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This study focuses on developing an electrochemical reaction to produce benzo
[d]-1,3-dithiole-2-one (BDTO). This compound serves as a direct precursor for
dibenzotetrathiafulvalenes (DBTTF), an important member of the charge transfer
complex family. BDTO is synthesized in three steps (16%) starting from aniline.
The key reaction is an anodically driven intramolecular cyclization (35%), involving
a thiyl radical-cation intermediate formed from the oxidation of the S-aryl-O-
ethyldithiocarbonate derivative. This derivative is obtained in good yields from its
respective aromatic diazonium salt. This approach eliminates the need for
advanced, costly intermediates and avoids long, complex synthetic routes
previously used to produce BDTO, utilizing safer and cheaper reagents. This
opens the door to generating DBTTF derivatives quickly.
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1 Introduction

The tetrathiafulvalene (TTF) molecule and its derivatives have attracted the attention of
scientists since the early 1970s due to their attractive properties as a conductive material
(Andrieux et al., 1979; Melby et al., 1974; Yoneda et al., 1979). When it forms a charge
transfer complex with the tetracyanoquinodimethane molecule (TTF-TCNQ) an organic
metal is obtained since its conductivity reaches 104 S cm-1 at 59 K (Ferraris et al., 1973; Metz,
1973). The dibenzotetrathiafulvalene (DBTTF) family represents a great alternative to TTFs
due to its ability to modulate redox potential by introducing functional groups in the benzyl
ring. Their diverse applications are innumerable, and they play an important role as redox
sites in different areas such as sensors, Balandier et al. (2007) starting materials for organic
electronic systems, Gao et al. (2006) molecular redox switches, as a building block in
supramolecular architectures, Jana et al. (2017) and many others. However, further
development of these materials has been limited by a complicated or expensive
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synthesis route to prepare the final intermediaries of synthesis, such
as benzo[d]-1,3-dithiole-2-ones (BDTO) (1) and benzo[d]-1,3-
dithiole-2-thiones (BDTT) (2).

The final coupling from both to yield the symmetrical DBTTF
ring is carried out using these intermediates in combination with
P(OEt)3 as a coupling reagent (Scheme 1a); this final reaction has
good yields (80%–90%) (Fanghänel et al., 1995; Inayoshi and Ono,
2000). Besides, one equivalent of BDTO (1) and one equivalent of
BDTT (2) are needed to obtain asymmetric DBTTFs using the same
reaction (Gao et al., 2006).

Looking closer at the scarce synthetic routes of BDTO (Scheme
1b), Watson, and Col. (Sun et al., 1997). synthesized 1 derivatives
from benzoquinone via 1,4-addition of dithiocarbamate anion to the
6-member ring followed by chemical oxidation. The obtained
products contain the p-hydroquinone moiety in the benzene ring,
limiting the reaction’s scope. Compound 1 can also be prepared
using oxidative decomposition of 1,3-benzodithiol-2-alkyl

derivatives (Aromdee et al., 1983) with moderated yields using
Pb(OAc)4 or DDQ (Nakayama et al., 1977). BDTT has also been
used as an intermediate to obtain BDTO via an atom replacement
reaction using Hg(OAc)2/AcOH under chloroform reflux (de Mayo
et al., 1979). The most used reaction to access this important
heterocyclic ring requires 1,2-benzeneditiol, Takamasa and
Takashi (2002) or 1,2-bis(S-benzylthio)-benzene derivatives,
Loosli et al. (2005) and carbonylimidazole. All the routes
described are long, use corrosive, toxic, and sensitive reagents
(Gao et al., 2007) like carbonyl imidazole, prepared from
phosgene and readily water reactive, and have a low atom
economy (loss of two BnS moieties, for example). Due to the
complexity of preparing BDTO derivatives, the most used routes
for preparing DBTTFs involve BDTT intermediates (Inayoshi et al.,
2016; Senga et al., 1997). Unfortunately, these are not readily
prepared either.

Over the last decade, interest in electrosynthesis has increased
due to its ability to access unusual functionalities and reactivity, as
well as its role in promoting greener and more sustainable synthesis
(Cembellín and Batanero, 2021; Frontana-Uribe et al., 2010; Pollok
andWaldvogel, 2020). This method also enables the generation of in
situ reactive intermediates useful in synthetic protocols. Our work
focuses on developing a new synthetic route to obtain benzo[d]-1,3-
dithiolen-2-one (BDTO) in a simple, fast, and direct manner
through electrochemical activation of O-ethyl-
S-phenyldithiocarbonate, which is derived from the
corresponding benzene diazonium salt (Scheme 1c). This article
presents our approach and initial findings in an ambitious program
aimed at creating a broad range of DBTO products, leveraging the
fact that aniline derivatives are widely substituted, affordable, and
commercially available precursors for organic synthesis, using green
chemistry techniques with significant time and cost savings.

2 Materials and methods

2.1 General

Commercially purchased reagents were used as starting
materials without any additional purification steps. The
supporting electrolyte salts were dried in the oven for at least
one night before use. Anhydrous-grade solvents were used for
cyclic voltammetry and preparative electrolysis experiments. For
purification by column chromatography (CC), silica gel
(70–230 mesh) and technical grade solvents, but previously
distilled, were used. TLC analysis was carried out using Merck
TLC Silica gel 80 F254 aluminum sheets.

Melting points were not corrected and carried out on a Fisher-
Scientific 12–144 melting point apparatus. NMR spectra were
recorded on Bruker (300 MHz) using TMS as an internal
reference for 1H (0.0 ppm) and CDCl3 for 13C (77.16 ppm). All
the prepared and isolated compounds are known and fit with the
reported physical and spectroscopic description. Voltammetric
studies were carried out using a PGSTAT204 Potentiostat and a
conventional glass cell of 10 mL. Reference electrode: Ag/Ag+ (filled
with AgNO3 0.01 M in CH3CN). Working electrode: glassy carbon
disk (diameter: 3 mm). Counter electrode: platinum wire
(99.95% purity).

SCHEME 1
(a) Last step in DBTTFs preparation; (b) Synthetic routes for
obtaining DBTO derivatives; (c)New synthetic route developed for the
synthesis of DBTO (1).
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2.2 Synthesis of the O-ethyl-
S-phenyldithiocarbonate (5)

O-ethyl-S-phenyldithiocarbonate (5) was prepared in two steps
using a variation of the Leuckart methodology, 4; Leuckart and Prakt
(1889), Cox et al. (1960) via diazonium tetrafluoroborate salt (4).
The crystalline solid obtained can be stored in the dark at low
temperatures to prevent decomposition. In a typical experiment,
0.5 mL (1 equiv.) of aniline was reacted with tetrafluoroboric acid
(2.1 equiv.) added dropwise under constant magnetic stirring,
forming a white precipitate corresponding to the anilinium salt.
The temperature was maintained at 0 °C and kept under a nitrogen
atmosphere. A cold solution (0 °C) of sodium nitrite (1.1 equiv.) in
water was slowly added and stirred for 40 min. The precipitate was
rapidly recrystallized from an acetone-ether mixture, yielding the
product 4 in 83%.

For the second step, several solvents with different polarities
were tested as reaction media (Table 1). The reaction cell
temperature was set at 45 °C, and 460 mg (2.87 mmol,
1.1 equivalents) of potassium O-ethylxanthogenate was dissolved
in 6 mL of the respective solvent. In another flask, 100 mg of 4
(0.52 mmol, 1 equivalent) was dissolved in the same volume of
solvent. The solution containing compound 4 was added dropwise
to the reaction cell and stirred for 1 hour. The reaction produced two
major products (5 and DPDS), which were purified by
chromatography (Hexane/AcOEt Mixtures).

2.3 General preparative electrolysis of
O-ethyl-S-phenyldithiocarbonate (5),
preparation of BDTO

Preparative electrolysis was performed potentiostatically at
1.55 V with 100 mg of compound 5 in an H-type cell at 20 °C.
Two glassy carbon plates (4.2 cm2) served as the working and
counter electrodes, with an Ag/Ag+ reference electrode and
0.1 mol L-1 NBu4PF6 in 5 mL of ACN. Each reaction involved

degassing both sides with N2 for 15 min before initiating the current;
the cell was kept under an inert atmosphere. After electrolysis,
solvents were removed under vacuum using rotary evaporation, and
products were separated by chromatography on a silica gel column
(230–400 mesh) with a Hexane–AcOEt mixture. For the other
experiments described in Table 2, only the solvent was changed
to 25% CH2Cl2/75% ACN and 25% HFIP/75% ACN.

3 Results and discussion

The key intermediate O-ethyl-S-phenyldithiocarbonate (5) was
obtained by reacting benzene diazonium tetrafluoroborate salt (4)
with potassium O-ethylxanthogenate; the one-pot reaction was not
efficient, and it was necessary to purify 4 to obtain good yields. It was
reported that the diazonium tetrafluoroborate salt is more stable
than other anions, (Firth and Fairlamb, 2020), and other counter
ions were not prepared. The reaction was solvent-dependent, but
using H2O, the best yield was obtained (Table 1). Interestingly, with
more polar solvents, the yield of the target compound increased and
the secondary compound DPDS decreased; in low-polarity solvents,
this tendency is reversed. A plausible explanation for the presence of
DPDS is shown in the (Supplementary Scheme S1). Neutral free
radicals are generally considered unaffected by the solvent.
However, in cases such as thiyl radicals, the solvent can
significantly alter radical reactivity and influence the reaction
outcome. Therefore, water promotes the formation of 5 via an
ionic mechanism and reduces homolytic fragmentation that
triggers radical reactions and the formation of DPDS. Ito and
colleagues (Ito and Matsuda, 1982; Ito and Matsuda 1984)
showed that thiyl radical intermediates are highly stable, and the
recombination rate constant decreases as solvent polarity increases,
supporting our observations.

The cyclic voltammetry of O-ethyl-S-phenyldithiocarbonate (5)
in the range of −3 V–2 V (Figure 1) showed a well-defined oxidation
signal at 1.54 V and 1.84 V, both irreversible. Likewise, two signals
are observed at −2.17 V and −2.6 V in the reduction zone, exhibiting

TABLE 1 Synthesis of O-ethyl-S-phenyldithiocarbonate 5 in different solvents.

Entry Solvent 5 yield (%) DPDS yield (%)

1 H2O 55 4

2 H2O/ACN 30 25

3 ACN 20 30

4 DMSO 12 36

5 THF 3 41
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irreversible behavior. The anodic signals did not alter with the
presence of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as cosolvent
(see Supplementary Material); HFIP can stabilize cationic reactive
species and produce positive changes in the reactivity (Yoshida et al.,
2003). It was hypothesized that the radical cation obtained by the
first anodic electron transfer could trigger an intramolecular ring
closure to yield the BDTO compound (Scheme 2a). Thus,

preparative electrolysis was carried out potentiostatically at
1.55 V (Table 2).

The potentiostatic electrolysis at 1.55 V resulted in multiple
products; however, two were found after column separation in a
significant proportion, one being the desired product BDTO (1)
(White crystals from hexane/EtOAc m.p. uncorr. 77 °C-78 °C,
lit.15, 78 °C-78.5 °C; 1H NMR (see Supplementary Material), agrees

TABLE 2 Electrosynthesis of compound BDTO one in different solvents.

Entry Solvent E(V) BDTO 1 (%) DPDS (%)

1 ACN 1.55 30 15

2 ACN 1.50 20 25

3 ACN 1.60 22 30

4 ACN/CH2Cl2 1.55 10 23

5 HFIP/ACN 1.55 35 10

6 HFIP/ACN 1.60 25 27

FIGURE 1
CV of 5 (0.5 mmol L−1) in ACN, 0.1 mol L−1 NBu4PF6, v = 100 mV s−1, WE: Glassy Carbon, RE: Ag/Ag+, CE: platinum wire.
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with the reported spectra, He et al., 2025; Smith et al., 1989) and a
subproduct, the compound DPDS, yielding 30% and 15%,
respectively. As in our study, it is proposed that the radical
cation intermediate electrochemically produced favors the
reaction generally obtained at temperatures greater than 300 °C.
The use of HFIP (Ramos-Villaseñor et al., 2020) as cosolvent with
ACN (25:75) to generate microdomains that stabilize the cation
radical, (Fioroni et al., 2001; Yoshida et al., 2003), just slightly
increases the obtained yield to 35%, and the presence of DPDS is
still detected. These results imply that these two main reactions
compete after forming the radical cation intermediate 5•+ (Scheme
2). Other experimental conditions attempted did not give a better
yield of 1.

To increase the yield, other electrolysis modes could be used, for
example, rapid alternating polarity, pulsated alternating electrolysis,
which have shown the possibility of avoiding by-products and
controlling the reactivity pathway of electrogenerated
intermediates (Atkins and Lennox, 2024; Rodrigo et al., 2021).
The scalability of this reaction can be envisaged using
electrochemical flow reactors with the most promising mode of
electrolysis; this technique is well known in industrial processes and
has been successfully used in the pharmaceutical industry
(Gabriele, 2025).

Scheme 2 depicts the two possible routes to the observed
products. On the one hand (Route a), the intramolecular
cyclization, which follows a second electron transfer and
ethylene extrusion to yield BDTO (1), and, on the other
(Route b), the elimination of ethylene from intermediate 5•+

and proton transfer to the thiocarbonyl group through a six-
member ring intermediate to produce the radical cation 6. Its
decomposition generates carbonyl sulfide and a phenylthiyl
radical, which produces the obtained DPDS. This last pathway
can be seen as a Chugaev-like elimination reaction, but
interestingly favored at room temperature. Classical Chugaev
reaction generally occurs at 150 °–200 °C (Tschugaeff and Dtsch,
1900). The fact that this reaction operates at 20 °C can be
explained by a process activated by the electron transfer,
which produces an activated species similar to the Newman-
Kwart reaction, electrochemically favored recently described by
Francke et al., (Roesel et al., 2020), which also occurs at room
temperature. Investigations into this new reaction for
constructing the benzo[d]-1,3-dithiolen-2-one (BDTO) are
ongoing in our lab to increase yield and clarify the scope, and
the results will be reported in due time.

4 Conclusion

The developed approach introduces a new method to directly
obtain the BDTO ring from aniline and serves as a formal synthesis
of DBTTF. After three steps, BDTO was synthesized with an overall
yield of 16%. Electrochemical analysis showed that phenylxanthate
is electroactive, displaying irreversible signals during both
oxidation (1.5 V) and reduction (−2.4 V). The electrochemical
cyclization of O-ethyl-S-phenyldithiocarbonate (5), a key step in
this synthesis, produced the BDTO ring with moderate yields of up
to 35% (using HFIP/ACN). However, a competing process between
electrochemical cyclization and an intramolecular hydrogen
transfer, which results in diphenyl disulfide, limited the yield. It
is also worth noting that the hazards and drawbacks of using
aryldiazonium salts to produce aryl xanthate 5 can now be
avoided through an alternative photoactivated route recently
published by Wang. (Zhang et al., 2022). The method developed
involves a two-step reaction, similar to the diazonium salts method.
First, preparation of the aryldibenzothiophenium salt from the
corresponding aryl compound using dibenzothiopheneoxide,
trifluoroacetic acid, and boron trifluoride etherate. The yields of
most compounds reported are good to very good. The second step is
the photoactivation of the electron donor-acceptor complex formed
by the aryldibenzothiophenium salt and the ethylxanthogenate
under 390 nm radiation (purple LED) to produce the aryl
xanthate. This method is robust, working with a large variety of
functional groups and not requiring the presence of a functional
group or protecting groups, as it involves C-H functionalization of
the aromatic ring. Following this methodology, the key
intermediate, the aryl xanthate 5, is produced in good yield
without the explosion risk associated with the work of large
amounts of aryl diazonium salts. Thus, the production of BDTO
can be achieved in an orthogonal way, because a large group of
functional groups is tolerated during the preparation of the
heterocyclic ring. This makes the electrochemical method an

SCHEME 2
Plausible mechanism for the preparation of BDTO, route a) in
blue arrows, and for the preparation of DPDS, route b) in green arrows.
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attractive way to generate DBTO and, subsequently, the
DBTTF system.
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