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Background: Diabetes-induced immune impairment and insulin resistance
increase infection risk, which may progress to sepsis that further deteriorates
diabetic status. Stem cell-based interventions show therapeutic potential for both
diseases. This study sought to uncover common stem cell-related genes (SCRGs)
between T2DM and sepsis.
Methods: The GSE15932 dataset for T2DM and GSE65682 dataset for sepsis from
the Gene ExpressionOmnibus (GEO) were utilized to locate common differentially
expressed genes (DEGs), which were then intersected with SCRGs to derive shared
differentially expressed SCRGs (DE-SCRGs). The stem-cell-related biomarkers
were discovered through combining functional similarity analysis, machine
learning algorithms, and receiver operating characteristic (ROC) curves.
Subsequently, functional enrichment analysis, immune infiltration, and single-
cell analyses were conducted to investigate the potential pathways by which
biomarkers regulate T2DM and sepsis. Finally, the expression of biomarkers was
further verified at both transcriptional and protein levels through the establishment
of an in vitro model of T2DM-sepsis.
Results: Through a comprehensive analysis, CAPG and DDAH2 were found and
those were significantly highly expressed in both T2DM and sepsis. Analysis of
functional enrichment demonstrated they were implicated in “FC gamma
R-mediated phagocytosis” and “Ribosome”. Immune infiltration indicated a
considerable disparity in the quantity of CD8 T cells and monocytes when
comparing T2DM versus control groups, as well as sepsis versus control
groups. At the cellular level, notable differences in CARG expression among
alpha cells, beta cells, delta cells, and pancreatic stellate cells (PSCs) were
observed in the two groups being compared. At transcription and protein
levels, CAPG and DDAH2 were significantly more highly expressed in the
T2DM-sepsis model than in the controls. The results corroborated the
bioinformatics analysis conclusions, reinforcing the study’s validity.
Conclusion: Two common stem cell-related biomarkers (CAPG and DDAH2) and
their common pathways between T2DM and sepsis were discovered, providing
new insights for further molecular mechanism studies.
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1 Introduction

Diabetes and its complications, given their widespread
prevalence, represent a significant hazard to global health
systems. The worldwide prevalence of diabetes has increased
fourfold in the past 3 decades, with growing urbanization
intensifying this change (Gassasse et al., 2017; Thanikachalam
et al., 2019). An estimated 463 million adults (9.3%) aged
20–79 years worldwide have diabetes, with projections indicating
this number will increase to 700 million by 2045 (Saeedi et al., 2019).
It is estimated that from 2021 to 2024, the growing population with
the disease in Southeast Asia alone reaches about 60 million people
(Rudd et al., 2020). Over 90% of diabetes cases have type 2 diabetes
mellitus (T2DM), a metabolic disorder defined by insulin resistance
and a predisposition to microvascular complications (such as
diabetic eye and kidney diseases) and macrovascular
complications (including cardiovascular and cerebrovascular
events) (Chiu and Legrand, 2021; Gassasse et al., 2017; Holman
et al., 2015; Saeedi et al., 2019; Thanikachalam et al., 2019). Although
gastrointestinal weight-loss surgery and organ transplantation are
now viable procedures, the former demonstrates limited long-term
efficacy, while the latter is restricted by patient age and organ donor
availability (Font et al., 2020). Consequently, comprehending the
molecular alterations in T2DM is pivotal for developing preventive
strategies and improving treatments.

Sepsis, a life-threatening syndrome of organ dysfunction, occurs
when the host’s response to infection becomes dysregulated (Chiu
and Legrand, 2021). Globally, there are more than 50 million new
cases of sepsis each year, and the number of deaths reaches
11 million, accounting for 1/5 of the global deaths (Rudd et al.,
2020). In China, the number of sepsis patients dying each year is as
high as one million and is on the rise year by year. The latest data
show that the mortality rate of sepsis in Europe and America has
reached 26%, and the mortality rate of its severe stage (infectious
shock) is even as high as 40% (Rudd et al., 2020). In China, patients
with sepsis account for about 20.6% of the hospitalizations in
intensive care units, and sepsis and infectious shock exhibit the
death rates of 35.5% and 53.3%, respectively, imposing significant
strain on healthcare resources (Font et al., 2020). In addition, the
diverse manifestations of sepsis and the restricted effectiveness of
antibiotics, fluid resuscitation, and organ-supportive therapies
present a considerable clinical diagnostic and therapeutic
challenge (Huang et al., 2019; Liu et al., 2022). Therefore, the
study of the pathophysiological mechanisms of sepsis and the
exploration of specific therapeutic approaches are of great
research value.

Diabetes and sepsis are closely interconnected pathologically,
with each condition exacerbating the other in a detrimental cycle
that hastens disease progression (Frydrych et al., 2018; Trevelin
et al., 2017). Patients with diabetes are susceptible to sepsis, whereas
those with sepsis frequently have aberrant blood glucose levels and
may subsequently develop diabetes. Considering the limitations of
traditional therapy, stem cell-based therapeutics provide significant
potential for the management of T2DM and sepsis. Stem cells,
particularly mesenchymal stem cells (MSCs), have exhibited the
capacity to ameliorate insulin resistance, β-cell malfunction, and
tissue damage, while also fostering tissue homeostasis and glycemic
regulation for T2DM (Hoang et al., 2022; Mikłosz and Chabowski,

2023; Zang et al., 2022). Their synergistic interaction with adjunctive
therapy modalities enhances their clinical efficacy (Saha et al., 2023).
Additionally, MSCs are of significant interest in sepsis therapy due
to their ease of isolation and proliferation (Keane et al., 2017).
Therefore, research focusing on stem cells and their related genes is
crucial for elucidating the regulatory mechanisms of T2DM and
sepsis, as well as for enhancing treatment development.

In this study, utilizing transcriptomic data from the Gene
Expression Omnibus (GEO) collection, conserved stem cell-
related biomarkers for T2DM and sepsis were found by
differential expression analysis, machine learning approaches, and
evaluation of expression in datasets (prospective study).
Subsequently, functional enrichment, immune infiltration, drug
prediction, and single-cell analysis were performed to further
elucidate the potential molecular mechanisms by which these
biomarkers govern disease progression. Ultimately, the expression
of identified biomarkers was confirmed using in vitro tests. This
work not only enhances our comprehension of mechanisms
underlying T2DM and sepsis but also offer novel references for
illness diagnosis and therapeutic development.

2 Materials and methods

2.1 Data source

Following database searching, target microarray datasets were
obtained from the GEO database (https://www.ncbi.nlm.nih.gov/
geo/) using the keywords “Type 2 diabetes mellitus” and “Sepsis.”
For T2DM, GSE15932 and GSE20966 were chosen. For sepsis,
GSE65682 and GSE95233 were included in our study, with
another one T2DM-related single-cell RNA sequencing (RNA-
seq) dataset, GSE195986 (Table 1). All GEO datasets were
analyzed using the preprocessed data provided by the database,
which had undergone standard normalization, filtering, and
necessary batch correction according to the official GEO
pipelines. Additionally, an overall of 26 stem gene sets were
sourced from the StemChecker database (http://stemchecker.
sysbiolab.eu/), and 4,419 stem cell-related genes (SCRGs) were
obtained after integration.

2.2 Differential expression analysis

The “limma” R package (version 3.54.2) was utilized to
investigate differentially expressed genes (DEGs) between T2DM
and control groups in GSE15932 with |log fold change| (|logFC|) >
0.5 and P-value <0.05 as screening thresholds (Ritchie et al., 2015).
The DEGs between sepsis and control groups in GSE65682 were
identified based on |logFC| > 1 and P-value <0.05. The results were
displayed by volcano plots drawn utilizing the “ggplot2” R package
(version 3.5.1). Moreover, heatmaps were plotted by the “pheatmap”
R tool (version 1.0.12) to show the top 20 upregulated and top
20 downregulated genes. Subsequently, the results of these datasets
were intersected with SCRGs to acquire the shared differentially
expressed SCRGs (DE-SCRGs) among these two datasets, with all
reported P-values adjusted for false discovery rate (FDR)
(Supplementary Table S1).
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2.3 Functional enrichment analysis

The molecular mechanisms of shared DE-SCRGs of T2DM and
sepsis were identified integrating Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) via the
“clusterProfiler” R package (version 4.6.2) (Wu et al., 2021). A
GO item or KEGG pathway was considered statistically
significant when annotating DEGs with a P < 0.05 threshold.

2.4 Identification of shared stem cell-related
biomarkers for T2DM and sepsis

Firstly, the similarities in the function of these shared DE-
SCRGs were investigated via the “GOSemSim” R package
(version 2.30.2), and the shared DE-SCRGs with similar
functions were enrolled in the following study. Combined with
the annotation information of biological processes (BP), cellular
components (CC), and molecular functions (MF) in the GO
database, a composite score was derived by calculating the
geometric mean of the genes in MF, BP, and CC, which reflects
the molecular function, biological process, and cellular localization
information of the genes, thus identifying the genes in the group that
interact most strongly with other genes. Then, to minimize bias in
the diagnostic models, we used two machine learning algorithms to
locate characteristic genes, namely, least absolute shrinkage and
selection operator (LASSO) (using the “glmnet” R package (version
4.1–8)) (Friedman et al., 2010) and Boruta (using the “Boruta” R
package (version 8.0.0)). The final predicted candidate genes in
sepsis complicated with T2DM were defined as the intersection of
predictions from the two different machine learning algorithms.
Thereafter, the expression of these candidate genes in GSE15932,
GSE20966, GSE65682, and GSE95233 was analyzed, and the
diagnostic efficacy of genes exhibiting differential expression
between disease and control groups, along with consistent
expression patterns, was assessed using receiver operating
characteristic (ROC) curves. The area under the curve (AUC)
greater than 0.7 indicated a good diagnostic efficacy. Therefore,
the genes with AUC >0.7 were defined as biomarkers.

2.5 Construction and assessment of the
nomogram for T2DM and sepsis

Tomeasure the predictive effectiveness of biomarkers for T2DM
and sepsis, the nomogram predictive model was constructed based
on biomarkers expression using the “rms” R function (version
6.8–0). Moreover, to determine their effectiveness, calibration
curves were generated to assess the nomogram.

2.6 Localization analysis

To understand the exact location of the biomarker on the
chromosome, the chromosome localization analysis was
employed by the “RCircos” R package (version 1.2.1) (Zhang
et al., 2013). Furthermore, the FASTA sequences of biomarkers
have been extracted from the database maintained by NCBI (https://
www.ncbi.nlm.nih.gov/gene), and according to these sequences, the
mRNALocater repository (http://bio-bigdata.cn/mRNALocater/)
was applied for subcellular localization analysis to understand its
spatial distribution within the cell.

2.7 Gene set enrichment analysis (GSEA) and
gene set variation analysis (GSVA)

To investigate potential pathways in which biomarkers were
involved and the pathways that were activated or inhibited during
disease progression, GSEA (“clusterProfiler”) and GSVAwas carried
out. The “c2. cp.kegg_medicus.v2023.2. Hs.symbols.gmt” was
retrieved from the MSigdb directory (http://www.gsea-MSigdb.
org/gsea/msigdb) as the reference set. The GSEA pathways were
considered statistically significant with |NES| > 1 and adjusted
P-value <0.05 as thresholds. The GSVA score of each pathway
was calculated with the “GSVA” R package (version 1.46.0)
(Hänzelmann et al., 2013), while the disparities between disease
and control groups were measured by the “limma” R package
(version 3.54.2). The pathways were considered significant
differences with |t| > 2 and P-value <0.05.

TABLE 1 Details of GEO datasets used in this study.

Disease GEO
series

Platform Case
samples

Control
samples

Group Source Cohort characteristics Missing data

T2DM GSE15932 GPL570 8 8 Training
cohort

Peripheral
blood

Small cohort, peripheral blood
from T2DM vs. healthy controls

Minimal (metadata
complete)

GSE20966 GPL1352 10 10 Validation
cohort

pancreas Moderate cohort, pancreatic
tissues, paired case-control

Minimal (metadata
complete)

GSE195986 GPL16791 7 4 Single-cell
dataset

pancreatic
islet

Single-cell dataset, pancreatic
islets

Possible dropout
cells (scRNA QC

applied)

Sepsis GSE65682 GPL13667 760 42 Training
cohort

Whole
blood

Large multicenter sepsis cohort,
whole blood, unbalanced case-

control

Some missing
clinical covariates
reported in GEO

GSE95233 GPL570 102 22 Validation
cohort

Whole
blood

Independent validation cohort,
whole blood

Minor missing
values in metadata
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2.8 Immune infiltration analysis

To figure out the 22 immune cells infiltration dynamics in
diseases (T2DM or sepsis) and control groups, the CIBERSORT
algorithm (version 0.1.0) was applied to estimate the proportion of
each immune cell subsets infiltration. The disparities in infiltration
levels between disease and control groups were analyzed via the
Wilcoxon test (P-value <0.05). Subsequently, the associations
between biomarkers and immune cells counts were assessed
employing the Spearman rank correlation.

2.9 Construction of regulatory networks

To further understand interactions in regulatory networks, the
miRNAs that regulated biomarkers were predicted utilizing the
starBase database (https://rnasysu.com/encori/). Moreover, this
information was also applied to forecast the lncRNAs that had
regulatory relationships with miRNAs predicted (parameter
settings: clipExpNum >30, clipExpNum: the number of CLIP-
seq experiments supported). The ChEA3 database was applied to
predict transcription factors (TFs) that had regulatory
relationships with biomarkers, and TFs that were supported by
ChIP-seq data in the ENCODE database were further screened.
Finally, results were imported into the Cytoscape program in order
to present the lncRNA-miRNA-mRNA connection and TF-
mRNA structure.

2.10 Pharmaceutical prediction and
molecular docking

To investigate possible targeted therapies for biomarkers,
the medications that reacted with biomarkers were predicted
through the DSIGDB database (https://dsigdb.tanlab.org/
DSigDBv1.0/) (P < 0.05) (displaying via Cytoscape).
Subsequently, the top 2 drugs according to P-value ranking
were chosen to perform the molecular docking. The 3D
structures of drugs (SDF file) were extracted from the
PubChem database and were then converted to PDB files
using the Babel GUI. The protein three-dimensional
structures (PDB files) of biomarkers were obtained from the
AlphaFold Database. The AutoDock software was employed to
perform preprocessing steps, including the removal of water
molecules and small molecule ligands from the protein
structure, and molecular docking was conducted through
AutoDock Vina. Finally, results were shown by PyMol.

2.11 Single-cell analysis

We implemented the “Seurat” R package (version 5.1.0) for
assessing the scRNA-seq data. (Hao et al., 2024). Initially, quality
control (QC) was conducted, and the screening criteria were as
follow: (1) cells were retained if the gene count ranged between
200 and 2,000; (2) cells exhibiting a mitochondrial gene percentage
exceeding 5% were discarded; (3) genes with 200 < count
number <5,000 were preserved; and (4) genes covered by less

than 3 cells were removed. After standardization, the top
2,000 via-based highly variable genes (HVG) were identified in
the FindVariable Features function. Subsequently, the
dimensionality reduction analysis was conducted to determine
statistically significant principal components by the ScaleData
and the JackStrawPlot functions. Principal component analysis
(PCA) was performed using the top 2,000 HVG, the top
30 statistically significant principal components (PCs) from the
PCA were chosen for subsequent analyses. Next, the cluster
analysis was conducted using the FindNeghbors and FindCluster
programs, and cell clusters were annotated according to the highly-
variable genes in each cell cluster compared to marker genes in each
cell type obtained from the published literature (Fang et al., 2019;
Segerstolpe et al., 2016;Weng et al., 2023). Moreover, the proportion
of each cell type in T2DM and control groups was measured.
Furthermore, the expression patterns of every single biomarker in
each individual cell type were examined, and variations between
T2DM versus control sets were evaluated by the method known as
theWilcoxon test. Additionally, to further reveal interactions among
all cell types, CellChat (version 1.6.1) was applied to conduct cellular
communication analysis.

2.12 Cell cluster

The mouse pancreatic β cell line MIN6 were obtained from
Yiaobang (Beijing) Biotechnology Research Co., Ltd. (Beijing,
China), and cultured in Dulbecco’s Modified Eagle Medium
(DEME) enriched with 15% fetal bovine serum (FBS),
0.05 mM β-Mercaptoethanol, and 1% penicillin-streptomycin
(P/S) and maintained at 37 °C in a humidified atmosphere
containing 5% CO2. To obtain an in vitro T2DM-sepsis
model, MIN6 cells were initially deprived of nutrients using
0.5 percent FBS for a total of 24 h, then induced with 35 mM
glucose for 24 h, and next induced with 1 μg/mL LPS for 24 h
(Amyot et al., 2012).

2.13 Real-time quantitative polymerase
chain reaction (RT-qPCR)

Total RNA was extracted from MIN6 cells with the FastPure
Complex Tissue/Cell Total RNA Isolation Kit (RC113-01, Vazyme,
China) following the manufacturer’s guidelines. Moreover, the
Nano-500 Micro-Spectrophotometer was applied to examine the
purity of RNA. The ABScript Ⅲ RT Master Mix for RT-qPCR with
gDNA Remover (RK20429, ABclonal, China) was utilized for the
reverse transcription of RNA into cDNA. The RT-qPCR procedure
was used to assess biomarkers generation by the Genious 2X SYBR
Green Fast RT-qPCR Mix (RK21205, ABclonal, China). With
GAPDH as the internal reference, the 2−ΔΔct technique was
utilized for measuring the gene expression. The normalized
primers employed were GAPDH: Forward (F): 5′-AGGTCGGTG
TGAACGGATTTG-3′, Reverse (R): 5′-TGTAGACCATGTAGT
TGAGGTCA-3’; CAPG: F: 5′-TGCCCATAGCACGAGAGAG-3’;
R: 5′-TCATTGCCTTGAACCTCACGG-3’; and DDAH2: F: 5′-
GGACCTGGCTAAAGCTCAAAG-3’; R: 5′-CAGGGCCTTGTG
ATTAGGGC-3’.

Frontiers in Chemistry frontiersin.org04

Wang et al. 10.3389/fchem.2025.1666651

https://rnasysu.com/encori/
https://dsigdb.tanlab.org/DSigDBv1.0/
https://dsigdb.tanlab.org/DSigDBv1.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1666651


FIGURE 1
Identification and enrichment analysis of shared differentially expressed stem cell-related genes (DE-SCRGs) in type 2 diabetes mellitus (T2DM) and
sepsis (A) The volcano plot showing the differentially expressed genes (DEGs) between T2DM and control groups (B) The volcano plot showing the DEGs
between sepsis and control groups (C,D) The heatmaps showing the top 20 upregulated and downregulated genes (C) T2DM (D) Sepsis (E) The Venn
diagram illustrating the intersection among DEGs between T2DM and controls, DEGs between sepsis and controls, and SCRGs (F,G) Functional
Enrichment analyses for DE-SCRGs (F) Gene Ontology (GO) (G) Kyoto Encyclopedia of Genes and Genomes (KEGG).
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2.14 Western blotting (WB)

Total protein from MIN6 cells was extracted utilizing
radioimmunoprecipitation assay (RIPA) lysis buffer
supplemented with 100× PSMF protease inhibitor. The protein
content was confirmed by the BCA Protein Assay Kit (P0010,
Beyotime Biotechnology, China). Subsequently, using sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE),
protein was separated and transferred onto PVDF membranes
(0,000,279,048, Millipore, American). Following the blocking
procedure with 5% milk that had been skimmed, the membranes
were then treated with primary antibodies overnight at 4 °C. After
incubation with secondary antibodies, the membranes were
developed using a chemiluminescence detection reagent. Protein
bands have been calculated with ImageJ software.

2.15 Statistical analysis

All statistical analyses were carried out using the R program and
GraphPad Prism 8.0. The disparities were analyzed via theWilcoxon
test (n = 2) and Student’s t-test. A meaningful P-value is below 0.05.

3 Results

3.1 Identification and enrichment analysis of
shared DE-SCRGs in T2DM and sepsis

Between T2DM and control groups, a total of 560 DEGs were
identified, which 371 genes were upregulated and 189 genes were
downregulated (Figure 1A). Similarly, the results of the comparison
of the sepsis’s items discovered 921 DEGs, consisting of
261 upregulated and 660 downregulated genes (Figure 1B). As
shown in Figures 1C,D, the top 20 signature in different trends
in T2DM and sepsis were visualized, respectively. Following the
intersection among DEGs in T2DM, DEGs in sepsis, and SCRGs, a
total of 19 shared DE-SCRGs were obtained (upregulated items: 13;
downregulated items: 6) (Figure 1E). Subsequently, GO and KEGG
enrichment analyses were conducted to explore putative biological
roles and channels of signaling. Results demonstrated that 20 GO
items (17 GO BP items and three GO CC items) and 6 KEGG
pathways were significantly enriched, such as “regulation of
exocytosis (GO-BP),” “specific granule (GO-CC),” and “pentose
phosphate pathway (KEGG)” (Figures 1F,G)
(Supplementary Table S2).

FIGURE 2
Determination of common stem cell-biomarkers for T2DM and sepsis (A) Functional similarity analysis of DE-SCRGs (B,C) Screening of
characteristic genes through Least absolute shrinkage and selection operator (LASSO) regression (B) T2DM (C) Sepsis (D,E) Screening of characteristic
genes through Boruta (D) T2DM (E) Sepsis (F) The Venn diagram illustrating the intersection among characteristic genes derived from two machine
learning algorithms in T2DM and sepsis (G) Box plots revealing the differences in expression of candidate genes between T2DM and control groups
and between sepsis and control groups From left to right: GSE15932; GSE20966; GSE65682; GSE95233 (H) The receiver operating characteristic (ROC)
curve From left to right: GSE15932; GSE20966; GSE65682; GSE95233 (I) Chromosome localization analysis for biomarkers (J) Subcellular localization
analysis for biomarkers.
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3.2 Determination of stem cell-related
biomarkers for T2DM and sepsis

To determine the common stem cell-related biomarkers for
T2DM and sepsis, we first chose the top 15 genes based on
functional similarity scores for the following analysis, namely,
ISOC1, LBH, AMIGO2, FES, RAB13, STXBP2, KLRG1, MPO,
DDAH2, CAMP, MMP9, GRAMD1A, P2RX1, CAPG, and PASK
(Figure 2A). The LASSO analysis distinctly identified 6 characteristic
genes for T2DM and 11 characteristic genes for sepsis (Figures 2B,C).
Furthermore, the Boruta algorithm identified 6 characteristic genes
for T2DM and 15 characteristic genes for sepsis, respectively (Figures
2D,E). The characteristic genes of two datasets were intersected to
obtain four candidate genes, including RAB13, DDAH2, GRAMD1A,
and CAPG (Figure 2F). Subsequently, expression analysis revealed
that in both training and validation sets for T2DM and sepsis, CAPG
and DDAH2 were significantly highly expressed in the disease group
(Figure 2G). Moreover, ROC analysis suggested that the AUC values
of these two genes in training and validation sets were all greater than
0.7, revealing that these two genes had good diagnostic efficacy for
T2DM and sepsis (Figure 2H). Therefore, CAPG and DDAH2 were

shared stem cell-related biomarkers for T2DM and sepsis.
Chromosomal localization analysis demonstrated that CAPG was
located on chromosome 2 andDDAH2was located on chromosome 6
(Figure 2I). Subcellular localization analysis showed that the two
biomarkers were mainly located in the cytoplasm (Figure 2J).

3.3 Development and evaluation of
nomogram for T2DM and sepsis

To further determine the predictive potential of diagnostic
biomarkers for T2DM and sepsis, the nomograms were created
by considering the expression patterns of biomarkers (Figures 3A,B).
In the nomogram, each gene expression is represented as a “point,”
and the aggregate of the individual gene scores constitutes the “Total
Points.” Moreover, calibration curves were produced to assess the
prediction ability of the nomogram. For T2DM, the calibration
curve exhibited a slope approximating 1 (Figure 3C). For sepsis, the
same result was obtained (Figure 3D). These results illustrated the
excellent predictive effectiveness of nomograms for T2DM
and sepsis.

FIGURE 3
Development and assessment of nomogram (A,B) The nomogram (A) T2DM (B) Sepsis (Each dot represents the gene expression level and
corresponding score within the sample, with the red line connecting the two.) (C,D) The calibration curve (C) T2DM (D) Sepsis.
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3.4 Functional enrichment analysis for
biomarkers

To understand the functions of biomarkers, GSEA was
conducted. Functional enrichment analysis using GO and KEGG
databases revealed that CAPG and DDAH2 exhibit convergent roles
in T2DM and sepsis. In T2DM (Figures 4A,B) (Supplementary
Table S3), both genes were significantly enriched in immune-related
pathways (e.g., FcγR-mediated phagocytosis, B cell receptor
signaling), infectious disease pathways (e.g., Helicobacter pylori
and Leishmania infections), and growth factor signaling (VEGF/
ErbB pathways), and genetic information processing (translation)-
related pathways (Ribosome).

In sepsis, CAPG and DDAH2 these genes showed broader
functional repertoires, including Antigen processing and
presentation, complement activation, and T cell receptor signalings.
Disease-specific enrichments included autoimmune disorders (e.g.,
graft-versus-host disease), neurodegeneration (Parkinson’s disease),
and metabolic reprogramming (oxidative phosphorylation) (Figures
4C,D) (Supplementary Table S4). Both diseases showed shared
involvement in ribosomal machinery (Ribosome/Proteasome),
revealing conserved roles in translational regulation of which in the
development of diseases.

3.5 Identification of KEGG pathways
associated with development of T2DM
and sepsis

Furthermore, we also conducted GSVA to investigate KEGG
pathways that were significantly relevant to the development of
T2DM and sepsis. In T2DM, a total of 15 KEGG pathways were

considerably suppressed, whereas 33 KEGG pathways were
significantly activated (Figure 4E) (Supplementary Table S5). In sepsis,
55 KEGG pathways were considerably inhibited, and 108 KEGG
pathways were markedly activated (Figure 4F) (Supplementary Table
S5). After a comprehensive analysis, we found that a total of 11 KEGG
pathways were inhibited in both T2DMand sepsis, including “aminoacyl
tRNA biosynthesis,” “valine leucine and isoleucine degradation,”
“pyruvate metabolism,” and eight other pathways (Supplementary
Table S5). Additionally, 26 KEGG pathways were activated in both
T2DM and sepsis, such as the ”GnRH/ErbB/neurotrophin signaling
pathways,” among others (Supplementary Table S5). These results
highlighted common molecular mechanisms that may contribute to
the pathogenesis of T2DM and sepsis.

3.6 Investigation of immune cell infiltration
and its correlation with biomarkers

Considering the important role of inflammation and immune
response in sepsis and T2DM, the immune infiltration analysis was
performed. As depicted in Figure 5A, the stacked bar chart demonstrated
the relative abundance of immune cell subsets in each sample in
GSE15932. Between T2DM and control groups, the infiltration
abundance of CD8 T cells, monocytes, and M2 macrophages was
markedly different (Figure 5B). Results of correlation analysis
illustrated that two biomarkers had significant positive associations
with monocytes and had marked negative relevance to activated
memory CD4 T cells and M2 macrophages (Figure 5C).
Furthermore, CAPG also enjoyed a substantial adverse relationship
with plasma cells (cor = −0.509, P = 0.044), and DDAH2 had a
marked negative relevance to CD8 T cells (cor = −0.679, P =
0.004) (Figure 5C).

FIGURE 4
Gene set enrichment analysis (GSEA) and Gene set variation analysis (GSVA) (A,B)GSEA for biomarkers in T2DM (A) CAPG (B)DDAH2 (C,D)GSEA for
biomarkers in sepsis (C) CAPG (D) DDAH2 (E,F) GSVA (E) T2DM (F) Sepsis.
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Immune cell infiltration profiles of 22 subsets in sepsis and control
samples was presented in Figure 5D. Comparative analysis revealed
significant differences in 14 immune cell types, including CD8 T cells,
naive B cells, resting natural killer (NK) cells, monocytes,
M0 macrophages, resting dendritic cells, activated mast cells, and so
on (Figure 5E). Correlation analysis demonstrated that, except for
memory B cells, activated memory CD4 T cells, follicular helper
T cells, gamma delta T cells, and resting NK cells, CAPG had
significant correlations with the remaining immune cells, the strongest
positive correlationwas observedwithM1macrophages (cor = 0.305, P=
9.898e-19), while the highest negative correlation was with resting
memory CD4 T cells (cor = −0.303, P = 1.652e-18) (Figure 5F).
Except for follicular helper T cells and monocytes, DDAH2 had
marked associations with remaining immune cells, with the highest
positive correlation with macrophages M1 (cor = 0.349, P = 1.885e-24)
and with the highest negative correlation with CD8 T cells (cor = −0.340,
P = 4.035e-23) (Figure 5F).

3.7 Construction of biomarker
interaction networks

To confirm the upstream and downstream interactions of
biomarkers and their related contents, we constructed the
regulatory networks of biomarkers as well as the related networks

of the drugs. Through the starbase database, a total of 7 miRNAs
regulated CAPG, 11 miRNAs regulated DDAH2, and 68 miRNA-
lncRNA relationships were predicted. After integration, the
lncRNA-miRNA-mRNA regulator network was created, including
36 nodes (2 mRNAs, 16 miRNAs, and 18 lncRNAs) and 71 edges
(Figure 6A). In which, the regulatory interactions comprised
NEAT1-hsa-miR-1179-DDAH2 and NEAT1-hsa-miR-1276-
CAPG. Through the ChEA3 database, 19 TFs for CAPG and
21 TFs for DDAH2 were predicted. After integration, the TF-
mRNA regulator network was developed, consisting of 37 nodes
(2 mRNAs and 35 TFs) and 40 edges (Figure 6B). Among these TFs,
ETS1, CTCF, TAL1, HNF4A, and IRF1 all had a regulatory role for
both CAPG and DDAH2. Results of drug prediction indicated that
eight drugs had interactions with CAPG, and 25 drugs had
interactions with DDAH2. The drug-mRNA network was
comprised of 30 edges and 33 edges (Supplementary Figure S1A).
Subsequently, according to the P-value ranking, we selected the top
2 drugs for molecular docking. Results revealed that puromycin
interacted with CAPG by hydrophobic bonds to ARG-112, GLY-
113, TYR-109, GLN-39, and GLN-36 (Supplementary Figure S1B).
Retinoic acid engaged with CAPG through hydrophobic
interactions with TRP-157 (Supplementary Figure S1C).
Nebivolol collaborates with DDAH2 by hydrophobic links to
ARG-173, MET-178, and PHE-222 (Supplementary Figure S1D).
Podophyllotoxin interacted with DDAH2 by hydrophobic bonds to

FIGURE 5
Immune Infiltration analysis (A,C) Immune infiltration analysis in T2DM (A) Stacked bar chart showing the infiltration abundance of each immune cell
in each sample (B) Box plot revealing the differences in infiltration abundance of immune cells between T2DM and control groups (C)Heatmap illustrating
correlations between biomarkers and immune cells (D–F) Immune infiltration analysis in sepsis (D) Stacked bar chart showing the infiltration abundance
of each immune cell in each sample (E) Box plot revealing the differences in infiltration abundance of immune cells between sepsis and control
groups (F)Heatmap illustrating correlations between biomarkers and immune cells ns: not significance *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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ARG-10 and PHE-222 (Supplementary Figure S1E). Moreover, the
binding energies were all less than −5 kcal/mol, suggesting that the
bonds were all stable (Supplementary Table S6).

3.8 Analysis of expression level of
biomarkers at the cellular level in T2DM

To further evaluate the expression of biomarkers at the cellular
level, single-cell analysis was carried out. After QC, remaining high-
quality cell populations were clustered into 18 clusters, which were
annotated with 9 cell types: acinar cells, alpha cells, beta cells, delta
cells, ductal cells, endothelial cells, antigen-presenting MHC class II
cells (MHC II), pancreatic polypeptide (PP) cells, and pancreatic
stellate cells (PSCs) (Figures 7A–C; Supplementary Figure S2). In
T2DM and control samples, the 2 cell types with the largest
proportion were alpha cells and beta cells (Figure 7D).
DDAH2 was not detected in the scRNA-seq dataset due to the
absence of information for this gene in the original data. Therefore,
subsequent single-cell analyses focused only on CAPG (Figure 7E).
Results demonstrated that CAPG was expressed in all cell types, and
the expression in alpha cells, beta cells, delta cells, and PSCs between
T2DM and control groups was significantly different (Figure 7F).

Further analysis of pancreatic cell–cell communication revealed
that, in the context of T2DM, interactions between PSCs and
endothelial cells, as well as between endothelial cells and other
pancreatic cell types, were more pronounced compared with
controls (Figures 7G,H). Specifically, in T2DM, PSCs established
additional connections with endothelial cells through
VEGFA–FLT1 and ECM–integrin axes, whereas in controls, EC-
to-PSC interactions were mainly mediated by ANGPTL4–SDC2/
CDH11. Beyond PSC–EC crosstalk, ductal cells in T2DM lost their
interactions with PSCs but gained connections with MHC II cells;

acinar cells only interacted with endothelial cells; PP cells established
additional interactions with MHC II cells; delta cells interacted with
MHC II, endothelial, and beta cells; and alpha cells gained
interactions with MHC II and endothelial cells. By contrast, the
connection between beta cells and endothelial cells was diminished
in T2DM (Supplementary Table S7). As no blood-based scRNA-seq
datasets with case–control design were available, all single-cell
analyses and cell–cell communication results—including those
from CellChat—were pancreas-specific and limited to the T2DM
context. These findings should not be interpreted as reflective of
systemic immune processes or sepsis-related interactions.

3.9 Validation of expression of biomarkers

To further validate the expression of biomarkers, we developed
an in vitro model of T2DM-sepsis. Quantitative analysis revealed
that both CAPG and DDAH2 exhibited significantly higher mRNA
and protein expression in the model group compared to the control
group (Figures 8A,B). All experiments, including qPCR and
Western blot, were independently repeated three times, and the
results were statistically significant. These findings are consistent
with the bioinformatics analysis and further support the potential of
CAPG and DDAH2 as diagnostic biomarkers for T2DM and sepsis.

4 Discussion

The intersection of T2DM and sepsis is significant at the clinical
and molecular levels, and Mendelian randomization studies have
further confirmed that patients with T2DM have a significantly
increased risk of developing sepsis (Qi et al., 2025). This study
identifies, for the initial time, the stem cell-associated molecular

FIGURE 6
Construction of regulation networks (A) The lncRNA-miRNA-mRNA network Orange represents mRNAs, green represents miRNAs, and blue
represents lncRNAs (B) The transcription factor (TF)-mRNAs Orange represents mRNAs and green represents TFs.
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network common to T2DM and sepsis, which provides a new
perspective to understand the mechanism behind their co-
morbidity. CAPG and DDAH2, as key node genes, not only
serve as early diagnostic biomarkers but also possibly influence
diseases by the immune-metabolism pathway, proving a theoretical
foundation for the development of stem cell-based combination
therapies in T2DM and sepsis.

CAPG, as an actin-binding protein, has been predominantly
studied for its roles in tumor metastasis and migration of immune

cells. Glaser et al. established that CAPG plays a role in the spreading
and invasiveness of ovarian carcinoma (Glaser et al., 2014). CAPG
has been shown to facilitate gastric cancer proliferation, migration,
invasion, and metastasis in both in vivo and in vitro models (Long
et al., 2024). In colorectal cancer, mechanistic studies reveal that
CAPG exerts oncogenic functioms by inhibiting apoptosis and
ferroptosis, while promoting colorectal cancer cell proliferation
through repression of the P53 pathway (Zhao et al., 2023). In
our study, CAPG showed significant correlations with monocytes

FIGURE 7
The expression of biomarkers in the cellular level (A) UMAP showing 18 different clusters (B) Bubble diagram shows the expression of marker genes
in each annotated cell types (C) UMAP distribution of 9 cell types (D) The proportions of each cell type in control and T2DM groups (E) The volcano plot
showing the DEGs of the RNA-seq dataset (F) The expression of each biomarker in each cell type (G) Cell communication networks illustrating the
number and strength of interactions among cell types in the control group (H)Cell communication networks illustrating the number and strength of
interactions among cell types in the T2DM groups ns: not significance *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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and macrophages in both T2DM and sepsis, revealing that it may be
involved in T2DM and sepsis by affecting monocyte/macrophage
functions, such as phagocytosis and chemotaxis, thereby broadening

its pathophysiological role. In T2DM, M1 macrophage polarization
exacerbates adipose tissue inflammation and insulin resistance (Phu
et al., 2022), whereas high expression of CAPG may amplify this

FIGURE 8
The validation of expression of biomarkers (A) The expression of biomarkers at the transcription (mRNA) level (n = 3) (B) The expression of
biomarkers at the protein level (n = 3). From left to right: CAPG, DDAH2. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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process by enhancing the migration of monocytes to inflammatory
sites. In sepsis, the overactivation of M1 macrophages is an
important driver of the “cytokine storm” (Yan et al., 2024) with
CAPG potentially contributing to the immune imbalance by
regulating macrophage phagocytosis. DDAH2, a key enzyme in
the nitric oxide (NO) metabolic pathway, plays critical physiological
roles by degrading asymmetric dimethylarginine (ADMA), an
exogenous modulator of nitric oxide synthase (NOS) (Liu et al.,
2012). Plasma ADMA levels are elevated (Abhary et al., 2010) and
DDAH expression and activity are reduced in diabetic patients
(Yuan et al., 2015). However, there are differences in the effect of
DDAH gene polymorphisms on serum ADMA levels in type
1 diabetes mellitus (T1DM) and T2DM (Fogarty et al., 2012).
Research utilizing animal models has indicated that abnormalities
in adipose tissue ADMA metabolism may correlate with
mechanisms governing blood flow in white adipose tissue in GK
rats, a model for T2DM. In sepsis pathophysiology, the
concentration of ADMA in the plasma increases (Weiss et al.,
2012), and the expression and activity of DDAH2 in immune
cells decrease (Winkler et al., 2017). This may not only lead to
the passivation of NO signals but also result in the subsequent
impairment of pathogen defense, indicating that DDAH2 promotes
the response to severe bacterial sepsis to a large extent by regulating
the inflammatory response of macrophages (Lambden et al., 2015;
Lambden et al., 2018;Winkler et al., 2017). Furthermore, studies had
been demonstrated that plasma ADMA can be used as a biomarker
for the prognosis of septic shock (Lambden et al., 2018). Notably, the
negative correlation between DDAH2 and CD8+ T cells was
significant in both diseases, possibly reflecting its suppression of
T cell toxicity through NO signaling (Huang et al., 2021a), a
mechanism that may have a double-edged effect in the
autoimmune injury of T2DM and the immunosuppressive phase
of sepsis. Despite the absence of DDAH2 expression in pancreatic
single-cell data—which is consistent with previously published
single-cell datasets showing that DDAH2 is almost undetectable
and expressed at extremely low levels in normal islet cells (Baron
et al., 2016; Segerstolpe et al., 2016)—DDAH2 exhibited consistent
upregulation in bulk transcriptomic analyses and in our in vitro
model. Under combined high-glucose and LPS stimulation,
designed to mimic the inflammatory and metabolic stress of
T2DM complicated with sepsis, its expression was markedly
induced, supporting the role of DDAH2 as an inducible marker
of systemic immune stress in T2DM and sepsis. In summary, these
findings highlight the complex roles of CAPG and DDAH2 in
modulating immune cell functions in both T2DM and sepsis,
suggesting that targeting these proteins may offer potential
therapeutic strategies for managing inflammation and immune
dysregulation in these diseases.

The GSEA findings indicated that CAPG and DDAH2 were
strongly implicated in “FC gamma R-mediated phagocytosis” and
“Ribosome” in both T2DM and sepsis, further indicating they share
the same mechanism of immunometabolic reprogramming. The FC
gamma R-mediated phagocytosis is a key hub connecting innate
immunity and adaptive immunity, and its abnormal activation is
associated with multiple immune dysfunctions. Enrichment of the
Ribosome suggests a compensatory enhancement of protein
synthesis under cellular stress, a phenomenon that may occur in
both pancreatic β-cells in T2DM (in response to insulin secretion

load) and immune cells in sepsis (in response to pathogen attack). In
addition, GSVA results showed activation of the ErbB signaling
pathway is significant in both diseases. This pathway may be
involved in islet compensatory hyperplasia (T2DM) (Arai et al.,
2025) and post-sepsis tissue repair by regulating cell proliferation
and survival (Zhang et al., 2022), a common mechanism that
provides clues for the development of broad-spectrum therapies.
The findings systematically elucidate the molecular similarities
between T2DM and sepsis concerning immune-metabolic
regulation, formulating a theoretical foundation for the
advancement of synergistic methods for therapy that
concurrently target multiple immune-metabolic pathways.

Finally, we also created the lncRNA-miRNA-mRNA, TF-
mRNA, and drug-mRNA networks in this study to elucidate the
complex regulatory interactions and potential therapeutic targets
underlying the shared pathophysiology of T2DM and sepsis. In the
lncRNA-miRNA-mRNA network, NEAT1 regulates CAPG/
DDAH2 through miR-1179/miR-1276, which is consistent with
previously reported pivotal roles of NEAT1 in inflammation and
metabolic diseases (Jia et al., 2022; Wang et al., 2018). Co-regulation
of the transcription factors ETS1 and IRF1 suggests that CAPG/
DDAH2 may be upregulated in response to inflammatory signals
(e.g., TNF-α/IL-6) (Huang et al., 2021b; Meerson et al., 2013; Sacks
et al., 2018). Among the drug predictions, puromycin (targeting
CAPG) and nebivolol (targeting DDAH2) were identified as
potential candidates, supported by favorable binding affinities
(binding energy < −5 kcal/mol) based on molecular docking
results. Nebivolol, a β-receptor blocker with known
cardiovascular protective effects (Kadi et al., 2008), has also been
proposed to improve endothelial function in sepsis-related contexts
(Girardis et al., 2024), suggesting possible avenues for drug
repurposing in the treatment of T2DM and sepsis.

In this study, we identified two shared stem cell-related
biomarkers (CAPG and DDAH2) for T2DM and sepsis and
further validated the expression of biomarkers through in vitro
cell experiments. A developed nomogram based on biomarkers
showed high predictive accuracy and clinical applicability.
However, as the existing analysis is based on public databases
and lacks validation with multicenter clinical samples, and the
mechanistic depth is insufficient, the specific role of CAPG/
DDAH2 in immune-inflammation has not been verified by
knockout/overexpression experiments. In addition, validation
partly relied on pancreatic scRNA-seq due to limited public
datasets. While signals were consistent across cohorts, pancreatic
profiles may not reflect blood or systemic patterns. The lack of
suitable blood scRNA-seq data highlights the need for future
studies using peripheral blood or cross-tissue transcriptomics to
confirm these biomarkers. Further exploration is still needed in
the future.

5 Conclusion

This study determines shared stem cell-related biomarkers
(CAPG and DDAH2) for T2DM and sepsis through
bioinformatics analysis and cell experiments and finds that these
biomarkers may modulate diseases through immune-inflammation.
These discoveries have enhanced our comprehension of the inherent
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connection between T2DM and sepsis, offering novel insights into
the diagnosis and management of the condition.
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