mendoza et al., 2024; Hurkul et al., 2024). Furthermore, future
should advanced  hybrid
chromatographic systems in order to increase selectivity and

studies focus on employing
reduce costs. The environmental issues associated with solvent
usage can be resolved if studies explore developing less solvent
consumption techniques while maintaining bioactivity of

the extracts.

3.3 Structural characterization of
bioactive compounds

Bioactive compounds obtained from natural sources and food
products are commonly characterized through the use of several
analytical techniques. These methods are categorized into traditional
and spectroscopic techniques. Traditional protocols are photometric
techniques and chromatographic protocols such as TLC, HPTLC,

frontiersin.org


https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1669737

10.3389/fchem.2025.1669737

|

Photodetector

Njewa et al.

Mirror
Monochromator
Slit Slit
I
— I A I Beam split
Light source
FIGURE 3

Scheme of UV-Spectroscopy.

HPLC and GC (Debnath et al., 2024; Horszwald and Andlauer,
2011). On the other hand, spectroscopic modern characterisation
techniques encompasses methodologies such as FTIR, NMR, UV-
visible spectroscopy and Mass spectrometry that reveals structural
information (Debnath et al., 2024; Saxena, 2023). Studies have
recognized the use of LC-MS and GC-MS for identification and
determination of bioactive compounds (Jeszka-Skowron et al,
2015). The use of microplate in characterisation of bioactive
compounds offers several benefits such as reagent savings and
time efficiency as opposed to conventional cuvette methods.
These analytical techniques are used to identify several bioactive
compounds such as flavonoids, polyphenols, caffeine and
chlorogenic acids in various matrices such as berries and coffee
(Horszwald and Andlauer, 2011; Jeszka-Skowron et al., 2015). These
methods operate on different principle that depends on interaction
of electromagnetic radiation or mass-to-charge ratios with matter to
indicate molecular structures.

3.3.1 Infrared spectroscopy

This characterization technique of bioactive compounds
depends on molecular vibrations to absorb infrared radiation.
The bioactive molecules exposed to infrared radiation, acquires
specific wavelengths that links to the vibrational modes within
the molecule (Manzoli, 2019). The emitted spectrum acts as a
molecular fingerprint region often used to detect and identify the
functional groups and molecular conformations. This technique is
suitable for identifying polar covalent bonds with higher dipole
moments and so enhance vibrational transitions (Csizmar et al.,
2012). Fourier-transform infrared (FTIR) spectroscopy enhances
the ability by transforming time-domain information spectra, which
promotes resolution and sensitivity (Csizmar et al., 2012; Manzoli,
2019). This method is generally used in molecular characterisation
due to its uniqueness in revealing and providing information about
functional groups, molecular interactions and conformations
transformations, all of which are relevance for appreciating and
understanding biological activity (Saurabh and Mukamel, 2016).
Studies have shown that bioactive compounds obtained from fruit
and vegetable wastes (apple peels, carrot peels, beetroot peels, and
potato peels) were successfully characterised by FTIR. The
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functional groups, such as C-O, O-H, C=0, and N-H, were
detected, which were associated with starchy carbohydrates,
organic acids, or proteins (Filip et al., 2024).

3.3.2 UV-visible spectroscopy

The UV-visible spectroscopy analytical technique operates on
the principle of electronic transitions within molecules (Figure 3).
Whenever samples of bioactive compound molecules absorb
ultraviolet or visible light, induced electrons get excited, thereby
jumping from their lower energy state to a greater energy state
(Begum et al, 2018). Through this transitioning process, the
electrons emit radiations in the form of wavelengths of light
absorbed that are associated with molecular structure, thereby
resulting in the identification of conjugated systems and
chromophores (Karmakar et al, 2021). This technique is
preferred and favoured for studying and detecting molecules
possessing m-electron bonds, for instance, polyphenolic and
flavonoids, among others. These are also found in other bioactive
chemical compounds, as indicated by other researchers (Begum
et al, 2018). The produced absorbance spectrum can be
quantitatively studied through applications of Beer-Lambert’s
equation, resulting in the generation of data associated with the
concentration of the analyte in the solution. This suggests that the
UV-visible spectroscopy protocol is relevant for detecting and
analyzing the purity and concentration of the obtained bioactive
substances (Begum et al., 2018; Sirajuddin et al., 2013). Further, this
protocol can also be extended in the monitoring of chemical
interactions amongst the molecules (Sirajuddin et al, 2013).
Another study has reported that phenolic compounds obtained
from AFW were successfully profiled by UV-visible spectroscopy
(Mir-Cerda et al., 2023).

3.3.3 Nuclear magnetic resonance spectroscopy
Nuclear magnetic resonance (NMR) spectroscopy, a non-
destructive, reliable and convenient technique, employs magnetic
characteristics for certain nuclei. The moment the sample is placed
in a high magnetic field, the nuclei vibrate at specific frequencies,
which are determined by their chemical surroundings. The vibration
is recognized and turned into a spectrum that comprises data about
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the compound’s molecular structure and dynamics as well as
interactions (Kokab et al., 2021; McDermott et al., 2002). NMR is
special analytical tool for structure elucidation due to its unique
precision  information atom

regarding
stereochemical configurations (Du et al, 2021; Robien, 2019).

connectivity —and

The NMR technique has multiple uses across several fields of
investigations of bioactive compounds since it can indicate
complicated structures, especially those of natural products and
medicine (Robien, 2019). Additionally, studies indicate that recent
advances in NMR techniques, such as two-dimensional NMR, have
been demonstrated to enhance the flexibility of biomolecules and
their interactions (McDermott et al, 2002). A study recently
published the wuse of NMR analytical
characterisation of bioactive compounds (d-limonene, hesperidin,

technique in the

and valencene) extracted from orange juice waste using the MAE
technique. The NMR results indicated the attainment of high-purity
hesperidin compound with 87.66% (Penteado et al., 2025). The
study demonstrated the significance of the NMR analytical tools in
the characterisation of bioactive compounds from AFW.

3.3.4 Mass spectroscopy

Mass spectroscopy (MS) is another effective and reliable
analytical technique used for evaluating the mass-to-charge ratio
of ionized particles during the characterization process of bioactive
compounds (Thakur, 2020). The significant principle is based on
ionization of chemical species to generate charged molecules or
fragments, which are subsequently separated in a vacuum based on
their mass-to-charge ratios (Brown et al., 2020; Picd, 2020). The
resulting mass possesses data concerning the analyte’s molecular
weight and structural characteristics, as summarized in (Figure 4),
(Géhin and Holman, 2021). MS can also be integrated with
chromatographic protocols such as LC-MS aiming at promoting
separation and identification capacities for bioactive chemical
substances (Picd, 2020). The combination of these protocols has
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demonstrated to reduce the challenges associated with the study
of complicated mixtures, especially those observed in biological
samples, making it easier to detect metabolites and other
bioactive compounds even at reduced concentrations
(Soleiman-Beigi and Ghiasbeigi, 2019). The study done by
Abbattista et al. (2021) demonstrated that MS is a useful
analytical instrument in the characterisation and identification
of secoiridoids and phenolic compounds from olive leaves and
pomace wastes. This technique provides an opportunity in
targeted and untargeted compounds offering comprehensive
characterisation for complex waste extracts.

3.4 Bioactive compounds from agri-
food wastes

There are several phenolic compounds that have been
successfully extracted and purified from various agri-food wastes.
Researchers have obtained these essential bioactive compounds
from fruit peels, vegetable leaves, cereal bran and tea waste.
Studies have demonstrated that AFW, such as orange and lemon
peels, rice husks, onion peels, carrot peels, apple peels, tomato peels,
potato peels, olive waste, grape waste, wine products, have been
shown to possess various phenolic compounds presented in
(Figure 5). These AFW residues are also reported to contain high
levels of polyphenols, flavonoids and vitamins which are associated
with several health-promoting benefits, such as anti-inflammatory
and anti-diabetic properties. These phenolic compounds are
obtained through the use of various extraction protocols such as
UAE, MAE and DES among others. Additionally, phenolic bioactive
compounds are recognized for their unique various industrial
applications including food, pharmaceuticals and cosmetics (Ben-
Othman et al,, 2020; Ligianne and Ceccato-Antonini, 2020; Sorrenti
et al., 2023; Yadav et al., 2024).
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FIGURE 5
Examples of phenolic compounds extracted from AFW.

Studies have indicated that these phenolic compounds can be
obtained from AFW through the use of emerging extraction
protocols. These methods are much preferred and favored due to
their uniqueness such as high extraction yields, short extraction
periods and less consumption volume of solvents compared with

Frontiers in Chemistry

Salicyclic acid

traditional protocols. The most widely used emerging techniques for
obtaining phenolic compounds from various sources of AFW
sources are UAE, SFE, DES, MAE and MGH (Bhadange et al,
2024; Panzella et al., 2020). Studies have indicated that these
methods are convenient for higher concentration yields of
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polyphenols with high antioxidant properties obtained from various
AFW. The higher yields, concentrations and purity of phenolic
compounds obtained from AFW depend on operating conditions.
Researchers have recommended that to attain higher yields and
desired results, there’s a need to select proper extraction conditions,
extraction methods and resolve shortfalls associated with these
characterisation techniques (Mir-Cerda et al, 2023; Panzella
et al., 2020; Zhou et al., 2021).

The analytical instruments used in the characterisation of
bioactive compounds obtained from agri-food wastes face some
gaps that require further exploration for improved results and major
breakthroughs in scientific disciplines. The MS spectroscopy tool is
expensive, and there is complexity in data analysis and matrix effects
that hinder detection, especially in complex plant matrices (Susanti
et al.,, 2024). Further, variation in standardisation methodologies
remains unclear, resulting in variation in studies across
(Abedelmaksoud et al., 2025). Studies should focus on integrating
complementary instruments such as MS and NMR techniques for
structural elucidation, explore the possibility of machine learning in
data interpretation and develop high-sensitivity and reliable systems
for food analysis. On the other hand, UV-visible spectroscopy is
recognised for effective screening of chromophoric compounds such
as carotenoids and phenolic compounds (Kharbach et al., 2023).
However, the instrument is associated with overlapping of
absorption spectra and is prone to interference from other food
matrix components, which hinders correct quantification of food
samples. Studies also indicate that temperature compromises the
reproducibility of results (Saxena, 2023). Future studies should focus
on integrating chemometric tools to enhance resolution and also
develop portable tools for on-site testing in order to increase
bioactive compound profiling.

Finally, FTIR is well known for detecting various functional
groups existing in different foodstuffs. However, the use of this
instrument is known to be associated with setbacks such as low
selectivity for low concentration analyses, overlapping of spectra,
especially in heterogeneous mixtures, and the presence of water has
also been demonstrated to cause interference (Orehek et al., 2021).
Additionally, setback

comprehensive structural sequencing (Falsafi et al., 2025). It is

another is  non-compatibility in
suggested that future studies should adopt machine learning in
data processing and spectra deconvolution. Lastly, integrating
several analysis protocols through multimodal platforms such as

FTIR with UV-Vis spectroscopy or MS.

3.5 Challenges associated with isolation,
purification and characterization from AFW

Scalability of bioactive compounds derived from AFW for
various industrial application processes faces some challenges
such as extraction, purification and characterisation processes, as
reported in the literature. On top of that, their usage is associated
with setbacks, such as the non-existence of standardisation and
extraction protocols, regulatory barriers and consumer acceptance
(Chauhan & Kumar, 2023). There are several bodies which were
established mainly for monitoring and issuing acceptance of food
substances on markets to safeguard the wellbeing of the consumers.
These bodies are the European Food Safety Authority (EFSA), the
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United States Food and Drug Administration (U.S. FDA) and the
Food Safety and Standards Authority of India (FSSAI), among
others. However, EFSA is the primary body responsible for
permitting and approving the use of bioactive compounds, while
other markets have established their own national regulatory
standards. Furthermore, safeguarding the chemical stability of
acquired compounds and dealing with technological challenges
still remain the major challenge (Simodes et al., 2021).

The major challenge is about the difficulty of the plant matrices
and the existence of a variety of phytochemicals that require proper
extraction protocols to effectively obtain preferred bioactive
compounds (Alamgir, 2018). The proper selection of the
extraction technique significantly determines the purity and yield
of the bioactive compounds, with careful solvent selection taken into
consideration. For instance, one study reported successfully
extracting 4-ethylheptyl benzoate from Rumex nervosus roots
through the use of petroleum ether and methanol solvents.
However, the use of the single solvent, petroleum ether, in the
extraction of the same bioactive compound was unsuccessful
(Nigussie, 2020). Studies indicate that the process of extracting
bioactive compounds is affected by their interaction in the cell
structures, particularly if it involves the phenolic chemicals which
are found in algae organisms; their extraction process needs cell
destruction for an efficient and successful extraction process
(Besednova et al., 2020).

Additionally, the purification process generally follows several
chromatographic stages, such as column chromatography and
preparative TLC, which can be labour intensive and may result
in the damage of bioactive compounds or even contamination if not
accurately optimised (Nigussie, 2020; Wali et al., 2024). Attaining
high-purity bioactive compounds is significant for successive
characterisation and biological activity studies. However, this
remains the primary setback due to the occurrence of structurally
similar compounds and impurities that cause interference. The
characterisation tools, especially spectroscopic methods such as
NMR, UV-VIS and FT-IR, are necessary but need advanced
instrumentation and expertise, which can be a challenging factor,
especially in  resource-limited countries 2018;
Nigussie, 2020).

Furthermore, another significant setback is the stability of

(Alamgir,

bioactive compounds during the extraction and purification
processes. Studies indicate that some phytochemicals are
delicate to environmental conditions such as light, pH and
temperature, which can cause degradation or structural damage
2018). Still the of different
phytochemicals in AFW sources makes it hard to develop
standardised protocols for extraction and purification of

(Alamgir, more, presence

bioactive compounds. The variation in AFW requires adaptable
and robust techniques to ensure reliable isolation of bioactive
compounds (Khanal et al., 2023).

Lastly, the characterisation stage requires resolving the
biological activities of the obtained compounds, which uses
bioassays to confirm efficiency. The bioassays used at times can
be complex and need specific operating conditions to correctly
measure the specific activity, such as antimicrobial and antitumor
effects, adding another layer of challenge in the overall process
(Alamgir, 2018; Ezeorba et al., 2024). In general, the extraction,
isolation, purification and characterisation of bioactive compounds
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TABLE 2 Source of bioactive compounds and their industrial applications.

Bioactive obtained

Industrial applications of

10.3389/fchem.2025.1669737

References

bioactive compounds

L Apple pomace Polyphenol, Fiber Functional food additives Grispoldi et al. (2022)

2. Apricot pulp waste Antioxidant polyphenols Health and wellness Nutraceuticals Dietary Chatzimitakos et al., 2023
Carotenoids supplements

3. Agri-byproducts Vitamins Carotenoids Food supplements Cosmetics Zhou et al. (2021)

4. Fruit and vegetable Waste Carotenoids Vitamins Polyphenols | Pharmaceuticals Cosmetics Food enrichment Sagar et al. (2018)

5. Cereal bran Dietary fibers Polyphenols Functional food ingredients Animal feed Tufail et al. (2022),Plakantonaki et al.

(2023)

6. Food-Processing Byproducts | Phenolics Essential oils Nutritional supplement Food preservation Castrica et al. (2019),Malenica et al., 2023
Antioxidants

7. Chestnut burrs Antioxidants Ellagic acid Antimicrobial supplements Antimicrobial Trezza et al. (2024)

supplements
8. Mango and Guava Antioxidants Dietary fibers Pharmaceuticals Functional ingredients Cerén-Martinez et al. (2023)
Byproducts Nutraceuticals

from AFW encounter setbacks such as protocol complexities,
resource requirements and compound stability issues as well as
source variability, thereby encouraging continuous studies to
advance more reliable, efficient and standardised techniques
(Alamgir, 2018; Besednova et al., 2020; Nigussie, 2020).

3.6 Applications of bioactive compounds

The bioactive compounds obtained from AFW are currently
being explored in various industrial sectors such as pharmaceuticals,
cosmetics and functional food additives in food processing and
packaging for various uses, as indicated in (Table 2). The use of
AFW has positive outcome such as decreasing the environmental
issues associated with AFW disposal, utilisation of phytochemical
compounds from plants and offering employment especially to the
youth residing in remote areas where inhabitants depend on
agricultural activities for livelihood. The extracted bioactive
compounds can boost and enhance economic growth in the
pharmaceutical, food and cosmetic industries (dos Santos et al.,
2018; Manousaki et al., 2016).

3.6.1 Pharmaceutical applications

Recent scientific research has focused on development of drugs
using chemical compounds extracted from AFW. It has been
reported that phenolic compounds obtained from food related
materials are capable of disrupting biological pathways associated
with several disorders, rendering them ideal therapeutic substances
(Ivani$ova et al., 2012; Khan et al., 2020; Mulugeta and Samuel,
2022). For instance, studies indicate that benzimidazole derivatives
are associated with biological properties such as antibacterial and
anticancer characteristics, suggesting their significance as possible
major molecules for the development of new therapeutic drugs
(Mulugeta and Samuel, 2022). Still more, the high incidence of non-
communicable disease has initiated the interest in bioactive
compounds as viable and reliable protective and therapeutic
cures, thereby enhancing high investment in pharmaceutical
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research and development (Khan et al, 2020; Martirosyan and
Miller, 2018).

3.6.2 Cosmetics use

Research studies have confirmed that the use of bioactive
compounds in cosmetic industries has significant benefits. It has
been shown that the ingredients originating from AFW such as
antioxidants, natural pigments and anti-inflammatory agents, are
presently being added to skincare and cosmetic products to enhance
efficiency and appeal to the users (Ghosh et al.,, 2015; Alvarez-
Castillo et al., 2023). Studies have further shown that the astaxanthin
chemical compound found in marine plants and used as an
ingredient for skin protection and promoting attractive
characteristics in cosmetics industry (Alvarez-Castillo et al.,
2023). The use of compounds extracted from plant residues in
cosmetic industry assist in resolving consumers choices for clean
products that are reliable and safe compared with synthetic
chemicals (Sharma et al., 2021). Additionally, the use of chemical
compounds of plant origin are significantly favoured due to their
functional characteristics, which addresses skin issues such as skin
aging, inflammation and pigmentation (Ghosh et al., 2015). These
compounds also help in boosting interaction of cellular tissues to
enhance their efficiency in promoting skin health and beauty
thereby offering affordable and safe alternatives in cosmetic
interventions (Duque-Soto et al., 2022). Cosmetic industries are
actively engaged in exploring bioactive compounds that possess

aesthetic benefits while preserving general skin health.

3.6.3 Food additives and supplements

The bioactive compounds derived from various AFW such as
fruit peels, leaves, vegetables, cereals and pomace and other plant-
related residues have also been explored in food sector due to their
health benefits as they possess high content of phytochemicals such
as flavonoids, carotenoids and polyphenols (Sagar et al., 2018;
Shawky et al, 2025; Zaky et al, 2024). Studies have also
confirmed that AFW are incredible of Dbioactive
compounds that contain anti-inflammatory, antioxidant and

sources
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antibacterial characteristics that reduces the risk of chronic
infections such as cancer, diabetes and cardiovascular (Ivanisova
etal., 2012; Khan et al., 2020; Rojas et al., 2016). Moreover, research
has indicated incorporation of phytochemicals ingredient functional
foods especially processed foods ensures consumption of clean and
safe food products with ideal health benefits (Lankanayaka et al.,
2024; Martirosyan and Miller, 2018). Another study has indicated
that bioactive compounds extracted from grape byproducts have
shown to contain high levels of antioxidant properties making them
suitable for promoting food quality and safety (Jara-Palacios, 2019;
Rodrigues Machado et al., 2023).

3.7 Recommendations for future research

Optimisation of extraction and purification advancements
should target the lowering of the energy use, decreasing the
usage of harmful solvents and increasing the recovery rates of the
desired bioactive compounds, including proteins, dietary fibres,
polyphenols and vitamins. In addition, the use of modern
extraction techniques should be further revised to increase the
yield and scalability while lowering the environmental effects
(Yadav et al.,, 2024).

It is also suggested that the exploration of the use of
pretreatment methods such as physical, chemical and
biological methods can help to promote high yields of targeted
bioactive compounds. The use of physical methods, such as
grinding or heating, increases opportunities for accessing
substrates (Peguero et al., 2022). Also, the use of chemical
reagents such as alkali, facilitates the breakdown of complex
polymer chains found in AFW residues. Similarly, the use of
microorganisms such as fungi and bacteria to break down
resistant complex material substances (Hadj Saadoun et al,
2021). Further studies are required to explore the most
effective pretreatment combination for various categories of
AFW and the desired bioactive compounds.

Moreover, the use of innovative biological techniques such as
solid-state fermentation technique is encouraged. This technique
employs the use of microorganisms such as bacteria, yeast and fungi
for the production of value added products derived from AFW
(Berenguer et al, 2023). These microorganisms grow on solid
materials in the absence of flowing water as used for flavour
production. Studies should focus on the selection of appropriate
healthy bacterial strains and optimising process working conditions
for higher yields and low costs (Kotsou et al., 2024).

In addition, it is suggested that the contemporary research
should focus on prioritising the identification and isolation of
emergent significant compounds such as the plant-derived
extracellular vesicles (PDEVs) with possible applications in
therapeutics and nutraceuticals. There’s a need to further explore
the scalability and isolation of PDEVs biomolecules from AFWs
(Latella et al., 2024; Rodrigues et al., 2022).

Finally, future studies should focus on the alignment of the
circular economy, emphasising on sustainable waste reduction and
usage and building of closed-loop systems that deal with continuous
repurposing of AFW into novel products (Musembi et al., 2024).
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4 Conclusion

In summary, this review study has found that AFW are rich
sources of important bioactive compounds, which are ideal for
various industrial applications. The bioactive compounds are
the
purification and characterisation methods. These methods have

obtained through application of extraction, isolation,
demonstrated great improvement for the isolation of bioactive
compounds, thereby offering an opportunity for their exploration
in various fields and industries. This review paper indicates that
extracted, purified and characterised bioactive compounds such as
phenolic compounds, flavonoids, vitamins, dietary fibre and
carotenoids provide reliable and convenient solutions towards
waste valorisation. The finding of alternative use for AFW does
not only resolve environmental issues associated with AFW disposal
challenges but also offers new opportunities for the development of
value-added food products in various industrial sectors. The
industries of interest are those involved in food additives,
nutraceuticals, cosmetics, antioxidants or preservatives and drug
discovery. The results obtained from this review study encourage
and promote the re-utilization of AFW and recognise them as

important source of bioactive compounds.
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