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The issue of adulteration and misclassification of Ganoderma species is
addressed in this research. In the study, we present a novel and
comprehensive framework for Ganoderma authentication by analyzing
attenuated total reflectance—Fourier transform infrared (ATR-FTIR) spectra
using a combined approach of a chemometric analysis and deep learning (DL)
with a convolutional neural network (CNN). The three Ganoderma species
involved in this study were as follows: Ganoderma lucidum, Ganoderma
sinense, and Ganoderma tsugae. Among chemometric models, orthogonal
partial least squares discriminant analysis (OPLS-DA) yielded a high accuracy
of 98.61%, a sensitivity of 97.92%, and a specificity of 98.96%. Additionally, the
root-mean-squared error of estimation (RMSEE), root-mean-squared error of
prediction (RMSEP), and root-mean-squared error of cross-validation (RMSECV)
values for the OPLS-DA model were <0.3, confirming its reliability. The CNN
model also performed well, achieving 89.84% accuracy, 84.75% sensitivity, and
92.38% specificity, with minimal variation during random segregation testing.
Additionally, the model exhibited a precision of 0.87 + 0.02, a recall of 0.85 +
0.03, and an F1 score of 0.86 + 0.03 for 10 random segregation tests. As a
conclusion, both chemometric and CNN models developed in this study are
efficient and robust for classifying Ganoderma species. To further validate this
combined approach, we aim to implement chemometric and CNN models in
other medicinal herb authentication in the future.

ATR-FTIR, chemometric analysis, CNN, Ganoderma lucidum, Ganoderma sinense,
Ganoderma tsugae, Ling Zhi
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1 Introduction

Ganoderma (Ling Zhi) is a traditional medicinal mushroom
from the Ganodermataceae family, used in Chinese and Asian
communities. Its earliest record appears in Shen Nong Ben Cao
Jing (ca. 100 B.C.), and it has been mentioned in many ancient texts.
Ganoderma can now be cultivated on a large scale for research and
medicinal purposes. More than 20 species have been studied, but
Ganoderma lucidum (red Ling Zhi) is the most researched, whereas
Ganoderma sinense (purple Ling Zhi) is also important in China.
Since 2001, Ganoderma tsugae has been approved for use in health
products. These three species are officially listed by the Chinese
government as suitable for use in health foods.

The health benefits of Ling Zhi are primarily attributed to its
active compounds, such as triterpenes and polysaccharides.
Triterpenes exhibit strong pharmacological effects, including
antitumor, liver protection, anti-angiogenic, and antihistaminic
activities, whereas polysaccharides enhance immune function
(Jong and Birmingham, 1992; Su et al., 1999; Zhang et al,, 2019).
Ganoderma lucidum has been used in the treatment of conditions
such as neurosis, polymyositis, dermatomyositis, atrophic myotonia,
and muscular dystrophy (Zhang et al., 2019). Ganoderma sinense is
often used as a supportive treatment for leukopenia and bone
marrow damage caused by chemotherapy or radiotherapy (Zhang
et al., 2019). Due to its medicinal value, Ling Zhi extracts are widely
commercialized as health foods, such as drinks, coffee powders,
supplements, and syrups (Lai et al., 2004).

Due to the interest in high economic gains and the intra-species
similarity, fraudulent inclusion of adulterated Ling Zhi occurs in the
market, impacting the authenticity of Ling Zhi products (Fu et al., 2017;
Lin and Yang, 2019; Wachtel-Galor et al., 2011). The adulteration of
Ganoderma species is also attributed to the heightened demand due to
its diverse benefits as a functional food. The imperilment of herbal
product security, the challenge to authority-managing institutions, and
the erosion of consumer trust in Ling Zhi products collectively
emphasize the need for an approach to accurately identify
Ganoderma species and distinguish them from adulterants.

In the authentication of Ganoderma species, there are several
discrimination methods, such as DNA barcoding, high-performance
liquid chromatography (HPLC), thin-layer chromatography (TLC),
and capillary electrophoresis (Loyd et al., 2018; Sheng et al., 2022; Sun
et al., 2014; Yao et al, 2021). However, these methods are not
considered in this research because they require extensive sample
preparation and a time-consuming procedure. To meet the efficiency
demands of the pharmaceutical industry and regulatory bodies in
large-scale herbal authentication, spectroscopic methods that are
rapid, simple, and nondestructive can be the best alternative to
replace traditional methods (Al-Hetlani et al.,, 2025). Spectroscopic
methods such as attenuated total reflectance-Fourier transform
(ATR-FTIR) (NIR)
spectroscopy, and Raman spectroscopy offer minimal sample

infrared spectroscopy,  near-infrared
preparation, providing a strong molecular fingerprint for the
authentication of Ganoderma species (Al-Hetlani et al, 2025;
Amin et al., 2021; Chen et al.,, 2008; Wang et al., 2019). Although
NIR spectroscopy is rapid and nondestructive, its broad overtone and
combination bands (12,500 to 4,000 cm™) provide less clear
molecular information, limiting its ability to distinguish closely
related herbal species (Wang and Yu, 2015). Raman spectroscopy

Frontiers in Chemistry

10.3389/fchem.2025.1655760

is affected by fluorescence interferences commonly observed in plant
matrices, which can obscure important spectral features (Al-Hetlani
et al, 2025). In contrast, ATR-FTIR spectroscopy is preferred for
precise authentication because it has superior functional group
resolution and robustness against fluorescence interferences.

ATR-FTIR spectroscopy is a rapid, nondestructive, and cost-
effective technique that captures molecular vibrational information
from samples with minimal preparation (Tiernan et al., 2020). To
interpret its complex spectra, chemometric methods such as
principal component analysis (PCA), PCA-Class, and orthogonal
partial least squares discriminant analysis (OPLS-DA) are
commonly applied to reduce dimensionality, identify patterns,
and discriminate between groups (Tew et al, 2022). More
recently, the convolutional neural network (CNN) has emerged
as a promising approach as they can automatically learn features
directly from data without manual extraction (Nichols et al., 2019).
Although chemometric models remain powerful, the CNN offers
scalability and adaptability, making it a valuable complementary
tool for herbal authentication (Li et al., 2022).

Before our work, research focused on the
species using ATR-FTIR
spectroscopy combined with a chemometric approach (Wang

there was
discrimination of  Ganoderma
et al, 2019). Nevertheless, they did not discover the use of deep
learning (DL) to discriminate Ganoderma species. Acknowledging
the influential studies of Wang et al. (2019), this research extends
and refines the method for discriminating Ganoderma species using
ATR-FTIR spectroscopy combined with chemometric methods,
incorporating the CNN. In recent years, DL has become
increasingly utilized in the field of automatic identification of
crop diseases, plant phenotyping, and plant species classification
via leaf classification (Boulent et al., 2019; Jiang and Li, 2020; Lee
et al, 2023). A literature review conducted prior to this study
proposed limited data resources on the classification of
Ganoderma species using the CNN. In this research, a deep
learning method through the CNN, together with a chemometric

analysis, is explored for better identification of Ganoderma species.

2 Methodology
2.1 Samples and materials

In this study, 118 Ganoderma samples were used, which were
contributed by Fujian University of Traditional Chinese Medicine. The
sample set comprises three distinct Ganoderma species, namely, G.
lucidum (Leyss.ex Fr.) P. Karst (GL), G. sinense Zhao. Xu et Zhang (GS),
and G. tsugae Murrill (GT). In the sample set, there are 78 GL, 20 GS,
and 20 GT. These samples were sourced from China. The samples were
dried in an oven at 50 °C for 8-9 h. Afterward, the samples were ground
into a fine powder, sieved through a 200-mesh stainless steel sieve, and
then stored at 8 °C before the experiment. Prior to the ATR-FTIR
analysis, the samples were reheated at 50 °C for an hour.

2.2 Data acquisition and processing

M

A Spectrum Two™ FTIR Spectrometer (PerkinElmer,

United States), equipped with a Universal Attenuated Total
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Reflectance (UATR) accessory, was used in this study. A sufficient
amount of the powdered Ganoderma sample was placed to fully
cover the UATR crystal surface. A consistent pressure was applied to
all samples to ensure consistent contact on the crystal surface. The
infrared spectra measurement step was performed in a room with
controlled humidity and temperature to minimize the impact of
environmental factors on the measured spectra. The spectra were
then recorded as 36 scans in the wavelength ranging from 4,000 to
400 cm™', with a resolution of 4 cm™ and an interval of 1 cm™, to
improve the signal-to-noise ratio and spectral resolution. Software
Spectrum 10.5.3 (PerkinElmer, United States) was utilized to analyze
the spectra of samples in this research.

ATR correction was performed to mathematically correct the
measured ATR-FTIR spectra, compensating for the attenuation of
infrared radiation (Beasley et al, 2014). The baselines of the
spectra were corrected. A smoothing step was performed to
reduce the noise in the spectra. An arithmetic operation
involving a subtraction manipulation step was carried out in
with
smoothed spectra.

conjunction normalization for the baseline and

2.3 Data analysis

2.3.1 Chemometric analysis

An unsupervised pattern recognition technique known as the
PCA was implemented to determine differences in ATR-FTIR
spectral characteristics among the Ganoderma species. A
discrimination study was then conducted after the PCA, in which
PCA-class and OPLS-DA were performed. The samples were
randomly divided into two sets: one for calibration purposes and
the other for validation. These sets were utilized to implement the
PCA-class and OPLS-DA model. The calibration set comprises 60%
of the spectra from the three different Ganoderma species, with the
validation set containing the remaining 40%. Internal validation was
performed using a permutation test, which consisted of

100 permutations. The chemometric analysis was done using

SIMCA version 14.1 (Umetrics, Sweden). The accuracy,
sensitivity, and specificity were calculated using Formulas 1-3,
respectively:
A IP+TN 100% (1)
= X N
O = TP« TF+FP+ FN ’
Sensitivit P x 100% 2)
ensitivity = ———— )
YT TP EN ’
TN
i ficity = ——— x 100%, 3
Specificity TP FP* % (3)
where

TP = true positive
TN = true negative
FP = false positive
FN = false negative

2.3.2 Convolutional neural network

Although a total of 118 Ganoderma samples were not too few for
chemometric analysis, this quantity of samples available for the
classification of Ganoderma species using the CNN was deemed
insufficient. This is due to the rarity and high cost of obtaining
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Ganoderma samples. Apart from having a limited number of
samples, the scarcity of sample sources also leads to a significant
imbalance across different species of Ganoderma. In particular, both
GS (20 samples) and GT (20 samples) were underrepresented
compared to GL (78 samples), which had a considerably larger
number of samples. This can lead to class imbalance, where
underrepresented classes are poorly identified compared to their
well-represented counterparts. Apart from that, the accuracy of the
model could be greatly affected or lead to a misleadingly high overall
accuracy score (Venkataramana et al., 2022).

The dataset for this study comprised 1-dimensional ATR-FTIR
spectral curves (coefficient vs wavenumber) obtained from GL, GS,
and GT. The complete dataset consisted of 118 samples, with an
uneven distribution across classes, as detailed in Table 1.

2.3.2.1 Data augmentation

Data augmentation was performed on both the training and
testing sets to address class imbalance, which can lead to biased
outcomes in machine learning models. In this research, the Synthetic
Minority Oversampling Technique (SMOTE) algorithm, the data
augmentation package, was applied to both training and testing sets.
The SMOTE generates synthetic samples based on the existing
samples provided by comparing randomly selected data points in
a minority class (i.e., GS and GT) with their closest neighboring data
point and generating new data along the lines of these neighbors
(Venkataramana et al, 2022). Typically, the SMOTE uses five
nearest neighbors (Elreedy and Atiya, 2019).

The original dataset consisted of three classes: 78 GL, 20 GS, and
20 GT. Each class was randomly split into two mutually exclusive
subsets, namely, group A and group B. Both groups contained as
equal a number of samples per class as possible. No sample
overlapped between group A and group B. Subsequently, the
SMOTE was used to oversample each class in both groups
independently, resulting in 500 samples, which are presented
in Table 1.

2.3.2.2 Training and testing phases

The dataset in group A was used to train a CNN-based classifier.
During training, cross-validation was implemented as an
intermediate evaluation step to optimize hyperparameters and
thus

overfitting. In particular, stratified k-fold cross-validation was

improve model generalization, reducing the risk of
applied to equally partition the dataset into multiple folds. In
each iteration, the CNN model was trained on a subset of the
data and validated on a separate fold. This process was repeated for
all folds, and the resulting performance metrics were averaged to
obtain a reliable estimate of the model’s generalization performance.
The implementation was carried out using the standard Keras API
integrated with scikit-learn’s cross-validation tools to ensure
seamless and reproducible model training and evaluation. In this
study, the n_splits parameter in the KFold function in scikit-learn
was set to 10, which resulted in the dataset being equally partitioned
into 10 folds.

The CNN is inherently stochastic, indicating that even when
using the same architecture and training dataset, slight variations in
model performance can occur across different training runs. In
practical applications, model evaluation involves training the CNN
on one portion of the data and assessing its predictive performance
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TABLE 1 Breakdown of Ganoderma samples used in this study.

10.3389/fchem.2025.1655760

Raw sample Raw sample Raw sample Oversampled sample Oversampled sample
count count in group A count in group B count in group A count in group B

Ganoderma 78 39 39 500 500
lucidum

Ganoderma 20 10 10 500 500
sinense

Ganoderma 20 10 10 500 500
tsugae

Total 118 59 59 1,500 1,500

Input

- Convolutional layer (1-Dimensional)
64 filters, filters size = 3, activation = ReLU

Maxpooling
1-Dimensional layer, pool size = 4

G

Convolutional layer (1-Dimensional)
64 filters, filters size = 3, activation = ReLU

Feature —
Maxpooling
1-Dimensional layer, pool size = 4
‘ Batch normalisation
S [ Flatten layer
{ Fully connected dense layer
Classification

Output

FIGURE 1
Architecture of the CNN model.

on a separate, unseen portion to estimate its generalization
capability. In this study, the dataset from group B was used as an
independent testing set to evaluate the performance of the trained
CNN on group A. The output of the testing phase was a confusion
matrix, which would be used to evaluate the model’s performance in

Frontiers in Chemistry

this phase. Key metrics, including precision, recall, and F1 score,
were recorded during this testing phase.

2.3.2.3 Random segregation test

A random segregation test was used to assess the robustness and
consistency of performance across different runs. If the model
demonstrates high and consistent accuracy across different runs,
it indicates that the CNN is robust and not overly dependent on
specific data samples. However, a large fluctuation in accuracy
would indicate that the model’s performance is unstable. In this
study, the random segregation test was performed 10 times, where
the testing dataset was tested with 10 folds of the trained dataset. The
confusion matrix of each random segregation test was recorded. The
accuracy, sensitivity, and specificity for each random segregation test
were calculated. The mean, standard deviation, and coefficient of
variation (CV) for accuracy, sensitivity, specificity, precision, recall,
and F1 score were calculated using Statistical Package for the Social
Sciences (SPSS) version 27 software (IBM Corp, United States) for
10 random segregation tests.

2.3.2.4 Architecture of the CNN model

The deep learning approach in this research applied a CNN
model as the machine learning model. The architecture of the CNN
model in this study was designed to be relatively straightforward.
Simply, it was designed to consist of two convolutional layers, two
max pooling layers, and two dense activation layers. The details and
features of the CNN model used in this research are discussed in the
Supplementary Material. Figure 1 presents the architecture of the
CNN model in this research.

3 Result and discussion

3.1 Differentiation using ATR-FTIR spectra

ATR-FTIR spectral profiles for the various Ganoderma species
are presented in Figure 2. No significant variance was observed in
the ATR-FTIR spectra of the three species. This indicated that the
functional groups or bioactive components in each Ganoderma
species were almost similar. The assignments of the absorption
bands and their possible compounds are presented in Table 2.

As tabulated in Table 2, the common absorption bands observed
in the ATR-FTIR spectra of Ganoderma species are at 3,310 cm ™,
2,920 cm™, 1,637 ecm™', 1,420 cm™, 1,370 cm™’, 1,313 cm’},
1,249 cm™, 1,202 cm™, 1,152 cm™, 1,067 cm™, 1,039 cm™, and
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3312

1037

1041

4000

FIGURE 2

500 400

Comparison of ATR-FTIR spectra of (A) Ganoderma lucidum, (B) Ganoderma sinense, and (C) Ganoderma tsugae.

892 cm™. A strong band observed at approximately 3,310 cm™" was
attributed to O-H stretching of polysaccharides and triterpenes (Sun
etal, 2011; Wang et al., 2019). This finding aligns with the fact that
Ganoderma  triterpenes

and polysaccharides are significant

Frontiers in Chemistry

biomolecules or active ingredients in Ganoderma species,
contributing to a wide range of therapeutic characteristics,
including anti-inflammatory and antitumor activities (Lin and

Yang, 2019; Xia et al., 2014). Next, the presence of an absorption
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TABLE 2 Peak assignment of ATR-FTIR spectra of three Ganoderma species.

10.3389/fchem.2025.1655760

Peak (cm™) G. tsugae Primary assignment Functional group Biomolecule
G. lucidum G. sinense
3310 3312 3307 O -Hy Alcohols/phenols Triterpenes and polysaccharides
2,920 2,923 2,923 C - H, v, Alkane Various
O - Hy
1,637 1,638 1,634 C=0, v Amide I Protein
N-H§
1,420 1,412 1,418 =CH, &, Alkene Various
1,370 1,371 1,372 C-H§6 Alkane Various
1,313 1,312 1,311 C-N,» Amide IIT Protein
N-H§
1,249 1,250 1,249 C-N,» Amide IIT Protein
N-H§
1,202 1,202 1,201 C- v Amide III Protein
N-H§
1,152 1,153 1,154 C-0,v Ketone Saccharides/glycosides
1,067 1,066 1,068 C-0,v Ketone Saccharides/glycosides
1,039 1,037 1,041 C-0,v Ketone Saccharides/glycosides
892 892 880 =CH, Soop Alkene Saccharides/glycosides

band representing amide I at approximately 1,630 to 1,645 cm™" was
attributed to partially denatured collagen (Kristoffersen et al., 2023).
The band observed in the region between approximately 1,200 and
1,315 cm™! arises from the stretching vibrations of the C-N bond
and bending vibrations of the N-H bond of amide III proteins (Sun
et al, 2011). Absorption bands near 1,152 cm™, 1,067 c¢m’’,
1,039 cm™’, and 892 cm™' also indicate the presence of
polysaccharides as another significant active ingredient in
Ganoderma species. Among these bands, those at approximately
1,067 cm™ and 1,039 cm™' were relatively strong. Another small

band found at approximately 892 cm™

signified the presence
of the P-anomer configuration of the saccharides (Lin and

Yang, 2019).

3.2 Differentiation through
chemometric analysis

In this study, we applied the unsupervised PCA, supervised
PCA-Class, and OPLS-DA methodologies to visually present and
distinguish among the three species of Ganoderma samples obtained
from the ATR-FTIR analysis. In the PCA, R°X and Q® were
commonly used to assess the model’s performance and reliability,
respectively. R*X is the proportion of total variance in the
independent variables (X) that is captured by the principal
components, whereas Q” reflects the model’s predictive capability.
Values of R°X and Q’ close to 1 indicate that the model has high
reliability and strong predictive power (Kotzé-Horstmann et al.,
2022; Liu et al., 2018). The score plot depicted in Figure 3 illustrates
significant variability among all samples in the PCA, as evidenced by
R’X = 0.99 and Q* = 0.98. However, the PCA model proved

Frontiers in Chemistry

inadequate in distinguishing between the various Ganoderma
species effectively.

In contrast, the supervised PCA-class model demonstrated R*X
values between 0.99 and 1.00 and Q* values between 0.94 and
0.98 for the three Ganoderma species. The PCA-class model
achieved an accuracy of 98.31%, a sensitivity of 97.46%, and a
specificity of 98.73%. From these results, we can conclude that the
PCA-class model is capable for classifying the Ganoderma species.
The results are encouraging although there remains potential for
further improvement.

Nevertheless, the data were successfully differentiated into three
different species (GL, GS, and GT) when implementing an
orthogonal algorithm in the OPLS-DA analysis, as shown in
Figure 4. R’X, the goodness of fit parameter (R’Y), and the
goodness of prediction parameter (QY) were scrutinized to
evaluate the overall efficacy of the OPLS-DA prediction model.
The values of these parameters fall within 0-1, with values
approximately 1 indicating excellent predictive capability and
values between 0.50 and 0.90 denoting good predictive capability
(Jingying et al., 2023; Tew et al., 2022). As detailed in Table 3, the
OPLS-DA model in this research was deemed as a good predictive
model as R*X, R?Y, and QY values were 0.99, 0.85, and 0.72,
respectively. For the permutation test, R°Y and QY intercepts
were 0.30 and -0.76, respectively, as depicted in Figure 5,
indicating that the model fits one another. Furthermore, the
root-mean-squared error of estimation (RMSEE), root-mean-
squared error of prediction (RMSEP), and root-mean-squared
error of cross-validation (RMSECV) were evaluated to assess the
accuracy and predictability of the OPLS-DA model. The values
ranged from 0 to 1, where the smaller the value of RMSEE and
RMSEDP, the better the predictability and accuracy of the model (van
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Unsupervised PCA score plot of three different Ganoderma species: (green) Ganoderma lucidum, (blue) Ganoderma sinense, and (yellow)

Ganoderma tsugae.

Wyngaard et al,, 2021). Meanwhile, for RMSECV, the smaller the
value, the less the variable, including noise removal (Takahama and
Dillner, 2015). According to Table 3, the values of RMSEE (0.21),
RMSECV (0.26), and RMSEP (0.25) were considered small,
affirming the suitability and accuracy of the OPLS-DA model.
Additionally, the OPLS-DA model demonstrated 98.61%
accuracy, 97.92% sensitivity, and 98.96% specificity in classifying
Ganoderma species, making it an ideal methodology for achieving
the objectives outlined in this experiment.

3.3 Differentiation using the CNN

3.3.1 Performance evaluation of the training phase

The performance of the CNN model was evaluated at the end of
each epoch. The standard practice is to plot and evaluate the learning
curves of the model at the training stage. Consequently, we can
access the model fit of the CNN model. Model fit issues, such as
overfitting and underfitting, are common problems in machine
learning, which could lead to poor performance and low
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accuracy in the model. Overfitting is represented by a
convergence and subsequent divergence of the two plots in the
learning curves. Additionally, we can identify underfitting by
examining a noticeable gap between the training and validation
loss curves in the learning curves. To prevent overfitting, the general
guideline is to stop further training when the training loss levels off.
Figure 6 shows one of the learning curves of the training and
validation loss of a CNN model during the training process in
this study. The learning curve is well fitted, with both curves
converging at the same points. Additionally, the training and
validation loss curves level off at nearly the same values,
indicating that the model accurately predicts the samples without

overfitting.

3.3.2 Performance evaluation of random
segregation tests

The robustness of our model in classifying Ganoderma
fingerprints was assessed by observing the fluctuations in
each random

accuracy, and

segregation test. A robust and reliable CNN model is expected to

sensitivity, specificity  across
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FIGURE 4

Supervised OPLS-DA score plot of three different Ganoderma species: (green) Ganoderma lucidum, (blue) Ganoderma sinense, and (yellow)

Ganoderma tsugae.

deliver consistent and stable performance, even with individual
random segregations, without excessive statistical fluctuations. In
cases where the model lacks robustness, the potential anticipating
factor may stem from the dataset. For instance, an imbalanced
dataset, a mishandled dataset, and a dataset with underrepresented
samples could cause fluctuations in performance and deteriorate the
model’s robustness.

In the context of this research, as referred to Table 1, the samples
in the initial raw dataset were imbalanced. In contrast, the
augmented dataset had a relatively higher number of samples
overall, with each class of Ganoderma species having an equal
number of samples, resulting in a balanced distribution. The
random segregation tests were initially conducted using the initial
raw dataset. However, the data were not reported in this study. To
conclude, both underrepresented classes, GS and GT, showed
significant fluctuations in the accuracy, sensitivity, and specificity
across each repetition. Conversely, the fluctuation in GL with a
higher number of samples was smaller. These outcomes further
supported that the initial raw dataset was insufficient to train a
robust CNN classifier with reliable performance. Additionally, this

Frontiers in Chemistry

demonstrates the importance of the data augmentation step in
yielding a robust CNN classifier.

Subsequently, the random segregation test was then conducted
using the oversampled dataset. The fluctuation in performance for
each random segregation tests was observed and recorded using a
multiclass confusion matrix function provided by scikit-learn in
Python. A multi-class confusion matrix is commonly used to
evaluate the performance of a CNN classifier as it is resilient
toward various types of data distribution and data relationship
(Ruuska et al., 2018). From the confusion matrix, information
on how the Ganoderma species is correctly predicted or classified
can be gathered. From the row of the confusion matrix, we
can obtain the predicted values; conversely, we can obtain the
true values from the column. In Figure 7, a confusion matrix
from one of the random segregation tests is presented. From the
confusion matrices of 10 random segregation tests, we observed that
the classification of GL was better than that of GS and GT.
Additionally, we observed that most of the misclassified GLs
belong to the GT group, whereas most of the misclassified GSs
and GTs belong to the GL group.
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TABLE 3 Parameters of PCA, PCA-class, and OPLS-DA models.
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According to Table 4, the CNN model exhibited 89.84% + 1.96%
accuracy, 84.75% + 2.95% sensitivity, and 92.38% *+ 1.47% specificity
in 10 random segregation tests. Additionally, the model exhibited a
precision of 0.87 + 0.02, a recall of 0.85 + 0.03, and an F1 score of
0.86 + 0.03 for 10 random segregation tests. The F1 score was
calculated based on the harmonic mean of precision and recall,
where values closer to 1 indicate that precision and recall are less
deviant from each other, suggesting better performance in
classifying predictions into the correct class (Hand et al., 2021).
Hence, the F1 score value of 0.86 indicated good performance in the
classification model. In addition, the CNN model demonstrated
robustness, as indicated by the low CV for accuracy (2.18%),
sensitivity (3.48%), specificity (1.59%), precision (2.30%), recall
(3.55%), and F1 score (2.96%), reflecting minimal variability in
performance metrics across 10 random segregation tests. Although
the performance of the CNN in terms of accuracy, sensitivity, and
specificity did not surpass that of OPLS-DA in the chemometric
analysis, it still yielded satisfactory results.

3.4 Comparison of the chemometric analysis
and CNN

The chemometric analysis and CNN have their own strengths
and limitations. First, in terms of data interpretability, chemometric
methods are generally more straightforward and easier to
comprehend (Omar et al.,, 2019). These approaches enable clear
analysis and concise interpretation of relationships between input
variables. In contrast, the CNN operates through more complex
mechanisms, making its outputs less intuitive and more challenging
to interpret (Liu et al., 2021). Chemometric techniques are typically
preferred for preliminary analyses involving smaller and less
complex datasets. Although modern chemometric tools, including
multivariate analysis, classification, and prediction techniques, can
enhance model performance, they may still face limitations when
dealing with large-scale, nonlinear, and complex datasets (Kharbach
etal,, 2023). On the other hand, the CNN is well suited for handling
high-dimensional and more intricate data structures (Zhu et al.,
2023). Their layered architecture enables them to automatically
extract relevant features during training, contributing to the
development of a robust model (Debus et al., 2021). In addition,
the inclusion of the CNN adds an innovative, automated feature
extraction capability, minimizing the reliance on spectral
preprocessing. Although the performance of the CNN was
slightly lower than that of the chemometric analysis, its
advantages highlight the need to consider the CNN as a valuable
approach for discriminating Ganoderma species. In conclusion, the
combined use of the chemometric analysis and CNN offers a
strategic advantage by harnessing the strengths of each approach
to offset their individual limitations, ultimately contributing
to the development of a more reliable and effective
classification model.

4 Conclusion

The classification and discrimination of Ganoderma species are
areas in which this research is of particular importance as it not only
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TABLE 4 Summary of the results for random segregation tests.

Random segregation test Accuracy (%) Sensitivity (%) Specificity (%) isi Recall F1 score

1 88.98 83.47
2 91.82 87.73
3 85.16 77.73
4 90.67 86.00
5 91.24 86.87
6 90.67 86.00
7 88.22 82.33
8 89.78 84.67
9 89.56 84.33
10 92.27 88.40
Mean + standard deviation 89.84 + 1.96 84.75 + 2.95
CV 2.18% 3.48%

91.73 0.86 0.84 0.85
93.87 0.90 0.88 0.89
88.87 0.83 0.78 0.80
93.00 0.88 0.86 0.87
93.43 0.89 0.87 0.88
93.00 0.88 0.86 0.87
91.17 0.86 0.82 0.84
92.33 0.87 0.85 0.86
92.17 0.87 0.84 0.86
94.20 0.90 0.89 0.89
92.38 + 1.47 0.87 £ 0.02 0.85 £ 0.03 0.86 + 0.03
1.59% 2.30% 3.55% 2.96%

*Accuracy, sensitivity, and specificity were calculated from each confusion matrix. Precision, recall, and F1 score were summarized from each Ganoderma species based on its corresponding

confusion matrix separately.

refines the current understanding of ATR-FTIR spectroscopy
combined with chemometric methods for classifying visually
similar Ganoderma samples but also uses a deep learning
approach to predict the class of different Ganoderma species. The
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findings on the conventional ATR-FTIR spectra of three Ganoderma
species in this research further validate that the subtle variance in
spectra, which are imperceptible to the naked eye, necessitates
sophisticated analytical methods for accurate classification. The
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chemometric approach, such as OPLS-DA, applied in this
research, has been proven to be a promising approach for
discriminating Ganoderma species. Ultimately, this research has
demonstrated that the CNN model can be a reliable approach for
the discrimination between different
Although the CNN  model
performance, it offers significant advantages in scalability,

Ganoderma  species.

achieved slightly  poorer
adaptability to larger and more complex datasets, and the
potential for real-time implementation in routine authentication
workflows. The combined approach advances the field by bridging
the traditional chemometric rigor with modern deep learning
flexibility, thereby opening new avenues for robust, rapid, and
nondestructive authentication of medicinal fungi. Looking
forward, this approach may be extended to other medicinal
herbs, with the ultimate goal of developing a publicly accessible
authentication platform to support research, industry, and
regulatory applications. Although the model’s performance has
been proven in this study, it remains essential to validate it in other
medicinal herb authentication to identify areas for improvement
and implement necessary upgrades accordingly.
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